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A B S T R A C T

Soil Moisture Active Passive (SMAP) mission of NASA was launched in January 2015. Currently, SMAP has an L-
band radiometer and a defunct L-band radar with a rotating 6-m mesh reflector antenna. On July 7th, 2015, the
SMAP radar malfunctioned and became inoperable. Consequently, the production of high-resolution active-
passive soil moisture product got hampered, and only ~2.5 months (April 15th, 2015 to July 7th, 2015) of data
remain available. Therefore, during the SMAP post-radar phase, many ways were examined to restart the high-
resolution soil moisture product generation of the SMAP mission. One of the feasible approaches was to sub-
stitute the SMAP radar with other available SAR data. Sentinel-1A/Sentinel-1B SAR data was found most suitable
for combining with the SMAP radiometer data because of its nearly similar orbit configuration that allows
overlapping of their swaths with a minimal time difference, a key feature/requirement for the SMAP active-
passive algorithm. The Sentinel interferometric wide swath (IW) mode acquisition also provides the co-polarized
and cross-polarized observations required for the SMAP active-passive algorithm. However, some differences do
exist between the SMAP and Sentinel SAR data. They are mainly: 1) Sentinel has a C-band SAR whereas SMAP
operates at L-band; 2) Sentinel has multiple incidence angles within its swath, and SMAP has one single in-
cidence angle; and 3) Sentinel 1A/B Interferometric Wide (IW) swath width is ~250 km as compared to SMAP
with 1000 km swath width. On any given day, the narrow swath width of the Sentinel observations significantly
reduces the overlap spatial coverage between SMAP and Sentinel as compared to the original SMAP radar and
radiometer swath coverage. Hence, the temporal resolution (revisit interval) suffers due to narrow overlapped
swath width and degrades from 3 days to 12 days. One advantage of using very high-resolution resolution
Sentinel-1A/Sentinel-1B data in the SMAP active-passive algorithm is the potential of obtaining the dis-
aggregated brightness temperature and thus soil moisture at a much finer spatial resolution of 3 km and 1 km at
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global extent. The assessment of high-resolution product at 3 km and 1 km using the soil moisture calibration and
validations sites shows reasonable accuracy of ~0.05m3/m3. The SMAP-Sentinel1 active-passive high-resolution
product is now available to the public (new version released in October 2018) through NSIDC (NASA DAAC).
The duration of this product is from April 2015 to current date.

1. Introduction - background

On January 31st, 2015 NASA launched the Soil Moisture Active
Passive (SMAP) mission. The objective of the SMAP mission is to ac-
quire high spatiotemporal resolution surface (top ~5 cm) soil moisture
and landscape freeze/thaw state at global extent (Entekhabi et al.,
2010). SMAP has an L-band radiometer and a defunct L-band radar with
a rotating 6-m mesh reflector antenna. On July 7th, 2015, the SMAP
radar malfunctioned and became inoperable. The SMAP radiometer
continues to make passive microwave measurements. Since the radar
failure the SMAP project explored ways to recover the high-resolution
soil moisture capability of the SMAP mission. Specifically by using
other active microwave measurements (SAR) from other satellites was
investigated. Characteristics and configurations of available SARs, such
as global coverage, availability of data, and microwave channel wa-
velength were among the trade-offs considered in selecting other
sources of active radar measurements. The Copernicus Project Sentinel-
1A/1B synthetic aperture radar (SAR) data (Copernicus Sentinel Data
2015. Retrieved from ASF DAAC 29, 2015) was found suitable for this
purpose due to Sentinel nearly similar orbit configuration. Hence, the
Sentinel and the SMAP swaths overlap with manageable acquisition
time difference, which is key to the SMAP active-passive algorithm (Das
et al., 2018). The global coverage based on both Sentinel-1A and Sen-
tinel-1B is the best among available SAR systems. The Sentinel Inter-
ferometric Wide Swath (IW) acquisition mode provides the co-pol and
cross-pol backscatter observations required for the active-passive al-
gorithm. Some differences do exist between the SMAP SAR data and
Sentinel-1A/Sentinel-1B SAR data that include: 1) Sentinel has C-band
and SMAP had an L-band SAR instrument; 2) Sentinel has multiple
incidence angles within its swath, while SMAP had one single incidence
angle at 40 degrees; and 3) Sentinel swath width is ~250 km as com-
pared to SMAP 1000 km swath width. With regards to the last point, the
SMAP and Sentinel overlap covers only ~250 km within the 1000 km
swath width of the SMAP observations. Therefore, the temporal re-
solution (revisit interval) for the SMAP active-passive data is degraded
from 3 days to 12 days when Sentinel-1A and Sentinel-1B data are used.
An advantage of using Sentinel-1A and Sentinel-1B data in the SMAP
active-passive algorithm is the potential of getting the disaggregated
brightness temperature and soil moisture at much finer spatial resolu-
tions (1 and 3 km). One issue with the combination of L-band radio-
meter and C-band SAR measurements may be that they represent dif-
ferent emission depths due to differences in frequency. Such differences
were tested using a fine-resolution soil moisture advection-diffusion
equation (Richard's solver) forced with intermittent precipitation and
evaporation at the surface. At the 6:00 AM estimation times, the soil
moisture profile in the absence of immediate precipitation has ap-
proached a hydrostatic balance (Montaldo and Albertson, 2001). Under
these modal conditions the soil moisture profile within the top 5 and
even 10 cm of the soil is uniform to within several significant digits.
Comparisons with in situ soil moisture measurements (sections below)
are presented below.

The active-passive algorithm disaggregates the coarse resolution
SMAP radiometer-based brightness temperature (TB) and soil moisture
by using the finer spatial resolution of the Sentinel co-polarized and
cross-polarized SAR data and parameters derived from a relationship
between the brightness temperature and SAR data. The implementation
of the active-passive algorithm is described further in a subsequent
section.

The disaggregated high-resolution brightness temperatures from the

SMAP-Sentinel1 active passive algorithm were then subjected to a ra-
diative transfer model (Njoku and Entekhabi, 1996) to retrieve soil
moisture. The inversion of the disaggregated brightness temperature
uses the same suite of algorithms and ancillary data sources as the
SMAP radiometer-only soil moisture product processing. Analyses
showed that some refinements of parameters were required for the
current baseline radiative transfer model (zeroth-order emission model
or tau-omega) i.e., the single channel algorithm (SCA). During the in-
itial validation the tau-omega parameters used to generate the SMAP-
Sentinel1 soil moisture product (L2_SM_SP) are similar to the para-
meters applied in the SCA of the SMAP Level 2 Soil Moisture Passive
(L2_SM_P/L2_SM_P_E) product. (Chan et al., 2016; and Chan et al.,
2017). This implementation is important to maintain consistency be-
tween the SMAP-Sentinel1 L2_SM_SP and the SMAP L2_SM_P/
L2_SM_P_E products.

The L2_SM_SP product uses the Sentinel-1A and Sentinel-1B SAR
data to disaggregate SMAP L-band radiometer measurements from the
~40 km (half-power or− 3 [dB] definition) radiometer measurement
to a 3 km and 1 km gridded products. The Sentinel C-band SAR data
adds high-resolution spatial details to the radiometer product. It also
adds the noise associated with the SAR observations (instrument noise,
complex surface scattering, etc.). It is expected that the spatial features
in the L2_SM_SP product to be at higher resolution than the SMAP Level
2 Soil Moisture Passive (L2_SM_P/L2_SM_P_E) product. The L2_SM_SP
product contains disaggregated brightness temperature at 3 km and
1 km and their respective soil moisture retrievals. The purpose of pro-
viding soil moisture retrievals at 1 km is to facilitate agricultural and
ecological applications that need high resolution soil moisture.
However, the 3 km soil moisture retrievals are primarily used for vali-
dation using the SMAP Core Cal/Val Sites. The Core Cal/Val sites are
not available at 1 km resolution because they do not satisfy the re-
quirement of minimum number (at least 3) of in-situ sites within 1 km
grid cell.

The following sections elaborates the modified active-passive algo-
rithm, results and assessment of the L2_SM_SP product.

2. Active-passive algorithm

The originally developed SMAP Active-Passive algorithm (Das et al.,
2014; Entekhabi et al., 2014; Das et al., 2018) is:

= + ∙ − + ∙ −T M T C β C σ M σ C Γ σ C σ M( ) ( ) ( ) {[ ( ) ( )] [ ( ) ( )]}B j B pp j pp pq pq jp p

(1)

where, TBp
(C) [K] is the radiometer-based brightness temperature at

coarse resolution (~36 km). The radar backscatter aggregated to
coarse-resolution is σpp(C) [dB] and σpq(C) [dB], co-pol and cross-pol,
respectively. The radar backscatters σpp(M) [dB] and σpq(M) [dB] are at
the desired high-resolution (3 km or 1 km). β(C) [K/dB] and Γ [dB/dB]
are parameters of the algorithm. The parameter β(C) represents the co-
variation between TBp

(C) and σpp(C) of the SMAP radiometer and radar
observations, respectively, and the parameter Γ represents the vegeta-
tion-induced heterogeneity within the coarse resolution radiometer
cells that is detected by the high-resolution σpp(M) and σpq(M) radar
observations. The parameter β(C) can be statistically estimated based
on a time-series regression using pairs of SMAP radiometer TBp

(C) and
spatially-averaged radar data σpp(C). Subsequent repeat overpasses over
the same location on the Earth grid are used in the linear time-series
regression TBp

(C)= intercept+ slope ∙ σpp(C). Clearly these parameters
are effective across scale the coarse scale C. Γ is estimated as
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. The value of Γ is specific to the particular grid cell C. It is

estimated based on the collection of co-polarized and cross-polarized
SAR backscatter cross-section within each coarse grid cell (C). Complete
description of the algorithm and parameters is available in the SMAP
Active-Passive Algorithm Theoretical Basis Document (https://smap.
jpl.nasa.gov/system/internal_resources/details/original/277_L2_3_SM_
AP_RevA_web.pdf).

The algorithm (Eq. (1)) is based on the assumption that the linear
relationship between the TBp

(C) and σpp(C) holds. Therefore, it is also
important to demonstrate that the similar linear relationship is found
between the SMAP radiometer TBp

(C) and spatially-averaged Sentinel
radar data σpp(C). Fig. 1 illustrates the scatters between the SMAP TBp

(C)
and Sentinel σpp(C) from various regions of the world with different
landcovers having varying amount of vegetation water content (VWC).

Two years (2017 and 2018) data are used to create the plots in Fig. 1
where ever there are overlap between the SMAP TBp

(C) and Sentinel
σpp(C). The slope of the correlation between L-band TBp

(C) and the C-
band σpp(C) depends on the level of VWC and the surface roughness. As
expected the slope is ~0 for very highly vegetated region such as West
Virginia (Fig. 1j). It is obvious from Fig. 1 that the nearly linear re-
lationship is valid for most of the world. However, low correlation is
also visible over the dry and arid Sahara desert because the dynamic
range in TBp

(C) and σpp(C) is not observed during the two years period.
The number of samples for any given site of Fig. 1 is dependent on the
availability of the Sentinel 1A/1B granules. With the current global
coverage configuration from 2016 October onwards including Sentinel
1A and Sentinel1B the revisit interval is nearly 12 days over most parts
of the world except Europe. In Europe, the Sentinel 1A and Sentinel 1B
combination acquires observations at 6 days revisit interval. Therefore,
over the European sites in Fig. 1 more samples are available. The
number of samples also suffer from the SMAP and the Sentinel overlap
restriction of 24 h.

The SMAP-Sentinel1 Active-Passive algorithm draws heavily from
the above-mentioned algorithm but important changes in im-
plementation of the estimation are introduced. Eq. (1) is now modified
to work in emissivity space instead of brightness temperature space and
the Sentinel backscatter are in linear scale [−]. Certain aspects of im-
plementation are changed to make it more effective and applicable to
accommodate the 12 days revisit interval of the Sentinel satellite. This
modification is essential as with the 12 days Sentinel revisit the TBp

(C)
and σpp(C) time series is too sparse, and the parameter estimation
through time series approach is ineffective/unfeasible. With time-series
sampling for 12 days repeat cycle, accumulation of enough data pairs
become sparse to allow the statistical estimation of β(C) may extend
over periods when the vegetation or soil roughness conditions are
changing with seasons.

To overcome the limitation of sparse times-series, a snapshot re-
trieval approach (Jagdhuber et al., 2018) is adopted to estimate the co-
variation parameter from the SMAP radiometer and the Sentinel radar
observations. The SMAP-Sentinel1 Active-Passive algorithm used in the
L2_SM_SP product is:

= ⎡
⎣
⎢ + ′ ∙ − + ∙ − ⎤

⎦
⎥

∙

T M

T C
Ts

β C σ M σ C Γ σ C σ M

Ts

( )

( )
( ) {[ ( ) ( )] [ ( ) ( )]}

B j

B
pp j pp pq pq j

p

p

(2)

where, Ts [K] is the emission temperature of the surface soil. The
parameter Γ [−] is estimated the same way as mentioned above,
however, in a linear scale. The parameter β′(C) [−] is estimated in the
mentioned snapshot approach because the Sentinel revisit interval of
12 days makes the time series of the Sentinel σpp(M) [−] and σpq(M)
[−] data very sparse. The snapshot β′(C) is retrieved at each coarse grid
cell (C) for every overlap between the SMAP and Sentinel observations,

Fig. 1. Scatter plots between the SMAP L-band radiometer TBp
(C) and spatially-averaged Sentinel C-band radar data σpp(C) from various regions of the world.
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and is computed as (Jagdhuber et al., 2019):

′ =
− + − −

− ∙−
β C

γ ω γ

S M μ S M
( )

( (1 ) (1 ))

| ( )| | ( )|

T C

Ts

pp j pp pq pq j

( )

2 2

Bp

(3)

where, ω [−] is the effective single scattering albedo, γ= e−τ/cosθ [−]
is the vegetation loss term, and θi [rad] is the incidence angle
(Jagdhuber et al., 2018). β′(C) in Eq. (3) results from eliminating
smooth surface Fresnel reflectivity from the tau-omega model and
variations in co-polarized backscatter that is due to soil moisture and
not vegetation (Jagdhuber et al., 2018). The numerator is the measured
surface emission minus the vegetation volume scattering and emission.
The denominator is similarly the co-polarized backscatter minus the
volume scattering (Jagdhuber et al., 2019). The volume scattering
component in the co-polarized backscatter is the total co-polarized
backscatter minus the projection of the cross-polarized backscatter onto
the co-polarized backscatter. The projection is μpp−pq= ∂|Spp(Mj)|2/
∂|Spq(Mj)|2.

The nadir vegetation opacity τ [−] is related to the physical char-
acteristics of the vegetation layer, such as the vegetation water content
(VWC). |Spp(Mj)|2 is co-polarized backscatter, where
|Spp(Mj)|2≡ σpp(Mj), and |Spp(Mj)|2 is cross-polarized backscatter,
where |Spq(Mj)|2≡ σpq(Mj). μpp−pq is the same as Γ of Eq. (2), except
using a linear regression of backscattering coefficients (σpp(Mj) [−],
σpq(Mj) in linear units) at fine scale (3 km) within each coarse-resolution
TB grid cell (TBp

(C)). These approaches to estimate β′(C) and μpp−pq do
not require time series of TBp

(C) and σpp(C). The snapshot approach Eq.
(3) (Jagdhuber et al., 2018; Jagdhuber et al., 2019) is capable to ac-
commodate L-band, C-band and X-band combinations of the radiometer
and SAR observations at different incident angles. At any given day, the
snapshot estimate of the covariance parameter (β′) is unique and is
dependent on the radiometer TB (emissivity), SAR backscatter, ω [−]
(the effective single scattering albedo), and γ=e−τ/cosθ [−] the ve-
getation loss term (τ is vegetation optical density and θ is incident angle

of TB).
For evaluation of β′(C) retrieved in snapshot approach, a compar-

ison was made with β(C) derived from the time series purely obtained
from data of the SMAP mission (SMAP radar and radiometer). Both
approaches converge with the β′(C) values almost similar to β(C) as
shown in Fig. 2, except over dryland regions across the Sahara, parts of
the Middle East and Central Asia. These dryland regions do not have
enough soil moisture variability during the April 1 to July 7 Summer
season of 2015 (when the SMAP radar data is available) to induce
variations in TBp

(C) and σpp(C) to allow valid time-series estimation of
β(C). Outside of these regions the magnitudes and distribution of the
covariation parameter are similar between the statistical time-series
and snap-shot approaches (Jagdhuber et al., 2017).

The baseline SMAP L2_SM_SP algorithm has two parameters (β′(C)
and Γ), as shown in Eq. (2). The performance of the brightness tem-
perature disaggregation that results in the 3 km and 1 km soil moisture
retrievals is heavily dependent on robust estimates of the parameters
β′(C) and Γ.

Fig. 3 shows the mean and coefficient of variation (CV) of β′(C) at
global extent using SMAP radiometer and Sentinel-1A/B backscatter
data from May 1, 2015 to April 30, 2017. The global evolution of mean
β′(C) (Fig. 2) shows the typical feature of reducing magnitude (ap-
proaching zero) with increasing VWC (Jagdhuber et al., 2019). How-
ever, the CV in Fig. 2 represents high variability except over very arid
regions. This is a clear indication of seasonality/variability in β′(C) and
the gradually changing values with the surface conditions, especially
VWC. Some low absolute values are also observed over the Sahara
desert because of local variation in roughness values leading to high
backscatter even for very dry surface.

The estimation of β′(C) through Eq. (3) does not require time series
of TBp

(C) and σpp(C). Therefore, space-borne radar and radiometer ac-
quisitions with varying incidence angle can be used and the covariation
parameter β′(C) is dependent on the angle. The range of incidence

Fig. 2. Comparison of snapshot-retrieved β′(C) and time series-retrieved β(C) at global extent for SMAP active-passive (~2.5 months) period.
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angles for Sentinel 1A/B observations within the (C) scale (C-scale is
33 km resolution) is ~1 deg. Therefore, linearly averaging the Sentinel
1A/B backscatter is quantitatively possible and valid. In Fig. 4 from
Jagdhuber et al. (2019), the dynamics of the covariation estimation
with variation of incidence angle (Sentinel-1A/B: 34 [°]–44 [°]) is
presented for four different ranges of vegetation water content (VWC)
within the African continent. The VWC estimates come from O'Neill
et al. (2014). The covariation parameter β′(C) from low to moderate
amounts of vegetation (VWC < 5 [kg/m2]), gradually decreases in
magnitude with increasing plant moisture. However, the largest
change, in magnitude of β′(C) along incidence angle (for the lowest
VWC-range in Fig. 4) is around 0.5 (Jagdhuber et al., 2019). As ex-
pected, β′(C) shows minimum sensitivity to incidence angle variations
for strongly vegetated areas (VWC > 6 [kg/m2]) leveling around −1.5
[−]. This might be due to the insensitivity of both SMAP radiometer (L-
band) and Sentinel-1A/B radar (C-band) to soil moisture variations
under highly moist vegetation. One interpretation is that the incidence
angle variation of active-passive microwave covariation is increasingly
masked/gets absorbed by denser/thicker vegetation (Jagdhuber et al.,
2019).

The parameter Γ is determined statistically for any particular
overpass using the Sentinel 1A/B radar backscatters σpp and σpq at the
finest available resolution (in this case at 1 km) that are encompassed
within the 33 km TBp

(C) grid cell. The parameter Γ is projection of
Sentinel 1A/B σpq space into the σpp space. It is the slope of covariance
between the Sentinel 1A/B σpq and the σpp (Γ is estimated as

≡ ⎡
⎣

⎤
⎦

∂
∂

σ M
σ M C

( )
( )

pp j

pq j
). Γ shows that the heterogeneity is captured through the

spatial deviation of σpq backscatter from its mean at (C) scale. The Γ
value project this spatial deviation in σpq backscatter in the σpp back-
scatter space. The projection of spatial deviation in σpq backscatter can
be additive or negative with the σpp backscatter that depends on the
vegetation and surface roughness. Therefore, one Γ value is sufficient to

capture the heterogeneity of the scene within the (C) scale. In Fig. 5, the
values of Γ for all arid regions of the Earth surface is between 4 and 5.
This is because the range of the σpq backscatter response is much lower
in the arid region than any other landcover types. Fig. 5 illustrates the
mean and Coefficient of Variation (CV) of Γ values over the global
extent using all data from May 1, 2015 to April 30, 2017. The Γ
parameter is spatial and temporally more stable than β′(C). At a global
extent, the mean values range from 2.5 to 4.5. The CV in Γ is also very
low for any given location, indicating temporal stability of this para-
meter.

3. Implementation of the SMAP-Sentinel1 active passive algorithm

A simplified process flow chart/processing scheme of the SMAP-

Fig. 3. β′(C) mean and CV computed using all the available SMAP radiometer data and Sentinel-1A/Sentinel-1B σpp data from May 01, 2015 to April 30, 2017.

Fig. 4. Time-averaged (04/2015-04/2017) β′(C) [−] along Sentinel-1A/B in-
cidence angle [°] for four VWC-ranges in Africa; circles indicate median values
for each VWC-range (Jagdhuber et al., 2019).
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Sentinel1 active-passive algorithm implementation is shown in Fig. 6.
The input data are the Sentinel 1A/B Interferometric Wide (IW) Swath
mode backscatter σpp (co-pol vv) and σpq (cross-pol vh) at 1 km EASE
grid resolution and the brightness temperature TBp

(C) from the SMAP
Level-2 enhanced product (L2_SM_P_E) at about 33 km spatial resolu-
tion in EASE 9 km grid.

The native resolution of Sentinel 1A/1B IW swath mode backscatter

σpp (co-pol vv) and σpq (cross-pol vh) is ~25m. The high-resolution
Sentinel 1A/1B SAR backscatter data is processed for calibration, noise
subtraction, terrain correction (with SRTM DEM) using the ESA
Sentinel 1 toolbox (SNAP). Thereafter, the high-resolution Sentinel 1A/
1B SAR backscatter data (both σpp and σpq), were subjected to filtering,
and aggregation (linear averaging) to 1 km. Before aggregation of σpp
and σpq from ~25m to 1 km spatial filtering (hybrid spatial filtering

Fig. 5. Γ mean and CV computed using all the available SMAP radiometer data and Sentinel-1A/Sentinel-1B σpp data (1 km resolution) from May 01, 2015 to April
30, 2017.

Fig. 6. Process flow/Processing scheme of the SMAP-Sentinel1 active-passive (L2_SM_SP) algorithm in the JPL Science Data System.
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tool) was conducted to remove the effect of urban and manmade
structures from the backscatter observations. The customized hybrid
spatial filtering tool is developed at NASA JPL and is not available in
the SNAP toolbox.

Several factors were addressed by the hybrid spatial filtering tool,
they are: A) the tool should not affect latency; B) remove most of the
unwanted measurements; C) not produce excessive averaging; and, D)
preserve image details. Several techniques were studied. Techniques
based on standard distribution threshold were efficient but for narrow
distributions they showed that some desired features could be lost. A
moving window median filter techniques were also efficient in re-
moving undesired measurements but they were computationally ex-
pensive and produced excessive averaging when a large size window
was used. To overcome all the issues mentioned above, a hybrid filter
(combination of median filter and filter based on standard deviation
thresholds) was implemented as follows:

1) For each 1 km2 grid cell within a given Sentinel granule the mean
(mi) and the standard deviation (si) were computed, i=1…Nc,
where Nc is the number of 1 km2 grid cell within the Sentinel
granule.

2) The tool then computed the mean standard deviation SM over all the
si with i=1…Nc.

3) For all 1 km2 cells with si > SM a moving window median filter
with a 9×9 samples window size was applied.

4) For all 1 km2 cells with si≤ SM, we eliminated all the Sentinel
samples outside the range [mi - SM: mi+ SM] (Note that the
threshold SM is used to avoid affecting areas with narrow dis-
tribution).

Fig. 7 illustrates the Sentinel 1A σvv data aggregated to 1 km over
Southern Iowa. The high values of σvv, as highlighted in Fig. 6A, are due
to non-natural scatterers (urban areas or manmade structures), these
undesired high backscatter observations were filtered for the entire
Sentinel granule, and then aggregated to 1 km. The filtered Sentinel 1A
σvv granule is illustrated in Fig. 7.

As shown in the algorithm scheme/flow (Fig. 6), the processed
Sentinel 1A and Sentinel 1B data are overlapped with the SMAP ob-
servations (descending ~6:00 AM overpasses) that is closest to the
Sentinel overpass within±24 h time difference. The time difference
between the Sentinel 1A/1B (ascending and descending) and SMAP
descending is an average of ~12 h. It is expected that the spatial dis-
tribution and pattern of the soil moisture does not change significantly
because of inherent memory of the soil moisture over a short period of
the time difference.

The disaggregated/downscaled brightness temperature (TBp
(Mj)) is

then obtained by using the algorithm (2) on the overlapped Sentinel
1A/B (σvv and σvh) and TBv

(C). The implementation of Eq. (2) is con-
ducted at 33 km resolution (C). The TBv

(C) values in L2_SM_P_E are
gridded at/to 9 km, but keeping its inherent spatial resolution of 33 km.
Therefore, the overlapped Sentinel 1A/1B data, that forms a grid of 33
rows and 33 columns at 1 km resolution, is used in the process to first
compute the snapshot β′(C) and then in Eq. (2) to obtain downscaled
brightness temperature TBv

(Mj), as illustrated in Fig. 8.
The downscaled brightness temperature TBv

(Mj) is then injected into
the tau-omega model (Chan et al., 2016; and Chan et al., 2017) to re-
trieve surface soil moisture. Various ancillary data and lookup tables
are used in the tau-omega model to retrieve soil moisture (Chan et al.,
2017). Prominent ancillary data are NDVI climatology from MODIS,
clay fraction from global soil database, and land surface temperature
(LST) from NASA GMAO, and the parameters are albedo (ω), surface
roughness (h), and vegetation coefficient (b) detailed for IGBP land-
cover classes. These ancillary data and parameters are similar to that
used in the L2_SM_P/L2_SM_P_E product (Chan et al., 2016; Chan et al.,
2017), however, in a much finer resolutions (1 km and 3 km). The
following section elaborates the L2_SM_SP soil moisture product and its

characteristics.

4. SMAP-Sentinel1 active-passive (L2_SM_SP) product

At National Snow and Ice Data Center (NSIDC) Distributed Active
Archive Center (DAAC), the L2_SM_SP data is available at URL (https://
nsidc.org/data/spl2smap_s) from April 15th, 2015 through current. The
coverage/overlap of SMAP and Sentinel 1 is from March 2015 onwards.
Sentinel 1A is available from March 2015 to current and Sentinel 1B is
available from October 2016 to current. The global 12 days global
coverage is possible only when the Sentinel 1A and Sentinel 1B are
composited with the present data feed from ESA. However, over Europe
the coverage is ~ 6 days.

4.1. Patterns and features in the L2SMSP product

The L2_SM_SP product is available at 3 km and 1 km resolution. In
this section, prior to the quantitative assessments that follow, the
general features of global images are reviewed for the baseline
L2_SM_SP product. With the current orbit configuration and data ac-
quisition plan in the IW swath mode, the Sentinel-1A and Sentinel-1B
spacecraft have a revisit interval of 6 days to 12 days at different re-
gions of the world. Therefore, the composite of L2_SM_SP for 12 days
should cover most parts of the Earth. Fig. 9 shows a 12-day composite
of L2_SM_SP granules from 1st May 2017 to 12th May 2017 which il-
lustrates the global coverage between +60° and −60° latitudes. Fig. 9
also provides a complete global extent of soil moisture evolution over
different biomes and landcovers. Assessment of global soil moisture
from the SMAP-Sentinel1 active-passive retrievals shows consistency in
the soil moisture range (0.02 m3/m3 to 0.6 m3/m3), and probable

Fig. 7. Sentinel 1A σvv granule from Southern Iowa on May 05, 2018. A) σvv
unprocessed data; and B) σvvdata after calibration, noise subtraction, terrain
correction (using SRTM DEM), filtering, and aggregation to 1 km.
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values. For example, the regions that are very dry (i.e., the Sahara
desert) and wet (i.e., the Amazon Basin) reflect the nature of the soil
moisture distribution and expected variability as influenced by geo-
physical factors (soil types, vegetation, weather, and terrain) and
landcovers.

There are a number of quality flags that are applied to L2_SM_SP
products. These flags imply that the data should be used with caution
while others indicate that the data should not be used in any geophy-
sical application. A complete description of the flags and flag thresholds
used in L2_SM_SP processing can be found in the Product Specification
Document [L2_SM_SP Product Specification Document, available at
NSIDC (https://nsidc.org/sites/nsidc.org/files/technical-references/

SMAP%20L2_SM_SP%20PSD_20180531.pdf)]. The reliability of soil
moisture retrieval algorithms is known to decrease when the VWC ex-
ceeds a certain threshold. For the L2_SM_SP product, a 3 kg/m2 VWC
value is used as a flag threshold to indicate areas of high vegetation
where soil moisture retrievals are possibly less accurate. A quality flag
value of 0 represents good quality and any value>0 represents sub-
standard quality due to surface flags or due to a quality flag associated
with the disaggregated TBp

or due to the quality of the input data (TBp
(C)

and σpp and σpq). A surface flag is also associated with each and every
soil moisture retrieval data field. The surface flags are stored in two
bytes integer. There are 16 bits in two byte integer. For example, the
first bit position resembles presence of waterbody. The first bit position

Fig. 8. Grid topology of the SMAP-Sentinel1 active-passive algorithm. C is the coarse scale (~33 km), nc is the number of radiometer grid cell, and nf is the number of
Sentinel 1A/1B grid cells at 1 km.

Fig. 9. Twelve Days Coverage of SMAP-Sentinel1 L2_SM_SP high-resolution (3 km) soil moisture data from 1st May 2017 to 12th May 2017.
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is set to 0 if the water fraction is less than equal to a threshold value
(≤0.1) else the first bit position is set to 1 if the water fraction is greater
than the threshold value (> 0.1). Similarly, the other bits are assigned 0
or 1 based on the threshold values of urban area, mountainous region,
VWC, etc.

It is anticipated that some of the flag thresholds may be relaxed in
time as the algorithms are improved for the presence of certain cur-
rently problematic surface conditions. Other areas that are flagged in-
clude regions with varied topography features (for example, mountain
ranges) and near large water bodies (coastal regions and areas near
large lakes).

The variability within the radiometer coarse grid cell is mostly due

to soil moisture, vegetation and soil roughness (Njoku and Entekhabi,
1996; Entekhabi et al., 2010), and is captured by high-resolution Sen-
tinel-1A/Sentinel-1B backscatter values of σvv and σvh at the finest
available resolution (in this case at ~1 km). For illustration, Fig. 10
shows the primary inputs to the algorithm, the brightness temperature
TBv

(C) values in L2_SM_P_E gridded at 9 km (~33 km resolution), and
the Sentinel-1A/Sentinel-1B processed σvv and σvh backscatter data at
1 km. Fig. 11 illustrates the L2_SM_SP algorithm capability to captures
high-resolution spatial features of soil moisture possible through Sen-
tinel-1A/Sentinel-1B backscatter observations (Fig. 10b–c) that dis-
aggregates the brightness temperature TBv

(C) values (Fig. 10a). Fig. 12
shows another perspective to highlight the dynamic range of brightness

Fig. 10. An example of primary inputs to the SMAP-Sentinel active-passive algorithm. From Southern Iowa, 5th May 2018: a)SMAP radiometer brightness tem-
perature TBv

(C) at about 33 km resolution but gridded at 9 km; b) Sentinel-1A/B co-polarized backscatter (σvv) at 1 km; c) Sentinel-1A/B cross-polarized backscatter
(σvh)at 1 km; d) Parameter β′(C); e) Parameter Γ, and; f) Clay fraction.

Fig. 11. Comparison of L2_SM_SP product at 1 km and 3 km resolutions with the corresponding L2_SM_P_E product gridded at 9 km. The L2_SM_SP data is from
Southern Iowa, May 5th, 2018.
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temperature and soil moisture present in the SMAP-based soil moisture
products. The plot clearly shows the increase in variability and dynamic
range in the L2_SM_SP product at 3 km and 1 km resolution when
compared to the 9 km gridded L2_SM_P_E data that has an effective
resolution of ~33 km.

5. SMAP-Sentinel1 active passive (L2_SM_SP) product validation

The assessment of the L2_SM_SP product was performed using two
different approaches: 1) by comparing the disaggregated/downscaled
brightness temperature with the high-resolution brightness temperature
observed through an airborne platform; and 2) comparing the soil
moisture retrievals from L2_SM_SP against upscaled in situ soil moisture
data.

5.1. Assessment of L2_SM_SP downscaled brightness temperature

A primary part of the assessment for the L2_SM_SP algorithm is the
comparison of disaggregated high-resolution brightness temperatures
with L-band airborne remote sensing data. This assessment was done
using airborne data from the SMAPEx 2015 campaign held/conducted
in Southeastern Australia (Ye et al., 2015). The brightness temperature
data from SMAPEx 2015 has a resolution of ~1 km with varying in-
cidence angles. For better comparison with SMAP satellite data, the
SMAPEx airborne data are subjected to normalization to bring all the
observations to a uniform 40 deg. incidence angle (Ye et al., 2015). This
process introduced an error of ~4–5 K in the SMAPEx airborne data (Ye
et al., 2015). The normalized data are actually used for assessment of
the L2_SM_SP disaggregated high-resolution brightness temperature.
There were 2 overlapping days (May 5th, 2015 and September 13th,
2015) between SMAP-Sentinel1 L2_SM_SP product and Polarimetric L-
band Microwave Radiometer (PLMR) airborne data from the SMAPEx
field campaign. These concurrent acquisitions of data from different
platforms provide the opportunity/possibility to validate/compare the
L2_SM_SP high-resolution disaggregated brightness temperature. These
specific dates of SMAPEx airborne data are also considered due to very
different surface conditions in the observation domain: a) May 5th,
2015, low vegetation cover (~1 kg/m2); and b) September 13th, 2015,
moderately high vegetation cover (~2.7 kg/m2). A map of the SMAPEx
2015 domain is shown in Fig. 13.

As illustrated in Fig. 13, the SMAPEx study domain contains many
urban areas, small manmade structures, and waterbodies. These urban
areas and waterbodies were undesirable for assessment purposes.
Therefore, such data need to be flagged or masked during L2_SM_SP
assessment.

Fig. 14a shows the PLMR airborne TBv
data, Fig. 14b shows the

Sentinel σvv data, and Fig. 14c shows the Sentinel σvh data from May
5th, 2015 over the SMAPEx study area. It is apparent that PLMR
TBv

from SMAPEx are not impacted adversely by small urban areas or
manmade structures, unlike the Sentinel σvv and σvh data. (cf. Fig. 6).
Fig. 13b–c also show that in the Sentinel data, the large urban areas are
masked and removed but the small urban areas and manmade struc-
tures are not identified and masked. These types of undesirable outliers
in the Sentinel backscatter data created anomalies in the L2_SM_SP
disaggregated TBv

data during a first assessment. However, the combined
standard deviation and median spatial filter, as discussed in Section 3,
was successfully implemented to remove the small urban areas, man-
made structures and waterbodies.

Examples of disaggregated high-resolution 3 km TBv
from L2_SM_SP

product are shown in Fig. 15a and Fig. 15b, and compared against the
SMAPEx PLMR data and the SMAP L2_SM_P_E (TBv

data corrected for
presence of water) product gridded at 9 km for May 5th, 2015 and Sep.
13th, 2015, respectively. The plots in Fig. 15 show the finer details
captured by the L2_SM_SP active-passive algorithm due to incorporating
the Sentinel backscatter observations. In addition, the finer spatial
features are very similar to the PLMR TBv

data. To evaluate the SMAP-
Sentinel1 Active-Passive algorithm performance, the L2_SM_SP high-
resolution disaggregated TBv

are compared against Minimum Perfor-
mance criteria to determine the value of combining Sentinel-1A/Sen-
tinel-1B SAR data with SMAP L2_SM_P_E brightness temperature data.
The Minimum Performance is the SMAP L2_SM_P_E TBv

(C) that is ap-
plied to all the 3 km EASE grid cells within the overlapping 9 km EASE

Fig. 12. Distribution of data in the soil moisture and the brightness temperature
space for the L2_SM_SP product at 1 km and 3 km, and L2_SM_P_E product
gridded at 9 km (~30 km effective resolution) over the Southern part of Iowa on
5th May 2018.

Fig. 13. Study domain (white frame) of SMAPEx Airborne campaign conducted
in year 2015 (Ye et al., 2015). Red frames indicate areas not included for soil
moisture estimation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

N.N. Das, et al. Remote Sensing of Environment 233 (2019) 111380

10



grid cell; it can be obtained by setting β′(C)=0 in Eq. (2). Ideally the
slope and correlation between the L2_SM_SP downscaled brightness
temperature and airborne high-resolution brightness temperature
should be close to one (unity). In Fig. 16, we show the slope and

correlation between Minimum Performance and airborne data, between
L2SMSP and airborne data and ideal performance. In the two available
airborne images (May 5th, 2015and Sep 13th, 2015) the slope and
correlation between L2_SM_SP downscaled brightness temperature and

Fig. 14. PLMR and the Sentinel observations at EASE grid 1 km resolution over the SMAPEx study domain on May 5th, 2015.

Fig. 15. Output of L2_SM_SP compared against PLMR TBv
data from SMAPEx and the Minimum Performance (TBv from L2_SM_P_E at 9 km).
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airborne data are higher than the Minimum Performance (and ap-
proaching Ideal). A similar analysis conducted at EASE grid 9 km in
Fig. 16b also shows (that the L2_SM_SP TBv

(Mj) aggregated to 9 km has
better slopes and correlations when compared against L2_SM_P_E
TBv

(C). These results (Fig. 16a and b) clearly demonstrate that Sentinel
σvv and σvh data bring/include/add valuable information to dis-
aggregate the coarse-resolution L2_SM_P_E TBv

(C) to obtain L2_SM_SP
TBp

(Mj) that matches better with the high-resolution spatial features,
e.g. observed by the SMAPEx PLMR platform.

5.2. Core validation sites (CVS)

The SMAP L2_SM_SP product validation was based primarily on
comparison of retrievals with in situ soil moisture measurements
(Colliander et al., 2017; Chan et al., 2016; Chan et al., 2017; Das et al.,
2018). The in situ measurements for the top ~5 cm from soil moisture
networks with an acceptable sensor density within a 3 km EASE2 grid
are the primary validation locations for the L2_SM_SP product. The
SMAP project collaborated with various partners from around the world
to identify such locations and established CVS (Colliander et al., 2017).
These CVS have been verified as providing a spatial average of soil
moisture at 3 km (with at least 3 in situ sites) and 9 km (with at least 5

Fig. 16. a) Bar plots of SMAPEx PLMR observations against L2_SM_SP TBp
at 3 km and Minimum Performance (TBv from L2_SM_P_E) at 3 km. b) Bar plots of SMAPEx

PLMR observations against L2_SM_SP TBp
gridded at 9 km and Minimum Performance (TBv from L2_SM_P_E) gridded at 9 km. The overall RMSE of TB is ~3.4 K for the

L2_SM_SP product and ~4.6 K for the minimum performance L2_SM_P_E at 3 km resolution, and ~2.5 K for the L2_SM_SP product and ~3.3 K for the minimum
performance L2_SM_P_E at gridded 9 km resolution.

Table 1
SMAP Cal/Val Partner Sites Providing Validation Data for the L2_SM_SP product.

Site name Site PI Area Climate regime IGBP land cover Status

Walnut Gulchb C. Holifield Collins USA (Arizona) Arid Shrub open Valid for 3 km and 9 km
Fort Cobba P. Starks USA (Oklahoma) Temperate Grasslands Valid for 9 km
Little Washitaa P. Starks USA (Oklahoma) Temperate Grasslands Valid for 9 km
South Forka M. Cosh USA (Iowa) Cold Croplands Valid for 9 km
Little Rivera D. Bosch USA (Georgia) Temperate Cropland/natural mosaic Valid for 9 km
TxSONb T. Caldwell USA (Texas) Temperate Grasslands Valid for 3 km and 9 km
Kenastonb A. Berg Canada Cold Croplands Valid for 9 km
Carmana H. McNairn Canada Cold Croplands Valid for 9 km
Monte Bueyb M. Thibeault Argentina Arid Croplands Valid for 3 km and 9 km
REMEDHUSb J. Martinez Spain Temperate Croplands Valid for 3 km and 9 km
Valenciab E. Lopez-Beaza Spain Arid Shrub (open) Valid for 3 km and 9 km
St Josephsa M. Cosh USA (Indiana) Cold Croplands Valid for 9 km
Yancob J. Walker Australia Arid Croplands Valid for 3 km and 9 km

a CVS used in assessment at 9 km.
b CVS used for both 3 km and 9 km.
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in situ sites) spatial resolutions. However, the spatial averages of soil
moisture from CVS are not without issues because of inherent upscaling
errors. Table 1 lists the CVS sites used for validation of the L2_SM_SP
product. Beside the CVS, sparse networks (Chen et al., 2017) were also
used as a supporting tool/option to validate the L2_SM_SP product.

The in-situ data obtained from the SMAP Cal/Val Partner Sites

(Table 1) are subjected to quality control (QC) before using them to
validate the SMAP products. A QC software tool was developed at JPL
using the approached presented in Dorigo et al., 2013 for QC of the in-
situ soil moisture data. Figs. 17–20 illustrate time series and scatter plot
comparisons of L2_SM_SP product at 3 km grid cells against four CVS:
TxSON, Monte Buey, Valencia, and Yanco. A total number of twelve

Fig. 17. L2_SM_SP assessment at 3 km (40 samples) for TxSON, Texas, USA. (BL: L2_SM_SP).

Fig. 18. L2_SM_SP assessment at 3 km (25 samples)for Valencia, Spain. (BL: L2_SM_SP).

Fig. 19. L2_SM_SP assessment at 3 km (18 samples) for Monte Buey, Argentina. (BL: L2_SM_SP).

Fig. 20. L2_SM_SP Assessment at 3 km (55 samples) for Yanco, Australia. (BL: L2_SM_SP).
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3 km grid cells from the 7 CVS were used to compute statistics for
primary validation of the L2_SM_SP product. Table 2 shows the per-
formance statistics/metrics for all the CVS used for validation. The time
series plot in Figs. 17 for the TxSON site shows a good match between
soil moisture trends, with some bias in soil moisture estimation com-
pared to in situ measurements that is possible due to difference in soil
texture used in the retrieval process. The performance of the L2_SM_SP
product over most of the CVS with non-crop landcovers is reasonable as
illustrated in Fig. 17 for TxSON and Fig. 18 for Valencia. However, the
performance of the L2_SM_SP over CVS with crop cover is inferior, as
shown in Fig. 19, possibly because of being out of sync with the ve-
getation attribute information and strong C-band interaction with ve-
getation might cause patterns not totally attributable to soil moisture
but vegetation cover. The retrieval process uses vegetation-water-con-
tent (VWC) derived from the NDVI climatology (developed from
10 years of MODIS data), which might lead to a mismatch with the
actual status of VWC. Therefore, it is likely that in Fig. 19 (Monte Buey
CVS) the lack of a consistent bias and has higher errors may be caused
by the mismatch. In Figs. 17–20 red color for in situ data represents
good quality, and the purple color is when the in situ data quality is not
satisfactory. The black dots are the data used in the scatter plot and
computation of RMSE. The grey dots are the L2_SM_SP data that mat-
ches on a given day with the inferior quality in situ data and are not
used in calculation of the RMSE and R values.

The validation results at 3 km resolution in Figs. 17–20 and Table 2

comes from a very limited number of CVS. Thus, another strategy was
developed/followed to overcome this limitation: An upscaled L2_SM_SP
product at 9 km is formed/constructed by aggregating all nine
L2_SM_SP 3 km EASE grid cells within the 9 km EASE grid. The upscaled
9 km-product is then used for the CVS sites (17 sites) already estab-
lished and operating for the SMAP-only Active-Passive L2_SM_AP 9 km
product (Das et al., 2018). This approach optimizes the CVS usage and
has potential to evaluate/validate/assess the performance of the spa-
tially upscaled L2_SM_SP 3 km product at 9 km. The results and per-
formance of the upscaled L2_SM_SP product at 9 km in Table 3 are
encouraging. This product meets the L1 accuracy requirement of the
SMAP mission (ubRMSE<0.04 [m3/m3]) previously applied/estab-
lished/as benchmark to the SMAP-only L2_SM_AP product. The overall
ubRMSE of 0.036m3/m3 for L2_SM_SP product meets the SMAP mission
accuracy goal of 0.04m3/m3. In Table 3 most of the R-values are re-
latively high (R > xx) reporting a sufficient/significant/considerable
match between estimates and in situ measurements.

5.3. Sparse soil moisture networks

The intensive CVS validation performed for the SMAP L2_SM_SP
product can be complemented by sparse networks as well as by new/
emerging types of soil moisture networks. The important difference in
interpreting these data is that they involve only 1 in situ point in a grid
cell. Thus, whatever reservations might exist on the upscaling on CVS in
situ measurements to resolution cells of remote sensing products. They
might be of even greater concern with sparse in situ networks of soil
moisture measurements. However, sparse networks do offer many sites
in different environments for comparison.

The established sparse soil moisture networks utilized for the SMAP
L2_SM_SP product comparison were the NOAA Climate Reference
Network (CRN), the USDA NRCS Soil Climate Analysis Network
(SCAN), the Oklahoma Mesonet, the MAHASRI network (in Mongolia),
the SMOSMania network (in southwest Europe), the Pampas network
(in Argentina), and soil moisture estimates derived from the surface
reflectance at Global Position Stations (in the Western US). From these
sparse soil moisture networks, ~375 sites were found to be suitable for
direct comparison with the SMAP L2_SM_SP overlapping grid cells. The
~375 sites were selected based on in situ measurement data quality and
continuity of the observations during the ~3 years period (April 2015
to July Oct, 2018). The defining feature of these networks were the low
spatial density of in situ measurement locations that usually resulted in
one point per L2_SM_SP 3 km and 1 km grid cells. This would lead to
large upscaling errors due to spatial representativeness and the inability
of a single in situ site location to describe/represent mean soil moisture
within a 3 km or 1 km grid cell. However, despite this scaling bias,
sparse networks can adequately describe relative errors.

Fig. 21A–B illustrates the L2_SM_SP product retrievals comparison
with the measurements available from ~375 in situ sparse networks
from many different landcovers at 3 km and 1 km, respectively. Despite
the potential errors associated with spatial representativeness, the
agreement between the in situ soil moisture and the L2_SM_SP is rea-
sonably good (see Table 4). The ubRMSE and bias values obtained from
these sparse networks are similar to those obtained from the CVS. These
results (Fig. 21) provide further confidence in the previous conclusions
based on the CVS.

6. Discussion

There is further potential for improvement in the L2_SM_SP data
quality, and that is possible by reducing the errors in soil moisture re-
trievals. The improvements include, use of better ancillary data (e.g.
optimized VWC, and better soil texture data) and optimization of the
tau-omega model parameters for various landcovers at resolutions of
3 km and 1 km. Currently, the SMAP L2_SM_SP retrievals use the same
tau-omega parameters as the L2_SM_P_E retrievals. Another important

Table 2
SMAP L2_SM_SP assessment statistics against CVS at 3 km.

Site name ubRMSE Bias RMSE R #Samples

Walnut Gulch 0.033 0.033 0.047 0.950 23
Walnut Gulch 0.029 0.063 0.069 0.929 21
TxSON 0.041 −0.039 0.056 0.895 24
TxSON 0.033 −0.028 0.043 0.797 40
Kenaston 0.065 −0.052 0.083 0.216 31
Kenaston 0.053 −0.047 0.071 0.603 24
Monte Buey 0.034 −0.071 0.078 0.800 20
Valencia 0.032 0.013 0.035 0.627 25
Yanco 0.082 0.013 0.085 0.489 38
Yanco 0.075 0.018 0.077 0.635 40
Yanco 0.048 0.037 0.060 0.898 64
Yanco 0.065 0.070 0.096 0.761 48
SMAP average 0.049 0.001 0.067 0.717 Total: 398

The term RMSE in the analysis is interchangeably used for root-mean-square-
difference (RMSD). However, RMSD is more appropriate because the upscaled
CVS value is not the truth. Nearly 30 to 50 time-matching samples are found in
core sites and are used in computing he statistics.

Table 3
SMAP L2_SM_SP assessment statistics against CVS measurements at 9 km.

Site name ubRMSE Bias RMSE R #Samples

Walnut Gulch 0.025 0.022 0.033 0.871 37
Walnut Gulch 0.028 0.049 0.056 0.863 47
TxSON 0.022 0.010 0.025 0.882 23
TxSON 0.030 0.012 0.032 0.904 42
Fort Cobb 0.030 −0.023 0.038 0.847 48
Little Washita 0.039 −0.032 0.051 0.771 93
South Fork 0.060 −0.031 0.067 0.802 39
St Josephs 0.022 −0.042 0.048 0.913 24
Little River 0.030 0.086 0.091 0.799 22
Kenaston 0.038 −0.061 0.072 0.764 28
Kenaston 0.031 −0.074 0.080 0.836 27
Carman 0.049 −0.069 0.085 0.590 20
Monte Buey 0.014 −0.049 0.051 0.967 23
REMEDHUS 0.059 0.112 0.126 0.831 63
Valencia 0.027 0.012 0.029 0.746 24
Yanco 0.055 −0.005 0.055 0.877 44
Yanco 0.049 0.037 0.061 0.831 67
SMAP average 0.036 −0.003 0.059 0.829 Total: 671
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step to improving the L2_SM_SP data quality is the inclusion of retrieved
vegetation-optical-depth (VOD), meaning tau, from dual-channel algo-
rithms such as Konings et al. (2017). The tau values used for L2_SM_SP
retrievals were derived from a 10-year (2002−2012) climatology of
NDVI based VWC (tau= b*VWC, b is a parameter based on landcover,
typically close to 0.1). The drawback of using VWC climatology for tau
is prominently visible over CVS with cropland landcover. Fig. 22 il-
lustrates one such scenario where the NDVI climatology taken from
Day-of-Year (DOY) 185 is compared against the actual NDVI for DOY
185, 2017 for California. Two time series plots, one from natural
landscape with shrubland cover and other with cropland are shown in
Fig. 22. The actual NDVI time series over cropland (agricultural region)

does not match with the climatology (2002–2012) mostly due to crop
rotation and difference in planting date. However, the climatology and
the actual time series over the shrubland are almost similar. Such
mismatches are very possible over the CVS with crop landcover, hence
leading to inferior performance of the L2_SM_SP product, as visible in
Table 2 for CVS Yanco and Kenaston. Inclusion of actual NDVI in the
operational L2_SM_SP process has potential to improve the overall
quality (reduced RMSE), however, the 8–16 days latency of MODIS
NDVI data is a constraint. As an alternative to NDVI, the cross-polarized
Sentinel-1A/B measurements could also be used as a variable that is
proportional to vegetation density (Vreugdenhil et al., 2018). In that
case cloud-cover is no longer a constrained. We are actively pursuing

Fig. 21. Results of comparison between L2SMSP with the sparse network sites (~375 in situ sites): A) at 3 km resolution; and B) at 1 km resolution.
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this enhancement to the SMAP-Sentinel1 product.
Another ancillary data that has potential to improve the bias and

RMSE of the L2_SM_SP product is the soil texture data. The current soil
texture data used in the operational processing of the L2_SM_SP product

mostly comes from a blend of the Harmonized World Soil Database
(HWSD) at ~10–25 km resolution, STATSGO (form Continental United
States: CONUS) at 1 km resolution, and Australian Soil Resource
Information System (ASRIS) at 1 km resolution. Apart from the CONUS
and Australia, the rest of the world has soil data that are very coarse
(~10 to 25 km) and outdated. Recent advances in the soil database such
as GlobalGrid250m (Hengl et al., 2017) provides very high resolution
and better accuracy. Including high-resolution and recent soil texture
data in the L2_SM_SP retrieval process will definitely improve the per-
formance at a global perspective/global scales. The impact of coarse
resolution soil texture data currently used in the operational procession
is not visible in the L2_SM_SP CVS because most of CVS are confined in
the area of CONUS and Australia where high resolution soil texture data
(STATSGO and ASRIS) is available.

7. Conclusion

The results and validations from the above sections clearly de-
monstrated the performance of the SMAP-Sentinel1 active-passive al-
gorithm and the capability of this active-passive product to achieve the
mission goal by producing high-resolution (1 km or 3 km) soil moisture
with good accuracy (ubRMSE ≤ 0.05m3/m3), however, with coarser
temporal resolution of 12 days. To achieve high spatial resolution there
is a tradeoff between adding spatial resolution with C-band SAR data
and noise-levels. The L2_SM_SP high resolution (3 km and 1 km) comes
at a cost of degradation in temporal statistics of disaggregated bright-
ness temperature and retrieved soil moisture. Whereas the more spa-
tially-averaged L2_SM_P_E product may have less temporal noise and
temporal uncertainty when compared to L2_SM_SP, the L2_SM_SP data
has more spatial resolution in term of resolving sharp and large-contrast

Table 4
SMAP L2_SM_SP assessment statistics against sparse network at 3 km and 1 km
resolutions.

L2_SM_SP (3 km) ubRMSE
[m3/m3]

Bias [m3/
m3]

RMSE
[m3/m3]

R [−] N

Open shrublands 0.04 0.017 0.045 0.506 34
Woody savannas 0.053 0.031 0.063 0.657 4
Savannas 0.04 −0.001 0.06 0.789 6
Grasslands 0.051 −0.032 0.064 0.647 230
Croplands 0.072 −0.033 0.087 0.531 69
Crop/natural

vegetation mosaic
0.067 −0.023 0.076 0.469 14

Barren/sparse 0.026 0.031 0.04 0.514 9
Average 0.05 −0.01 0.062 0.587 370

L2_SM_SP (1 km) ubRMSE
[m3/m3]

Bias [m3/
m3]

RMSE
[m3/m3]

R [−] N

Open shrublands 0.046 0.008 0.046 0.544 43
Woody savannas 0.056 −0.001 0.065 0.489 7
Savannas 0.038 0.016 0.061 0.827 4
Grasslands 0.06 −0.036 0.069 0.647 236
Croplands 0.076 −0.041 0.094 0.468 80
Crop/natural

vegetation mosaic
0.068 −0.008 0.077 0.349 8

Barren/sparse 0.023 0.018 0.036 0.592 6
Average 0.052 −0.028 0.064 0.548 384

Fig. 22. Comparison of actual NDVI (green curve) and climatology of NDVI (2002–2012) (blue curve) for an agricultural region (cropland) and a non-agricultural
region (shrubland) in Central Valley, California. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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features below the radiometer resolution. The degradation in accuracies
is mainly due to: 1) difficulties in comprehensively characterizing the
SAR signal interactions with target (land surface components), 2) the
uncertainties in the parameters used in the SMAP active-passive algo-
rithm, and 3) the random errors and biases in the static and dynamic
ancillary data used for soil moisture retrievals. The high resolution
L2_SM_SP product captures the spatial details and patterns of soil
moisture that are not present in the SMAP radiometer-only enhanced
product (L2_SM_P_E). Therefore, those users of SMAP data who require
more frequent revisit and temporal accuracy can use the L2_SM_P_E
product (which is posted at 9 km), and those users who need higher
spatial resolution soil moisture patterns and details with slightly de-
graded accuracy and less frequent revisit can use L2_SM_SP data (posted
at 3 km and 1 km) for their science studies and geophysical applica-
tions. The latest version of the L2_SM_SP product is made available to
the public and has an ubRMSE of ~0.05m3/m3 at 3 km and 1 km re-
solutions.
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