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A B S T R A C T

Multi-angular and multi-temporal methods have been developed and accepted as two promising strategies for
reliable soil moisture retrieval from radar data. However, the way to combine time series multi-angular data
acquired from both descending and ascending orbits with different imaging modes (e.g., ScanSAR and Stripmap)
remains unresolved. Consequently, a multi-temporal algorithm is proposed for soil moisture retrieval at the pixel
– paddock scale (25–500m) using time series multi-angular L-band (1.26 GHz) radar data. The method assumes
time-invariant roughness and vegetation for the retrieval period together with a soil moisture dry-down con-
straint for noise reduction, while utilizing multi-angular data without incidence angle normalization. The
Numerical Maxwell Model of Three-Dimensional simulations and distorted Born approximation (NMM3D-DBA)
were used to build a set of landcover specific multi-angular look up tables (LUTs). Effective isotropic roughness
values were assumed suitably able to account for the periodic features in cultivated surfaces, with values de-
termined as part of the soil moisture retrieval. A genetic algorithm was used to minimize the difference between
LUTs and time series multi-angular radar observations with the dry-down constraint. Evaluation based on the
Fifth Soil Moisture Active Passive Experiment dataset (SMAPEx-5) has shown an acceptable overall root mean
square error (RMSE) of 0.070m3/m3 at the 25-m pixel scale and 0.056m3/m3 at the paddock (field) scale
(~0.1–0.5 km). Further investigations on the effect of polarization combination and time interval of radar data
have confirmed the effectiveness of the proposed method for irregularly collected data with different imaging
modes.

1. Introduction

Synthetic aperture radar (SAR) has demonstrated its potential for
soil moisture mapping at high spatial resolution over the past four
decades (Kornelsen and Coulibaly, 2013). However, soil moisture re-
trieval from SAR data still faces challenges, due to the dependence of
microwave signals on geophysical parameters besides soil moisture,
including the soil roughness, vegetation water content (VWC) and ve-
getation structure (Balenzano et al., 2011; Kornelsen and Coulibaly,
2013).

A forward model that can accurately describe the effect of these
geophysical parameters on SAR observations is a necessary but in-
sufficient requirement for soil moisture retrieval. Commonly used soil
surface scattering models in literature include the semi-empirical Oh
model (Oh et al., 2002), Dubois model (Dubois et al., 1995), and the
physically based Integral Equation Model (IEM, Fung et al., 1992) or
variants (e.g., Baghdadi et al., 2016; Chen et al., 2003). These surface

scattering models are commonly integrated with vegetation scattering
models, such as the semi-empirical water cloud model (WCM, Attema
and Ulaby, 1978) and physically-based alternatives (e.g., Lang and
Sighu, 1983; Ulaby et al., 1990) so as to predict the scattering of ve-
getated areas. The performance of these models is dependent on their
inherent approximations and/or the accuracy of the radar-configura-
tion-specific tuning parameters (Kornelsen and Coulibaly, 2013). Re-
cently, the numerical solutions of Maxwell's equations in three dimen-
sion (NMM3D, Huang et al., 2017b; Huang and Tsang, 2012; Huang
et al., 2010) has been used to accurately represent rough surface scat-
tering by way of look up tables (LUTs), to overcome the computational
demands in real-time soil moisture retrieval (Kim et al., 2012a, 2014).
Despite the slight improvement in accuracy (up to 2 dB) compared with
the advanced IEM (Huang et al., 2010), such an approach is currently
hampered by the limited availability of LUTs.

Additional limitations are in the inversion of these models or LUTs,
due to the ill-posed nature of the problem, caused by the large number
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of geophysical parameters to be determined, and the uncertainties of
calibration and subpixel heterogeneity. Consequently, additional con-
straint is required, such as including more than a single SAR observa-
tion. Options include multi-frequency data (e.g., Bindlish and Barros,
2000, 2001; Pierdicca et al., 2008; Zhang et al., 2016) and/or multi-
angular data (e.g., Rahman et al., 2008; Shen et al., 2013; Zribi et al.,
2005; Zribi and Dechambre, 2003). While current SAR missions can
provide full polarized data, unfortunately they are still unable to reg-
ularly collect multi-angular and/or multi-frequency data simulta-
neously, limiting the application of these methods.

The other promising strategy for operational soil moisture mapping
is to use the temporal behavior of soil moisture together with other
geophysical parameters. The temporal behavior of soil moisture is
usually characterized by a relatively fast dry-down process following an
abrupt increase from precipitation, whereas changes in soil roughness
and vegetation undergo relatively smooth transition over time apart
from deliberate cultivation practices. Accordingly, roughness and ve-
getation parameters may be considered constant for acquisitions over
sufficiently short time intervals. Based on this assumption, studies have
directly related the difference/ratio of multi-temporal SAR observations
to soil moisture or wetness, known as change detection techniques
(Balenzano et al., 2011; Notarnicola, 2014; Ouellette et al., 2017;

Wagner et al., 1999; Wickel et al., 2001). Others have used the same
assumption to partly remove unknowns representing the time-variation
of surface roughness and vegetation in an inversion framework (Kim
et al., 2014; Kim et al., 2012a; Kim and Van Zyl, 2009; Kweon and Oh,
2014; Mattia et al., 2009; Pierdicca et al., 2010). Moreover, ancillary
data or a priori information is commonly integrated to improve the
retrieval accuracy; e.g. soil moisture from hydrological models (Mattia
et al., 2009), passive microwave data (Kim and Van Zyl, 2009) and
vegetation water content (Kim et al., 2014; Pierdicca et al., 2010).
Currently, the main limitation of these multi-temporal methods is the
availability of radar data with a short time lag and similar radar con-
figuration (Balenzano et al., 2011; Kornelsen and Coulibaly, 2013).

Making the situation even more challenging, present SAR missions
commonly operate with alternating imaging modes in ascending and
descending orbits, resulting in changes of both incidence angle and
polarization in time. For example, the SAOCOM constellation and
ALOS-2/PALSAR-2 operate at both ascending and descending orbits
with multiple imaging modes alternating in time, namely, ScanSAR,
StripMap and Spotlight (Giraldez, 2003; Rosenqvist et al., 2014).
Consequently, a much longer time interval than the reported satellite
revisit is required for acquiring multi-temporal data with the same
radar configuration. The use of multi-angular time series data with

Fig. 1. Landcover and paddocks in the three SMAPEx-5 focus farms used in this study, as well as the flight and look directions of L-band airborne SAR. Focus farms
are YA4 (top right), YA7 (bottom left) and YE (bottom right). The paddocks with ID are those with soil roughness and/or vegetation measurements as given in
Table 1. Three soil moisture measurements were made at each black point.
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different polarizations is therefore questionable in change detection
techniques, while scattering models that accurately describe the an-
gular dependence of SAR data are needed for multi-temporal inversion
methods.

To overcome these challenges, this study proposes a multi-angular
time series method for soil moisture mapping from a sequence of L-band
SAR data, e.g. the joint data sets of PALSAR-2 and the SAOCOM con-
stellation. The method applies the assumption of constant soil rough-
ness and vegetation over the retrieval period with the main difference
being i) multi-angular LUTs were built using the physical-based
NMM3D and distort Born approximation (DBA, Lang and Sighu, 1983),
meaning no incidence angle normalization and/or cumbersome tuning
of radar-specific configuration parameters is required, and 2) a priori
information of dry-down soil moisture is integrated into a genetic al-
gorithm (GA) based inversion of LUTs to partly remove the un-
certainties in calibration, speckle noise removal and forward models.
The method was evaluated using the multi-angular airborne L-band
data collected during the fifth Soil Moisture Passive Active Experiment
(SMAPEx-5, Ye et al., 2016). The effects of data time interval and po-
larization combinations on retrieval accuracy were also investigated to
guide the use of the method in future applications.

2. Data set and pre-processing

The SMAPEx-5 was carried out in the Australian Spring (7th – 27th
September 2015) for the purpose of in-orbit calibration and validation
of the NASA Soil Moisture Active Passive (SMAP) mission (Ye et al.,
2016). The SMAPEx-5 study site is a semi-arid cropping and grazing
area near the Yanco agricultural institute, located in the center of the
Murrumbidgee River catchment Australia. Three 3 km×3 km focus
farms (YA4, YA7 and YE) of SMAPEx-5 were selected, with the main
landcover being winter wheat, grass, bare soil and open wood land

(Fig. 1). Since the tree coverage in the open wood land was<5%
(~2000–3000 trees/km2), the open wood land was also treated as grass
land for soil moisture retrieval here. The boundaries of paddocks
(fields) were delineated using visual interpretation according to the
homogeneity of landcover and the availability of ground measure-
ments. A total of 69 individual paddocks were extracted, accounting for
48% of the three focus farms. Notably, the boundaries were only used
for analyzing the results at the paddock scale and soil moisture retrieval
at the pixel scale was performed for the whole research area, with the
water bodies removed before retrieval.

Throughout the campaign, intensive soil moisture measurements
(mv) were made on September 9th, 14th, 19th, and 24th for YA4 and
YE, and on 11th, 17th, 22th, and 27th for YA7 using the Hydraprobe
Data Acquisition System (HDAS, Merlin et al., 2007). Measurements
were made on a north-south oriented grid with a spacing of 250m, with
three point-based soil moisture measurements made within a 1m radius
at each sampling location (the black points in Fig. 1) to account for
small scale soil moisture variability. At the end of each intensive sam-
pling day, three gravimetric soil samples representing low, medium,
and high soil moisture status within each sampled 3-km focus area were
collected for calibration of the HDAS. The comparison between HDAS
and gravimetric soil samples showed a root mean square difference
(RMSD) of better than 0.04m3/m3. A moderate rainfall of ~18mm
(measured at the Yanco agricultural institute) occurred prior to the
experiment, resulting in mv values of larger than 0.4 m3/m3 followed by
a three-week dry down period to values of below 0.1 m3/m3.

Roughness was measured along a 3m segment using a pin profiler in
two orthogonal directions, north-south and east-west, or along and
across rows in the case of a row structure. At least two measurements
were made within the paddock to characterize spatial variability in
surface roughness. Repeat measurements were made at the beginning
and end of the campaign at paddocks #2, #48, #55, #105, #161,

Table 1
Available roughness and vegetation measurements of the paddocks in three SMAPEx-5 focus farms used in this study.

# Landcover Vegetation parameters Soil surface parameters Cultivation DOY

VWC (kg/m2) Height (m) Radius (mm) Elevation angle (°) Row direction HR
a (cm) Lc/HR

a

2 Bare - - - - 90 1.94(8.66) 6.82(2.44) 264
27 Bare - - - - - 1.22 14.53
30 Bare - - - - 28 2.76(6.33) 5.13(2.95) 269
35 Bare - - - - 28 1.61(5.54) 8.24(3.65)
48 Bare - - - - 90 2.12(6.30) 7.76(3.20) 269
54 Bare - - - - 10 - - 263
55 Bare - - - - - 1.50 6.98
70 Wheat 2.00 0.46 1.42 25 - - -
72 Wheat 2.78 0.47 1.49 30 - 1.60 7.44 269
75 Wheat 2.93 0.77 1.50 25 90 1.12(4.05) 6.58(4.99)
80 Wheat 2.21 0.62 - - 10 1.95(3.71) 14.20(5.83)
83 Wheat 3.11 - - - 90 0.87(4.03) 7.19(6.51)
95 Wheat 2.48 0.72 - - 90 1.45(2.58) 5.61(4.59)
98 Wheat 2.69 0.70 - - 10 - -
103 Wheat 2.82 0.74 - - 90 1.54(2.83) 6.95(5.34) 269
105 Wheat 1.72 0.60 1.02 - - 0.91 20.93
109 Wheat 2.32 0.71 - - - - - 269
110 Wheat 1.17 0.61 - - - - - 269
112 Wheat 1.60 0.66 1.00 20 90 2.46(3.12) 9.16 (9.91)
115 Wheat 3.72 1.05 1.63 20 10 1.01(2.94) 11.30(6.49)
116 Wheat 2.81 0.67 1.51 22.5 90 1.06(2.76) 7.24(4.98) 269
117 Wheat 2.93 0.60 - - 55 1.18(2.38) 2.94(6.74)
135 Grass 0.69 0.32 - - - 1.20 17.86
138 Grass 0.73 0.30 - - - 1.21 7.12
143 Grass 1.62 0.43 - - - 0.71 14.98
154 Grass 1.22 - - - - 0.71 14.98
158 Grass 0.92 - - - - 0.71 14.98
159 Grass 0.53 0.30 - - - 0.96 18.21
161 Grass 0.98 0.33 1.15 20.34

-: not available.
a Roughness along (perpendicular) to row structure for paddocks with periodic surface.
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#103, and #159, showing time-invariant roughness over the entire
period of SMAPEx-5, except for those with cultivation activities. The
surface root mean square height (HR) and correlation length (Lc) were
calculated from each 3m long surface height profile extracted from
digital photographs. All measurements for a paddock were then aver-
aged (listed in Table 1), with the intra-paddock standard deviation of
HR ranging from 0.10 to 0.34 cm. In general, wheat and bare soil
paddocks had a wide range of roughness with large values observed on
those with furrows due to tillage.

Intensive vegetation sampling, such as plant height, orientation, and
VWC, was carried out over grass and wheat paddocks between the soil
moisture sampling days. The wheat had spatially varying VWC values
ranging from 1.17 to 3.72 kg/m2, which is mainly caused by the spatial
heterogeneity of plant density (120–370/m2) and height (0.35–1.0m).
Allometric relationships between VWC and height for grass and wheat
were fitted (Fig. 2) using ground measurements of the whole SMAPEx-5
area. No clear tendency of VWC values was observed, but there were
significant fluctuations over time for most paddocks during the three-
week period, mainly caused by the intra-paddock heterogeneity, as it
was impossible to resample at exactly the same location using the de-
structive collection of samples for VWC estimation. Consequently, all
vegetation parameters for the same location were assumed constant in
time and averaged for each paddock with the average values presented
in Table 1.

Eight flights were carried out coincident with soil moisture sam-
pling dates, providing L-band (1.26 GHz) single look complex data with
a spacing of 2m×3.75m using the airborne Polarimetric L-band
Imaging SAR (PLIS) oriented towards the West or East (Fig. 1). Con-
sequently, radar observations of each location had two local (across
track) incidence angles within 20°–50°. In this study, a multi-angular
time series data set was built using data collected alternatively from the
right and left sides of the aircraft, which can be treated as being similar
to a series of ascending and descending orbits. The potential incidence
angle difference of two successive PLIS measurements ranged from 0 to
30°, with the smallest and largest difference being at the center and
boundaries respectively. This is commonly larger than the general in-
cidence angle difference of satellite data. PLIS backscatter data were
calibrated, geo-referenced, multi-looked (12×7 looks) and resampled
to 25m by the nearest neighbor method, with a calibration accuracy of
better than 0.65 dB (RMSE) according to trihedral corner reflector and
polarimetric active radar calibrator comparisons (Zhu et al., 2018).

3. Methodology

3.1. Forward models

The NMM3D (Huang and Tsang, 2012) and DBA (Lang and Sighu,
1983) were used to model backscattering of the dominant landcover
types (i.e., bare soil, wheat and grass) of SMAPEx-5. In the theory of
DBA, the total backscattering coefficient σpqtotal at polarization pq (HH,
HV, VH or VH for PLIS data) can be qualitatively decomposed into a
sum of three dominant components according to:

= − + +σ σ ε H L τ V σ ε H L V σ V( , , ) exp( 2 ( )) ( , , , ) ( ),pq
total

pq
soil

R C pq
db

R C pq
vol

(1)

where σpqsoil exp (−2τ) is the two-way attenuated scattering from the
soil surface with τ denoting the vegetation opacity along the signal
path; σpqvol and σpqdb are the volume scattering and scattering interac-
tion (known as double-bounce scattering) between soil surface and
vegetation, respectively. The commonly used first-order radiative
transfer models (e.g., Ulaby et al., 1990) share a similar form to Eq. (1),
with the main difference being the enhanced double-bounce scattering
in the DBA because of the full simulation in coherent scattering (Tsang
et al., 1985). In principle, the double-bounce scattering has a significant
contribution on the cross-polarization (HV or VH) backscatter resulting
in considerable sensitivity to the soil moisture as observed in SMAPEx-5
at L-band (Zhu et al., 2019), while it contributes little to the HH and VV
polarization backscatter, depending on the incidence angle, soil
moisture, VWC and roughness. For C- and X-band, the double-bounce is
greatly enhanced for co-polarization, with experimental observations
available in Brown et al. (2003). The volume scattering is commonly
negligible for all polarizations at L-band, being>10 dB lower than soil
surface scattering in this study.

The quantity ε in Eq. (1) is the relative permittivity of the near-
surface soil as a function of soil moisture. HR and LC are the root mean
square height and the correlation length of soil surface roughness, re-
spectively, and V is a bulk vegetation parameter describing the vege-
tation layer. For soil moisture inversion, Eq. (1) must be simplified and
parameterized in terms of fewer soil and vegetation parameters, con-
sidering the limited number of independent radar observations avail-
able and the drastically increased complexity of the inversion problem
with more than three unknown geophysical parameters. Consequently,
only the real part (εr) of the relative permittivity was used, with the
corresponding imaginary part being a constant between 1 and 4.5 (Kim
et al., 2012a).

Rough soil surfaces were assumed to follow a stationary Gaussian
random process with an isotropic exponential correlation function,
which is widely acknowledged to match natural surfaces well (Ulaby
et al., 2014). However, directional row or tillage features were ob-
served over several paddocks (Table 1), with more comprehensive de-
scriptions of roughness or multi-scale models (e.g., (Blaes and
Defourny, 2008; Mattia, 2011; Monsivais-Huertero et al., 2018;
Wegmüller et al., 2011; Zribi et al., 2002) being undoubtedly more
suitable for these paddocks. Additional parameters are required in this
case, leading to an increasingly complex problem. Fortunately, previous
studies (Champion and Faivre, 1996; Joseph et al., 2010) have shown
that effective isotropic roughness values can be used to account for the
surface scattering of periodic features. Those effective roughness values
were either determined via calibration of the forward models (Baghdadi
et al., 2004; Baghdadi et al., 2002; Joseph et al., 2010; Lievens et al.,
2011) or directly retrieved together with soil moisture in an iterative
manner (Bai et al., 2016). Since the effective roughness was dependent
on the incidence angle, polarization and frequency (Lievens et al., 2011;
Zhu et al., 2016), the calibration process is not suitable in this study,
because of the time-varying incidence angle, with the effective rough-
ness being retrieved together with the soil moisture. Consequently, HR

was selected as the only independent effective roughness parameter,
with the corresponding Lc values assumed to be 10HR. The use of this

Fig. 2. Fitted relationship between vegetation water content and vegetation
height.
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constant ratio was based on the poor performance of using the observed
Lc values in the IEM forward simulations of the same research area (Zhu
et al., 2016), the negligible error (< 0.015m3/m3) expected by this
assumption (Kim et al., 2012a), and the need to limit the number of
independent unknown parameters.

Both grass and wheat were simplified as a layer of randomly dis-
tributed cylinders. These cylinders are assumed to be homogeneous,
lossy, uniformly distributed with consistent size and volumetric water
content in each radar illumination grid. A number of parameters are
required in the DBA to model the backscatter from a cylinder-like ve-
getation layer (Huang et al., 2017a), including the length l (m), radius r
(m), azimuth angle α (°), elevation angle β (°), density n (1/m2) and
volumetric water content Mveg (m3/m3) of the cylinders. Among these,
n and l showed large spatial variations as mentioned above, with other
vegetation parameters being relatively homogenous spatially (Table 1).
For inversion, only the VWC was used to represent the whole vegetation
layer, as in previous studies (e.g., Huang et al., 2017a; Joseph et al.,
2010; Kim et al., 2014). Specifically, the r, α, β and Mveg were set as
spatially uniform in the forward simulation and directly determined
using the ground measurements summarized in Table 2. The hetero-
geneous parameters l and n were represented by VWC through the fitted
allometric relationships (Fig. 2) and the equation:

=n
πr lρM

VWC ,2
veg (2)

where ρ is the density of water (~1000 kg/m3).
After the above simplification and parameterization, Eq. (1) can be

written as:

= − + +σ σ ε H τ VWC σ ε H VWC σ VWC( , ) exp( 2 ( )) ( , , ) ( ),pq
total

pq
soil

r R pq
db

r R pq
vol

(3)

requiring three independent unknowns (εr, HR, VWC) for forward pre-
diction. The NMM3D was used to calculate σpqsoil and the coherent re-
flectivity of the soil surface that is required in the calculation of σpqdb,
while τ and σpqvol were estimated using the theory of DBA. More details
about the estimation of these terms can be found in Huang et al.
(2017a). Since both the NMM3D and DBA are computationally in-
tensive, LUTs were precomputed as representations of forward back-
scattering at L-band (1.26 GHz) rather than directly integrating models
to an inversion framework. A summary of the parameters used for
building these LUTs are listed in Table 2; the εr ranged from 3 to 30,
covering the very dry (~0.03m3/m3) to very wet (~0.42m3/m3) soil
experienced in the Yanco area (Dobson et al., 1985); the HR ranged
from 0.5 to 4 cm, covering the validity range of all paddocks except the
roughness measured across the row structure in several paddocks (#2,
#27, #30, #48, #75 and #83) during SMAPEx-5 (Table 1); and the
VWC for wheat and grass ranged from 0.5 to 5 kg/m2 and 0.1–3 kg/m2,
respectively.

Limited by the NMM3D's computational requirements, only six HR

nodes (0.5, 1, 1.5, 2, 3, and 4 cm) and seven εr nodes (2.8, 4, 5.5, 9, 15,
22 and 30) were used for the initial LUTs at an incidence angle of 20°,

30°, and 50°, while an additional HR node of 5 cm was included for 40°
(Kim et al., 2012a). These LUTs in dB were then interpolated in terms of
dB with 256 nodes at HR and εr at 31 equal incidence angles from 20° to
50°, using a cubic spline function. The steps in HR and εr were
~0.014 cm and ~0.106 respectively, resulting in interpolation er-
rors< 0.05 dB (Kim et al., 2012a). The bare soil LUTs were then used as
the input to Eq.3 for generating vegetation LUTs. The initial LUTs for
grass and wheat had a resolution of 0.05 kg/m2 in VWC, with seven
incidence angles ranging from 20° to 50° with an interval of 5°. Those
LUTs were then interpolated to 31 incidence angle specific cubes with
the VWC also being interpolated into 256 nodes. A comparison over
1000 random combinations of VWC, εr, HR and θ showed that the
maximum difference between interpolated LUTs and NMM3D-DBA
is< 0.2 dB.

3.2. Multi-temporal retrieval constrained by a dry down assumption

Three unknowns (εr, HR, VWC) need to be determined in Eq. (3) for
soil moisture retrieval, with the full-polarized PLIS data (HH, HV or VH,
VV) being not always sufficient in single-radar-acquisition retrieval
(also known as snapshot retrieval), considering the radar measurement
noise. Similar to earlier studies using multi-temporal data (e.g.,
Balenzano et al., 2011; Kim et al., 2012a), the assumption of time-in-
variant roughness and vegetation was applied to remove the unknowns
describing the temporal evolution of roughness and vegetation. Given a
time series of N PLIS acquisitions sequentially collected at times t1, t2,
…tN, 3N independent measurements are available without considering
the dependence among polarizations. N+1 unknows need to be de-
termined for bare soil consisting of N εr (i.e., εr1, εr2,…, εrN) and one HR,
while an extra parameter of VWC needs to be derived for vegetated
areas. This makes the soil moisture retrieval a well-constrained inver-
sion for most operational polarimetric SAR missions, e.g. PALSAR-2,
because either two dual-polarized or one full-polarized acquisition are
acquired in time series ensuring at least N+2 measurements.

The general formulation therefore is to minimize the cost function:

∑

…

= −
=

f ε ε ε H VWC

N
w σ σ H ε VWC θ

( , , , , )

1 ( ( , , , )) ,

r r r N R

i

N

pq i pq i pq R r i i

,1 ,2 ,

1
, ,

0
,LUT

0
,

2

(4)

where σpq, i0 and σpq, LUT0 are the backscattering coefficients in dB from
observation and LUTs, respectively. The subscript i denotes the time
sequence from 1 to N, and the weight wpq,i, accounts for the differing
error of the LUTs and radar observations. The main sources of this error
include:

i) Speckle. SAR data inherently suffer from speckle noise, originated
by the SAR system's coherent nature (Ulaby et al., 2014). The
speckle noise can be partly removed by the multi-look operation at
the expense of spatial resolution (Thoma et al., 2006), with the
available SLC pixels being different among imaging modes and
varying across the swath. Consequently, it is impossible to multi-
look the data with the same number of looks for a consistent re-
trieval grid, resulting in different levels of residual speckle noise.

ii) Calibration uncertainty. Time series data collected by different
imaging modes may have inconsistent calibration and geometric
accuracy, e.g. the difference between PALSAR-2 ScanSAR and
StripMap mode reported by Shimada et al. (2009). A similar dif-
ference was also observed among different beams of the COSMO
SkyMed and among different X-band missions (Pettinato et al.,
2013).

iii) Forward model error. A forward model could have a different ac-
curacy at different incidence angles and polarizations. The currently
available surface scattering models are prone to larger errors at
higher incidence angles (Mancini et al., 1999; Mattia et al., 2006).
The NMM3D-DBA used in this study may also have error imbalance

Table 2
Parameters used in building look up tables; U (a, b) denotes a uniform dis-
tribution ranging from a to b; and N (a, b) is a normal distribution with a mean
of a and a standard deviation of b.

Parameter Wheat Grass Bare

α (°) U(0, 360) U(0, 360) –
β (°) N(30, 4) N(60, 15) –
Mveg 0.75 0.65 –
r (mm) 1.4 1.2 –
VWC (kg/m2) 0.5–5 0.1–3 –
εr 3–30 3–30 3–30
HR (cm) 0.5–4 0.5–4 0.5–4
θ (o) 20–50 20–50 20–50
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among different incidence angles. Huang et al. (2017b) has de-
monstrated a significant overestimated attenuation of the DBA at C-
band, which can be worse for VV polarization at larger incidence
angles than for other radar configurations.

Differing from the retrieval methods that use time series data with
the same radar configuration (e.g., Kim et al., 2012a), none of the three
sources can be accurately modeled in this study because of the time
varying incidence angle, polarization and number of available SLC
pixels. In order to keep the method as general as possible, it is not
suitable to have an assumption of wpq in Eq. (4). Hence, the weights
were taken as uniform for all channels and a priori information on the
temporal soil moisture trend was imposed:

≥ ≥ ≥ <+ε ε i N30 3, ( ),r i r i, , 1 (5)

denoting a drying down process during the period of radar observa-
tions. This can be guaranteed for periods following a rainfall event like
that prior to SMAPEx-5. In addition, rainfall and/or irrigation events
can be easily identified due to the significant increase of backscattering
coefficients in all polarizations, following the procedure outlined in
(Zhu et al., 2019). With this constraint, the effect of anomaly fluctua-
tions in time series caused by non-surface factors is expected to be
partly removed.

A genetic algorithm (GA) was used to find the optimal solution of
Eq. (4), because of its efficiency to search large spaces, low risk of
reaching a local optimum (Gen and Cheng, 2000) and its convenience
to integrate with constraints. Fig. 3 shows the flowchart of the proposed
GA-based retrieval method. The inputs include the LUTs and time series
PLIS data, with the corresponding landcover map used to determine the
LUT type (bare soil, grass, wheat). The method starts from the gen-
eration of 20 random solutions (known as chromosomes in GA), with
each solution consisting of N unknown values of εr, and one unknown
value of HR and VWC. An 8-bit binary was used to encode each un-
known parameter with an example of εr included in Fig. 3. Conse-
quently, the length of each solution was 8× (N+1) bits and
8× (N+2) bits for bare soil and vegetated areas, respectively. These
solutions were then adaptively optimized using three genetic operations

(selection, crossover, and mutation) to minimize the cost function (Eq.
(4)); please refers to Gen and Cheng (2000) for more details about
genetic operations. Specially, the dry down constraint was integrated as
a pre-selection step, discarding solutions not satisfying Eq. (5). A
maximum iteration number of 100 was set. The N εr values of the op-
timal solution was finally converted to N mv values using the Dobson
relationship between mv and εr (Dobson et al., 1985).

For a comprehensive evaluation, the snapshot method based on the
same LUTs was used for comparison, which retrieves soil moisture from
each radar acquisition independently by minimizing:

= − + − + −

f ε H

σ σ σ σ σ σ

( , , VWC)

(( ) ( ) ( ) )/3 ,
r R

HH
0

LUT,HH
0 2

HV
0

LUT,HV
0 2

VV
0

LUT,VV
0 2

(6)

where the retrieved HR and VWC can be different over time. Moreover,
to show the effect of a dry down constraint, the step using Eq. (5) in
Fig. 3 was removed for comparison.

4. Results

4.1. Evaluation of forward model

The LUTs built by NMM3D-DBA were evaluated using the PLIS
observations and ground samples over the paddocks containing
roughness and VWC observations. The model σ0 were first calculated
for each mv sample and then averaged for each paddock. The roughness
values measured along the row structure were used for paddocks #2,
#30 and #48, because their average roughness values are out of the
range of bare soil LUTs (0.5–4 cm). Fig. 4 shows the predicted σ0 in dB
versus the PLIS observations over bare soil, grass and wheat.

The co-polarizations (HH and VV) achieved the best performance
over bare soil, followed by the grass and wheat. The root mean square
error (RMSE) for all land cover types (1.6–3.2 dB) were marginally
larger than those reported in other studies using the same models,
which are ~1.5 dB for bare (Huang et al., 2010), 1.8 dB for grass (Kim
et al., 2014), and 1.1–1.7 dB for wheat (Huang et al., 2017a). One

Fig. 3. Flowchart of the soil moisture retrieval method.
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reason for the difference is the periodic row structures observed in
several paddocks. For example, significantly larger co-polarized σ0 were
observed at paddock #80 (wheat) which was ploughed nearly per-
pendicular to the radar look directions. After removing these paddocks,
the RMSE for wheat decreased to 2.1 dB (HH), 2.3 dB (VV) and 2.8 dB
(HV). The effect of surface row structure on radar observations is well
documented (Blanchard and Chang, 1983; Champion and Faivre, 1996;
Ulaby and Bare, 1979; Zribi et al., 2002), with the co-polarized σ0 ob-
served perpendicular to row structure being up to 10 dB larger than
those observed with parallel row direction at L-band (Ulaby and Bare,
1979). Observations from other azimuth angles also have a relatively
larger σ0 compared to the parallel direction, but with a limited differ-
ence when the azimuth angle difference (θa) between the incident wave
and row direction was< 60° (Blanchard and Chang, 1983). This is
consistent with the σ0 observed at other ploughed paddocks in the re-
search area whose θa ranged from 0 to 62°. The predicted σ0 of these
paddocks, based on average or along row direction roughness, matched
approximately the observed σ0 having a difference of< 4 dB. Notably,
this does not mean that the isotropic roughness assumption and the
fixed Lc/HR ratio of 10 accurately describes the periodic soil surface, but
rather indicates that the roughness values used in the forward evalua-
tion were close to the perceived effective roughness values for those
paddocks.

A further investigation on the angular dependence of forward model
performance at HH is depicted in Fig. 5, with the results for HV and VV

being similar. In general, no clear angular pattern was observed for all
three landcover types, showing the reliability of the angular effect
modeling. Different angular behavior was observed for paddock #80,
with the PLIS observations being 8–12 dB and 4–6 dB higher than the
model predictions at incidence angles of ~30 and 48° respectively. Si-
milar results were observed by Ulaby et al. (2014) and Zribi et al.
(2002) for 3.25 GHz.

4.2. Retrieval results

Eight full polarized images with the look direction alternating be-
tween left and right were used to simulate combined descending and
ascending radar observations from space-borne sensors, to evaluate the
proposed method. The multi-angular time series for a paddock with
cultivation activity (Table 1) was separated into two sub-series, ac-
cording to the presence of the cultivation event, with mv retrieval
carried out independently for each sub-series. The retrieved mv (25m
resolution) at mv sampling points against ground measured mv are de-
picted in Fig. 6. Generally, an overall correlation coefficient (R) of 0.77
and a RMSE of 0.07m3/m3 was achieved for a wide range of mv

(0.04–0.42m3/m3). Different from the forward model accuracy of co-
polarizations, the proposed method achieved the best results over
grassland, followed by the wheat and bare soil. This may result from the
poor modeling of cross-polarization at bare soil and wheat as well as the

Fig. 4. Comparison of forward NMM3D-DBA σ0 and PLIS multi-angular observations at the paddock scale (~0.1–0.5 km). The dash lines denote the± 1 dB offset. R
refers to the Pearson correlation coefficient.

Fig. 5. The difference of measured and predicted σ0 at HH polarization versus
incidence angle. The circled points belong to paddock #80, ploughed nearly
perpendicular to the radar look direction.

Fig. 6. In-situ versus retrieved soil moisture at the 25m pixel scale. The dash
lines denote the target accuracy of± 0.06m3/m3.
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relatively simple roughness features in grassland. Underestimation was
observed for high mv conditions (larger than 0.42m3/m3), which can be
caused by i) the lower εr upper bound of LUTs (~ 0.42m3/m3) com-
pared to the wettest condition during the SMAPEx-5 period in the
Yanco area, and ii) the decreased sensitivity of the radar signal to mv at

large values.
Despite the relatively poor results compared to the 0.05m3/m3 re-

quirement suggested by Walker and Houser (2004) and the 0.06m3/m3

target of SMAP radar products (Kim et al., 2012b), great spatial details
of soil moisture were retained as depicted in Fig. 7. The paddocks with

Fig. 7. Time series soil moisture maps of focus farms YA4 (a), YA7 (b) and YE (c) during the eight observation dates of the SMAPEx-5 period. The black paddocks are
those with cultivation activities between DOY265 and DOY 270.
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cultivation activities occurring between the last two radar acquisitions
were masked for the last retrieval because only one acquisition was
available after cultivation activities. The dry-down process of the
SMAPEx-5 period was accurately captured over all three focus farms,
with the RMSE of daily averaged mv being 0.031, 0.017, and 0.020m3/
m3 for bare soil, grass and wheat, respectively. Spatial patterns of mv

were obtained with clear boundaries, showing relatively wetter patches
for vegetated areas, particularly for the wheat farms. The mv retrieval
was also made for one canola and one lupine paddock in YA7 using the
wheat LUT with acceptable results (RMSE: 0.072m3/m3); the wheat
LUT could be used because they have a similar vertical dominant
structure.

The results for mv retrieval at the paddock scale using the LUT
snapshot method, the multi-temporal mothed without a dry down
constraint and the proposed method are shown in Fig. 8 with the cor-
responding retrieved roughness and VWC shown in Fig. 9. It is noted
that the roughness ground truth for ploughed paddocks used in Fig. 9
are those measured along the row direction, while the retrieved
roughness are the effective ones. The roughness values retrieved by the
snapshot algorithm were averaged over time for each paddock.

As expected, relatively poor retrieval results were achieved by the
snapshot algorithm with a RMSE of 0.088–0.112m3/m3, 1.274 cm and
1.183 kg/m2 for mv, HR and VWC retrieval, respectively, which is as-
cribed to the ambiguities among soil moisture, roughness and vegeta-
tion effect on backscattering (Satalino et al., 2002) as well as the larger
sensitivity of the snapshot method to noise (Kim et al., 2012a). The

impact of these uncertainties is clearly shown by the low correlation
coefficients. The mv, HR and VWC retrieval were significantly improved
using a time series retrieval even without the dry down constraint,
showing a decrease in RMSE by as much as 0.03m3/m3, 0.5 cm and
0.1 kg/m2 for soil moisture, HR, and VWC, respectively. These im-
provements mainly come from the reduced sensitivity of the time series
retrieval to system measurement noise (Kim et al., 2012a). The mv re-
trieval was further improved to an acceptable level (RMSE<0.06m3/
m3) by adding the dry down constraint, with slight changes in the re-
trieved HR and VWC values. A possible explanation is that the dry down
constraint forced slight adjustments in the HR and VWC to ensure the
soil moisture trend at the expense of a somewhat larger value of the cost
function (Eq. (4)), thus removing the effect of anomaly fluctuations in
time series σ0.

A further investigation was conducted to show the performance of
the proposed method on the paddocks with row directions near-per-
pendicular to the radar look directions, consisting of two bare paddocks
(#39 and #54) and three wheat paddocks (#80, #98 and #115). The
RMSE and R of mv retrieval were 0.056m3/m3 and 0.826 for the bare
paddocks, and 0.053m3/m3 and 0.919 for wheat. No significant dif-
ference was found between the results of these paddocks and the other
paddocks in terms of RMSE and R. This can be explained by the sig-
nificantly large retrieved HR and VWC (circled in Fig. 9). Specifically,
large HR values can result in large σ0 from the soil surface, while the
attenuation by the vegetation layer with small VWC values can be
negligible. As a result, the combination of large effective HR values and

Fig. 8. Comparison of retrieved and in situ soil moisture values for multiple algorithms at the paddock scale; (a) snapshot retrieval, (b) multi-temporal retrieval and
(c) multi-temporal retrieval with the dry down constraint. The dash lines denote the target accuracy of± 0.06m3/m3.

Fig. 9. Comparison of in-situ and retrieved (a) soil surface root mean square height and (b) VWC. The circled points belong to the paddocks ploughed near-
perpendicular to the radar look directions with their paddock ID as labeled. A, B and C denote results of snapshot retrieval, multi-temporal retrieval and multi-
temporal retrieval with the dry down constraint.
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small VWC values can partly account for the strong backscattering
caused by the row structure, resulting in a relatively accurate estima-
tion of mv. Despite the satisfactory results observed in this study, several
other undesirable situations may occur. For instance, relatively accu-
rate VWC was retrieved at the expense of overestimated mv. Therefore,
the mv retrieval for paddocks with their row direction perpendicular to
the radar look directions still needs to be further assessed using other
data sets.

4.3. The effect of time interval and polarization combination

The proposed method intends to retrieve soil moisture using any
given L-band time series, with potentially different polarization com-
binations and irregularities in time interval. The performance of the
proposed method with different polarization combinations was first
evaluated. Soil moisture retrieval was made at the paddock scale with
different polarization combinations, including HH+HV+VV,
HH+VV, HH+HV, VH+VV, HH, VV, and HV. The results are pre-
sented using the Taylor diagram (Fig. 11) which uses the standard
deviation of the retrieval results, unbiased RMSE (ubRMSE) and cor-
relation coefficient (R) between the retrievals and ground-truth data to
summarize the performance of multiple algorithms in a single figure
(Taylor, 2001).

In general, all combinations achieved similar ubRMSE values with
the largest difference (0.003m3/m3) observed between the
HH+HV+VV (the ‘a’ in Fig. 10) and single HV (the ‘g’ in Fig. 10)
series. Fully polarized data performed slightly better than dual polar-
ized series or single HH, HV and VV in terms of ubRMSE and R, but the
difference is small. A possible explanation is that more observations
introduce more uncertainties and thus cannot improve the performance
for a well-constrained inversion problem. For the single polarized
series, VV achieved the best results (ubRMSE: 0.056m3/m3; R:0.858),
followed by HH (ubRMSE: 0.056m3/m3; R:0.833) and HV (ubRMSE:
0.058m3/m3; R:0.813). Similarly, insignificant differences between VV
and HH were observed in other studies (Kweon and Oh, 2014; Lievens
and Verhoest, 2012; Ouellette et al., 2017; Satalino et al., 2012) with
various multi-temporal algorithms, although the HH was suggested for
the multi-temporal alpha approximation method at C-band (Balenzano
et al., 2011).

The effect of time interval was also evaluated with the results

presented using the Taylor diagram (Fig. 11). The last PLIS acquisition
of SMAPEx-5 acquired at DOY 270 was combined with acquisitions
collected in the previous seven flights to form seven SAR pairs with
different time intervals ranging from 2 to 17 days. The mv retrieval was
then carried out at the paddock scale using these SAR pairs respectively.
As expected, retrieval with short time intervals (G, E, and F in Fig. 11)
achieved relatively better results than those with long time intervals (A,
B, C and D). However, the ubRMSE and R difference was<0.003m3/
m3 and 0.07, respectively, and the performance was not strictly con-
sistent with the time intervals. Since the abrupt changes caused by
cultivation activities were removed before mv retrieval, this may sug-
gest that the proposed method is insensitive to the gradual roughness
and VWC changes in the SMAPEx-5 period. Importantly, results have
demonstrated that the proposed method can even be used directly as a
multi-angular algorithm for a period with a near-zero mv change, e.g.
the case of G (mv difference is 0.007m3/m3).

5. Discussion and conclusion

A time series multi-angular method was proposed for mv retrieval
from the joint time series of multiple L-band SAR missions with various
imaging modes. Similar to other multi-temporal retrieval algorithms,
this method also follows the assumption of time-invariant roughness
and vegetation, but with an additional dry down constraint for noise
reduction. In order to directly use multi-angular data, landcover spe-
cific multi-angular LUTs were built using physical scattering models
(NMM3D-DBA). In contrast to less complex models like the water cloud
model, which require calibration for different polarizations and even
for each incidence angle, these models do not need radar-configuration-
specific calibration allowing them to be used directly for other fre-
quency bands. The performance of these LUTs was evaluated using
ground measurements and airborne L-band data, showing reliable
modeling of the angular behavior and a forward RMSE of 1.6–3.2 dB
depending on polarizations and land cover type. However, the DBA
needs several vegetation parameters, e.g. the radius of cylinders and the
distribution of elevation angle, which depend on vegetation types.
Consequently, the use of these LUTs for other areas needs to be assessed
despite similar vegetation parameters having been used in other studies
(Huang et al., 2017a). Limited by the ground measurements, in

Fig. 10. Effect of polarization combinations on soil moisture retrieval when
using eight multi-angular acquisitions at the paddock scale. a–f denote
HH+HV+VV, HH+VV, HH+HV, VH+VV, HH, VV, and HV respectively.
ubRMSE denotes the unbiased RMSE.

Fig. 11. Effect of time interval on soil moisture retrieval using two multi-an-
gular acquisitions at the paddock scale. A-G denote two images with a time
interval of 17, 15, 12, 9, 7, 4 and 2 days with the corresponding average soil
moisture difference being 0.218, 0.181, 0.136, 0.094, 0.052, 0.015 and
0.007m3/m3 respectively.
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particular the allometric relationships, the multi-angular LUTs cur-
rently only cover two vegetation types, i.e. grass and wheat, but it can
be easily expanded to other vegetation types (Kim et al., 2014).

The dry down constraint used in this study provides a priori in-
formation on mv, however the integration of similar information or
assumption in soil moisture retrieval is not new (Kornelsen and
Coulibaly, 2013). For instance, the mv predicted by hydrological models
(Mattia et al., 2006; Mattia et al., 2009) and the assumption of time-
invariant mv for dry or frozen conditions (Rahman et al., 2007; van der
Velde et al., 2012). The merit of the dry down constraint here is its
generalization such that the dry down can be guaranteed, by including
a pre-processing to separate the time series into multiple sub-series,
according to the presence of rainfall events or small-scale irrigations
(Zhu et al., 2019). Notably, this constraint is difficult to apply for areas
with frequent rainfall (e.g., tropics). In addition to the dry down con-
straint, the proposed method can accommodate other constraints such
as increasing biomass for early stage crops.

In this paper, the soil surface was assumed to be isotropic, which is
hardly true for an agriculture area, particularly in field scale applica-
tion. Consequently, an effective isotropic roughness was assumed to
account for the effect of periodic surface roughness features, as sug-
gested by Champion and Faivre (1996). Both forward modeling and mv

retrieval confirmed the existence of such values in a range of cases. For
paddocks with row directions perpendicular to the radar look direction,
the effective isotropic roughness was much larger than that measured
along the row directions, resulting in the VWC being greatly under-
estimated. However, limited by the number of available cases here, the
validity of these statements needs to be assessed on different data sets.
For operational applications, the LUT generated in this study should be
extended to cover larger or smaller HR values to account for the effect of
periodic features, although these values are generally not observed in
field experiments. The timing of cultivation activities and rainfall
should also be considered carefully when applying the time series re-
trieval, with an effective solution already available (Zhu et al., 2019).

The performance of the proposed method has been comprehensively
evaluated using the time series multi-angular L-band data collected
during the SMAPEx-5, showing an mv RMSE (R) of 0.07m3/m3 (0.77) at
the 25m pixel scale and 0.056m3/m3 (0.83) at the paddock scale. A
similar mv RMSE (0.053m3/m3) was reported using the SMAP radar
baseline algorithm at the same research area (Kim et al., 2017). In
comparison, the RMSE and R of the LUT snapshot retrieval at the
paddock scale are 0.105m3/m3 and 0.41 respectively, while the RMSE
and R are 0.073m3/m3 and 0.73 for multi-temporal retrieval without a
dry down constraint. An investigation on the effect of time interval and
polarization combinations has demonstrated the robustness of the
proposed method using irregularly collected L-band SAR data with in-
consistent polarizations. However, the performance of the proposed
method should be further evaluated using satellite data (e.g., PALSAR-2
and/or SAOCOM-1), considering the different number of independent
samples for multi-look airborne and satellite data. The limited number
of independent samples in satellite data for the 25m target retrieval
grid is likely to have a much higher noise level than the PLIS data, with
a potentially negative effect on the retrieval performance.
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