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Abstract: Optimised farm crop productivity requires careful management in response to the spatial
and temporal variability of yield. Accordingly, combination of crop simulation models and remote
sensing data provides a pathway for providing the spatially variable information needed on current
crop status and the expected yield. An ensemble Kalman filter (EnKF) data assimilation framework
was developed to assimilate plant and soil observations into a prediction model to improve crop
development and yield forecasting. Specifically, this study explored the performance of assimilating
state observations into the APSIM-Wheat model using a dataset collected during the 2018/19 wheat
season at a farm near Cora Lynn in Victoria, Australia. The assimilated state variables include (1)
ground-based measurements of Leaf Area Index (LAI), soil moisture throughout the profile, biomass,
and soil nitrate-nitrogen; and (2) remotely sensed observations of LAI and surface soil moisture.
In a baseline scenario, an unconstrained (open-loop) simulation greatly underestimated the wheat
grain with a relative difference (RD) of −38.3%, while the assimilation constrained simulations using
ground-based LAI, ground-based biomass, and remotely sensed LAI were all found to improve
the RD, reducing it to −32.7%, −9.4%, and −7.6%, respectively. Further improvements in yield
estimation were found when: (1) wheat states were assimilated in phenological stages 4 and 5 (end of
juvenile to flowering), (2) plot-specific remotely sensed LAI was used instead of the field average,
and (3) wheat phenology was constrained by ground observations. Even when using parameters
that were not accurately calibrated or measured, the assimilation of LAI and biomass still provided
improved yield estimation over that from an open-loop simulation.

Keywords: APSIM-Wheat; sequential data assimilation; EnKF; yield forecast

1. Introduction

Understanding spatial and temporal variability in crop yield is essential to site-specific
management [1]. Physically based crop models simulate daily crop growth based on energy,
water, and nutrient exchange with the atmosphere, soil, climate, and field management [1],
with such simulations providing insights into the reasons for yield variability [2]. However,
a common issue with crop modelling is that they typically require site specific parameters
that can only be calibrated from long-term observations over several growing seasons [1,3]
or measured using site-specific soil investigation. Thus, for accurate yield estimation
and crop monitoring, key input and parameter data, particularly those with large model
sensitivity and spatial heterogeneity (e.g., rainfall and soil characteristics) [4–8], must be
collected near the study site to avoid considerable uncertainty in the crop model [9–11].
As it is impractical to collect the spatial input and parameter data required due to the
high labour and time costs, broad-scale application of these models for yield prediction is
difficult [1].

Remote sensing provides vegetation and soil information from space with broad
coverage, and a satisfactory resolution and accuracy (root mean squared error) for agricul-
tural purposes at regional scales. Low resolution satellite products such as the Moderate
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Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) has a pixel size
of 500 m and a repeat time of 8 days, with global coverage and a reported accuracy of
0.38 m2/m2 in grass and cereal crops [12]. The Soil Moisture and Ocean Salinity (SMOS;
35–50 km resolution and 2–3 days repeat) and the Soil Moisture Active Passive (SMAP;
36–9 km resolution and 2–3 days repeat) surface soil moisture products have a reported
accuracy of 0.04 m3/m3 from validation field experiments [13,14]. Biomass estimation for
winter wheat from Landsat Thematic Mapper (TM) and MODIS images has achieved an
accuracy of 664 kg/ha [15]. Moreover, high-resolution satellites data such as Sentinel-2
(10 m, 5 days) and Sentinel-1 (5–40 m, 6 days) have been used to map LAI with an accuracy
of 0.35–0.63 m2/m2 in wheat fields [16], and surface soil moisture with an accuracy of
0.08–0.12 m3/m3 in a vegetated areas [17]. Based on global remote sensing observations,
a broad range of vegetation and water indices have been used to estimate crop status,
water status and yield using models ranging from simple linear [18–21], quadratic [20], and
exponential [22,23] regressions to complex machine learning approaches [24–27].

Fusing remote sensing observations and crop models is expected to take advantage of
both the model and remote sensing data to improve estimates of spatial and temporal yield
variability [28]. While the model is sensitive to input data accuracy, and the observation
accuracy can be affected by the instrument and estimation errors, advanced data assimila-
tion techniques (referred to as data assimilation hereafter) can be used to combine the two
sources of information to derive a more accurate estimate of the physical system than any
one approach on its own [29]. Accordingly, assimilation methods have been developed to
estimate a true system state by carefully estimating and evaluating uncertainties to which
model estimates and external observations are subjected [30]. Data assimilation techniques
could therefore be used to combine remotely sensed data as observations of the dynamic
system with the dynamic model state predictions in order to approach the true states, by
reducing the uncertainties from both the model and the external observations.

Data assimilation applications have so far been mainly focused on monitoring food
security at regional scale, with the results evaluated using official statistics to support
policy-making [31–33]. However, application is required at the field or subfield scale using
high-resolution remote sensing data in order to support agricultural decision-making. Only
a few studies have explored and validated the application of crop model data assimilation
at farm scales [33–35]. Moreover, only limited plant and soil states (usually LAI and/or
surface soil moisture) have been tested in these studies, due to the limitations of current
remote sensing techniques. Accordingly, Zhang [28] developed an APSIM-EnKF framework
and presented a synthetic study to show the potential improvements from assimilating
a range of wheat and soil states. This paper expands on that work at experimental plot
scale using a field dataset collected over the 2018/19 wheat season. The data assimilation
experiments involved in this study were designed to address the following five research
questions:

(1) Which wheat and soil states improve the APSIM yield estimation at field scale?
(2) Do the remotely sensed observations of model states have a potential to provide spatial

variation at subfield scale when assimilated into the one dimensional APSIM-Wheat
model?

(3) At which phenological stage(s) does the wheat and soil states efficiently improve the
model yield estimation?

(4) Does constraining the phenology reduce uncertainties?
(5) Do the remotely sensed observations of model states have the potential to provide

better yield estimation when applied to an uncalibrated model?

2. Methodology
2.1. Dataset

The study site used is a 75 × 75 m square wheat field, located in the Cora Lynn area of
Victoria, Australia. The ground-based dataset was collected in a 2018/19 field experiment
described in detail by Zhang [28]. The satellite-based remotely sensed LAI consisted of a
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series of 3 m daily LAI images produced by the fusion of Sentinel-2 LAI and PlanetScope
surface reflectance, with an accuracy of 0.35–0.63 m2/m2 when evaluated using 57 wheat
fields (including the study site) across Australia and Israel [16]. This study uses the dataset
for model input, wheat and soil state observations to be assimilated into the model, and
validation.

The model input includes weather and soil properties. The daily weather dataset used
in this study consists of daily rainfall, solar radiation, maximum/minimum temperature,
pan evaporation, wind speed, and vapour pressure. The weather dataset was created from
the average of several nearby weather stations sourced from the Australian Bureau of
Meteorology (BoM, http://www.bom.gov.au/ (accessed on 16 July 2019)) and the Weather
Underground weather station network (WU, https://www.wunderground.com/ (accessed
on 2 March 2019)) to best-match the in situ weather station. The soil property information
required for model input was measured in the field during the wheat season at five locations,
in six layers throughout the soil profile (0–5, 5–15, 15–25, 25–35, 35–45, 45–55 cm).

The observations of wheat and soil states assimilated into APSIM included ground-
measured (ground) and remotely sensed (RS) data. Ground data included: (1) measure-
ments of LAI, biomass (total and separately for leaf and stem), and soil nitrogen in the
form of nitrate (NO3N) in 0–5 cm and 5–15 cm soil layers, from laboratory processing of
weekly vegetation and soil samples, (2) in situ station-based daily soil moisture throughout
the soil profile (0–5, 5–15, 15–25, 25–35, 35–45, 45–55 cm), and (3) phenology from weekly
experimental records and an in situ camera estimated according to Zadoks et al. [36]. The
remotely sensed data included (1) high spatiotemporal resolution (3 m, daily) LAI im-
ages from a fused Sentinel-2 and PlanetScope dataset [16], and (2) surface soil moisture
(field scale by treating the whole field as a single pixel, daily) retrieved from tower-based
microwave brightness temperature.

The validation data included the above time series of wheat and soil observations, the
date of major phenological stages, and wheat grain yield.

2.2. Model Configuration

The APSIM-EnKF data assimilation framework used in this study was the version
developed and described by Zhang [28] (source code available on https://github.com/
yuxi-research/APSIM-EnKF, published on 6 December 2021). The simulation window was
set from 1 July 2018 (Day 0), to 1 March 2019 (Day 243). Winter wheat (variety: RGT Accroc)
was sown on 7 August 2018 with a sowing depth of 5 cm. When sowing, fertiliser was
applied at the rate of 100 kg/ha using mono-ammonium phosphate (MAP, containing 10%
ammonium nitrogen). The row spacing was 0.2 m, and the population was 251 plants/m2.

The soil was defined by six layers, with depths of 0–5, 5–15, 15–25, 25–35, 35–45,
and 45–55 cm. Key soil parameters controlling the soil moisture dynamics, including the
drained upper limit, the lower limit at 15 bars, and the volumetric moisture content of
saturated and air-dry soil, were estimated from the maximum and minimum soil moisture
during the growing season. Both default and calibrated parameters were used, with the
calibrated parameters specified in Table 1. Parameter calibration was performed manually
and according to sensitivity: seven parameters in the SoilWat module controlling the rate
of infiltration and evapotranspiration were calibrated manually to the station soil moisture
data in all six layers, and one parameter in the SoilN module controlling soil nitrogen
decomposition was calibrated to the variation of ground-measured soil nitrate in the first
two layers. The remaining parameters were set to measured values in the first four layers,
with deeper layers assumed to be the same as those in the fourth layer.

http://www.bom.gov.au/
https://www.wunderground.com/
https://github.com/yuxi-research/APSIM-EnKF
https://github.com/yuxi-research/APSIM-EnKF
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Table 1. The calibrated soil parameters in the SoilWat and SoilN modules.

Parameter Description Layer Default Value Calibrated Value

ConA summer
(ConAsummer)

A regression coefficient that specifies the change of
cumulative evaporation in the second stage of soil
evaporation calculation. Applied to summer days.

- 5 3.8

U summer
(Usummer)

Amount of cumulative evaporation before soil supply
decreases below the atmospheric demand. Applied to
summer days.

- 5 3.8

ConA winter
(ConAwinter) Same as the ConAsummer but for winter days. - 5 1.5

U winter (Uwinter) Same as the Usummer but for winter days. - 5 1.5

SummerDate Start date for switching to summer parameters for soil
water evaporation. - 1-Nov 19-Nov

DiffusConst Parameter in the soil water diffusivity calculation. Unit in
mm2/day. - 40 400

SWCON
Fractional amount of water above drain upper limit that

can dry under gravity per day. Unit in 1/mm.

1 0.3 0.02

2 0.3 0.1

3 0.3 0.1

4 0.3 0.1

5 0.3 0.3

6 0.3 0.3

Fbiom (Fbiom)
The biom pool carbon as a fraction of the hum carbon that

is subject to decomposition.

1 0.04 0.1

2 0.04 0.05

3 0.02 0.03

4 0.02 0.02

5 0.02 0.01

6 0.02 0.01

An ensemble of 50 was generated by adding Gaussian distributed random noise to the
weather forcings, parameters and the assimilated observations. The random noise applied
to each quantity has a mean of zero and a standard deviation being the uncertainty value
as shown in Table 2, with types of either additive, meaning that the standard deviation is a
constant over time, or multiplicative, meaning that the standard deviation changes with
time with at a proportion of the quantity value.

Filter divergence is a common problem in EnKF data assimilation, with the prior error
covariance underestimated due to approximations underlying the algorithm. Accordingly,
new observations are given less weight at update steps to impact the analysis result, with
the forecast diverging from the observations [37]. This problem is usually addressed by
appending a model uncertainty term in the state transfer function or multiplying the
forecast error covariance by an inflation factor having a value greater than 1. In this study,
a covariance inflation factor was used to inflate the ensemble spread, with a value tuned to
avoid filter divergence while keeping the ensemble spread small. Further details on this
inflation factor are provided in Section 3.2.1.
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Table 2. Uncertainties of weather data, model parameters, and state observations to generate the
ensembles.

Data Description Unit
Uncertainty

Type 1 Std.

Weather (daily)

Rainfall Rainfall mm M 0.160

Radiation Radiation mm A 1.254

Max/min temperature Max/min air temperature A 0.882

Wind speed Wind speed m/s A 0.679

Parameters

DUL Drained upper limit m3/m3 A 0.03

WheatLL Permanent wilting point m3/m3 A 0.01

Observations (ground-based measurements)

LAI Leaf area index m2/m2 M 0.15

LeafWt Dry leaf weight g/m2 M 0.2

StemWt Dry stem weight g/m2 M 0.2

Biomass Aboveground dry biomass g/m2 M 0.2

SM1 Surface soil moisture (0–5 cm) m3/m3 A 0.03

SM2, . . . , SM6 Root-zone soil moisture (5–15, 15–25, 25–35, 35–45, 45–55 cm) m3/m3 A 0.01

NO3N1, NO3N2 Soil nitrogen in the form of nitrate (0–5, 5–15 cm) kg/ha M 0.1

Observations (remotely sensed)

LAI-RS Leaf area index m2/m2 M 0.1

SM1-RS Surface soil moisture m3/m3 A 0.036
1 Uncertainty type: M = multiplicative, A = additive.

2.3. Data Assimilation Experiments

A baseline data assimilation scenario is first presented by assimilating all wheat and
soil states at the field scale. In all subsequent scenarios described in the remainder of this
section, the configurations remain the same as the baseline scenario unless specifically
specified.

The baseline scenario assimilated states at the field scale at three-day intervals (ex-
cept for the soil moisture that was assimilated daily). In the baseline scenario, all state
observations, except for the soil moisture which was assimilated daily, were averaged
and interpolated/resampled to 3 days to create a 3-day field-average time series for each
state. The assimilation window was from stage 4 to the middle of stage 7, being the period
between the end of juvenile and near the end of grain filling, to avoid model failure when
perturbed in early stages and direct update of the grain weight in the late grain-filling
stage.

Wheat and soil states were assimilated into the model individually and jointly, with
observations obtained from field and remote sensing. The wheat and soil states assimilated
into APSIM-Wheat included (1) LAI from ground-based measurements and remote sensing,
respectively; (2) total aboveground dry biomass (biomass hereafter) and organ weight
(LeafWt and StemWt) from ground-based measurements; (3) soil moisture in the depths
of 0–5, 5–15, 15–25, 25–35, 35–45, 45–55 cm measured by in situ soil moisture stations,
and 0–5 cm retrieved from brightness temperature by the tower-based passive microwave
radiometer; and (4) soil nitrogen in the depths of 0–5 and 5–15 cm measured by destructive
sampling and laboratory chemical analysis.

In addition to the baseline scenario, several other scenarios were tested:
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(1) A plot-specific scenario to study the assimilation performance on a spatial scale. Here
the assimilation focused on four 1 m × 1 m experimental plots distributed in the
field rather than the entire field to explore the impact of high-resolution simulation.
The wheat grain yield in each plot was measured by harvesting the grain in the four
experimental plots and weighing the dry weight after drying in an oven at 60◦ for
more than 72 h, with the field-average yield calculated as the average yield of the four
plots. Only remotely sensed LAI extracted from the nearest nine pixels of the four
specific plots were assimilated to estimate the yield in each plot. The simulated yield
was validated by the yield data collected in each plot, respectively.

(2) An observation-limited scenario to explore the optimal assimilation stage. The APSIM-
Wheat module describes ten wheat phenological phases: 1—sowing, 2—germination,
3—emergence, 4—end of juvenile, 5—floral initiation, 6—flowering (anthesis), 7—
start of grain filling, 8—end of grain filling, 9—maturity, and 10—harvest; with
phenological stages being the period between two adjacent phases. Here the study
focused on the assimilation of state observations for a single phenological stage among
stages 4 (end of juvenile to floral initiation), 5 (floral initiation to flowering), and 6–7
(flowering to end of grain filling).

(3) A phenology-constrained scenario to minimise the uncertainty from phenology esti-
mation. Here the phenology was also constrained with field observations. However,
instead of using the EnKF for constraining the phenology, a more primitive data
assimilation method known as direct insertion [29,38,39] was applied. The direct
insertion method replaced the modelled phenology with the observed date without
weighing their uncertainties. Wheat phenology in the Zadoks phenology scale [36]
was estimated through weekly field experimental records and an in situ time-lapse
camera. APSIM wheat phenology was then obtained by mapping the Zadoks scale to
the APSIM wheat scale through an in-built linear equation provided by the APSIM
wheat module documentation.

(4) An uncalibrated scenario to test the performance of assimilation in a field where the in
situ data for model calibration are not available. Here uncalibrated models were used
with soil module parameters obtained from the APSIM soil library. In this scenario,
fourteen generic soil types measured in the same state of the study site were used
to replace the calibrated soil parameters in the baseline scenarios. The parameters
include those controlling soil water retention, evapotranspiration, and the percentage
of active/inactive nitrogen pool.

The outcomes of the data assimilation experiments were evaluated with the root mean
square error (RMSE) of the state variables and the relative difference of yield (RDyield; note
that the yield refers to the dry grain weight at harvest), expressed as:

RMSE =
1
L ∑L

k=1

(
Xest

k − Xobs
k

)
, (1)

RDyield =
yieldest − yieldobs

yieldobs
, (2)

where L is the total time step. The estimated states Xest
k is the analysis ensemble mean

for the assimilation while Xobs
k is the ground observations of the state at time step k.

The yieldest and yieldobs are the estimated and observed grain weight in kg/ha at the
date of harvest, respectively. Therefore, a value of RDyield closer to zero means that the
yield estimation is more accurate. An absolute value of RDyield from a data assimilation
experiment being less than the open-loop indicates that the data assimilation contributed
to a better yield estimation than when no data are assimilated. A negative value indicates
that the yield estimation error was overcorrected.
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3. Results and Discussion
3.1. Model Calibration

An example of soil module calibration outcomes is shown in Figure 1, as the time
series of the estimated soil moisture and ammonium nitrogen before and after the model
calibration. After calibration, the soil moisture and nitrogen followed the measured field
data with a reduced RMSE of soil moisture in the surface layer (layer 1) and the root zone
(layers 2–6). The parameter Fbiom in the SoilN module was adjusted to fit the soil nitrogen
(as the sum of nitrogen in the ammonium and nitrate) dynamics. However, the estimation
of soil nitrogen only fitted the observations in the late growing season due to a delay
of the estimated LAI growing period (further discussed in the results of the soil nitrate
assimilation).

Figure 1. Examples of the estimated soil moisture in the surface layer and root-zone (SM1, SMRZ,
(a,b)) and total soil nitrogen in the top two layers (SoilN1, SoilN2, (c,d)) by the calibrated (Cal) and
uncalibrated (Uncal) models, respectively. Numbers and vertical lines in grey and green are the
observed and estimated phenology, respectively.

3.2. Baseline Scenario
3.2.1. Inflation Factor Selection

The purpose of the inflation factor is to ensure that the ensemble spread is maintained
such that the derived error covariance correctly represents the background uncertainty. An
ideal scenario is that the ensemble of model state predictions overlaps with the ensemble
of observations, with the ensembles approximating the probability distribution of the state
using a finite number of ensemble members. With the model estimates and the external
observations each providing a probability distribution of the true state according to their
own values and uncertainties, the overlay in the two probability distributions identifies
those model ensemble members that best agree with the observations when accounting for
the uncertainty of each.

Identification of an appropriate inflation factor was a trial-and-error process. Accord-
ingly, the data assimilation run was performed with an initial inflation factor set slightly
greater than 1, then the ensemble spread checked. The ensemble spread is too narrow if
the state ensemble does not enclose the observation ensemble, with the inflation factor
adjusted to a greater value. The adjustment process repeats until an overlay was found
between the state and observation ensemble in most assimilation timesteps over the entire
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period, while ensuring that the spread was not drastically greater than the spread of the
stochastic open-loop run without any inflation.

An inflation factor of 5 was found to be appropriate in the assimilation of wheat states
and soil nitrate, except for the biomass assimilation, where a smaller inflation factor of 4
was found. As the inflation factor was only applied when observations were assimilated, a
smaller inflation factor of 2 was selected to assimilate soil moisture daily rather than every
three days as in the other states.

It should be noted that while the inflation factor of 5 is very large relative to the
commonly used inflation factor values that are usually slightly greater than 1 in meteoro-
logical data assimilation [40], where the numerical weather prediction models are chaotic,
complex, and three-dimensional [41–46]. However, the crop models are relatively simple
one-dimensional simulations at a daily time step. In this case, the ensemble spread cannot
be maintained with a small inflation factor. For example, Figure 2 shows LAI assimilation
results using the selected inflation factor compared to smaller and larger inflation factors. A
smaller inflation factor resulted in a limited overlap between the observation and the model
ensembles, as found in the ensembles of the five successively assimilated LAI observations
starting from day 119 (Figure 2a). In comparison, a larger inflation factor introduced unnec-
essary noise, making the model less trusted by the data assimilation algorithm (Figure 2c).
The EnKF works suboptimally with a larger inflation factor because the Kalman gain is
derived to minimise the model error without accounting for the inflation factor. An al-
ternative method is to add noise to the model states at each time step, but this approach
sometimes causes model failure when errors are added in the growth stage, accidentally
driving the wheat states to be near zero, and is also less computational effective.

Figure 2. Example of assimilating LAI using a variety of inflation factor values under the interpolation
scenario (a–c) and using the selected inflation factor under the baseline scenario with no interpolation
(d). The horizontal axis shows the number of days following the start of the simulation. See Figure 3
for legend.

3.2.2. Assimilation of LAI

The year of this study was drier than average, resulting in heavy water stress in the
vegetative stages (before phase 5, the floral initiation). With the model calibrated to fit the
in situ soil moisture time series, the open-loop simulation greatly underestimated the LAI,
organ weight, and wheat yield at harvest.
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Figure 3. Evolution of GrainWt, LAI, and StemWt with the assimilation of ground measured (a–c)
and remotely sensed LAI (d–f). The vertical lines indicate the field-observed phenology in grey and
the simulated phenology of the open-loop in green. The legend applies to all figures throughout.

The baseline scenario confirmed the benefit of LAI assimilation into wheat modelling
for improved yield estimation. When the ground and RS LAI data were assimilated
at intervals of every three days, the estimated LAI time series from both sources was
closer to the ground observation than the open-loop (Figure 3). In both assimilation
experiments, the development of grain weight in the grain-filling stage (stage 7) became
slightly faster with a steeper slope (Figure 3a,d). The measured average yield of the field is
2781.5 kg/ha. The estimated yield was increased from 1716 to 1871 kg/ha (ground LAI)
and 2570 kg/ha (RS LAI), reducing the yield RD from −38.3% to −32.7% (ground LAI) and
−7.6% (RS LAI). Accordingly, the RMSE of LAI, LeafWt, StemWt, and biomass estimation
was reduced (Table 3). Noting that LAI was only assimilated before the early stage of grain
filling (approximately day 156 in stage 7), the differences of the grain weight development
between the data assimilation and open-loop runs before stage 7 were indirectly caused by
more accurate estimation in other states (indicated by reduced RMSEs of wheat states in
Table 3) rather than direct updates. Therefore, the assimilation of LAI in stages earlier than
the grain-filling corrected errors in states that affect grain-filling and thus led to a better
yield estimation.
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Table 3. Relative difference (RD) and root mean square error (RMSE) of yield and wheat states from
the assimilation of wheat states in the baseline, plot-specific, and phenology-constrained scenarios.

Assimilated State (s) Scenario Yield (kg/ha) RD% of Yield

RMSE

LAI LeafWt StemWt Biomass

m2/m2 kg/ha kg/ha kg/ha

Open-loop Baseline 1716 −38.3 0.91 49.5 93.5 150.4

Ground LAI Baseline 1871 −32.7 0.40 29.2 83.0 114.5

RS LAI Baseline 2570 −7.6 0.56 34.8 81.7 75.5

Ground biomass Baseline 2520 −9.4 0.75 44.7 34.1 78.4

Ground LeafWt and
StemWt Baseline 2289 −17.7 0.69 40.5 35.7 98.0

Ground SM1 Baseline 1407 −49.4 1.07 55.9 126.4 186.8

RS SM1 Baseline 1618 −41.8 0.94 50.8 100.7 159.2

Ground SM1-2 Baseline 1451 −47.8 1.08 56.2 126.7 187.0

Ground SM1-6 Baseline 1242 −55.4 1.06 54.8 132.8 195.8

Ground NO3N1 Baseline 1660 −40.3 1.04 54.9 105.4 166.4

Ground NO3N2 Baseline 2016 −27.5 0.95 51.1 87.5 144.0

Ground NO3N1-2 Baseline 2061 −25.9 0.97 52.6 84.8 139.9

RS LAI (Plot A) Plot-specific 2652 −4.6 0.50 29.3 93.6 76.3

RS LAI (Plot B) Plot-specific 2685 −3.5 0.56 30.9 105.2 80.2

RS LAI (Plot C) Plot-specific 2819 1.3 0.57 31.5 111.2 82.3

RS LAI (Plot D) Plot-specific 2574 −7.5 0.58 35.1 93.3 78.5

Open-loop Phenology-
constrained 1931 −30.6 0.86 47.4 85.1 149.4

Ground LAI Phenology-
constrained 2232 −19.7 0.40 28.6 63.9 108.5

Ground biomass Phenology-
constrained 2779 −0.1 0.82 43.3 38.2 73.4

Ground LeafWt and
StemWt

Phenology-
constrained 2224 −20.0 0.52 33.0 32.4 108.4

Although both the ground and RS LAI showed improvements in yield estimation,
the performance of ground LAI was disappointingly worse than for RS LAI (Figure 3 and
Table 3) with the ground measurements expected to be more accurate than from remote
sensing. However, the degraded results can be explained by two reasons. First, the result
from a later phenological limited scenario showed that the ground LAI assimilated in stages
4 and 5 provided much better performance than assimilating in all stages (further discussed
in the results of observation-limited scenario). While wheat leaves at the phenological
stage 6–7 are in the middle to late senescence stage, the dried leaves make the ground LAI
measurement from destructive sampling difficult and less accurate. Meanwhile, the model
is more sensitive to changes of LAI in stage 6–7 than in other stages [28]. Although the
assimilation of stage 6–7 showed the best efficiency in a synthetic study [28] where the
synthetic LAI observations were assumed more accurate, it also diverged greatly with an
inaccurate LAI observation. Second, the time series of the remotely sensed LAI is more
smoothly varying than the ground measured LAI. The updates in stage 5, particularly
days 120 to 150, persistently drove the StemWt to a greater value that was closer to the
observations. In the model physics, the grain-filling rate is proportional to the StemWt
value on the day of flowering. Thus, the assimilation of remotely sensed LAI resulted in a
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greater grain-filling rate in stage 7 than using the ground measured LAI, and consequently,
a greater yield that is closer to the observation.

3.2.3. Assimilation of Biomass

Two schemes were applied to the assimilation of field biomass: (1) the assimilation
of total biomass as an observation of the sum of aboveground organ weight (Figure 4
left panel); and (2) the joint assimilation of individual organ weight, namely, LeafWt and
StemWt (Figure 4, right panel). Both assimilation schemes provided more accurate model
estimation for wheat states and yield at harvest compared to the open-loop, according to
the reduced RD in the yield and RMSE in the LAI, LeafWt, StemWt, and biomass estimates
(Table 3). Moreover, the performance of biomass assimilation in the two schemes both
provided reduced absolute RD in the yield and RMSE in the other wheat states than the
assimilation of ground-measured LAI (Table 3). The reason that the scheme of assimilating
total biomass provided better performance than using organ biomass or LAI (which is
highly correlated to the LeafWt) is that it provides more information on the state variables
in the system, and it allocates the weight to the observations of these wheat states through
the error covariance calculated by the EnKF, meaning it avoided internal inconsistency
caused by assimilating multiple state variables.

Figure 4. Evolution of GrainWt, LeafWt, StemWt, and biomass with the assimilation of biomass alone
(a–d) and the joint assimilation of LeafWt and StemWt (e–h), respectively. See Figure 3 for legend.
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In practice, the scheme of assimilating total biomass is also more applicable than the
organ weight. First, Table 3 shows that the assimilation of total biomass provided more
accurate yield estimation than individual organ weight. Second, measuring organ weight
requires extra work than total biomass measurements, requiring cutting and partitioning the
plant organs manually. In contrast, total biomass is less labour-consuming when measured
from destructive sampling, and it can be estimated from remote sensing often with empirical
regression techniques [15,47–50]. Third, solely constraining the biomass of one of the wheat
organs may lead the other biomass states to be erroneous (particularly in the grain-filling
stage). For example, state updating can increase the stem biomass by increasing the biomass
in other organs because the error covariance shows a positive correlation among all the
organ weight states. However, in the process of wheat development, the leaf starts to wither
when the stem starts to grow quickly, so the increased StemWt should imply a decreased
LeafWt in an actual situation, which could be opposite to the state updating result.

3.2.4. Assimilation of Soil Moisture

The assimilation of soil moisture in the first soil layer (SM1) from in situ stations
(ground) and remotely sensed microwave radiometer (RS) provided a slightly worse
estimation in wheat states and yield than the open-loop (Figure 5). The RMSE of LAI
and total biomass (Table 3) increased from 0.91 m2/m2 and 150.4 g/cm2 (open-loop) to
1.07 m2/m2 and 186.8 g/cm2 (ground) and 0.94 m2/m2 and 159.5 g/cm2 (RS), with the
absolute value of yield relative difference increased from 38.3% to 49.4% (ground) and
41.8% (RS). The assimilation of in situ soil moisture in soil layers 1–2 (SM1–2) and soil
layers 1–6 (SM1–6) provided similar degradation to performance in the estimation of yield
and other states than the open-loop (Tables 3 and 4). Thus, the assimilation of soil moisture
did not benefit yield or model state estimation.

The result that assimilating SM did not improve yield estimation contradicts a previous
synthetic study [28], which showed improvement in wheat states and yield estimation
when soil moisture was assimilated. This can be explained by the fact that the synthetic
study assumed perfect physics in the water balance model and attributed all uncertainty
to the model parameters and initial conditions, which was accounted for by perturbing
parameters and initial conditions when generating ensembles. However, in reality, the
uncertainty from the model physics, which the algorithm cannot consider, cannot be
neglected. Moreover, in this case, the available period of soil moisture observation was not
long enough to solve all parameters in the model, particularly in subsurface layers whose
soil moisture dynamics are reduced.

The assimilation of SM1 resulted in a lower SM1 level, as the SM1 observations were
smaller than the model estimates with a reduced RMSE in SM1. Some correction was made
to the SM estimates in the first two layers, but such correction was not found in deeper
layers, as shown in the RMSE values of SM in each layer (Table 4).

Although the assimilation of SM1 pushed the estimated SM1 to approach the station
observation, this improvement over other simulations only remains until the soil is com-
pletely wet or dry again. When the soil moisture becomes very wet (or dry), and the soil
moisture is at the upper (or lower) limit of soil moisture determined by the soil moisture
characteristics, the soil cannot become wetter (or dryer) with any water flowing into (or
out of) the system. Therefore, even if the soil moisture is updated by data assimilation in a
timestep, it resets once it reaches the upper or lower limit. The effect of data assimilation is
thus cancelled.
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Figure 5. Evolution of GrainWt, LAI, and soil moisture in the first layer and root-zone (SM1, SMRZ)
with the assimilation of SM1 from ground measurements (a–d) and remote sensing (e–h). See Figure 3
for legend.

3.2.5. Assimilation of Soil Nitrate

The model provided a poor performance in estimating ammonium-nitrogen; thus
the assimilation of soil nitrogen was limited to nitrate-nitrogen (NO3N). Measurements of
soil nitrate in the first two soil layers (NO3N1, NO3N2) were assimilated individually and
collectively into the model. When assimilated collectively, a higher grain and plant nitrogen
(Grain N, PlantN) level was found (Figure 6), as the NO3N1 and NO3N2 observations were
higher than the model estimates. A higher level of plant organ nitrogen was also found
in the individual assimilation of NO3N in each soil layer. A higher yield estimation was
given by the individual assimilation of NO3N1 and the collective assimilation of NO3N1
and NO3N2 (Table 3), but the grain-filling rate remained unchanged from the open-loop.
This result indicates that the increased yield in the NO3N assimilation was not caused by a
higher grain-fill rate associated with greater plant biomass, which is only slightly higher
than the open-loop, but rather by the relief of nitrogen stress because of a higher plant
nitrogen level.
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Table 4. Relative difference (RD) and root mean square error (RMSE) of yield and soil states from the
assimilation of soil moisture in layer 1 (SM1), layers 1–2 (SM1–2), and layers 1–6 (SM1–6), and soil
nitrate-nitrogen in layer 1 (NO3N1), layer 2 (NO3N2), and layers 1–2 (NO3N1–2), respectively.

Assimilated State (s)
Yield
(kg/ha)

RD% of
Yield

RMSE

LAI SM1 SM1 SM3 SM4 SM5 SM6

m2/m2 m3/m3 m3/m3 m3/m3 m3/m3 m3/m3 m3/m3

Open-loop 1716 −38.3 0.91 0.041 0.026 0.024 0.026 0.016 0.018

Ground SM1 1407 −49.4 1.07 0.025 0.021 0.028 0.025 0.016 0.017

RS SM1 1618 −41.8 0.94 0.038 0.025 0.026 0.026 0.016 0.018

Ground SM1-2 1451 −47.8 1.08 0.025 0.020 0.028 0.025 0.017 0.018

Ground SM1-6 1242 −55.4 1.06 0.027 0.015 0.010 0.017 0.011 0.012

Ground NO3N1 1660 −40.3 1.04 0.039 0.026 0.036 0.023 0.015 0.018

Ground NO3N2 2016 −27.5 0.95 0.040 0.027 0.028 0.026 0.016 0.019

Ground NO3N1-2 2061 −25.9 0.97 0.041 0.025 0.031 0.031 0.020 0.020

RS LAI 2570 −7.6 0.56 0.044 0.027 0.032 0.029 0.021 0.022

Figure 6. Evolution of GrainWt, biomass, PlantN, GrainN, NO3N1, and NO3N2 (a–f) with the joint
assimilation of soil nitrate in the first two layers. See Figure 3 for legend.

3.3. Plot-Specific Scenario

Figure 7 shows data pairs of yield estimated by RS LAI assimilation in the plot-specific
scenario and from ground observations in each experimental plot labelled A–D and the
field average. The model was initialised and driven by spatially homogeneous initial
conditions, parameters, and weather forcings across the field. At the field scale, the mean
yield was estimated by assimilating the average LAI of the field (baseline scenario), while
at the plot level, it was estimated by assimilating the LAI of the four plots (plot scale). The
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yield estimates in the plots were evaluated against the yield observations collected in each
plot, with mean yield being evaluated by the average yield of the four plots. A huge yield
range (1926.4 kg/ha) was presented across the four experimental plots due to poor field
management: unevenly sowed seeds, fail to treat weeds, delayed irrigation in the drought,
etc. Results show that at the field level (black dots with a grey horizontal line), the estimated
yield in each plot was uniform when LAI was assimilated at the field scale and no spatial
heterogenetic information was included in the model settings and the assimilated LAI
observations. In the plot-specific scenario, different plot-specific LAI data were assimilated
into the spatially homogeneous model at the plot-specific scale, resulting in different yield
estimation. Moreover, the data pairs in plots B and D more closely approached the 1:1
line, while the remaining data pairs were only slightly further from the line. Therefore,
the spatially distributed LAI data brought spatial information into the model and further
improved the spatial estimation of yield.

Figure 7. Yield estimates by assimilating LAI at the field (solid triangle) and plot-specific (open
diamond) scales.

The results from the plot-specific scenario imply that even when the available data
only allow spatially homogeneous simulation across the field, high spatial resolution LAI
images can provide subfield spatial variation to the model. However, these results are
limited to the data collected at only four experimental plots during one growing season,
meaning that this result must be further evaluated with more validation experiments.

3.4. Observation-Limited Scenario

Figure 8 shows the RD of yield from different assimilation experiments in the
observation-limited scenario. These experiments included assimilation of ground measure-
ments of LAI, biomass, LeafWt and StemWt, soil moisture in the first soil layer (SM1), first
two soil layers (SM1–2), all six soil layers (SM1–6), soil nitrate-nitrogen in the first (NO3N1),
second (NO3N2) and first two soil layers (NO3N1–2), and remotely sensed LAI and SM1.
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Figure 8. Relative difference of yield estimate by assimilating various state variables in different
phenological stages, compared to the open-loop scenario. Stage 4: end of juvenile to floral initiation;
stage 5: floral initiation to flowering; stage 6: flowering to start of grain-filling; stage 7: start of
grain-filling to end of grain-filling.

The results show that the assimilation of LAI (ground and RS) and the joint assimilation
of LeafWt and StemWt in stages 5 and 4–5 (vegetative stage) provided more accurate yield
estimates than in other phenological stages. Biomass observations in every stage improved
yield estimation, while the best yield estimation was provided when observations were
available over the whole season. Soil nitrate-nitrogen (NO3N1, NO3N2, and NO3N1–2)
contributed to better yield estimation in stages 4 and 5. The observations of SM did not
benefit yield estimation when assimilated in any stage.

3.5. Phenology-Constrained Scenario

In the open-loop run of the baseline scenario, the model provided phenology estimates
within ±5 days from the field observations for all phenological phases except phase 5 (floral
initiation), when the estimated timing was 18 days ahead of the observations (Figure 9a).
The reason is that the drought in this season caused a delay in phenology development,
but the impact of water stress on phenology development is not described in the model
physics. Another reason is that the wheat cultivar grown in this study may have a different
requirement for the target accumulative thermal time in stages 4 and 5 from the parameters
used in the model. Thus, it requires different periods to complete these stages.

Figure 9. Phenological stage changes from model estimates versus field observations (a) and time
series of phenology from model estimates and field observations (b).
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By running the open-loop with the phenology constrained by ground observations,
the underestimation of yield was reduced (absolute RD of yield reduced from 38.3% to
30.6%) with a slight reduction of RMSE in all estimated wheat states (Table 3). Further-
more, when assimilating wheat states (LAI, biomass or organ weight) with the phenology
constrained, the underestimation of yield was further reduced. The yield estimated by the
LAI and biomass assimilation (RD of yield, Table 3), and the wheat state estimation (RMSE,
Table 3) by the LAI and the organ weight assimilation, showed improved accuracy when
the phenology was determined by observation compared to that determined by model
simulation.

3.6. Uncalibrated Scenario

The open-loop simulation from 8 out of the 14 uncalibrated models showed a sub-
stantial underestimation of yield (Figure 10, grey bar). When the ground LAI or biomass
was assimilated into the uncalibrated models, the underestimation of yield was reduced
in 10 and 14 models, respectively. When using RS LAI, the underestimation of yield was
reduced in all 14 cases compared to the open-loop and in 11 cases compared to the ground
LAI but with two models being overcorrected. When assimilating in situ soil moisture
in the top two layers (ground SM1–2), the estimated yield from all 14 models was near
zero, representing model failure due to a distinct mismatch in soil moisture between the
observations and model estimation.

Figure 10. Relative difference of yield estimated by assimilating remotely sensed (RS) LAI, ground
measured LAI, and ground measured biomass with an uncalibrated model using 14 default soil prop-
erty types, as compared to using the calibrated model. Uncal and Cal represent those observations
that were assimilated into uncalibrated or calibrated versions of the model. OL is the open-loop and
LAI and biomass are the assimilation of leaf area index and biomass, respectively.

The result illustrates that the assimilation of wheat states, especially the biomass,
reduced uncertainties caused by incorrect model parameters (cultivar-specific parameters,
soil properties). Thus, assimilating wheat states is expected to improve APSIM-Wheat yield
estimation even in a wheat field where soil properties have not been accurately measured
or calibrated. In particular, remotely sensed LAI provided the best improvement in yield
estimation.

4. Limitations and Perspectives

The main and fundamental limitation of this study is that it was tested only on one
small experimental field over one growing season due to the difficulty of collecting a wide
range of data required to drive the model and test different observations for assimilation.
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Secondly, for best performance, the method needs site-specific calibration and soil measure-
ments (both time-consuming and expensive) and a quantitative description of uncertainties
from diverse sources. Finally, although the ground-measured biomass outperformed other
states in improving yield estimation, the observations of biomass from remote sensing were
not obtained and tested for assimilation due to a lack of a suitable dataset.

The application of the APSIM-EnKF framework is not limited to wheat yield estimation.
It is also applicable for near real-time crop monitoring for crop and soil status, including
over 20 other crop types (corn, barley, sorghum, cotton, etc.) available in the APSIM system.
It can also be adapted to other state-updating algorithms (Kalman filter, particle filter, etc.)
with minor modifications to the source code. With more observations becoming available
in the future, this work can be expanded to an agricultural monitoring service platform to
provide agricultural monitoring and forecasting.

5. Conclusions

This paper presented a data assimilation case study for the Cora Lynn area with the
2018/19 wheat season dataset. In a baseline scenario, the ground-measured and remotely
sensed wheat and soil states were assimilated, including LAI, biomass, organ weight of
leaf and stem, soil moisture in six soil layers from depth 0 to 55 cm, and soil nitrogen in the
top two soil layers from depth 0 to 15 cm. These results were compared to scenarios where
the state variables were assimilated into the APSIM-Wheat model under different spatial
scales, availability of observations, and model parameters.

In the baseline scenario, the data assimilation showed that biomass and LAI, particu-
larly biomass, provided improved yield estimation. Being observable from remote sensing
makes them promising future data assimilation practices. Poor performance was found
from assimilating soil moisture and soil nitrate. However, this does not imply that soil
moisture and nitrogen data are unimportant for wheat modelling and yield estimation.
Rather, that in this case they were already well estimated. Accordingly, they are essential
in calibrating parameters related to soil moisture and nitrogen estimation where such
parameters are not already well defined. With wheat growth primarily subject to water and
nitrogen stress and the model highly sensitive to soil moisture and initial nitrogen, a correct
estimation of soil water and nitrogen states is essential. Importantly, although a basic
calibration to soil parameters is recommended, uncalibrated scenarios showed that the
assimilation of biomass and LAI reduced the errors of yield estimates caused by parameter
uncertainties (wheat cultivar type, soil properties) in uncalibrated models. Consequently,
the heavy dependence of the APSIM-Wheat model on the soil information that is usually
unavailable, particularly in spatial scale, can be relieved.

A plot-specific scenario showed the potential to provide subfield spatial variation in a
spatially homogeneous model when high-resolution LAI was assimilated. Moreover, an
observation-limited scenario showed that the assimilation of wheat states (LAI, biomass,
LeafWt, and StemWt) benefited yield estimation the most when the observations were
collected before the anthesis was completed (stages 4 and 5). Furthermore, a phenology-
constrained scenario found that the uncertainty from model inputs (e.g., temperature)
and parameters (e.g., target thermal time of phenological stages) that control phenology
development can be partially reduced by direct insertion, with further improvement on
yield estimates.
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