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Abstract—The National Aeronautics and Space Administration
Soil Moisture Active Passive (SMAP) mission has been validating
its soil moisture (SM) products since the start of data production
on March 31, 2015. Prior to launch, the mission defined a set of
criteria for core validation sites (CVS) that enable the testing of
the key mission SM accuracy requirement (unbiased root-mean-
square error <0.04 m3/m3). The validation approach also includes
other (“sparse network”) in situ SM measurements, satellite SM
products, model-based SM products, and field experiments. Over
the past six years, the SMAP SM products have been analyzed
with respect to these reference data, and the analysis approaches
themselves have been scrutinized in an effort to best understand the
products’ performance. Validation of the most recent SMAP Level
2 and 3 SM retrieval products (R17000) shows that the L-band
(1.4 GHz) radiometer-based SM record continues to meet mission
requirements. The products are generally consistent with SM re-
trievals from the European Space Agency Soil Moisture Ocean
Salinity mission, although there are differences in some regions.
The high-resolution (3-km) SM retrieval product, generated by
combining Copernicus Sentinel-1 data with SMAP observations,
performs within expectations. Currently, however, there is limited
availability of 3-km CVS data to support extensive validation at
this spatial scale. The most recent (version 5) SMAP Level 4 SM
data assimilation product providing surface and root-zone SM with
complete spatio–temporal coverage at 9-km resolution also meets
performance requirements. The SMAP SM validation program
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will continue throughout the mission life; future plans include
expanding it to forested and high-latitude regions.

Index Terms—Core validation sites (CVS), soil moisture (SM),
Soil Moisture Active Passive (SMAP), validation.

I. INTRODUCTION

THE National Aeronautics and Space Administration
(NASA) Soil Moisture Active Passive (SMAP) mission has

produced global soil moisture (SM) measurements since March
2015 [1]. SMAP uses the L-band (1.413 GHz) frequency to
carry out the SM measurements because of its sensitivity to SM
changes in the surface (∼0–5 cm) soil layer and its relative in-
sensitivity to confounding effects of surface roughness and veg-
etation [2]. As with other remotely sensed data products, the sci-
entific value of these SM products is determined, in part, by how
well their performance characteristics are known. The process of
assessing the accuracy of a data product by independent means
is called validation [3], [4]. The SMAP mission established a
rigorous validation program to verify that mission requirements
are met and to provide information on the quality of the products
to the community. The mission recognized the importance of
the calibration and validation program early on, resulting in a
comprehensive plan of validation activities during the prelaunch
phase [5]. In particular, the mission started engaging external
partners and conducting validation exercises years before the
launch. Moreover, the SMAP validation strategy benefited from
two earlier missions that had a considerable focus on the valida-
tion of SM products: the Japan Aerospace Exploration Agency
Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E) instrument launched by NASA on the Aqua
satellite in 2002 [6], and the Soil Moisture and Ocean Salinity
(SMOS) satellite launched by European Space Agency (ESA) in
2009 [7]. AMSR-E validation efforts spurred the development
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of locally dense observation networks with surface SM mea-
surements in hydrologic research watersheds for SM validation
at the footprint scale of these satellites (tens of kilometers) (e.g.,
[8]–[14]). This trend continued with SMOS (e.g., [15]–[19]).
Consequently, when SMAP was launched in 2015, there was
already a significant infrastructure of locally dense networks in
place with respect to the remote sensing footprint size, due to
these earlier efforts and active international cooperation.

The SMAP project evaluated these existing locally dense
networks for their suitability as so-called SMAP core validation
sites (CVS) and called for expanding these kinds of observations
as much as possible, while also incorporating sparse networks
(typically providing just one point-scale observation location
within a footprint), other satellite data products, model-based
products, and field experiments into the SM validation plan [5].
The AMSR-E and SMOS validation efforts utilized these com-
ponents as well. In the US, the AMSR-E community led a series
of field experiments that also included airborne observations
(e.g., [20]–[22]). The experience gained from these experiments
was invaluable for the subsequent SMAP validation experiments
(see Section III-F). SMOS SM validation plans [23] similarly
included field experiments (e.g., [24]), sparse networks (e.g.,
[25]), and other approaches (e.g., [26]) in addition to dense
networks (e.g., [27], [28], [18], [29]). In the 1990s, an effort was
started to collect global SM measurements in a single database
called the Global Soil Moisture Data Bank [30]. ESA and
SMOS continued the development of a centralized repository
via the ongoing collection of in situ SM observations into the
International Soil Moisture Network (ISMN) [31].

The SMAP project required the release of beta and validated
versions of the SM data products after 6 and 12 months, respec-
tively, from the start of science observations [5]. This timeline
drove many decisions in the development of the validation plan
and tools. Obviously, only reference data for the period after
the start of the SMAP science observations on March 31, 2015
could be used for SMAP validation. Moreover, reference mea-
surements needed to be available to SMAP with short temporal
latency to facilitate validation of the beta and validated product
versions in time for their public release. The mission’s emphasis
on this point ensured that there were data available during the
first months of the validation period to meet the challenging
timeline. This is also the main reason the SMAP validation team
connected directly to the data providers and operated outside of
established repositories, such as the ISMN, that do not have such
strict latency requirements. Furthermore, the bulk of the data
processing tools were developed and the data formats, transfer
protocols, etc., were agreed upon before the launch of SMAP.
This arguably reduced the flexibility to include datasets that did
not meet the constraints during the first year of the validation.
However, once the most intensive phase of the validation was
completed, the mission was able to increase flexibility and relax
its previous requirements on the latency of the validation data.

A unique aspect of the SMAP SM validation is the need
to assess SM estimates for the nested “surface” (0–5 cm) and
“root-zone” (0–100 cm) soil layers from the SMAP Level 4 (L4)
product, which is based on the assimilation of SMAP brightness
temperature (TB) observations into a land surface model [39].
To the extent possible, the SM validation strategy for the L4

product is similar to that of the directly retrieved Level 2 (L2)
and Level 3 (L3) surface-only SM products (see Section II),
which were based on CVS, sparse networks, and other data
sources. However, adaptation to the unique characteristics of the
L4 product resulted in some differences between the validation
of the L4 and L2/L3 products (see Sections III and IV).

The Committee on Earth Observation Satellites (CEOS) has
advanced a four-stage validation hierarchy, which has been
adopted by many providers of satellite data product (https:
//lpvs.gsfc.nasa.gov). The validation stages increase with the
breadth of the validation effort (see Appendix A). SMAP was
operating at validation Stage 1 during the first year of the
mission, which implied that the assessment was conducted based
on comparisons to in situ reference data collected at a small
set of locations and over relatively short time periods. The SM
products achieved Stage 2 shortly thereafter with the extension
of the spatial and temporal scope and the publication of the first
validation results in the peer-reviewed literature. Since then,
SMAP has continued to expand the analysis, with significant
contributions from the community, to achieve Stage 3 maturity.
Stage 4 (the final stage) requires the Stage 3 level analysis to be
updated systematically over time. Many of the SMAP validation
analyses are currently updated on a yearly basis and released
in the data product assessment reports (e.g., [32], [33]), which
satisfies the key aspect of Stage-4 validation.

The experience of the AMSR-E, SMOS, and SMAP SM
validation efforts contributed to two important community ref-
erence documents that outline best practices for SM validation
along with guidance for future development of these practices
[34], [35]. The SMAP SM validation approach is largely in line
with these recommendations. This article lays out the SMAP
SM validation approach, describes the use of the different
methodologies, discusses the uncertainty estimates associated
with the validation analyses (see Section III), and presents
updated validation results for the most recent versions (R17000
for L2/L3 and Vv5030 for L4) of the SMAP SM products (see
Section IV). In Section V, we discuss the reliability of the
validation approach, its shortcomings, and how to improve on
the current approach as well as results from other validation
studies and future directions for the SMAP SM products and
their validation.

II. SMAP SM DATA PRODUCTS

Since March 31, 2015, the SMAP mission has delivered data
products containing instrument measurements (Level 1), geo-
physical SM retrievals (swath-based, L2, and daily composite,
L3), and SM estimates from data assimilation of the instrument
measurements into a land surface model (L4). On July 7, 2015,
the SMAP radar malfunctioned and ceased operation. Prior to
the radar malfunction, SMAP provided four different surface SM
products and one root-zone SM product [1]: radiometer-based
surface SM on a 36-km grid [36], radar-based surface SM on a
3-km grid [37], radiometer and radar combined surface SM on
a 9-km grid [38], and surface and root-zone SM based on the
assimilation of SMAP TB observations into the NASA Goddard
Earth Observing System (GEOS) Catchment land surface model
on a 9-km grid [39]. The grid used by the SMAP products is the

https://lpvs.gsfc.nasa.gov
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TABLE I
SMAP SM DATA PRODUCTS

The resolution column indicates the effective spatial resolution and the EASEv2 grid column indicates the spacing of the posting grid.

version 2 Equal Area Scalable Earth (EASEv2) grid system [40],
[41].

Following the failure of the radar, the mission introduced a
new TB sampling approach and two new SM products. The
SMAP 40° angle TB measurements have a 38-km resolution
(defined by the half-power footprint on the earth’s surface of
the radiometer antenna pattern); the radiometric resolution of
the gridded TB is better than 0.5 K, and the measurements filter
out radio frequency interference (RFI) [42]–[44]. The original
radiometer sampling averaged the TB measurements over the
36-km EASEv2 grid cells using inverse distance weighting [45].
The enhanced TB processing developed after the radar malfunc-
tion, using a Backus–Gilbert approach to sample measurements
on the 9-km EASEv2 grid [46]. A new SM product was devel-
oped based on the enhanced TB product, which was also sampled
onto the 9-km grid [47]. Because the spatial resolution of the TB
measurement is considerably larger than the 9-km spacing of
the sampling grid, the enhanced passive radiometer-based SM
product (henceforth, PE) inverts the TB from a given 9-km grid
cell into an SM estimate using ancillary data and parameters
for a 33-km “aggregation domain” centered on the 9-km grid
cell, thereby approximating the spatial resolution of the TB
measurement. The second SM product introduced after the radar
malfunction uses observations from the C-band radar on the
Copernicus Sentinel-1a and 1b satellites to downscale the SMAP
L-band radiometer TB measurements with an algorithm similar
to that used by the original SMAP radar/radiometer combined
product [38], and then derives SM from the downscaled TB field
[48]. The SMAP/Sentinel-1 product (henceforth, SP) provides
SM on 1-km and 3-km grids. The product uses the SMAP obser-
vations only when the Sentinel-1 measurements are available;
therefore, the product covers the earth in about 12-days (based
on Sentinel-1 repeat cycle), but the combined revisit interval of
the two satellites is less for certain areas where data collection is
prioritized (over Europe, for example) [48]. Table I summarizes
the SMAP SM products.

The radiometer-based products (P and PE) include SM re-
trieved using three different algorithms: single-channel vertical
polarization (SCA-V), single-channel horizontal polarization
(SCA-H), and dual-channel algorithms (DCA) [49]. Besides
adding the enhanced and the SMAP/Sentinel-1 products de-
scribed above, the mission has broadly improved all products
over the years. Key improvements include the processing of

ancillary data, such as the surface temperature [49], updating
the SM retrieval algorithm for the DCA [50], and improv-
ing the modeling parameterization for the L4 product [51].
New versions of the SMAP SM products have been released
approximately yearly with various enhancements and always
accompanied by updated assessment reports (e.g., [32], [33]),
plus a complete reprocessing of the data.

The SMAP baseline validation domain is defined by the
product accuracy requirements of the mission. Surfaces with
permanent ice and snow, urban areas, wetlands, and areas with
above-ground vegetation water content (VWC) greater than 5
kg/m2 are excluded from the formal accuracy requirements and
identified with a nonzero retrieval quality flag [1]. In recent
years, the SMAP SM algorithm research has included improving
the quality of SM retrievals in more densely vegetated regions,
which has resulted in validation activities in forested areas
[52], [53].

III. SMAP SM VALIDATION STRATEGY AND METHODOLOGIES

The SMAP SM validation strategy is driven by the mission
validation requirements, the characteristics of the measured SM
(accounting for natural variability in the horizontal, vertical, and
time dimensions), and the availability of high-quality reference
data [5]. NASA required the SMAP mission to measure SM to
within 0.04 m3/m3 accuracy—in an average aggregate sense—
across the entire SM validation domain [1], [54], where accuracy
is defined as the standard deviation of the error or unbiased
root-mean-square error (ubRMSE) (see Appendix B). Because
the locally dense CVS SM monitoring networks provide the
best available measurements of SM at the SMAP radiometer
footprint scale (see Section III-B), the mission chose the CVS
data as the primary validation reference to establish that the
accuracy requirement is met. Specifically, the product accuracy
assessment is based on the average of the unbiased root-mean-
square difference (ubRMSD) sampled at the CVS [56]. Other
metrics used in the validation are the RMSD and the mean
difference (MD) (see Appendix B). Owing to errors in the in situ
measurements, the ubRMSD, RMSD, and MD are conservative
estimates of the true SMAP ubRMSE, RMSE, and bias, respec-
tively (see Section III-A). The validation metrics further include
the Pearson correlation (R) (see Appendix B) and the anomaly
R computed using the departures from the multiyear, seasonally
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TABLE II
SMAP CAL/VAL METHODOLOGIES FOR L2–L4 SM PRODUCTS, RELEVANT ANALYSIS APPROACHES, AND ASSOCIATED PRODUCTS

varying climatology computed for both the reference and SMAP
SM [51]. Because the number of available SM CVS across the
globe is limited, the validation strategy was complemented with
additional data sources. These sources include geographically
more extensive SM networks with only one, or very few, mea-
surements within the footprint (i.e., sparse networks; Section
III-C), other global satellite-based SM products (Section III-D),
global land model-based estimates of SM (Section III-E), and
field experiments (Section III-F). Additionally, the validation
of the L4 product included data assimilation diagnostics as an
important element, reflecting the unique nature of L4 among
the products (see Section III-G). Each methodology has key
features that are exploited in the continuing validation process
to accomplish the most comprehensive validation possible for
each product across time and space.

The application of the methodologies and analysis approaches
depends on the SMAP products. For example, there are few
other high-resolution (<30 km) SM products, especially at the
global scale, that can be compared with the SMAP active (A),
active-passive (AP), and SP products. Triple collocation (TC)
analysis has been used to support the use of the sparse networks
and other satellite data products together with land model-based
products for complementary assessments of the P and PE prod-
ucts [57], [58]. However, since the L4 product is based on
merging radiometer observations into a land model, traditional
TC analysis cannot be used for the L4 SM because there are
not enough independent reference datasets. However, other In-
strumental Variable approaches can be used to quantify the skill
improvement from the assimilation of SMAP observations in L4
(relative to a model-only baseline) [59]. Table II summarizes the
different validation methodologies and the analysis approaches
applied with them for the different data products.

The SMAP satellite makes measurements in the morning
and evening based on its 6 A.M./6 P.M. equator crossing sun-
synchronous orbit configuration (see Section II). The accu-
racy requirement for L2SM products applies to the SM re-
trieved using the 6 A.M. (descending) SMAP overpasses be-
cause of the expected uniformity of the temperature across the

soil-vegetation column [49], but the SM retrieved using the 6 P.M.
overpasses is also validated (and actually has roughly equivalent
accuracy performance to the AM overpasses). L4 SM is available
and validated at 3-h intervals.

Currently, the data record of in situ comparisons with SMAP
is over six years long. This allows a very detailed look into
the performance of the SMAP products, including seasonal
characteristics (e.g., [60]–[62]). Continuing data collection and
validation are nevertheless important. CEOS considers the con-
tinuous monitoring of data consistency to be a key aspect of
any validation program since it allows for the reliable detection
of any potential anomalies. For example, SMAP experienced an
operational anomaly from June 19 to July 23, 2019; once SMAP
science measurements were available again after July 23, 2019, it
was extremely important to have immediate access to concurrent
validation data to verify that the SM retrieval performance
remained unchanged following the operational anomaly.

The metrics computed with respect to in situ data are subject to
sampling error and should always be provided together with sta-
tistical confidence intervals (CIs). Gruber et al. [34] summarize
the appropriate methodology to compute CIs for each metric.
While they provide a quantitative way of evaluating the statistical
significance of the differences between different products and
algorithm versions, it is important to emphasize that they do
not provide the confidence with respect to the actual true value,
but the confidence in the calculation of the difference between
the two datasets (SMAP and the reference). This approach was
adopted also by the SMAP validation team. The equations are
summarized in Appendix B.

A. Horizontal and Vertical Variability of SM

SM measurements are scale-dependent and must be inter-
preted in terms of their spatial support, spacing, and network
extent [63]. The validation of SMAP SM with in situ mea-
surements is complicated by the extremely different spatial
support of the measurements (point-scale in situ sensor mea-
surements versus km-scale resolution of the SMAP products).
Depending on the network, the spacing and extent of the
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in situ measurements may approximate the SMAP footprint,
as is the case with the CVS. Perhaps most importantly, the
spacing of the station measurements (number and distribution)
must allow a reliable estimation of the average SM over the
SMAP footprint. The required minimum number of point-scale
sensors and their spacing is dictated by the spatial variability
of SM within the area of interest and the desired accuracy for
the estimate at that spatial scale (e.g., [64]–[68], [9], [10], [69]–
[71]). Upscaling of in situ measurements to a satellite footprint
scale can be accomplished by averaging in situ measurements
with some weighting scheme and it can also include additional
high-resolution information (e.g., [72]–[76]). For the SMAP
CVS, the geometric Voronoi diagram ([77]; or see Thiessen
Polygons in [78]) approach was chosen as the baseline upscaling
approach to avoid geographical overweighting of clustered parts
of the pixels—for uniformly distributed networks, the weighting
of the stations is also uniform and the upscaling corresponds
to a simple arithmetic average [54]. Because of an extremely
distinct soil texture gradient at the Carman CVS, an upscaling
approach based on the soil texture distribution relative to the SM
station locations was applied there [79]. van der Velde et al. [80]
presented the upscaling approach applied at the Twente CVS
where a smaller number of continuously measuring stations are
used to estimate the average SM based on a hydrological model
and measurements from additional stations that do not cover the
entire time period.

The scale discrepancy presents a particular challenge for
determining errors in large-scale SM products because the
long-term mean SM at a randomly selected single point may
be very different from that of the area-average SM. That is,
point-scale SM measurements are typically biased with respect
to area-average SM. Conversely, the time-varying component
of SM typically has a large autocorrelation over long distances,
that is, point measurements can better represent the SM tem-
poral changes over domains of several km [81], [82]. Many
studies of temporal stability of SM very effectively illustrate
these differences of spatial and temporal evolution of SM (e.g.,
[83]–[85], [11], [86], [70]). Generally, the sparse networks lack
adequate representation for resolving bias and RMSE at the scale
of satellite SM retrieval footprints.

While arguably less severe than the challenges facing the
sampling of bias [82], there are also challenges in estimating
bias-insensitive metrics (e.g., ubRMSE, R) from sparse ground
observations. Most notably, random spatial representativeness
errors will spuriously inflate the sampled ubRMSD [87] and
degrade the sampled estimates of R [57]. As a result, the
recovery of absolute ubRMSE and R metrics acquired from
in situ measurements, and especially from sparse networks,
requires statistical upscaling techniques capable of estimating,
and correcting for, the impact of random spatial representative
errors (see Section III-C).

In addition to determining performance metrics, calibra-
tion/validation (cal/val) activities are often used to quantify
the relative variation of metrics between, for example, two
different retrieval techniques. It is worth noting that a robust
bulk characterization of relative skill in terms of ubRMSE
and R can generally be obtained directly from sparse network

data—without the application of upscaling techniques. While
point-to-footprint upscaling errors can be large, they can be
treated as random in nature and independent of retrieval errors.
As a result, random spatial representativeness can be assumed to
have an equal impact on ubRMSD and R calculated for multiple
products and will not affect the assessment of relative metric
differences between two products [88].

A consequential assumption in SMAP validation is that the
L2/L3 products provide an estimate of the surface SM in the
top 5 cm (on average) and within the grid cell boundaries.
This is especially important in considering the breakdown of
uncertainties. The response of a microwave radiometer varies
depending on the SM content and its vertical distribution (e.g.,
[89]–[92]). Accounting for this effect separately in the data
product would introduce another set of uncertainties, but be-
cause of the assumption, the uncertainty caused by the variable
sensing depth is embedded within the product uncertainty (e.g.,
[93], [80]). Hence, the validation of the surface SM products is
done with respect to in situ measurements that correspondingly
provide an estimate for the top 5 cm of the soil column with
their own set of uncertainties. Most of the in situ measurements
used for SMAP validation measure the SM at 5 cm depth using
a probe that is installed horizontally in the soil that captures the
SM over an approximate depth range of 3–7 cm, missing the
topmost layer of the soil. Probes that have ∼5 cm prongs and
are inserted vertically also capture the topmost layer and provide
a truer average of water content in the 0–5 cm soil column,
particularly during rapid dry-down periods after rain events [94].
Vertical installation, however, makes sensors more vulnerable to
surface disturbances, and depending on the sensor, may interfere
with the water flow, result in inaccurate soil temperature com-
pensation of the probe calibration, or the assumptions of the
SM measurement along the sensor prongs may be inaccurate
[95]. The study in [96] found that the practical difference of
these measurements is dependent on the soil clay content (in-
creasing dependence on sensor orientation with increasing clay
content).

B. Core Validation Sites

The SMAP mission engaged with investigators across the
globe to provide data from dense networks. The networks were
assessed before the SMAP launch according to the following
criteria.

1) Number of sensors: N>8 for 36-km, N>5 for 9-km, and
N>3 for 3-km pixels (see [54]).

2) Geographical distribution: The sensors are not clustered
in only one portion of the pixel but cover (approximately)
the entire pixel (although not necessarily evenly, see the
next requirement).

3) Spatial upscaling: An average SM can be established based
on the measured SM and ancillary information (such as
additional short-term observations) (see Section III-A).

4) Calibration: The sensors have undergone a calibration
using additional measurements, or the calibration is oth-
erwise verified based on past measurements.
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TABLE III
CORE AND CANDIDATE VALIDATION SITES

∗Candidate at this scale
a) A single site can have multiple pixels at various spatial scales (see, e.g., [54]). SF stands for surface and RZ for root-zone.
b) Some but not all sites provide data before 4/15 and/or after 3/21. The range does not account for station outages.
c) Experiments including an L-band retrieval aspect and a large-scale sampling.
d) Koeppen–Geiger climate classification scheme [124].
e) MODIS-based International Geosphere-Biosphere Program classification [125].

5) Quality assessment: The time series of each sensor is valid
(no dropouts, spikes, drifting, etc.).

6) Maturity: The network has been up and running for a suf-
ficiently long period during which the overall consistency
of the measurements was verified.

7) Latency: The data are made available for SMAP validation
within 1 week (at most 1 month). This criterion was
applied only in the early phase of the mission.

Based on these requirements, currently 15 sites provide ref-
erence data at the 33-km scale (or 36 km for the standard P
product), 17 sites provide reference data at the 9-km scale, and
8 sites provide reference data at the 3-km scale. At the 9-km
and 3-km scales, a few sites include more than one independent
reference pixel, for a total of 22 (15) pixels at the 9-km (3-km)
scale. Two of the original 36-km sites (Kyeamba and Bell Ville)
[54] did not continue to provide data from a sufficient number
of stations after the initial validation period and were therefore
moved to the candidate site category. One site (HOBE) [97] was
added only after the initial validation period because it had not
met the first-year latency requirement. The 9-km L4 product
is validated primarily using 9-km reference pixels that were

selected following largely the same principles as for L2 SM
validation, resulting in a nearly identical set of 18 CVS with
sufficient in situ measurements for surface SM validation. Only
seven CVS provide sufficient measurements for root-zone SM
validation. Table III lists the CVS and candidate sites and Fig. 1
shows their locations.

Most of the 33-km CVS have more than the minimum required
number of measurement locations, which would suggest an
uncertainty of less than 0.03 m3/m3 for the average in situ SM
across the 33-km reference pixel [54]. However, Chen et al.
[82] found that the variability of the SM caused the CI for the
MD to be greater than 0.03 m3/m3 at seven of the 15 analyzed
CVS. The study also accounted for the distribution of the stations
(spacing) so that clustered installations had less sampling power;
using this adjustment, the MD CI exceeded 0.03 m3/m3 at nine
CVS. The study found that these sites would need to add about
eight stations on average to meet the CI goal. At four of the CVS,
temporary SM sensors were installed that provided an additional
19–34 measurement stations over one season. These temporary
measurements are useful as a reference for the permanent net-
work measurements. As expected, SM measurements from the
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Fig. 1. Map of core and candidate validation sites and sparse networks overlaid on a land cover map (MODIS IGBP).

permanent and temporary networks were very well correlated
overall, but the absolute SM difference ranged from 0.009 to
0.034 m3/m3 [98], which supports the finding by Chen et al.
[82] that significant uncertainties in absolute SM remain even
with relatively dense spatial sampling.

Even though the candidate validation sites did not satisfy all of
the core site requirements, they still offered rich datasets. The 18
candidate sites provided data from six continents and for diverse
land cover and climate conditions. The candidate sites could be
applied to investigate SM anomalies, the impact of RFI on SM
retrievals, and performance outside the validation domain (e.g.,
forests).

In Section IV, updated performance metrics at the CVS are
presented using the six-year data record of the latest SMAP
product version for each SM product. The metrics obtained for
each CVS are averaged to derive an overall representative value.

C. Sparse Networks

During the SMAP period (2015–present), a large number of
in situ SM measurements are available from across the world,
albeit with larger concentration in North America (see Fig. 1).
Most of these measurements are from sparse networks and do not
provide SM at the spatial scale of SMAP estimates (see Section
III-A). Nevertheless, they still provide useful information and
greatly expand the spatial coverage of the in situ validation.
The periodically released SMAP assessment reports include
performance metrics computed using the sparse network mea-
surements (e.g., [49]). These metrics are not used in an absolute
sense, but give a general indication of retrieval performance and
to track consistency between algorithm versions (see Section
III-A). Table IV summarizes the networks used in the SMAP
validation activities. Most of the networks use conventional
probe-based measurements, but the PBO H2O network uses GPS
reflectometry to derive SM [126] and the COSMOS network
uses neutron measurements to derive SM [127], which have
different spatial and vertical support compared to probes.

TABLE IV
SPARSE NETWORKS

a) Total number of stations in network. Not all stations provide data suitable for SMAP
product validation.
b) Some but not all sites provide data before 4/15 and/or after 3/21. The date range does
not account for station outages.

The use of sparse networks together with other satellite-based
and land model-based SM products in TC approaches has been
studied extensively (e.g., [128]–[130]). The basic principle has
been to use TC to statistically characterize point-to-footprint
upscaling errors and then apply this characterization to correct
for the biasing impact of such error on satellite validation metrics
[87]. However, despite this potential, work conducted during
the SMAP cal/val project revealed significant limitations in the
utility of TC for this purpose. First, TC analysis is insensitive
to the presence of additive or multiplicative biases in a time
series. Such biases can only be detected (and thus eliminated)
if TC is given access to a perfectly calibrated dataset (i.e., data
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lacking bias of any kind and degraded only via additive random
noise). This assumption, unfortunately, is not satisfied by the
sparse network SM observations [57]. As a result, TC cannot
contribute directly to the specification of either RMSE (which
is sensitive to both additive and multiplicative biases) or even
ubRMSE (which is sensitive to multiplicative bias). Even for a
bias-tolerant metric like R, TC is only truly trustworthy when
applied to an SM anomaly time series, that is, after removing
the multiyear mean (seasonally varying) SM climatology [57],
[131]. Therefore, the utility of TC analysis for the calculation of
absolute SMAP cal/val metrics from sparse networks is limited
to anomaly R.

We computed bias-insensitive performance metrics with re-
spect to the sparse networks with CIs using the six-year data
record for each product. The metrics obtained for each network
location were averaged based on land cover to derive represen-
tative values for each major land cover class (see Section IV).

D. Other Global Satellite Products

Other global satellite-based SM products can be compared di-
rectly with SMAP SM estimates by computing the performance
metrics between the products at each grid point [137]. Such
results do not indicate the correctness of the retrievals—rather
the degree of consistency between the products; anomalies in the
consistency across the globe can point to potential weak points
in the algorithm that are not revealed by geographically limited
in situ measurements.

The intercomparison can be developed further by applying
TC with additional global information sources. Provided that
certain statistical assumptions (e.g., mutual error independence)
are met, TC can provide unbiased estimates of anomaly R—even
in the absence of ground-based observations. Using a triplet
of SMAP (or SMOS) SM retrievals, ASCAT SM retrievals,
and surface SM estimates from land surface models, Chen et
al. [58] validated the assumptions underlying TC (over limited
areas of the globe containing ground-based observations) and,
subsequently, applied TC globally to obtain unbiased, 36-km
estimates of anomaly R for SMAP, ASCAT, and SMOS SM
retrievals. Their results illustrated that SMAP retrievals are
significantly outperforming their SMOS or ASCAT equivalents
over a large fraction of the globe.

SMOS provides the most relevant satellite products for com-
parison with the SMAP SM because it uses the same L-band
frequency as SMAP. Moreover, SMOS retrievals utilize mul-
tiangle TB measurements to compensate for the vegetation
effect, but otherwise the retrieval approaches are similar. The
comparisons between SMAP and SMOS were updated over the
SMAP lifetime (see Section IV). The SMAP PE product on the
9-km grid allows for interpolation of the SM values to the SMOS
grid with minimal loss of information because the 9-km SMAP
grid spacing is less than a half of the effective resolution of the
product (Nyquist Sampling Theorem). Therefore, the metrics
(ubRMSD, MD, RMSD, Pearson correlation) were computed
over each SMOS grid point with sufficient valid retrievals with
the SMAP PE (SCA-V algorithm) and SMOS L3 products
after applying the quality flags for both products. The standard

bilinear interpolation of the four nearest data points was applied
to the SMAP PE product and if any of the values used in the
interpolation was flagged, the result was also flagged.

E. Global Model-Based Products

Like other satellite products, land surface model-based SM
products cannot be used as a direct reference for SMAP SM
validation [138]. Nevertheless, land models capture the most
relevant hydrological processes and SM dynamics based on
a large set of input parameters, including precipitation, and
therefore offer an additional source of SM information at a global
scale and at very high temporal resolution. Various land model
products have been used in SMAP validation studies, especially
to support TC analyses, including the GMAO Nature Run [57],
[58], MERRA-2 [34], ECMWF ERA [139], and ECMWF H-
TESSEL [58]. These studies exploit the independence of the
model products from remote and in situ measurement to com-
pensate remote-sensing error metrics for the impact of random
error in model and in situ reference products.

F. Field Experiments

Before the launch, the SMAP field experiments facilitated
retrieval algorithm development and testing (e.g., [99], [103]).
After the launch, the field experiments have supported the testing
of specific algorithm features under a limited set of conditions.
These analyses can be supported by CVS datasets as they of-
fer a longer term reference set, albeit without the supporting
measurements provided in a field experiment. For this reason,
the SMAP Validation Experiment 2015 (SMAPVEX15) [108]
and SMAPVEX16 [104] focused on the locations of the Walnut
Gulch, South Fork, and Carman CVS sites. The main objectives
of these experiments were, respectively, to support the develop-
ment and validation of the SM spatial disaggregation algorithm
used by SMAP and to provide additional insight into algorithms
over agricultural domains, where the analysis of the first-year
retrievals revealed specific issues [36]. The SMAP Experiment-4
(SMAPEx-4) and SMAPEx-5 in Australia at the Yanco CVS
were also designed to support the development and validation
of SM downscaling algorithms [100].

Unfortunately, only SMAPEx-4 was executed before
the SMAP radar malfunctioned; when SMAPVEX15 and
SMAPEx-5 were conducted later in 2015, only the SMAP ra-
diometer was operational. The Copernicus Sentinel-1 mission—
now used for the SP product—did not make measurements over
the SMAPVEX15 site at that time, but did cover the SMAPEx-5
site [140]. The topic is particularly important because the vali-
dation of the spatial disaggregation techniques is exceptionally
difficult. The issue is related to the challenge of reliably charac-
terizing the SM areal mean (discussed in Section III-A), since, in
order to show that a disaggregation approach works as intended,
absolute SM levels in neighboring grid cells need to be known
accurately (see also Section IV-B). Furthermore, the difference
between the average SM in the cells needs to be large enough for
the disaggregation to have a meaningful impact on the retrieved
SM pattern. Such cases are extremely difficult to capture during
a short-term field experiment.
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Airborne measurements providing high-resolution SM re-
trievals are well-suited for evaluating the effectiveness of
downscaling approaches because they provide a spatially dis-
tributed SM reference (e.g., [141]). The data collected during
SMAPVEX15 (despite not being able to test SMAP radar-based
disaggregation) were useful for examining: subfootprint spatial
heterogeneity; discrepancies in 5-cm in situ sensor readings and
SMAP measurements with the help of rain gauge records [108];
the effectiveness of a high-resolution hydrological model for SM
validation [142]; and surface roughness effects on SM retrievals
[143].

Over agricultural areas, SM retrievals face rapidly changing
vegetation and surface roughness conditions that may be large
enough to disrupt L-band retrieval of SM (e.g., [61], [60], [144]).
In SMAPVEX16, the VWC and surface roughness were sampled
at multiple fields within the South Fork and Carman CVS.
VWC was measured multiple times over the growing season.
While the VWC calibrated using the experiment data [114]
shows significant differences with respect to the data used by the
SMAP algorithm, the differences cannot by themselves explain
the retrieval errors of the operational algorithm [104].

G. Assimilation Diagnostics

In any operational data assimilation system, model estimates
are routinely confronted with the assimilated observations. The
L4 algorithm computes, in 3-h intervals, the difference between
the SMAP TB observations that are available during each 3-h
period and the corresponding model forecast TB [145]. These
observation-minus-forecast (O-F) TB residuals encapsulate the
new information provided by the SMAP observations to the
modeling system; they consequently form the basis of the L4 SM
analysis, which converts the O-F TB residuals into corrections to
the modeled SM estimates (a.k.a. SM increments). Because the
O-F TB difference involves only TB observations that have not
contributed to the corresponding TB forecast, the statistics of the
O-F TB residuals provide independent verification of the quality
of the model’s TB estimates and, by extension, the model’s
SM estimates within the assimilation system. Specifically, in
a well-calibrated, unbiased assimilation system, the time series
mean of the O-F TB residuals should be close to zero. Moreover,
the typical magnitude of the O-F TB residuals (computed as
their time series standard deviation) should be consistent with
the error assumptions underpinning the assimilation system.
Finally, a well-designed land data assimilation—parameterized
with accurate measurements of both model and observation
errors—will also minimize the temporal standard deviation of
O-F TB residuals. This principle is particularly useful when
evaluating new L4 algorithm versions. For example, the land
model revisions in Version 4 of the L4 algorithm resulted in a
reduction of the typical magnitude of the O-F TB residuals by
0.13 K compared to Version 3 [51].

IV. UPDATED VALIDATION RESULTS

A. Radiometer-Based Product (PE)

This section presents updated validation results for the PE
algorithm only. Results for the P algorithm are essentially the

TABLE V
L2SMPE ALGORITHM PERFORMANCE OVER CVS DOMINATED BY

GRASSLANDS (N=6) AND CROPLANDS (N=6) FOR 6 A.M. OVERPASSES

same (not shown) because of the very similar resolution of the
products [47]. Fig. 2 shows histograms of the validation metrics
for the 6 A.M. overpasses computed over the CVS, with the aver-
age metric indicated by the vertical blue line. Metrics include the
ubRMSD, MD, RMSD, R, and anomaly R. The numbers in the
plots list the average and median metrics, along with lower and
upper bounds of the 95% CI of the average metric (see Appendix
B). The performance of the SCA-V (current baseline) and DCA
algorithms is essentially the same (well within the CI), while the
SCA-H algorithm has a significantly larger MD and ubRMSD.

When categorized based on land cover, the grassland domi-
nant sites have markedly better performance metrics compared
to agriculture-dominated sites (see Table V). Across all sites, the
DCA performed slightly better than SCA-V (0.036 versus 0.038
m3/m3 ubRMSD). This difference stems from the agricultural
sites, where DCA is better at addressing rapid temporal variabil-
ity in vegetation attenuation characteristics than SCA-V due to
the latter’s use of a prescribed NDVI-based VWC climatology.

The metrics were also compared to the soil texture and the
mean and variance of the VWC at each site. The soil texture
was based on the values obtained from in situ samples where
available and from the global dataset used for the SM retrieval
otherwise. The only parameter pair that resulted in a meaningful
correlation was the MD versus soil clay content. Fig. 3 shows the
scatterplot for the MD of each algorithm as a function of the clay
content at the CVS. SCA-V exhibits the strongest correlation,
while DCA has a somewhat weaker correlation; for SCA-H,
the correlation is only marginally meaningful (P-value 0.016).
The MD has the most uncertainty of the metrics as discussed in
Section III-A, but the level of correlation with clay content is
compelling, especially for SCA-V. Although the result seems to
indicate a systematic bias in the SMAP SM, the effect may be
linked to the vertical distribution of water in the top layers of the
soil and the difference between the in situ sensor and the SMAP
measurements as the clay content impacts the water retention in
the soil. It is also possible that the clay content correlates with the
upscaling uncertainty contributing to the observed relationship.

Next, Fig. 4 shows histograms of ubRMSD and correlation
versus the sparse network measurements for each algorithm,
broken down by grasslands and croplands. The SCA-H has
somewhat weaker performance than SCA-V and DCA, partic-
ularly for croplands, consistent with the CVS results. All algo-
rithms performed significantly worse for croplands compared to
grasslands. As discussed in Section III-C, the representativeness
errors over sparse network sites are expected to be large, which
is reflected also in the level of the ubRMSD and R values,
which are generally worse than for CVS. Furthermore, the sparse
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Fig. 2. Histograms of the performance metrics over the CVS (all available data between March 31, 2015 and March 31, 2021) for the L2SMPE SCA-H, SCA-V,
and DCA algorithms (version R17000) morning overpasses. The blue line shows average metric values. Text in brackets gives the 95% CIs of the average metric
values. Validation period is from April 2015 to March 2021.

Fig. 3. CVS SM MD versus clay fraction observed at the site for each of the
PE algorithms.

networks are particularly susceptible to representativeness er-
rors over croplands, which have relatively higher heterogeneity
compared to grasslands. Moreover, the in situ measurements in
croplands are typically installed next to the actual fields to avoid
interfering with the cultivation activities, which may exacerbate
the problem. The metrics of the core site and sparse network
comparisons for A.M. and P.M. overpasses are tabulated in
Appendix C.

Finally, Fig. 5 shows a comparison of the SMAP L3SMPE
SCA-V with the SMOS L3 SM product from their morning
overpasses. The quality flags of the products were cross applied
before the comparisons. For reference, panels (a) and (b) show

Fig. 4. Histograms of the performance metrics over the sparse network sites
for the PE SCA-H, SCA-V, and DCA algorithms. The blue (red) vertical lines
indicate average values for grassland (cropland) stations. The numerical values
for the average are provided in each panel and the number of stations (N) is
provided in the legend. Validation period is from April 2015 to March 2021.

the time series of mean and standard deviation, respectively, for
SMAP SM for the nearly six-year period from March 31, 2015
to March 13, 2021. As expected, the mean and variation are
small in arid and desert regions, such as the Sahara, the Arabian
Peninsula, and Western Australia. Large variations are seen in
the Pampas, in the savannas south of the Sahel region, in the
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Fig. 5. Comparison of SMAP SCA-V SM (R17000) and SMOS Level 3 SM (v300) for morning overpasses between March 31, 2015 and March 31, 2021.
Time series (a) mean and (b) standard deviation of SMAP SM. (c) Number of SMAP-SMOS data pairs used in the analysis. (d) MD (SMAP minus SMOS) and
(e) ubRMSD and (f) Pearson correlation between SMAP and SMOS SM.

savannas south of the Congo rainforest and in eastern Australia.
Panel (c) shows the number of valid SMAP-SMOS data pairs
used in the comparison, indicating good coverage except in
forested regions. Panel (d) shows the MD between the prod-
ucts. SMAP has generally wetter features in the western Sahel,
southern Congo rainforest, and eastern India, for example. Panel
(e) shows the ubRMSD between SMAP and SMOS. First, re-
gions with low SM variability have naturally low ubRMSD, and
regions with high variability are prone to have a high ubRMSD.
Therefore, the patterns in SM variability [panel (b)] are, for
the most part, repeated in those of the ubRMSD [panel (e)].
However, the savannas south of the Sahel and in eastern Australia
exhibit relatively low ubRMSD indicating a particularly good
match between the SMAP and SMOS products there. Finally,
panel (f) shows the correlation between products. Significant
parts of the globe have strong correlations, including regions
with relatively low SM variability such as Western Australia.

Owing to the lack of underlying signal, low correlations are
expected in areas with extremely low SM variability, such as the
Arabian Peninsula and Sahara Desert. There are regions where
the differences between the products draw more attention. For
example, the Indian subcontinent has relatively large ubRMSD
and low correlation, which are not directly explained by high
or low variability, respectively, and relatively large and varying
MDs. Based on a global TC analysis, Chen et al. [58] suggest
that SMAP SM is more reliable than SMOS L3 SM product
(v300) in this region.

B. SMAP/Sentinel-1 Combined Product (SP)

Fig. 6 shows the histograms of the validation metrics over
the CVS for the SP product at 9-km and 3-km resolution.
Anomaly correlation was not computed because the number
of SP retrievals does not allow for a reliable computation of
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Fig. 6. Histograms of the performance metrics over the CVS (all available data between March 31, 2015 and March 31, 2021) for the L2SMSP at 9-km and 3-km
resolution (version R17000). The blue line shows the average of the values. The brackets show the 95% CIs of the average value. Validation period is from April
2015 to March 2021.

the climatology. The number of sites used is less than shown
in Table III. The smaller number of sites reflects the limited
coverage by Sentinel-1; SP retrievals are also flagged when the
site happens to be systematically on the edge of a Sentinel-1
data granule [48]. The average ubRMSD of 0.035 m3/m3 at the
9-km scale is below the 0.04 m3/m3 ubRMSE threshold of the
requirement. The difference to the ubRMSD of the PE SCA-V
and DCA products is within the statistical CIs. The average
MD is reasonable, but with large variation from site to site,
which is reflected in the relatively large average RMSD value
(compared to that of the SCA-V and DCA algorithms of the
PE product). The correlation is in line with the good ubRMSD
performance. Considering that the SP algorithm is susceptible to
additional uncertainties because of the disaggregation scheme,
the performance is overall very satisfactory at 9 km. The narrow
distribution of the individual site results around the average
value, especially for ubRMSD and correlations, is also a good
sign regarding the consistency of the performance.

At the 3-km scale, the overall number of sites is smaller
than at the 9-km scale. Additionally, as in the 9-km case, the
number of sites used in the comparison is smaller than the values
shown in Table III because of the limited Sentinel-1 coverage.
However, at 3 km, the site-to-site consistency observed in the
9-km evaluation breaks down. The reliability of the aggregate
results is somewhat questionable, given the large dispersion of
the site-specific results around the average values. However, the
requirement of only three stations within footprint for the 3-km
sites seems particularly small (relative to requirements enforced
at 9 and 33 km) and may be the primary reason for large spread
in the metrics. Naturally, some of the dispersion is due to the
retrieval performance; however, the current reliability of 3-km
results remains relatively low.

Fig. 7 shows the sparse network metrics for the SP product
for grasslands and croplands at the 3-km scale. The number of
stations is not the same as in the PE comparison (see Fig. 4)
because of the coverage of the SP product, as discussed above.
The performance over grasslands is identical to that of the
PE product. Over croplands, the correlation is very similar to

Fig. 7. Histograms of the ubRMSD and correlation over the sparse network
sites for the SP product at the 3-km resolution. The blue (red) vertical lines
indicate average values for grassland (cropland) stations. The numerical values
for the average are provided in each panel and the number of stations (N) is
provided in the legend. Validation period is from April 2015 to March 2021.

that of the PE product and the average ubRMSD is somewhat
smaller.

Fig. 8 shows the spatial distribution of SM for a 400 km by 300
km area in Georgia, USA (a) based on the PE product (b) and the
SP product at the 3-km resolution (c) and aggregated up to the
9-km resolution (d). Panel (b) illustrates the true resolution of the
PE product (33 km) as the SM features are spatially smoothed
over the 9-km grid. In contrast, the SM features of the 9-km SP
product follow distinctly the 9-km grid, and the same is true for
the 3-km resolution (d). The observations are consistent with
the SP algorithm principle, which relies on the TB observations
to provide the information content on the absolute SM level
at the coarse scale (33 km), while the backscatter observations
provide the information content on the higher-resolution spatial
variations starting from 1 km (not shown).

In principle, the smaller temporal ubRMSD obtained with the
SP product over croplands implies that the 3-km SP product,
through its disaggregation technique, compensates for some of
the heterogeneity that the PE product cannot resolve. However,
in order to evaluate quantitatively this possibility, the skill of
the spatial disaggregation would need to be assessed using
approaches focused on spatial measures of downscaling per-
formance (as discussed in Section III-F).
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Fig. 8. SMAP SM over a region in Georgia, USA. (a) Map of the area.
(b) SMAP L2SMPE SM. The grid size is 9 km. (c) SMAP L2SMSP at the
9-km resolution. (d) SMAP L2SMSP at the 3-km resolution.

C. Assimilation Product (L4)

Fig. 9 summarizes the performance of L4 surface and root-
zone SM product across the CVS for the 9-km reference pix-
els (see Table III). The ubRMSD values for individual CVS
locations are relatively tightly clustered around their average
values, which are 0.040 m3/m3 for surface and 0.027 m3/m3

for root-zone SM. When factoring in the measurement error of
the reference pixel-average in situ observations, where paper
[82] conservatively estimates as ubRMSE∼0.01–0.02 m3/m3,
the L4 product clearly meets the accuracy requirement (i.e.,
average ubRMSE≤0.04 m3/m3) specified prior to the launch of
SMAP. The MD values are spread across a much wider range of
approximately±0.1 m3/m3, with an average MD of 0.023 m3/m3

for surface and 0.027 m3/m3 for root-zone SM. The average
absolute MD is 0.049 m3/m3 for surface and 0.047 m3/m3 for
root-zone SM. The relatively large MD values originate in the
underlying land surface modeling system that dictates the SM
climatology in which the SMAP TB analysis operates. Owing
to the large MD values, the RMSDs are noticeably larger than
the ubRMSDs and spread across a wider range. The average
RMSD is 0.068 m3/m3 for surface and 0.059 m3/m3 for root-zone
SM. Finally, correlation values exceed 0.6 at most of the sites,
with average correlation values of 0.75 for surface and 0.76 for
root-zone SM and average anomaly correlation values of 0.71
for surface and 0.80 for root-zone SM. It must be emphasized
that the L4 SM validation presented in Fig. 9 is based on 3-h
data and 9-km pixels at 18 core sites. When evaluated at the
33-km reference pixels (not shown), the ubRMSD for L4 surface
SM drops to 0.037 m3/m3 and is thus comparable to that of the
L2SMPE product (see Fig. 2).

Next, Fig. 10 summarizes the performance of L4 SM across
178 grassland and 94 cropland sparse network stations. Root-
zone measurements are not available at all stations, and at one
station each for surface and root-zone SM there is no anomaly
correlation metric because the number of available measure-
ments was not sufficient to compute the climatology needed for
this metric. The average ubRMSD for L4 surface (root-zone)
SM is∼0.056 (∼0.038) m3/m3, with typical values ranging from
0.03 to 0.09 m3/m3 for surface SM and from 0.02 to 0.07 m3/m3

for root-zone SM. The surface SM ubRMSD is slightly higher
for cropland than grassland stations, but the difference is much
less pronounced than for the L2 product (see Figs. 4 and 7); for
L4 root-zone SM, the ubRMSD is nearly identical for grasslands
and croplands. As expected, the ubRMSD at the sparse network
stations is larger than at the CVS (see Fig. 9) due to enhanced
levels of upscaling error associated with characterizing SM at
the 9 km scale using only one or two point-scale sparse network
measurements.

Typical values for the L4 correlation and anomaly correla-
tion at the sparse network stations range from 0.5 to 0.9 at
a large majority of the stations, with average metrics falling
between 0.65 and 0.74 for surface and between 0.59 and 0.70
for root-zone SM (see Fig. 10). Interestingly, the L4 correlation
and anomaly correlation skill is better by ∼0.04 on average for
cropland than for grassland stations, which is the opposite of the
result seen for the L2 product (see Figs. 4 and 7). Most of the
sparse network stations are in the continental US, where the L4
algorithm benefits from high-quality land model background
estimates owing to the dense network of precipitation gauges
available to force the land surface model. Consequently, L4 SM
should be less sensitive than the L2 retrievals to errors incurred in
the challenging parameterization of the surface radiative transfer
equations over cropland.
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Fig. 9. Histograms of performance metrics over the 9-km reference pixels from N CVS for L4 SM Vv5030 (top) surface and (bottom) root-zone SM. Thin vertical
lines indicate average values. Numerical values for average (Avg) and median (Med) are provided in each panel, along with estimates of 95% statistical CIs for the
mean in brackets. Validation period is from April 2015 to March 2021.

Fig. 10. Histograms of performance metrics over the sparse network sites for
L4 SM Vv5030 (top) surface and (bottom) root-zone SM, shown separately
for grassland and cropland stations. Thin solid (dashed) vertical lines indicate
average values for grassland (cropland) stations. The number of stations (N)
and numerical values for the average are provided in each panel. Networks
include CRN, SCAN, OK Mesonet, SMOSMANIA, and OzNet (see Table IV).
Validation period is from April 2015 to March 2021.

Finally, the L4 algorithm’s consistency between the assimi-
lated SMAP TB observations and the corresponding TB model
forecasts was examined (see Section III-G). Fig. 11(a) shows a
global map of the mean O-F TB residuals from the L4 algorithm,
with a global average value of only 0.06 K and an average
absolute value of just 0.29 K. The small values primarily reflect
the impact of the climatological rescaling of the assimilated
SMAP TB observations prior to their assimilation into the
land surface model [145]. The L4 algorithm, through this TB
rescaling, efficiently assimilates the time series anomaly infor-
mation contained in the SMAP TB observations while ensuring
that the analysis is unbiased. Whereas earlier versions of the
L4 algorithm relied on SMOS TB observations to determine
the rescaling parameters and resulted in mean absolute O-F
TB values of ∼0.6 K, only SMAP observations are used to
compute the rescaling parameters in Version 5. This, together
with improvements in the underlying modeling system, con-
siderably improved the algorithm calibration. Fig. 11(b) shows

Fig. 11. (a) Mean and (b) standard deviation of O-F TB residuals from the L4
algorithm (Vv5030) for April 2015 to March 2021. Areas where too few SMAP
TB observations are assimilated to compute the O-F TB statistics are shown in
white.

the global distribution of the standard deviation of the O-F TB
residuals, with values ranging from 2 to 3 K in very densely
and very sparsely vegetated regions up to 10–12 K in regions
with strong SM variability. The typically very large O-F TB
residuals in central Australia are a consequence of gross errors
in gauge-based precipitation forcing used in the land modeling
system. These errors were revealed by the assimilation of SMAP
TB observations in the L4 algorithm [145], [59]. The global
average O-F TB standard deviation is 5.5 K in the Version
5 algorithm, which represents a ∼0.2 K reduction from the
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corresponding value in the Version 4 algorithm [51]. This re-
duction in the typical magnitude of the O-F TB residuals reflects
improvements in the underlying land surface modeling system
as well as in the calibration stability of the assimilated SMAP TB
observations [146].

V. DISCUSSION

The CVS analysis illustrates that the performance of the
current versions of the SMAP SM products is as expected based
on earlier results. The PE product (and, by extension, the P
product) meets the mission requirements by achieving ubRMSD
of less than 0.04 m3/m3 (with both SCA-V and DCA algorithms).
The enhancements in the DCA algorithm [50] helped achieve
a mean performance of less than 0.04 m3/m3 ubRMSD also
over agricultural areas, although some of the individual sites
still exhibit performance not meeting expectations.

The temporal performance of the SP product at 9 km based
on the CVS comparisons is satisfactory. The CVS comparisons
at 3 km suffer from a lack of sites and the low number of
sampling points within the 3-km reference pixels (even though
meeting the original requirement of three stations). The val-
idation of high-resolution and/or disaggregated SM products
will need significantly more resources in the future for com-
pleting a full assessment of these products. The availability
of sites meeting the original CVS requirements (see Section
III-B) at 3 km (or 1 km) is not adequate, and even sites meet-
ing these criteria do not reliably capture the area-average SM.
The skill of the spatial downscaling algorithm, as discussed
in Section IV-B, is difficult to resolve. Improving the skill
requires measurement setups, such as airborne field experi-
ments (e.g., [147], [140]) or particularly dense measurement
networks close to each other, which are not commonly avail-
able. This is a very significant aspect of the validation of spa-
tially downscaled products that is often overlooked in algorithm
assessments.

The performance of L4 surface SM compared well with the
PE and SP products over the CVS. Like the SP product, the
root-zone product comparisons also suffer from a lack of suitable
reference sites, with only seven independent CVS locations
currently available.

As discussed in Section III-B, studies have found that to
estimate reliably the absolute level of the area-average SM,
the number of point measurements required seems to be larger
than originally estimated. The SMAP criteria for the number
of spatially distributed measurement locations were computed
based on the relationship between SM variability in the area and
the desired accuracy with a certain level of confidence presented
in [67]. The original computation assumed 70% confidence, and
for the 3-km and 9-km scales, a 0.05 m3/m3 target accuracy with
an assumption of a 0.05 m3/m3 SM spatial variation within the
pixel, which resulted in three and five measurement-location
minimums, respectively [54]. With a 90% confidence, a 0.03
m3/m3 target accuracy and spatial variation assumptions of 0.06
m3/m3 and 0.07 m3/m3 (which are more in line with the literature,
e.g., [67]) the corresponding minimum number of locations
would be 17 and 23. For the 33-km scale, a 90% confidence and

a 0.08 m3/m3 SM variability (instead of the original 0.07 m3/m3)
would result in 30 locations (instead of 8). These numbers are
consistent with the findings of [82] (which also applied 90%
confidence in the computations). This translates into a strong
desire to not only see more CVS at different spatial scales but to
see them deploy even denser networks at all scales to enable an
accurate computation of the bias-sensitive SM metrics. For the
bias-insensitive metrics (e.g., R or ubRMSE), the requirements
are not as strict; the sampling currently available at the 33-km
sites provides a solid reference for computing these metrics [82].
At smaller scales (9 km, 3 km, and even 1 km and below), the
availability of sites with an adequate sampling, even for resolv-
ing the bias-insensitive metrics, is scarcer. Inadequate validation
resources will hinder the development of the SM products overall
because spatially representative validation references are needed
to reveal the true performance of the algorithms; otherwise, the
representativeness errors will dominate the comparisons and
algorithm improvement will be difficult.

The SMAP SM products have been investigated in several
other studies using various dense and sparse networks. Most
of the networks are captured in this study, but there are a few
additional ones, including the BIEBRZA-S-1 network in Poland
[148], the RSMN network in Romania [149], CTP-SMTMN
in China [150], and an agricultural area in China [151]. Sev-
eral studies include complementary analysis approaches and
comparisons to other spaceborne SM products over the in situ
measurement sites, for example, [36], [152], [25], [148], and
[151]. In all these studies, the SMAP performance over the study
sites was rated very favorably with respect to the other products.
Most of these studies did not include CIs and the differences
were small in some cases. In [151], SMAP was the only product
to produce reasonable performance over a corn field in China.
The study also highlighted the importance of the varying surface
roughness in agricultural areas.

Several of these studies also assess the surface temperature
used in the SM retrieval algorithm. These comparisons shed
light on potential systematic errors arising from the estimation
of the effective soil temperature needed for the inversion of the
radiative transfer model [153], even though the effective soil
temperature (based on GEOS model analysis soil temperature
for the SMAP algorithms [49]) generally differs from the phys-
ical soil temperature. This aspect is also particularly important
for the consistency of the retrievals between the 6 A.M. and 6 P.M.
overpasses. Different soil temperatures and the different vertical
distribution of temperature in the soil-vegetation continuum can
cause systematic differences in the retrievals even though their
overall performance metrics are similar.

Capturing SM during or right after precipitation is impor-
tant for many hydrological applications. Colliander et al. [154]
quantified the retrieval degradation over CVS during and right
after (high vertical gradient in SM) rain events and showed that
the SMAP PE product maintains sensitivity to SM even during
rain events and suggests that flagging of rain events may be
unnecessary to ensure SM retrieval quality.

The utility of the SMAP SM products has been also re-
vealed through other means than comparisons to reference
measurements. For example, Colliander et al. [155] showed
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that the L4 product is consistent with SM condition surveys
conducted by USDA National Agriculture Statistics Service
volunteers indicating the value of the SMAP observations in
the prediction of crop yield by geographical area. Jones et al.
[156] showed the value of SMAP SM in clarifying water supply
controls affecting ecosystem productivity and land-atmosphere
CO2 exchange. Purdy et al. [157] showed that the SMAP SM
improves evapotranspiration retrievals for water limited regions.
Akbar et al. [158] and Gianotti et al. [159] used an analysis of
SMAP SM dynamics to investigate the coupling between SM
and energy fluxes. Crow et al. [160] showed the value of the
SMAP SM data in improving hydrologic forecasts and Dong et
al. [88] showed the SMAP products can achieve a meaningful
correlation between SM and near-surface air temperature.

During the first three years of the SMAP mission, the objec-
tive was to provide SM products that meet the requirements
across the validation domain. Thereafter, the objective was
broadened to include areas outside of the original validation
domain, including forests. The mission is currently engaged
in exploring the improvement and validation of SMAP SM
products over forested areas through field experiments [52],
[161], an added focus on forested candidate CVS (see Table III)
and other networks, such as the National Ecological Observatory
Network [53]. Furthermore, the effort to expand the validation
domain includes accounting for the complex soil composition
of the boreal and arctic regions. One obstacle in addressing the
retrieval issues in these areas has been the distortion of the global
projection of the EASE v2 grid at high latitudes [162]. One
solution is the use of the north polar grid projection, which is
currently being implemented by the SMAP mission.

VI. CONCLUSION

The validation of six years of SMAP SM products demon-
strates that they meet the accuracy requirements set for the
mission. The DCA algorithm of the radiometer-based enhanced
product (PE) exhibits the best performance—although the dif-
ferences between the DCA and SCA-V are small. All of the
algorithms show a relative degradation of the performance over
croplands where the retrievals are challenged by rapidly chang-
ing vegetation and landscape heterogeneity. DCA is the only
algorithm maintaining less than 0.04 m3/m3 mean ubRMSD
for the agriculturally dominated CVS. The PE product is also
consistent with the SMOS L3 product across most parts of the
globe. The validation of the 3-km SM product is hindered by the
small number of high-quality validation pixels and the limited
temporal and spatial coverage of Copernicus Sentinel-1 data.
When aggregating the 3-km SM up to 9-km, the evaluation is
more robust and the performance is satisfactory. The 9-km L4
product provides surface and root-zone SM, and the performance
of both meets the mission accuracy requirement. Notably, L4
SM does not exhibit similar degradation of performance over
croplands as the L2 products.

The SMAP validation program has fostered an increased use
of in situ resources for SM validation. At the same time, studies
have found that the spatial sampling requirements for the CVS
may need to be even higher than originally planned for SMAP to

accurately measure the area-average absolute SM [82]. Going
forward, it would be important for the community to support
efforts that aim at providing more accurate reference data at all
spatial scales. Counterintuitively, the availability of reference
data is more restrictive at smaller scales (1 and 3 km) than at
coarser scales. Accurate reference data—designed to capture
true SM conditions at a variety of spatial scales—are the only
way to ensure continued improvement in the quality of satellite-
based SM products.

APPENDIX A

CEOS has put forward a four-stage validation hierarchy that
has been adopted by many data providers (https://lpvs.gsfc.nasa.
gov). The validation stage increases with increasing product
maturity and extensiveness of the validation effort. It is a useful
guide to assess the progress of a validation program.

1) Stage 1 Validation: Product accuracy is assessed from a
small (typically < 30) set of locations and time periods by
comparison with in situ or other suitable reference data.

2) Stage 2 Validation: Product accuracy is estimated over
a significant (typically > 30) set of locations and time
periods by comparison with reference in situ or other suit-
able reference data. Spatial and temporal consistency of
the product, and its consistency with similar products, has
been evaluated over globally representative locations and
time periods. Results are published in the peer-reviewed
literature.

3) Stage 3 Validation: Uncertainties in the product and its
associated structure are well quantified over a significant
(typically > 30) set of locations and time periods repre-
senting global conditions by comparison with reference
in situ or other suitable reference data. Validation pro-
cedures follow community-agreed-upon good practices.
Spatial and temporal consistency of the product, and its
consistency with similar products, has been evaluated over
globally representative locations and time periods. Results
are published in the peer-reviewed literature.

4) Stage 4 Validation: Validation results for stage 3 are
systematically updated when new product versions are
released and as the interannual time series expands. When
appropriate for the product, uncertainties in the product
are quantified using fiducial reference measurements over
a global network of sites and time periods (if available).

APPENDIX B

This Appendix describes the computation of the performance
metrics and the statistical CIs. The performance metrics are com-
puted following [55]. The root-mean-square difference (RMSD)
is defined as

RMSD =

√√√√ 1

N

N∑
i=1

(xi − yi)
2 (1)

where xi is the SMAP SM sample; yi is the in situ SM sample
(either CVS or sparse network), and N is the number of samples.

https://lpvs.gsfc.nasa.gov
https://lpvs.gsfc.nasa.gov
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TABLE VI
CVS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 P.M. OVERPASSES

N refers to the number of data points.

TABLE VII
CVS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 A.M. OVERPASSES

N refers to the number of data points.

The mean difference (MD) is defined as

MD =
1

N

N∑
i = 1

xi − yi. (2)

The unbiased RMSD is defined as

ubRMSD =
√
RMSD2 −MD2 . (3)

The Pearson correlation (R) is defined as

R =

∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)2
∑N

i=1 (yi − ȳ)2
(4)

where the overbar denotes average. Anomaly R is computed
using the same equation, but the climatology of x and y is
removed from them before applying the equation.

The confidence intervals (CIs) of the aforementioned metrics
are calculated following [34]. The CI of the MD for one mea-
surement location is defined as

CIMD =

[
MD+ t

α/2
N−1

ubRMSD√
N

, MD+ t
1−α/2
N−1

ubRMSD√
N

]
(5)

where tα/2N−1 is the value atα/2 for the t-distribution with N–1 de-
grees of freedom. The CI of the ubRMSD for one measurement
location is defined as

CIubRMSD =

[
ubRMSD

√
N − 1

χ
1−α/2
N−1

, ubRMSD

√
N − 1

χ
α/2
N−1

]

(6)
where χ1−α/2

N−1 is the value at 1− α/2 for the χ-distribution with
N–1 degrees of freedom. The CI of RMSD for one measurement
location is defined as

CIRMSD =

[√
CI2MD (1) + CI2ubRMSD (1),



COLLIANDER et al.: VALIDATION OF SOIL MOISTURE DATA PRODUCTS FROM THE NASA SMAP MISSION 381

TABLE VIII
SPARSE NETWORKS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 a.m. AND 6 p.m. OVERPASSES

N refers to the number of stations.

TABLE IX
CVS METRICS FOR THE L2SMSP PRODUCT AT THE 9-KM SCALE

CATEGORIZED BASED ON THE LAND COVER

Pix refers to the pixel ID within the site. N refers to the number of data points.

√
CI2MD (2) + CI2ubRMSD (2)

]
. (7)

The CI of R for one measurement location is defined as

CIR =

[
e2zL − 1

e2zL + 1
,
e2zU − 1

e2zU + 1

]
(8)

where

zL/U = zr − /+
F−1 (α/2)√
Neff − 3

(9)

TABLE X
CVS METRICS FOR THE L2SMSP PRODUCT AT THE 3-KM SCALE

CATEGORIZED BASED ON THE LAND COVER

Pix refers to the pixel ID within the site. N refers to the number of data points.

TABLE XI
SPARSE NETWORK COMPARISON RESULTS FOR THE L2SMSP PRODUCT AT THE

3-KM SCALE CATEGORIZED BASED ON THE LAND COVER

N refers to the number of stations.

in which F−1 is the normal inverse function with mean 0 and
standard deviation 1, and

zr =
1

2
ln

(
1 +R

1−R

)
. (10)
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TABLE XII
CVS METRICS FOR L4 SURFACE (SF) AND ROOT-ZONE (RZ) SM AT THE 9-KM SCALE CATEGORIZED BASED ON LAND COVER

TABLE XIII
SPARSE NETWORKS METRICS FOR L4 SURFACE (SF) AND ROOT-ZONE (RZ) SM CATEGORIZED BASED ON LAND COVER

In the calculation of the CIR, the effective number of samples
is computed as

Neff = N

(
1− ρ

1 + ρ

)
(11)

where

ρ =
√
ρxρy (12)

in which ρx and ρy are the 1-lag autocorrelation of the SMAP
and in situ SM samples, respectively. The CI for the anomaly R
is computed similarly as for R. For the 95% CIs, α = 0.05.

For the average metrics, the CIs of the separate locations are
combined as follows:

CIP =
1

M

M∑
j = 1

Pj − Pj − CIP,j√
M

(13)

where Pj denotes the metric (MD, ubRMSD, RMSD, R, or
anomaly R) whose CIs are computed for site j, and M denotes
the number of sites.

APPENDIX C

A. Result Tables for Radiometer-Based Product (PE)

Tables VI and VII summarize the PE product CVS metrics
for the 6 P.M. and 6 A.M. overpasses, respectively. Table VIII
summarizes the sparse network comparison results for the PE
product.

B. Result Tables for SMAP/Sentinel-1 Combined Product (SP)

Tables IX and X summarize the SP product CVS metrics for
the 9-km and 3-km scales, respectively. Table XI summarizes
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the sparse network comparison results for the SP product at the
3-km scale.

C. Result Tables for Assimilation Product (L4)

Table XII summarizes the L4 product CVS metrics. Table XIII
summarizes the sparse network comparison results for the L4
product.
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