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Abstract—In August 2020, soil moisture active passive (SMAP)
released a new version of its soil moisture and vegetation op-
tical depth (VOD) retrieval products. In this article, we review
the methodology followed by the SMAP regularized dual-channel
retrieval algorithm. We show that the new implementation gen-
erates SM retrievals that not only satisfy the SMAP accuracy
requirements, but also show a performance comparable to the
single-channel algorithm that uses the V polarized brightness tem-
perature. Due to a lack of in situ measurements we cannot evaluate
the accuracy of the VOD. In this article, we show analyses with the
intention of providing an understanding of the VOD product. We
compare the VOD results with those from SMOS. We also study the
relation of the SMAP VOD with two vegetation parameters: tree
height and biomass.

Index Terms—Dual-channel algorithm, soil moisture active
passive (SMAP), soil moisture (SM) retrieval, vegetation optical
depth (VOD) retrieval.

I. INTRODUCTION

THE soil moisture active passive (SMAP) mission was
designed to acquire and combine L-band radar and ra-

diometer measurements for the estimation of soil moisture (SM)
with an average unbiased root-mean square error (ubRMSE) of
no more than 0.04 m3/m3 volumetric accuracy in the top 5 cm
of soil for vegetation with water content of less than 5 kg/m2

[1], [2]. SMAP released new versions of its SM and vegetation
optical depth (VOD) products in August 2020 (version 4 for the
L2/3_SM_P_E product and version 7 for the L2/3_SM_P).

The new implementation of the dual channel algorithm
(DCA), which uses the two polarized brightness temperature
measurements (H and V), generates SM retrievals, not only
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satisfying the SMAP accuracy requirements, but also show-
ing a performance comparable to the single-channel algorithm
that uses the V polarized brightness temperature (SCA-V) [2],
[3], [4].

While the accuracy of the DCA SM can be evaluated by
comparison with in situ data, the lack of VOD in situ data raises
concerns about the accuracy of the VOD product. Although the
SMAP mission does not have a requirement for the accuracy
of the retrieved VOD, it is of great value for the SMAP team
and the science community in general since it provides crit-
ical information about the water content of the aboveground
biomass and its seasonal variations. In order to understand the
performance of the VOD product, it is common to compare it to
similar products from other missions and to look at it in relation
to other vegetation parameters such as tree height and biomass.

Recent efforts to retrieve SM and VOD from SMAP L-band
brightness temperature data have resulted in significant progress
[5]. Konings et al. [5] uses a multitemporal DCA (MT-DCA),
which assumes that VOD changes more slowly than SM and can
be assumed to be almost constant between every two consecutive
overpasses. In addition, the MT-DCA approach allows for the
retrieval of a single temporally constant value of the scattering
albedo per pixel. The soil moisture and ocean salinity (SMOS)
mission [6], produces simultaneous retrievals of SM and VOD
based on angular information in its V- and H-pol brightness
temperature products. Its L-band VOD retrievals have been
analyzed by several authors [7]–[9]. SMOS-IC [10] presented
an alternative approach to the retrieval of the SM and VOD but
is still using angular brightness temperature information.

In this article, we detail the methodology for the DCA im-
plementation in Section II. In Section III we present results
of retrieved SM over core validation sites (CVSs) [4], [19]–
[30], and the sparse network (SP) [17], [18]. We also present
VOD results in Section III. In section IV we compare the SMAP
VOD with the vegetation parameters, including tree height and
biomass. In Section V, we compare the SMAP VOD results with
those obtained by SMOS.
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II. REGULARIZED DUAL-CHANNEL ALGORITHM

The newly implemented DCA simultaneously retrieves the
SM and VOD (τθ) by minimizing the cost function

FD (SM, τθ) =
[
TBsim

V (SM, τθ)− TBobs
V

]2

+
[
TBsim

H (SM, τθ)− TBobs
H

]2
+ λ2(τθ − τ ∗)2 (1)

where TBsim
V is the V-polarized simulated brightness tempera-

ture and TBsim
H is the H-polarized simulated brightness temper-

ature, λ is a regularization parameter, and τ ∗ an initial expected
VOD value.

To simulate the L-band emission of the soil-vegetation system
the SMAP team uses the zero-order approximation of the radia-
tive transfer equations, known as the τ -ω emission model [10].
The brightness temperature equation, which includes emission
components from the soil and the overlying vegetation canopy,
is given by

TBsim
p = Ts epexp (−τp sec θ) + Tc (1− ωp)

[1− exp (−τp sec θ)]

[1 + rpexp (−τp sec θ)] (2)

where the subscript p refers to polarization (V or H), Ts is
the soil effective temperature, Tc is the vegetation temperature,
τp is the nadir vegetation opacity, ωp is the vegetation effective
scattering albedo, rp is the rough soil reflectivity, ep is the rough
soil emissivity and θ is the incidence angle.

The surface roughness reflectivity is modeled by

rp (θ) =
[
(1−Q) r∗p (θ) +Qr∗q (θ)

]
e(−h cosN (θ)) (3)

where Q (polarization decoupling factor which is related to h by
the linear relation Q = 0.1771 h), h, and N are the roughness
parameters and r∗p(θ) is the Fresnel reflectivity of the smooth
surface where the index p and q (q opposite to p) account for
the polarization V or H. The baseline SMAP implementation
of the retrieval algorithms assumes that in (2) Ts = Tc at the
early morning descending overpass and that ωp = ω and τp = τ
are polarization independent to reduce the number of algorithm
parameters [2]. Note that in (1) τθ is related to the nadir
vegetation opacity by τθ = τ sec θ.

The implementation of (1)–(3) requires that several parame-
ters need to be assumed: a prior value of the scattering albedo
based on land cover, roughness parameters as detailed in [3],
effective soil temperature, clay fraction to determine the soil
dielectric constant, as well as the regularization parameters τ ∗

and λ [2].

A. Selection of Parameter λ

The retrieval of VOD through the DCA algorithm with λ =
0 (MDCA, modified DCA [3]) produces VOD results with high
variability in the temporal dimension as shown in Fig. 1(a)(blue
curve) and also in the spatial dimension. Fig. 1(a) displays an
example of the MDCA climatology at the Monte Buey CVS. It
also shows the seven-day average and the VOD based on Nor-
malized Difference Vegetation Index (NDVI) climatology from
the moderate-resolution imaging spectroradiometer (MODIS).

Fig. 1. Climatology over Monte Buey (lat -32.91, lon -62.51) SMAP CVS.
(a) Residual obtained by subtracting the 7-day average and the MDCA clima-
tology. (b) Residual with seasonal variation removed is used to compute λ =
1/ σ. The NDVI climatology shown on the (a) (black curve) shows the selected
initial guess over that CVS.

Fig. 2. Global map of σ (top) from the residuals as in Fig. 1. At the bottom
the histogram of the corresponding λ. The histogram shows the peak value at
λ∼ = 20.

The selection of λ determines how much the residual noise
[see Fig. 1(b)] will be suppressed and how much freedom the
optimization algorithm will have to converge to a solution of
VOD apart from the expected value τ ∗. Indeed, the value of λ =
0 means no regularization and very high values of λ will force
the retrieval of VOD to converge to τ ∗.

To select potential candidates of λ we considered five years
(April 4, 2015–March 31, 2020) of MDCA VOD data for each
9km EASE-2 (equal area scalable earth grid version 2) grid cell
and computed its daily climatology, Fig. 1(a). To remove the
seasonal variation, we computed a seven-day average [red curve
in Fig. 1(a)] which is subtracted from the MDCA climatology
resulting in the residual shown in Fig. 1(b). We used the stan-
dard deviation (σ) of the residual to determine the amount of
regularization needed and defined λ as 1/ σ. Fig. 2 displays a
global map of σ (top) and the histogram of the corresponding
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TABLE I
ACRONYMS SUMMARY

Fig. 3. Values of λ at each CVS used to evaluate RDCA- λ.

TABLE II
RDCA, RDCA-λ PERFORMANCE COMPARISON

Performance analysis of SM retrievals over SMAP CVS for λ = 20 (RDCA) or the
corresponding local values (RDCA-λ), as shown in Fig. 2.

λ (bottom). Fig. 2 shows that σ varies across the globe and that
the histogram peaks at λ∼ = 20.

We evaluated the performance of the SM retrievals compared
to in situ SM data from 15 SMAP CVS by setting λ = 20 fixed
over all the sites and also using the local values of lambda over
each CVS. Fig. 3 displays the values of lambda for each CVS.
In what follows we will refer to RDCA for the regularized DCA
algorithm with regularization parameter λ = 20 and RDCA-λ
for the regularized DCA algorithm with λ changing spatially.

Table I gives the acronyms used to differentiate the different
DCA implementations.

Table II gives the algorithm performance metrics for SM
retrievals. The metrics are the average of those at each CVS.
The metrics show that even though a nonzero lambda is crucial
to get good performance by the DCA algorithm, the selection
of the values of λ is not relevant as long as λ is allowed to vary
locally about the value λ = 20. For this reason and considering
the ease of the operational implementation we decided to set λ

= 20 globally.

B. Selection of the Initial Guess τ ∗

As an initial guess τ ∗, an estimate of VOD based on NDVI
climatology was selected [2]. This selection aroused concerns
regarding how the seasonal behavior of the RDCA VOD would
be affected.

To address this, we compared the Pearson correlation of the
daily climatology of RDCA VOD with daily climatology of
NDVI VOD [see Fig. 4(a)] and daily climatology of MDCA
VOD [see Fig. 4(b)]. The figure shows that while the correlation
between RDCA VOD and the NDVI VOD is moderate (mean
value of 0.51 and standard deviation of 0.51), there is a high
correlation globally between RDCA VOD and MDCA VOD
(mean value of 0.76 and standard deviation of 0.25) which is an
indication that RDCA VOD follows the MDCA VOD seasonal
variation more consistently than the seasonal variation of the
NDVI VOD. We also looked into the time difference (in days)
between the NDVI τ ∗ peak location (see Fig. 1, black curve) and
the peak location of the RDCA VOD climatology (see Fig. 1,
red curve) and similarly for MDCA VOD and RDCA VOD.
Fig. 5 displays the histograms of differences. We can see that
while the differences are widespread for NDVI τ ∗minus RDCA
VOD, for RDCA VOD – minus MDCA VOD most of the values
concentrate around zero. This is another indication that both
MDCA VOD and RDCA VOD reach their maximum value at
approximately the same time. These two tests suggest that in
general the use of the NDVI τ ∗ does not affect the seasonal
variation of the MDCA VOD significantly.

III. ASSESSMENT

The SMAP mission validates the accuracy of the retrieved
SM using several sources of information [15]. Among them are
CVS which provide the ground-based data in a timely manner
to the SMAP project, and SPs, such as the USDA soil climate
analysis network [16], the NOAA Climate Research Network
[17] and the Oklahoma Mesonet [18].

Table III gives how the SCA-V, MDCA, and RDCA SM
retrievals compare at the CVS. We can see that a significant
improvement has been reached by the implementation of the
regularization term in the DCA algorithm. The table also shows
that the RDCA and SCA-V are statistically similar.
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Fig. 4. Correlation map between NDVI VOD and RDCA VOD. (a) Between RDCA VOD and MDCA VOD (b) Grey areas indicate pixel with p-values>0.05.
White areas indicate not available data.

TABLE III
ASSESSMENT OF SM RETRIEVALS OVER CVS

CVS assessment of soil moisture retrievals. 5 years (04/01/2015-03/31/2020) of data were used to compare the accuracy of MDCA with SCA-V and RDCA. We display the averaged
RMSE(m3/m3), ubRMSE(m3/m3), Bias(m3/m3) and correlation (R) over 15 SMAP CVS.
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Fig. 5. Time differences of vegetation peak occurrence in days. (a) Difference between NDVI VOD and SMAP RDCA VOD. (b) Difference between SMAP
RDCA VOD and MDCA VOD.

TABLE IV
ASSESSMENT OF SM RETRIEVALS OVER SP

SP assessment of SM retrieval. A total of five years (January 4 ,2015–March 31, 2020) of data were used to compare the accuracy of MDCA (DCA with λ = 0) with SCA-V (single
channel algorithm with V polarization measurement of brightness temperature) and RDCA (DCA with λ= 20). We display the averaged RMSE(m3/m3), ubRMSE(m3/m3), Bias(m3/m3),
and correlation (R) over several land cover types.

Table IV gives the assessment report over the SPs using five
years of SMAP SM data (January 4, 2015–March 31, 2020). The
table compares the accuracy of MDCA, SCA-V and RDCA. We
display ubRMSE, bias, and correlation (R) for several land cover
types: evergreen needleleaf forest; open shrublands; woody sa-
vannas; savannas; grasslands; croplands; crop/natural vegetation
mosaic; and Barren/Sparse. We observe again that SCA-V and
RDCA present similar performance and that RDCA shows a
significant improvement with respect to MDCA. A thorough
analysis of the SMAP SM performance can befound in [4].

IV. SMAP VOD VERSUS TREE HEIGHT AND BIOMASS

In this section, we analyze the correlation between the SMAP
RDCA VOD and two vegetation parameters: tree height in
unit of meters (m) [13] and the aboveground biomass density
of vegetation in units of Mg/ha [14]. Both sets of data were
aggregated to the 9km EASE-2 to match the enhanced SMAP
data, Fig. 6.

Fig. 7(a) displays the density plots of VOD versus tree height
and Fig. 7 (b) and (c) displays VOD versus biomass. Fig. 7 also
displays the mean values for several bins and the fitting curve.
To compute the mean values, the data were binned by intervals
of tree height of 1 m and the biomass by intervals of 10 Mg/ha.

There is clear linearity between SMAP RDCA VOD and tree
height spatially for values of tree height less than 20 m and the
relationship remains fairly linear up to tree heights of ∼ 35 m/
the slope of the fitting curve is 0.033 and the offset is -0.06. The
spatial correlation between SMAP RDCA VOD and the tree
height map is R = 0.81 (strong).

The VOD versus biomass density plot [see Fig.7(b)] also
shows linearity for values of biomass less than 90 Mg/ha. The
VOD versus biomass (B) fitting curve for values of B between
0 and 90 Mg/ha is given by

vod = 0.004854 B + 0.2541. (4)

For values of biomass greater than 90 Mg/ha and less than
150 Mg/ha the VOD stays almost constant, this could be caused
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Fig. 6. (a) Tree height (meters). (b) Aboveground biomass density of vegeta-
tion in units of Mg/ha.

by a reduction in the amount of data points together with an
increase in dispersion. Fig 7(c) shows that after B values of 150
Mg/ha the VOD starts increasing again and reaches saturation
at about B values of 240 Mg/ha.

Heterogeneity of the grid pixel could be one of the factors
causing the scatter in the density plots. The spatial correlation
between the SMAP VOD and the biomass map is R = 0.53
(moderate).

V. SMAP RDCA VOD VERSUS SMOS VOD

The lack of VOD in situ data makes it difficult to evaluate the
accuracy and performance of the SMAP RDCA VOD product.
In order to understand the performance of the VOD product
we compare the SMAP RDCA VOD product (L2_SM_P_E v4
[12]) with the SMOS Level 3 VOD.1 For comparison, the SMAP
RDCA VOD product was multiplied by cos(40o) to match the
SMOS VOD product at nadir.

Fig. 8 displays global maps of VOD. The SMAP data were
aggregated to the 25 km EASE-2 grid to match the SMOS data.
We observed that the SMOS VOD has higher values of VOD.
In fact, the mean VOD and standard deviation for the SMOS
are 0.42 and 0.28 respectively, while for SMAP, those values
are 0.29 and 0.26, respectively. This difference in value may be
caused by different levels of the roughness parameters used by
the two missions. Table V gives the mean and standard deviation

1[Online]. Available: ftp://ftp.ifremer.fr/Land_products/GRIDDED/L3SM

for SMOS, SMAP, and the NDVI VOD by land cover type
following the MODIS-based IGBP (International Geosphere
Biosphere) classification. For the computation of the statistics,
we considered only pixels with Gini–Simpson-Index (GSI) less
than 0.1. The GSI is commonly used in ecology as a measure of
degree of homogeneity, where GSI= 0 means total homogeneity
and is computed as

GSI = 1−
n∑

i = 1

f2
i (5)

where fi is the fraction of the area covered by the ith land use
classification and n is the number of land cover types. Table V
gives that in general there is very good agreement between the
magnitude of the SMAP RDCA VOD and the magnitude of the
NDVI VOD. This is somehow expected due to the nature of the
roughness parameter h implemented by the SMAP algorithm [3].
In the τ -ω emission model τ and h cannot be seen as parameter
independent of each other and the magnitude of the selected h
will affect the magnitude of the retrieved τ . Since the values of h
are obtained by a DCA-type algorithm involving NDVI τ as an
input, we expect to have retrieved values of τ of magnitude
similar to the NDVI τ . However, since the values of h are
temporal invariant, the seasonality variation of τ should not be
affected.

Table V also gives that there is very good agreement with
SMOS VOD over forested areas although SMOS data seem to
have more variability. In fact, SMOS data seem to have more
variability for all the land cover types except for Urban and built-
up settings. For land cover types other than forest we observed
significant discrepancies in the statistics between SMOS and
SMAP RDCA VOD.

Fig. 9 displays the VOD differences for two consecutive years:
2015–2016 and 2016–2017. SMAP RDCA VOD tracks yearly
changes in VOD unlike the NDVI VOD which is a ten-year
climatology. The SMOS VOD product exhibits more variability
than the SMAP RDCA VOD. SMAP RDCA VOD is smoother
due to the use of NDVI VOD as regularization parameter τ ∗.
There are some similarities between SMOS and SMAP but also
some discrepancies. For example, over Australia, in Fig. 9 (top
row), the trends seem to agree although SMOS shows greater
differences. On the other hand, in Fig. 9(bottom row) over
the same region the trends are distinctly different except for
a portion in the east-central part of the country. We also see
discrepancies in Fig. 9 (top row) for the east coast of the United
States.

Fig. 10 displays the Pearson correlation (R) between SMAP
and SMOS VOD. The aggregated SMAP RDCA VOD and
the SMOS VOD were averaged monthly, thus obtaining two
data sets of dimensions (1388584,60) and then for each grid
cell the temporal correlation was obtained. We observed that
the correlation varies along the globe with a mean value of
0.344 (weak correlation) and standard deviation of 0.33. If
we only consider correlation with p-values < 0.05 then the
mean correlation value is 0.542 (moderate correlation) and the
standard deviation is 0.26. It is noticeable that the correlation
is mostly positive indicating a degree of agreement in trends.

ftp://ftp.ifremer.fr/Land_products/GRIDDED/L3SM
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Fig. 7. Density plots and mean fitting curves. (a) SMAP RDCA VOD versus Tree height. (b) SMAP RDCA VOD versus Biomass for values of biomass less than
90 Mg/ha. (c) SMAP RDCA VOD versus Biomass for values of biomass greater than 90 Mg/ha and less than 300 Mg/ha.

Fig. 8. Global maps of averaged SMOS VOD (a) and SMAP RDCA VOD (b) for five years of data (04/01/2015-03/31/2020).

Table VI gives the correlation by land cover types using only
pixels with significant correlation, p-value < 0.05. We observed
mostly moderate correlation, with the exception of permanent
wetlands (PW) where the correlation is strong and evergreen
needle leaf forest (ENF), evergreen broadleaf forest (EBF),
closed shrublands (CS) and barren/sparse (BS) where the cor-
relation is weak. Fig. 11 displays the monthly average of VOD
at five different regions. From top to bottom the regions are as
follows.

1) Peruvian Amazonia [-4.5 -4 -75 -74.5], land cover type:
Evergreen broadleaf forest. The SMOS-SMAP correlation
is very week R = 0.148 and p-value > 0.05.

2) Angola [-12.5 -12 17 17.5], land cover type: Woody sa-
vannas. The SMOS-SMAP correlation is strong R= 0.806
and p-value < 0.05.

3) South Fork, Iowa [42 42.5 -93.5 -93], land cover type:
Croplands. The SMOS-SMAP correlation is strong R =
0.873 and p-value < 0.05.
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Fig. 9. VOD difference for two consecutive years. 2015–2016 on top and 2016–2017 on the bottom.

Fig. 10. Map of Pearson correlation between monthly averaged SMOS and SMAP RDCA VOD. Grey areas indicate pixel with p-values>0.05. White areas
indicate not available data.

Fig. 11. Sixty months (January 4, 2015–March 31, 2020) of averaged VOD (SMAP, SMOS and NDVI) for five different regions. From top to bottom: Peruvian
Amazonia; Angola; South Fork (Iowa); Zambia; and Chaco (Argentina).
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TABLE V
SMAP AND SMOS STATISTICS COMPARISON BY LAND COVER TYPE

Statistics of SMAP, SMOS, and NDVI VOD by land cover type classification. N represents the number of pixels involved in the computation. Pixels with GSI < 0.1 were considered.

TABLE VI
SMAP VS SMOS VOD CORRELATION BY LAND COVER

SMAP RDCA VOD versus SMOS VOD monthly timeseries Pearson correlation by land cover types as defined by the IGBP land cover classification (land cover abbreviations from
Table IV). The analysis was performed only for pixels with significant correlation p-value<0.05.

4) Zambia [-14.5 -14 24 24.5], land cover type: Woody
savannas. The SMOS-SMAP correlation is moderate R
= 0.435 and p-value < 0.05.

5) Chaco, Argentina [-25.5 -25 -62.5 -62], land cover type:
Deciduous broadleaf forest. The SMOS-SMAP correla-
tion is strong R = 0.747 and p-value < 0.05.

We see that in all the cases the SMOS and SMAP have
consistent trends while NDVI VOD trends only agree with
SMAP and SMOS over Chaco and South Fork. There is a big
difference in the VOD magnitude over the Peruvian Amazonia
and very weak correlation caused by the low seasonal change
of VOD combined with the differences in short term variabil-
ity. The correlation is not significant according to the p-value
(we consider a correlation to be significant if the p-value is <
0.05). We also observed that the SMOS VOD has more variabil-
ity which may be the cause of low correlation in some locations,
as can be seen in the Zambia case, Fig. 11 second from the
bottom.

The spatial correlation between SMOS VOD and SMAP
RDCA VOD as shown in Fig. 8 is R = 0.83 (strong).

VI. CONCLUSION

In this article, we have shown that the regularized DCA
algorithm (RDCA along this article) implemented in the new
release (R17) allows for an accurate retrieval of SM and a
reliable VOD (τ ). Indeed, we showed that the DCA SM not
only satisfies the SMAP requirements but also showed accuracy
levels comparable to the SMAP SCA-V baseline. We compared

the SMAP RDCA VOD with the SMOS VOD. We showed that
even though there are differences in magnitude, they have, in
general, consistent temporal behavior tracking seasonal changes
and strong spatial correlation.

Comparison of the SMAP RDCA VOD with tree height
showed strong correlation and a linear relation especially for
tree height less than 20 m.

Comparison of the SMAP RDCA VOD with vegetation
biomass showed moderate correlation. We also observed linear
correlation for biomass less than 90 Mg/ha.

The magnitude of the SMAP RDCA VOD is comparable to the
magnitude of the NDVI VOD due to the nature of the selection
of the roughness parameter h. However, since the values of h
are temporal invariant, the seasonality variation of the retrieved
VOD should not be affected.

The application of temporal variant roughness parameter h
should be explored for further improvement of the retrieved
VOD.
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