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Abstract—Vegetation water content (VWC) plays an important
role in parameterizing the vegetation influence on microwave soil
moisture retrieval. During the past decade, relationships have been
developed between VWC and vegetation indices from satellite
optical sensors, in order to create large-scale VWC maps based
on these relationships. Among existing vegetation indices, the nor-
malized difference vegetation index (NDVI) and the normalized
difference water index (NDWI) have been most frequently used for
estimating VWC. This work compiles and inter-compares a num-
ber of equations developed for VWC derivation from NDVI and
NDWI using satellite data and ground samples collected from field
campaigns carried out in the United States, Australia, and China.
Four vegetation types are considered: corn, cereal grains, legumes,
and grassland. While existing equations are reassessed against
the entire compiled data sets, new equations are also developed
based on the entire data sets. Comparing with existing equations,
results show superiorities for the new equations based on statisti-
cal analysis against the entire data set. NDWI1640 and NDVI are
found to be the preferred indices for VWC estimation based on the
availability and the error statistics of the compiled data sets. It is
recommended that the new equations can be applied in the future
global remote sensing application for VWC map retrieval.

Index Terms—Estimation, normalized difference vegetation
index (NDVI), normalized difference water index (NDWI),
vegetation water content (VWC).

I. INTRODUCTION

O VER the past three decades, it has been shown that the
vegetation water content (VWC) is an important variable

in climatic, agricultural, and forestry applications [1]–[4]. In
passive microwave remote sensing, a vegetation canopy over
the soil absorbs the emission of the soil and adds to the total
radiative flux with its own emission. With an estimate of VWC,
the vegetation optical depth and transmissivity can be mod-
eled [5]. Thus, VWC plays a particularly important role in soil
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moisture retrieval by parameterizing the effects of vegetation
on the observed land surface emission.

Spatially distributed VWC information over large regions
is not readily available. One approach is to use relationships
with spectral reflectance measured by optical satellites with
an appropriate function in order to map VWC (e.g., [4], [6]–
[9]). These functions have been developed using relationships
between the remotely sensed indices available from Landsat
thematic mapper (TM) and Enhanced TM Plus (ETM+) sen-
sors (with 16 days repeat at 30 m resolution), or the moderate
resolution imaging spectroradiometer (MODIS) (with daily
repeat at 250 m resolution), together with ground-based spectral
and VWC measurements.

The normalized difference vegetation index (NDVI) pro-
posed by Rouse et al. [10] for estimating VWC is one of the
most widely used indices

NDVI =
NIR860 − RED650

NIR860 + RED650
(1)

where NIR is the reflectance in the near infrared channel (cen-
tered at 860 nm) and RED is the reflectance in the red band
visible (VIS) channel (centered at 650 nm). A drawback of
using NDVI for this application is that it saturates when veg-
etation coverage become dense (when leaf area index (LAI)
reach around 5 [4], [11]) and is no longer sensitive to changes
in vegetation. The saturation of NDVI was also observed by
Chen et al. [6] for VWC > 3 kg/m2 for corn. Moreover, RED
and NIR are located, respectively, in the strong chlorophyll
absorption region and the high reflectance plateau of vegetation
canopies, meaning that NDVI represents chlorophyll rather than
water content [6], [12]. Nevertheless, Jackson et al. [4] sug-
gested that for specific canopy types (such as grasslands) within
specific regions and when supported by ground sampling,
it is still possible to establish useful VWC functions based
on NDVI.

The normalized difference water index (NDWI), which uti-
lizes the shortwave infrared (SWIR) together with NIR, has
been shown to have a better correlation with leaf water content
than the vegetation indices employing VIS and NIR [6], [12].
Compared to NDVI, it has been found that the saturation of this
SWIR-based spectral index occurs later [6], [13]. The NDWI
proposed by Gao [12] used a SWIR band centered at 1240 nm.
This wavelength became available with the launch of MODIS.
Previous to this the SWIR bands at 1640 and 2130 nm, which
are available from Landsat, had been used to demonstrate that
the water absorption was dominant and thus sensitive to VWC
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TABLE I
SUMMARY OF LITERATURE USED FOR THIS STUDY, INCLUDING THE SOURCE OF VWC, SPECTRAL DATA, AND DERIVED VEGETATION INDICES

variations [4], [6]. Therefore, the following NDWI indices are
also considered in this work:

NDWI1240 =
NIR860 − SWIR1240

NIR860 + SWIR1240
(2)

NDWI1640 =
NIR860 − SWIR1640

NIR860 + SWIR1640
(3)

NDWI2130 =
NIR860 − SWIR2130

NIR860 + SWIR2130
(4)

where the subscript refers to the wavelength (nm).
Although many empirical relationships between VWC and

the aforementioned vegetation indices have been established
for different vegetation categories and from different field cam-
paigns around the world, there has been no study to synthesize
or inter-compare the data and relationships derived from these
different field campaigns, and to recommend a best relationship
for global remote sensing applications, such as the soil mois-
ture active passive (SMAP) satellite mission that needs a global
VWC map as input for generating the soil moisture products.
Currently, in order to obtain VWC information from optical
sensing observations, many options are available as to which
vegetation index and which model to apply based on the liter-
ature. Consequently, it is the intention of this investigation to
synthesize the body of work available from literature and our
own recently collected data sets into more robust models for
VWC estimation. Statistical analysis is performed for both the
new models and the existing models using the combined data
sets, upon which a recommendation of vegetation index and
model is made for both specific types of land cover and general
categories.

II. DATA SOURCES

Data from eight different studies [4], [6]–[9], [14]–[16] are
analyzed in this paper. These studies were chosen because 1) the

Fig. 1. Locations of the field campaigns compiled in this study.

vegetation indices they analyzed were either NDVI or/and
NDWI, which have been found to be the best for VWC esti-
mation and 2) the analysis was based on one or more specific
land cover types and provided a vegetation type specific model
to relate the index to VWC. The sources of VWC and veg-
etation index data provided in each study are summarized in
Table I. The data were from the following field campaigns:
SMEX02 and SMEX05 in the U.S.A. [9], [15], NAFE’05
[17], NAFE’06 [18], AACES-1 and -2 [19], SMAPEx-1, -2,
and -3 [20] in Australia, and the Weishan experiment [16]
in China. The locations of these experiments are indicated
in Fig. 1.

The basic information of these field campaigns, including
location, season, major crop types, and ancillary data measured
are summarized in Table II. Most of the campaigns were con-
ducted in spring or summer, except AACES-2 and SMAPEx-1,
which were in winter. In terms of crop types, the experi-
ments in Australia had a more diverse range, including barley,
wheat, corn, Lucerne, and grasslands. For the two campaigns
in the U.S.A., SMEX02 and 05, the crop types included corn
and soybean, being the only major crops in the experiment
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TABLE II
SUMMARY OF CAMPAIGN INFORMATION

TABLE III
SUMMARY OF SPECTRAL BANDS FROM FIELD SPECTROMETERS USED IN THE FIELD CAMPAIGNS OF THIS PAPER,

AND CURRENT SATELLITES THAT CAN BE USED FOR CALCULATING THE VEGETATION INDICES

area. While all the campaigns sampled VWC, LAI, and dry
biomass, however, ground-based surface reflectance was only
measured in the NAFE, AACES, and SMAPEx campaigns. As
a result, except for Maggioni et al. [8] and Allahmoradi et al.
[14] which used calculated vegetation indices from field spec-
trometer measurements, the rest of the studies relied on either
Landsat or MODIS to provide spectral data for calculation of
the vegetation indices.

Landsat 5 (TM sensor) and Landsat 7 (ETM+ sensor) have
eight frequency bands. Apart from bands 6 and 8, which have a
resolution of 60 and 15 m, respectively, all other bands have
a resolution of 30 m. In (1), RED and NIR correspond to
band 3 (630–690 nm) and band 4 (760–900 nm), respectively.
For SWIR in (2)–(4), band 5 (1550–1750 nm), and band 7
(2080–2350 nm) are used to cover SWIR1640 and SWIR2130.
SWIR1240 is not available from Landsat. Moreover, because of
the infrequent temporal coverage of TM and ETM+, it is diffi-
cult to rely on them for estimating VWC for most applications
[4]. However data from MODIS on the Terra and Aqua satel-
lites are available daily, and are free to access. The resolution
of MODIS is 250 m for bands 1 and 2 (centered at 648 and
858 nm), and 500 m for bands 3–7 (centered at 470, 555, 1240,
1640, and 2130 nm). RED and NIR correspond to bands 1 and
2, respectively, whereas SWIR1240, SWIR1640, and SWIR2130

correspond to bands 5, 6, and 7, respectively. A summary of the
spectral wavelengths used by the hand spectrometers for the
field campaigns considered in this study and their associated
satellite bands for calculating vegetation indices is presented in

Table III. For more details on the satellite data processing, refer
to the original publications listed in Table I.

III. METHODOLOGY

Existing equations for NDVI and NDWI are summarized in
Table IV. Lucerne in Allahmoradi et al. [14] is grouped with
soybean in a category referred to as legumes, due to their similar
spectral behavior. In addition to the equations, the data series of
sampled VWC and calculated vegetation indices have also been
digitized from their original graphs and replotted in Figs. 2–5,
according to the category of vegetation type and vegetation
index. The red-dotted lines indicate the newly established equa-
tion based on all the available data sets. It should be noted
that the equations and data sets from Huang et al. [15] are
not included in the NDVI and NDWI1640 plots for corn and
soybean, since the same SMEX02 data sets as Chen et al. [6]
were used.

A recommended function is provided for the categories
where multiple data sets are present (Table IV). These func-
tions were developed based on all the available data sets for a
certain category. For NDVI, exponential equations were chosen
due to the notable upward trend which matches with the satu-
rating behavior of NDVI over the higher range of VWC. For
the rest of vegetation indices, either linear or quadratic equa-
tions were provided. It should be noted that no recommended
equation is given for NDVI2130 for corn, because the two avail-
able studies applied the same data set but with different source
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TABLE IV
EQUATIONS FOR ESTIMATING VWC (‘Y’) USING THE RESPECTIVE VEGETATION INDEX (‘X’) ACCORDING TO INDIVIDUAL STUDIES IN LITERATURE

Also shown is the recommended equation for each vegetation category where more than a single data set exists. Performance statistics are also provided.
*Literature that used interpolated data.
**Equation should be used with caution due to lack of data.
***No data sets were presented in the original paper.

of spectral data. Also, for those categories with only one data
set available (NDVI1240 for cereal grains and grassland, and
NDVI2130 for legumes), the recommended equation would be
the same as the one developed from its original study.

Statistical analysis is carried out to assess the correlation and
VWC retrieval performance of all equations. Since R2 was pro-
vided with most existing equations, they are directly quoted
here in Table IV. However, not all studies gave RMSE as the
VWC retrieval error. Therefore, RMSE is calculated here for
all existing equations, based on their digitized data sets, both
against their own data sets and against the entire synthesized
data sets for each vegetation category (Table IV).

IV. DATA COMPARISONS

A. NDVI

It can be seen in Fig. 2(a) that both the data and the equations
from Jackson et al. [4] and Chen et al. [6] agree well for corn,
especially in the higher VWC range (3−5 kg/m2). In compar-
ison, the data from Allahmoradi et al. [14] are focused on a

lower range of VWC (1−2 kg/m2) and a limited number of
samples were used in its equation derivation. However, these
data still fall approximately into the range of the data from [4]
and [6]. It is also clear that NDVI becomes saturated for VWC
above about 3 kg/m2, which is consistent with most previous
studies (e.g., [4], [6], [12]).

For cereal grains [Fig. 2(b)], Allahmoradi et al. [14] had a
greater number of samples, including barley, wheat and oats.
While the winter wheat data sets from Yi et al. [16] agree with
the data from [14] in the lower range of VWC (<1.5 kg/m2),
the VWC of winter wheat reached to 3−4 kg/m2 with an NDVI
of 0.6–0.8, making it significantly higher compared with [14]
(0.5−2.5 kg/m2) for the same NDVI range. To explain this,
Yi et al. [16] pointed out that there were significant solar
and zenith angular effects on the surface reflectance data from
MODIS after the wheat heading stage, meaning that NDVI
would be unable to detect crop growth during this phase. As
a result, the data with high VWC values [circled in Fig. 2(b)]
from [16] are considered to be outliers, and not used in the
subsequent analysis.
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Fig. 2. Data sets and models for VWC estimation using NDVI. (a) Corn.
(b) Cereal grains. (c) Legumes. (d) Grassland.

For legumes [Fig. 2(c)], the equations from Jackson et al. [4]
and Allahmoradi et al. [14] are similar to each other, as are the
underlying data sets. For grassland [Fig. 2(d)], the equations
from Maggioni et al. [8] and [14] are the only ones available
for estimating VWC. Although the number of data points of
[8] is very limited, they still fall into the same range as the data
of [14].

B. NDWI1240

For the land cover categories of corn and legumes [Fig. 3(a)
and (c)], only two studies are available for comparison: Huang

Fig. 3. Data sets and models for VWC estimation using NDWI1240. (a) Corn.
(b) Cereal grains. (c) Legumes. (d) Grassland.

et al. [15] and Allahmoradi et al. [14]. Although their NDWI
was calculated from different sources, MODIS and field spec-
trometer MSR-16, the equations and underlying data sets match
well with each other. This is because the MSR-16 was set to
match with the MODIS bands during the NAFE and SMAPEx
experiments. As noted previously, Reference [14] is the only
study to have used NDWI1240 to estimate VWC for both cereal
grains and grassland [Fig. 3(b) and (d)]. Thus, until now the
MODIS SWIR bands, especially at the 1240 nm recommended
by Gao [12], have not been fully assessed and evaluated for
estimating VWC.
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Fig. 4. Data sets and models for VWC estimation using NDWI1640. (a) Corn.
(b) Cereal grains. (c) Legumes. (d) Grassland.

C. NDWI1640

The most frequently used index for VWC estimation is
NDWI1640. It is also the preferred index for estimating VWC,
mainly because SWIR bands are sensitive to changes in water
content of plant canopies, and SWIR1640 has been available
on Landsat for many years. For corn [Fig. 4(a)], all stud-
ies obtained NDWI1640 from Landsat except for Allahmoradi
et al. [14]. However, Chen et al. [6] applied both Landsat and
MODIS data to calculate NDWI1640 and compared the two sets
of data. Although only the Landsat data sets are included here

Fig. 5. Data sets and models for VWC estimation using NDWI2130. (a) Corn.
(b) Cereal grains. (c) Legumes. (d) Grassland.

[Fig. 4(a)], the analysis in [6] showed that the data sets derived
from MODIS were similar to those derived from Landsat, but
with a small shift. This shift could be due to that the cen-
ter wavelength of Landsat Band 5 being slightly higher than
MODIS Band 6, which were used to calculate SWIR1640. It
can be seen in Fig. 4(a), that all equations and data sets match
well.

The data sets for legumes [Fig. 4(c)] and grassland [Fig. 4(d)]
also have a good agreement. For cereal grains [Fig. 4(b)], sim-
ilar winter wheat outliers as those of the NDVI analysis can be
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observed. This is consistent with the previous discussion that
the outliers could be due to the angular effects at late growth
stage during the experiment period.

D. NDWI2130

The NDWI2130 index has not received as much attention
in the literature as NDWI1640. However, it is also a valu-
able index in estimating VWC since it is available from both
Landsat and MODIS. In Fig. 5(a), both the VWC field data
of Chen et al. [6] and Huang et al. [15] are from SMEX02,
while the NDWI2130 were derived from MODIS and Landsat,
respectively. This graph confirms the phenomenon noted in [6]:
that the data sets derived from MODIS are consistent with
those derived from Landsat, but with a small shift (approx-
imately 0.1–0.4 for NDWI) toward the left. This means that
MODIS-derived NDWI is generally larger than the Landsat-
derived value for the same type of vegetation in the same
area. This is due to the larger center wavelength of Landsat
(Landsat Band 7 compared with MODIS Band 7 for calculating
SWIR2130).

For the remaining categories, a separate calculation
of NDWI2130 was performed using field data from the
AACES campaigns because NDWI2130 was not considered in
Allahmoradi et al. [14]. This is the only experiment that has
NDWI2130 data available. For cereal grains [Fig. 5(b)], there
were not enough data from AACES to establish an equation
for barley and wheat. Similarly for the studies conducted by
Maggioni et al. [8] and Yi et al. [16], a limited number of
samples were presented, although they still provided equations.
However, it is suggested that the newly established equation
based on the combined data sets from [8] and [16] should
still be used with caution. Conversely, there are enough sam-
ples from AACES to establish a relationship for grassland
[Fig. 5(d)], with several samples from [8] also falling in the
similar range.

V. RESULTS AND DISCUSSION

The performance statistics of all equations, including R2 and
RMSE are listed in Table IV. Comparing the two RMSE val-
ues of the existing equations, the RMSE for the original data
sets and RMSE for the combined data sets, it can be seen that
the latter is generally much larger. This means that each of
these equations may be representative for a specific data set
at a specific location, but fail to capture well the conditions
of other areas. Therefore, the proposed new equations, with
smaller error against the combined data sets, are expected to
be more robust when used for VWC estimation globally, as
required by satellite soil moisture missions.

Comparing the R2 and RMSE of different indices for each
type of land cover, the most suitable index for estimating VWC
was identified for that specific land cover. As can be seen in
Table IV, the recommended equation for NDWI1640 performs
the best in estimating VWC for corn, providing the highest R2

(0.87) and the lowest RMSE (0.51 kg/m2). NDVI also works
well for corn based on the large range of available data sets and

the relatively high correlation (R2 = 0.8). In the case of cereal
grains, the recommended equation for NDWI2130 performs
the best in terms of R2 (0.84), although the retrieval error is
slightly higher than other indices (RMSE = 0.55 kg/m2 com-
pared with 0.4− 0.5 kg/m2 for other indices). For legumes,
NDWI1240 and NDWI1640 performed much better than the
other two indices, both with an R2 of 0.76 and a RMSE of
around 0.2 kg/m2. While for grassland NDVI worked the best
according to its highest R2 (0.52 compared with 0.2− 0.4
for other indices), although all indices had a similar retrieval
accuracy (RMSE ≈ 0.3 kg/m2).

Disregarding the vegetation types, the new equations for
NDVI and NDWI1640 are considered to be best for VWC esti-
mation in general at the current stage. This is because: 1) the
amount of historical data for these two indices are larger and
therefore allow a more reliable equation to be established and
2) performance statistics show a better correlation for NDVI
and NDWI1640 in general. There are at least three studies for
NDVI for each land cover type, and as many as six studies
for NDWI1640, while for NDWI1240 and NDWI2130, there are
only one or two studies available. Among these, there is a pref-
erence for using NDVI, as the R2 for all the NDVI equations are
above 0.5, even for the highly scattered grassland data, while
for NDWI1640 the R2 ranges from 0.57 to as high as 0.87,
but is only 0.2 for grassland. Moreover, since NDVI is readily
available from MODIS satellite, it is more convenient for VWC
retrieval than NDWI1640. Nevertheless, it should be noted that
the model performance might vary over time or throughout the
growing season of the crops. However, there are insufficient
data sets to demonstrate this. Therefore, long-term experiments
are needed to address this issue.

An important consideration is the impact of VWC error
on soil moisture retrieval accuracy. According to the analy-
sis in Parinussa et al. [21], the higher the vegetation optical
depth is, the greater the influence on soil moisture retrieval
error. As vegetation optical depth can be linearly related to
VWC through a vegetation parameter ‘b’ (the slope of the
regression line for VWC versus vegetation optical depth) [5],
thus a higher VWC can also result in a higher soil mois-
ture retrieval error. Combining the results of Jackson and
Schmugge [5] and Parinussa et al. [21], it can be inferred that
for vegetation such as corn, which can reach a VWC of as
high as 4−5 kg/m2 during its mature stage, a VWC error of
0.5 kg/m2 will lead to a change of approximately 0.2 m3/m3

for soil moisture retrieval accuracy for C-band, X-band, or
Ku-band microwave instruments. However, for VWC less than
1.5 kg/m2 such as legumes and grassland, a 0.5 kg/m2 VWC
error has almost no influence on the error of soil moisture
retrieval. Therefore, for soil moisture related remote sensing
applications, special attention needs to be paid for vegetation
types such as corn and cereal grains, especially as they approach
maturity. An example VWC map from MODIS-derived NDVI
and the recommended equations from this paper is given in
Fig. 6 for the SMAPEx-3 campaign. The VWC equations
are applied on the basis of a Landsat derived landcover map,
which is strongly reflected in the VWC distribution across the
study site.
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Fig. 6. Example VWC map (kg/m2) from SMAPEx-3 for September 23,
2011, retrieved from a combination of MODIS-derived NDVI and a Landsat-
derived land classification map.

VI. CONCLUSION

This study combined and inter-compared all available data
sets and developed equations for estimating VWC from NDVI,
NDWI1240, NDWI1640, and NDWI2130, based upon land
cover type. Analyses led to several conclusions.

1) There were marked similarities among the data sets and
equations developed from most field campaigns for each
type of vegetation, but some significant differences exist,
especially for cereal grains.

2) According to the performance statistics and the number
of data sets available, NDWI1640 and NDVI are the two
preferred vegetation indices for VWC estimation. Despite
that NDVI is theoretically less suitable for estimating
VWC when compared with the NDWI, it still provided
a reliable estimate for VWC. Moreover, NDVI maps
are readily available from the MODIS satellite, making
operational implementation a relatively simple task.

3) The MODIS SWIR bands, especially at 1240 nm wave-
length, have not been fully utilized for estimating VWC.
More studies with larger number of VWC samplings are
still needed, especially for cereal grains and grassland, to
further evaluate the relationship between NDWI1240 and
VWC.

Additionally, this synthesis study recommended a new set
of equations for VWC estimation of four different vegetation
types (corn, cereal grains, legumes, and grassland), which will
be more reliable than the equations developed from single data
sets. These equations can be directly applied to satellite data in
order to obtain VWC information for soil moisture retrieval or
other climatic and agricultural applications.
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