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A B S T R A C T

High spatial resolution soil moisture information is important for hydrological, climatic and agricultural ap-
plications. The lack of high resolution soil moisture data over large areas at the required accuracy is a major
impediment for such applications. This study investigates the feasibility of downscaling satellite soil moisture
products to 1 km resolution. This study was undertaken in the semi-arid Goulburn River Catchment, located in
south-eastern Australia. The Soil Moisture Active Passive (SMAP)-Enhanced 9 km (L3SMP-E) and Soil Moisture
and Ocean Salinity (SMOS) 25 km gridded (SMOS CATDS L3 SM 3-DAY) radiometric products were compared
with in-situ soil moisture observations and a regression tree model was developed for downscaling based on
thermal inertia theory. Observations from a long-term soil moisture monitoring network were employed to
develop a regression tree model between the diurnal temperature difference and the daily mean soil moisture for
soils with different clay content and vegetation greenness. Moderate-resolution Imaging Spectroradiometer
(MODIS) land surface temperatures were used to estimate the soil moisture at high spatial resolution by dis-
aggregating the satellite soil moisture products through the regression model. The downscaled SMAP-Enhanced
9 km and SMOS 25 km gridded soil moisture products showed unbiased root mean square errors (ubRMSE) of
0.07 and 0.05 cm3/cm3, respectively, against the in-situ data. These ubRMSEs include errors caused by mea-
suring instrument and the scale mismatch between downscaled products and in-situ data. An RMSE of 0.07 cm3/
cm3 was observed when comparing the downscaled soil moisture against the passive airborne L-band retrievals.
The findings here auger well for the use of satellite remote sensing for the assessment of high resolution soil
moisture.

1. Introduction

Soil moisture is a key variable in a number of environmental pro-
cesses at both regional and global scales including hydrologic, climatic
and agricultural applications, such as water management and irrigation
scheduling (Hanson et al., 2000; Pacheco et al., 2015), weather and
climatic prediction (Dirmeyer et al., 2016; Huszar et al., 1999; Orth and
Seneviratne, 2014), drought monitoring (Lorenz et al., 2017; Pablos
et al., 2017; Wang et al., 2011), flood forecasting (Brocca et al., 2017;
Lacava et al., 2005; Norbiato et al., 2008; Tramblay et al., 2010) and
analysing nutrient and contaminant transport potential (Dickinson

et al., 2002; Porporato and Rodriguez-Iturbe, 2002). Many of these
applications require soil moisture data at high spatial resolution, from a
few kilometres to sub-kilometre scale. However, soil moisture in-
formation is rarely available at adequate spatial and temporal scales.
Soil moisture is measured at scales ranging from point (in-situ mea-
surements) to satellite measurements at ∼10 s of km scale. Given the
limited availability of dense ground-based soil moisture monitoring
networks in most areas, satellite soil moisture products are considered a
most feasible option to provide spatial and temporal soil moisture data.
Microwave remote sensing has been widely used to estimate global

scale surface soil moisture over the last three decades (Karthikeyan
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et al., 2017a; Kerr et al., 2016; Schmugge and Jackson, 1993;
Schmugge, 1976). In particular, passive microwave radiometer mea-
surements in the L-band frequency regime have been shown to be the
best option to retrieve soil moisture (Schmugge et al., 1986). Recently,
satellite soil moisture retrieval from L-band sensors has been realized
with the launch of the European Space Agency’s (ESA) SMOS (Soil
Moisture and Ocean Salinity) and the National Aeronautics and Space
Administration’s (NASA) Soil Moisture Active Passive (SMAP) satellites
in 2009 and 2015, respectively. These satellites provide global esti-
mates of surface soil moisture at the top ∼5 cm of the soil profile
(Entekhabi et al., 2010a; Karthikeyan et al., 2017b; Kerr et al., 2010)
frequently (∼3-day revisit period) at an expected accuracy of 0.04 v/v,
but with low spatial resolution (∼40 km). SMAP employs vertically
polarized brightness temperature-based single-channel algorithm (SCA-
V) as the current baseline retrieval algorithm for its passive soil
moisture product (Chan et al., 2018). The L-band Microwave Emission
of the Biosphere Model (L-MEB) is currently used as the retrieval al-
gorithm for the SMOS products (Kerr et al., 2012; Wigneron et al.,
2007). Despite their high accuracy, the satellite products cannot fully
capture the spatial variability of soil moisture as required in many
applications, due to their coarse resolutions.
Validating and downscaling satellite soil moisture products are

crucial for their utilization in various applications. For example, ex-
tensive calibration and validation (cal/val) activities pre- and post-
launch of SMAP have been used to develop and improve the retrieval
algorithms using in-situ soil network measurements (Jackson et al.,
2014). The quality requirement of in-situ data, and the spatial mis-
matching between remotely sensed and in-situ soil moisture, posed
great challenges for the validation of satellite soil moisture products
(Colliander et al., 2017a; Crow et al., 2012; Jackson et al., 2014). The
intensive cal/val phase of the SMAP mission demonstrated the SMAP
radiometer based soil moisture products meet their expected perfor-
mance (∼0.04m3/m3) from globally selected core validation sites
(Colliander et al., 2017a).
Given the accuracy of passive L-band microwave remote sensing,

downscaling these reliable satellite soil moisture products is a logical
step to estimate soil moisture at the required spatial resolution for many
applications (Peng et al., 2017; Sabaghy et al., 2018). The available
satellite soil moisture downscaling methods can be classified as; sa-
tellite, geo-information data, and model based approaches (Peng et al.,
2017). Satellite based soil moisture downscaling methods consist of
fusion of active and passive microwave retrievals (Das et al., 2011,
2014, 2018; Leroux et al., 2016) and fusion of microwave data with
optical or thermal datasets (Piles et al., 2014, 2016, 2011; Portal et al.,
2018; Sánchez-Ruiz et al., 2014; Chauhan et al., 2003). The downscaled
soil moisture of the active passive microwave data fusion methods
provides products with a moderate resolution. Since Carlson et al.
(1994) introduced the 'universal triangle' concept between soil
moisture, surface temperature and vegetation index, efforts have been
made to downscale satellite soil moisture products by introducing op-
tical/thermal data. Optical/thermal based downscaling approaches
provide higher resolution soil moisture products and perform well in
arid and semi-arid areas with high atmospheric evaporative demand
(Peng et al., 2017). Therefore, these methods have a high potential over
the Australian land mass in developing a time series record of high
resolution soil moisture. In these approaches, land surface parameters
(e.g., vegetation cover, land surface temperature, surface albedo) re-
trieved from the optical/thermal satellite sensors at a high spatial re-
solution, have been expressed as a function of soil moisture (Carlson,
2007; Chauhan et al., 2003; Merlin et al., 2010, 2012; Peng et al., 2017;
Petropolous et al., 2009; Piles et al., 2011). The Disaggregation based
on Physical And Theoretical scale Change (DisPATCh) model proposed
by Merlin et al. (2012) is one such method of downscaling microwave
soil moisture retrievals using optical/thermal data. In this study,
MODerate-resolution Imaging Spectroradiometer (MODIS) products
were used to derive land surface temperatures (LSTs) at high spatial

resolution (1 km). The MODIS-derived LSTs were separated into their
soil and vegetation components as in the ‘universal triangle’ or 'trape-
zoidal model'. The soil evaporative efficiency (SEE) (estimated using
MODIS LSTs), albedo, and Normalized Difference Vegetation Index
(NDVI) were related to the soil moisture variability within a coarse
resolution SMOS pixel (Merlin et al., 2008, 2010, 2012). The accuracy
of the downscaled products from DisPATCh showed a notable variation
with the season, showing root mean square errors (RMSEs) of 0.06m3/
m3 in Austral summer and 0.18m3/m3 in Austral winter when com-
pared with the in-situ soil moisture, in the Murrumbidgee River
catchment (Merlin et al., 2012; Sabaghy et al., 2018).
Fang et al. (2013) and Fang and Lakshmi (2014) proposed a re-

gression model to downscale the SMOS and the Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E) soil
moisture products. This downscaling approach is based on the thermal
inertia relationship between the diurnal soil temperature difference
(ΔT) and the daily mean soil moisture (θμ). Model derived soil moisture
and soil temperature estimates from North American Land Data As-
similation System (NLDAS), NDVI data from MODIS, Satellite Pour
l’Observation de la Terre (SPOT) and Advanced Very High Resolution
Radiometer (AVHRR) along with the MODIS LST products were used to
demonstrate the capability of the proposed downscaling model over
Oklahoma, Midwest region of the United States. The downscaled soil
moisture showed RMSEs ranging from 0.02 to 0.06m3/m3 over the
Little Washita Watershed in Oklahoma (Fang and Lakshmi, 2014), and
unbiased RMSEs (ubRMSE) of 0.042m3/m3 and 0.026m3/m3 against
ground observations from the soil monitoring networks (Fang et al.,
2013). The spatial data gaps due to cloud cover and impact of vege-
tation on optical/thermal observations are two major limitations in the
optical/thermal data based downscaling methods (Peng et al., 2017;
Sabaghy et al., 2018).
The study presented in this paper investigates the feasibility of de-

veloping a time series record of high spatial resolution soil moisture by
downscaling satellite soil moisture products using an in-situ data based
model. The regression tree method developed here is similar to Fang
et al. (2013, 2018) and Fang and Lakshmi (2014), but based on in-situ
observations with additional factors. Fang et al. (2013) and Fang and
Lakshmi (2014) developed monthly lookup regressions using model
derived ΔT and θμ modulated by the NDVI, and then used this regres-
sion tree method to downscale AMSR-E and SMOS soil moisture pro-
ducts using MODIS LSTs. Since global scale land surface models are not
fully calibrated to specific sites, these products can be associated with
high uncertainties caused by scaling issues, accuracy of the input data
and the model-algorithms (Chen et al., 2014). For arid or semi-arid
landscapes with the extreme climate variability and the complex eco-
system, global land surface modelled data can be subjected to high
prediction errors and they may not be reliable reference data for re-
presenting actual soil conditions without rigorous calibration and va-
lidation. To avoid the uncertainties and errors associated with the
model-derived estimates, the study presented here employed a high
quality, reliable in-situ observations of soil moisture and temperature
over a long period from well-designed and maintained monitoring sites
(described in Section 2.2.1) to develop the downscaling model. Also,
the downscaling model was generalized over the study catchment area,
i.e., relative soil moisture variability to mean catchment soil moisture
condition, considering site-specific soil characteristics as a modulating
factor to explain the spatial variability and temporal stability of surface
soil moisture in a semi-arid region (Cosh et al., 2008; Chen et al., 2014).
As the first step, SMAP-Enhanced 9 km and SMOS 25 km gridded

soil moisture products were compared with in-situ soil moisture ob-
servations and then a regression tree model was developed to down-
scale the satellite soil moisture products to 1 km resolution based on
thermal inertia theory. Finally, the reliability of the downscaled pro-
ducts was assessed using ground observations and an airborne soil
moisture retrieval. The study presented in this paper was undertaken in
the Goulburn River Catchment, located in the south-eastern region of
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Australia, where significant efforts have been made to measure soil
moisture through continuous in-situ soil moisture monitoring network,
field-based studies, and remote sensing (Chen et al., 2014; Martinez
et al., 2007; Panciera et al., 2008; Rüdiger et al., 2007).

2. Study area and data

2.1. Description of the study area

The Goulburn River catchment is located approximately 150 km
northwest of Sydney, extending from 31°46′S to 32°51′S and from
149°40′E to 150°36′E (Fig. 1). The Goulburn River is a tributary of the
Hunter River in south-eastern Australia. The catchment size is
∼7000 km2 and its elevation varies from 100m on the floodplains to
1300m in the northern and southern mountain ranges. The northern
and southern halves of the catchment can be distinguished both geo-
logically and on the basis of land use/land cover. The northern half of
the catchment is dominated with basalt derived soils while the southern
part is dominated with sandstone, conglomerate and shale derived soils.
The northern part has been cleared mainly for cropping and grazing,
whereas the southern part consists of dense vegetation with forests. The
distribution of clay, silt and sand contents of the top soils in the
catchment is shown in Fig. 2. The area exhibits a semi-arid climate with
a mean annual precipitation of 700mm. However, the study catchment
shows an increasing gradient in precipitation towards higher altitudes
resulting in a range from 500mm to 1100mm. The monthly mean
temperatures vary from 16 °C to 30 °C in the summer and from 3 °C to
17 °C in the winter (Rüdiger et al., 2003). This region has experienced a
range of climatic events during the last 15 years, including the mil-
lennium drought from 2001 to 2009 (Van Dijk et al., 2013), strong La
Niña conditions in 2010/11 (Boening et al., 2012) and an extreme
storm event with a 100-year return period (Pasha Bulker storm) in 2007
(Mills et al., 2010).
The study site has been thoroughly studied in order to develop a

better understanding of the land surface processes driving soil moisture
variability. Under the Scaling and Assimilation of Soil Moisture and
Streamflow (SASMAS) project, the study site has been heavily in-
strumented for soil moisture, rainfall, and runoff since 2002 (Rüdiger

et al., 2007). The monitoring stations were established to provide in-
situ data to validate AMSR-E soil moisture retrievals, develop down-
scaling algorithms for coarse resolution satellite soil moisture products,
assimilate remotely sensed soil moisture data to retrieve soil moisture
profile and to improve streamflow forecasting (Rüdiger et al., 2003).
National Airborne Field Experiment 2005 (NAFE’05) airborne cam-
paign was conducted in this area using L-band radiometers to provide
simulated SMOS observations for soil moisture while validating the
AMSR-E near-surface soil moisture products (Panciera et al., 2008).
This study is focused on two sub-catchments, the Krui (562 km2)

and Merriwa (651 km2) River, located in the northern half of the
Goulburn River catchment. These sub-catchments include a dense soil
moisture monitoring network (Fig. 1) and have been mostly cleared for
cropping and grazing (Fig. 3a). Fig. 3b shows the average seasonal
vegetation density in 2015 as inferred by the MODIS NDVI composites
over these two sub-catchments. The dense vegetation in the north and
south-most parts of the two sub-catchments is evident in Fig. 3b. The
temporal dynamics of NDVI in the Krui River catchment SASMAS
monitoring stations retrieved from the MODIS 16-day NDVI composites
are shown in Fig. 4. A high variability of NDVI can be observed at
stations in croplands (i.e. K1 and K3), compared to the other stations
which are in grazing areas. K6 shows a consistently high NDVI value,
possibly due to the high vegetation growth driven by the higher rain-
fall.

2.2. Data

This section discusses details on in-situ soil moisture observations,
the satellite soil moisture products, and other geospatial data used for
developing the downscaling algorithm. Table 1 provides a summary of
the datasets used in this study.

2.2.1. In-situ soil moisture observations
Twenty-six soil moisture and temperature monitoring stations were

established from 2002 over the Goulburn River catchment under the
SASMAS project (http://www.eng.newcastle.edu.au/sasmas/SASMAS/
sasmas.htm). The SASMAS soil moisture monitoring stations were es-
tablished in the representative, ‘time stable’ locations of their

Fig. 1. The location of the Goulburn River catchment, and the distribution of the monitoring stations established under the SASMAS project.
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Fig. 2. Soil (a) clay, (b) silt, and (c) sand contents of the top 5 cm soil profile in the Goulburn River catchment (Source: National Soil and Landscape Grid, Australia).

Fig. 3. (a) Land use/land cover of Krui and Merriwa River catchments. (Source: The Department of Environment and Climate Change, NSW). (b) Seasonal average NDVI
maps in 2015 of Krui and Merriwa River catchments calculated by using MODIS 16-day NDVI composites.
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surrounding landscape, so that they could adequately represent the
watershed as whole and the footprint scale radiometric satellite soil
moisture products after upscaling (Grayson and Western, 1998; Rüdiger
et al., 2003, 2007; Crow et al., 2012). These sites were carefully chosen
by selecting mid-slope locations with representative vegetation, soil
type, elevation, aspect, etc. (Rüdiger et al., 2003, 2007). During the
NAFE'05, an intensive field campaign had been carried out to support
the L-band airborne soil moisture observations. This ground sampling
had been conducted from very high resolutions (6.25 and 12.5m spa-
cing) to intermediate resolutions from 125m to 250m spacing and
coarse resolutions from 500m and/or 1 km spacing. The NAFE’05 data
analysis showed the potential of using the SASMAS dataset to validate
coarse resolution satellite soil moisture products such as SMOS over the
Goulburn River catchment area (Panciera et al., 2008). The sites have
been instrumented with three vertically inserted Campbell Scientific
CS616 water content reflectometers at soil depths of 0–30, 30–60 and
60–90 cm, at each station. Stevens Water HydraProbes were later in-
stalled to measure soil temperature at 25mm and soil moisture of the
top 5 cm soil layer at the monitoring stations (Rüdiger et al., 2007). Six
monitoring stations were established in the Krui River catchment (K1 to
K6) and seven in the Merriwa River catchment (M1 to M7). In addition,
seven monitoring stations (S1 to S7) were established over a densely
monitored micro-catchment, “Stanley” (with a catchment size of
175 ha) located within the Krui River catchment (Martinez et al., 2007)
(Fig. 1). These monitoring stations are located over a range of soil types,
varying from sandy to clayey soils. The land cover and soil texture of
the SASMAS stations in the Krui and Merriwa River catchments are
shown in Table 2. The in-situ soil moisture data were measured at 1min
interval and averaged using 20min time window. The SASMAS dataset
is available from 2003 to 2015, but contains a number of data gaps.
These data gaps are caused mainly due to failure of sensors/telemetry,
and erroneous readings caused by extremely dry weather conditions
that resulted in soil cracking, especially dominate in the clay soils in the
northern parts of the sub-catchments. Erroneous readings were re-
corded at some of the stations during this time due to sensors not re-
maining in contact with soils during dry periods and the cracks getting
filled with water during wet periods. The SASMAS datasets are avail-
able up to 2015. The daily mean soil moisture data and hourly soil
temperature data of the 0–5 cm soil profile from 2003 to 2014 were

employed in this study to develop the regression algorithms. The daily
mean soil moisture data in 2015 from the Krui, Merriwa and Stanley
stations were employed in the validation of satellite and downscaled
soil moisture products (details discussed in Section 3).

2.2.2. Satellite soil moisture products
The ESA’s SMOS mission launched in 2009 (Barré et al., 2008; Kerr

et al., 2010) and the NASA’s SMAP launched in 2015 (Chan et al., 2016;
Entekhabi et al., 2010a) are two L-band missions which use 1.4 GHz
radiometer frequencies with approximately 3-day revisit times. Both
SMAP and SMOS provide near surface soil moisture (∼0–5 cm) based
on the L-band penetration depth. One major objective of the SMAP
mission was to fuse the coarse resolution (∼40 km) radiometric mea-
surements with fine resolution (1–3 km) radar measurements
(1.26 GHz) to produce soil moisture products at intermediate resolution
(9 km) (Entekhabi et al., 2014). However, only the radiometric soil
moisture products of SMAP are available following the failure of the
SMAP radar on 7th July 2015. SMAP radar-based products are available
for the first three months prior to the failure involving its high-power
amplifier (HPA) (Neeck, 2015). Combining Sentinel-1 radar data with
SMAP radiometric data is an approach employed as a solution to the
SMAP radar failure (Das and Dunbar, 2018). The target accuracy of
both SMAP and SMOS is 0.04 cm3/cm3. The accuracy of SMAP derived
soil moisture has been demonstrated as 0.04 cm3/cm3 for both 36 km
and 9 km gridded products (Chan et al., 2016, 2017; Colliander et al.,
2017a). SMOS has demonstrated its expected accuracy of 0.04m3/m3 at
some of the sites (Al Bitar et al., 2012; Jackson et al., 2012). However,
higher uncertainties in SMOS products have been observed in a number
of other studies (Djamai et al., 2015; Pacheco et al., 2015; Niclòs et al.,
2016). Despite their identical L-band frequencies and spatial and tem-
poral resolutions, there are notable differences between SMAP and
SMOS. SMOS measures surface emissions from a large number of view
angles from 0 to 55° whereas SMAP measures surface emissions only at
a 40° angle (Entekhabi et al., 2014; Karthikeyan et al., 2017b). More-
over, SMAP measures brightness temperatures with a better sensitivity
with a noise-equivalent delta temperature (NEDT) < 1 K for 17-ms
samples (Piepmeier et al., 2017) compared to SMOS, which has a sen-
sitivity of ∼2–4.5 K (Corbella et al., 2011). Furthermore, the SMAP and
SMOS soil moisture products use different retrieval algorithms, model

Fig. 4. The temporal variability of vegetation in Krui River catchment SASMAS monitoring stations as captured by the MODIS 16-day NDVI composites (MYD13A2).
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parameters, some of the ancillary datasets (e.g. land cover maps) and
assumptions (Al-Yaari et al., 2017; Karthikeyan et al., 2017b).
For downscaling, two different satellite products have been used in

this study (Fig. 5). First, the SMAP Enhanced L3 Radiometer Global
Daily 9 km EASE-Grid Soil Moisture, Version 2 (L3SMP-E) products
over the Goulburn River catchment from April 2015 to September 2016
were obtained from the National Snow and Ice Data Center (NSIDC)
(http://nsidc.org/). Here, Backus-Gilbert optimal interpolation techni-
ques, the classical inversion method in microwave radiometry
(Chaubell et al., 2016), have been used to retrieve maximum in-
formation from SMAP antenna temperatures and then converted into
brightness temperatures (Chan et al., 2018; O'Neill et al., 2016). This
interpolation process allows the preservation of the spatial resolution of
the antenna gain function associated with the sampled radiometer data
(Poe, 1990). The brightness temperatures have been resampled onto the
9-km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a
global cylindrical projection. Herein this dataset will be called as
SMAP-E. The SMAP-E 9 km grid over the study area is shown in Fig. 5b.
Secondly, the SMOS CATDS L3 SM 3-DAY, Release 4 soil moisture
products (Product code: MIR_CLF33A and MIR_CLF33D) of 25 km grid
size (CATDS, 2016; Al Bitar et al., 2017) were obtained from the Centre
Aval de Traitement des Données SMOS (CATDS) (https://www.catds.
fr). The CATDS Level 3 soil moisture products include daily ascending
and descending multi-orbit retrievals, and their average was taken as
the daily mean soil moisture in this study. The SMOS 3-day aggregation
generates global L3 soil moisture on a 3-day sliding window at daily
basis by performing a temporal aggregation of the L3 CATDS daily
product. The soil moisture retrievals were resampled onto a 25-km
Global Equal-Area Scalable Earth Grid (EASE grid) (Kerr et al., 2013).
The SMOS 25 km grid is shown in Fig. 5c. It is noteworthy to mention
that the spatial resolutions of the SMAP and SMOS soil moisture pro-
ducts stated in this article, i.e. SMAP-E 9 km and SMOS 25 km, are their
grid posting resolutions, not the actual observation resolutions.

2.3. Other geospatial data

2.3.1. MODIS-derived NDVI and LST products
NDVI data over the Krui and Merriwa River catchments from 2003

to 2015 were obtained from MODIS/Aqua Vegetation Indices 16-Day L3
Global 1 km Grid V005 (MYD13A2) products (Didan, 2015) in order to
classify the downscaling model based on different NDVI classes.
MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) DailyTa
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Table 2
The land cover and soil texture of the SASMAS monitoring stations in Krui and
Merriwa River catchments (modified from Kunkel et al., 2016).

Station Land cover Soil type Clay% Silt% Sand%

K1 Crop/fallow Loam 23 32 45
K2 Native pasture Loamy sand 12 14 75
K3 Crop/fallow Clay 71 16 13
K4 Native pasture Clay 55 30 15
K5 Native pasture Clay 64 20 16
K6 Improved Pasture Clay loam 38 40 22
M1 Native pasture Sandy loam 7 11 83
M2 Native pasture Sand 0 0 100
M3 Native pasture Clay loam 40 34 26
M4 Native pasture Loam 29 41 30
M5 Native pasture Clay 73 20 7
M6 Native pasture Clay 72 20 8
M7 Improved Pasture Clay loam 41 32 26
S1 Improved Pasture Clay 55 35 10
S2 Native pasture Clay loam 43 27 30
S3 Native pasture Clay
S4 Native pasture Clay
S5 Native pasture Clay 47 34 19
S6 Native pasture Clay 53 28 19
S7 Native pasture Silt loam 19 41 40
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L3 Global 1 km Grid V006 (MYD11A1) (Wan et al., 2015) dataset (1 km
spatial resolution) was used in this study to derive daily night and day
time LSTs over the Krui and Merriwa River catchments in 2015 and for
the period of NAFE’05 (in 2005).

2.3.2. Soil and landscape grid national soil attributes maps
The clay content in the 0–50mm soil profile over the Krui and

Merriwa River catchments was extracted from the National Soil
Attributes Maps of the Soil and Landscape Grid of Australia (Grundy
et al., 2015). This is a new soils database for Australia released in late
2014, as a part of the GlobalSoilMap initiative. It provides quantitative
soil properties on a 90m grid for all of Australia. The Australian site
data and spectroscopic estimates were used to develop the Soil and
Landscape Grid dataset. The site data had been collected from 1931 to
2013 by the state and territory government agencies and Common-
wealth Scientific and Industrial Research Organisation's (CSIRO) Na-
tional Soil Archive and National Soil Database (NatSoil) to develop the
National Soil Site Data Collection (NSSDC). The spectroscopic estimates
were made with the National soil visible-near infrared database
(NSVNIRD) to estimate soil properties, by using the soil samples col-
lected for the National Geochemical Survey of Australia (Rossel et al.,
2015). The clay content at 0–5 cm soil profile was used in this study for
the regression tree as a modulating parameter of ΔT-θμ relationship.
Data from 15,192 NSSDC sites and 1113 NSVNIRD sites were used to
develop the clay content maps in the Soil and Landscape Grid of Aus-
tralia (Rossel et al., 2015). The uncertainties of the clay content of the
top 5 cm soil layer is 18.5% with 14.1% and 23.0% at lower and upper
90% confidence limits, respectively (Rossel et al., 2015). The dataset
was obtained from the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO) data access portal (https://data.csiro.au).

2.3.3. NAFE’05 airborne dataset
Soil moisture retrievals from the NAFE'05 (Panciera et al., 2008)

were used in this study to validate the downscaling algorithms. The
NAFE'05 was conducted in November 2005 in the Goulburn River
catchment to provide simulated SMOS observations from an L-band
radiometer along with the soil moisture and other relevant ground
observations. The objectives of the experiment were to develop the
SMOS soil moisture retrieval algorithms, the SMOS downscaling ap-
proaches, and the assimilation of SMOS into land surface models for
root zone soil moisture estimations. The regional airborne data collec-
tion was carried out in four consecutive Mondays starting from 31st
October 2005 over a 40 km×40 km area in the northern part of the
catchment (Fig. 5a). The long drying period followed by the heavy
rainfall on October 31st and November 1st allowed the NAFE’05 cam-
paign to observe near surface soil moisture observations ranging from
fully-saturated conditions to very dry conditions (Panciera et al., 2008).
This covered the area cleared for cropping and grazing in the Krui and
Merriwa River catchments where the SASMAS monitoring stations were
concentrated, while the south-most part of the NAFE’05 study area
included forested areas with dense vegetation. The Polarimetric L-band
Multibeam Radiometer (PLMR) was employed for the regional NAFE'05
airborne data collection. The 1 km NAFE'05 soil moisture products were
derived from PLMR brightness temperatures using a two channel in-
version of the L-MEB model (Panciera et al., 2009). Although the
nominal ground resolution of the dataset is 1 km, the pixel size varied
from 860 to 1070m due to the constant altitude of the flights above the
median elevation over the varying terrain. The average flight altitude
was 3000m Above Ground Level (AGL) and the data was acquired in
the morning between 6:00 h and 10:00 h along north–south orientated
flight lines. Herein the term ‘NAFE’05’ is used in this paper to refer to
this regional airborne campaign.

Fig. 5. The location of (a) NAFE’05 study area, (b) SMAP-Enhanced 9 km, and (c) SMOS 25 km grids over the Goulburn River catchment. The pixels used for
validation are marked with letters (X for SMAP-E and P-S for SMOS).
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3. Methods

The methodology section consists of: (1) evaluation and inter-
comparison of SMAP and SMOS products with in-situ data; (2) devel-
oping the regression tree model for downscaling; and (3) evaluation of
the downscaled soil moisture data with SASMAS in-situ and NAFE’05
airborne observations. The overall approach is summarized in the
flowchart shown in Fig. 6.

3.1. Evaluation and inter-comparison of SMAP-E and SMOS soil moisture
products with in-situ data

The SASMAS in-situ soil moisture data from the top 5 cm soil profile
was employed to evaluate near surface soil moisture measurements
from SMAP-E and SMOS. Fig. 5 shows the distribution of SMAP-E 9 km
and SMOS 25 km grids, as well as the SASMAS in-situ monitoring sta-
tions over the study area. Location details of the pixels used in this
evaluation process are given in Table 3. The average of available in-situ
observations of the top 5 cm over the SMAP and SMOS satellite foot
prints were used in this comparison. Note that the spatial averaging of
limited in-situ observations can also contribute to the potential error in
this comparison. This comparison was conducted over one SMAP-E
9 km pixel (X, Fig. 5b) and one SMOS 25 km pixel (R, Fig. 5c). Average
soil moisture of three SASMAS monitoring stations over the nominal
33 km contribution domain (Fig. 5b) of the SMAP-E 9 km pixel X and
two stations on SMOS 25 km pixel R (Fig. 5c) were employed in this
comparison (Chan et al., 2018). Colliander et al. (2018) has employed a
similar approach to validate SMAP-E products with core validation
sites.
Then, the SMOS and SMAP-E soil moisture products over the Krui

and Merriwa River catchments in 2015/16 were compared against each
other over the four SMOS 25 km pixels, P, Q, R and S (Fig. 5c) by in-
terpolating SMAP-E soil moisture to the SMOS 25 km grid centres. This

interpolation of SMAP-E into SMOS grid centres allows to capture a
near approximation of average soil moisture from the actual con-
tributing domain of SMAP-E.

3.2. Developing the downscaling model

The downscaling method presented in this paper is based on the soil
thermal inertia relationship between ΔT and θμ, which has been de-
monstrated by Fang et al. (2013, 2018) for multiple sites in United
States. We first discuss the thermal inertia theory, and then present
details on the regression tree model developed for this study.
Thermal inertia is a measure of the resistance of an objects tem-

perature to the changes in its surrounding temperature (Sellers, 1965).
The objects with high thermal inertia show a lower temperature change
compared to the objects with low thermal inertia. Therefore, a low
thermal inertia of soil shows a high variation in the diurnal temperature
and vice versa. Accordingly, the relationship between the thermal in-
ertia (TI) and ΔT can be given as (Engman, 1991):

=T f TI(1/ ), (1)

=T T T ,PM AM (2)

where TPM and TAM are the afternoon and early morning soil surface
temperatures.

TI can also be defined as (Wang et al., 2010):

=TI kc , (3)

where ρ is the bulk density (kgm−3), k is the specific heat capacity
(J kg−1 K−1) and c is the thermal conductivity (Wm−1 K−1) of the
material. Water has a high specific heat capacity compared to the dry
soil. Therefore, the thermal inertia of wet soil is significantly higher
than dry soil and exhibits lower diurnal temperature fluctuation. When
the moisture content of the soil is increasing, the thermal inertia of the
soil increases proportionally. Therefore, wet soils exhibit low diurnal
soil temperature difference compared to dry soils (Verstraeten et al.,
2006).
The relationship between the diurnal soil temperature difference

and the daily mean soil moisture is complex and modulated by the
season, vegetation density and the soil texture (Engman, 1991; Farrar
et al., 1994; Peng et al., 2017; Sandholt et al., 2002). A regression tree
model was used to represent this complex relationship. A basic re-
gression tree algorithm typically produces a set of rules in a decision
tree format, which can be used to represent the correlation between the

Fig. 6. Flow chart of the approach used to validate and downscale the satellite soil moisture products and to assess the reliability of the downscaled soil moisture
products.

Table 3
Locations of the centroid of pixels used in the data validation process.

Dataset Pixel Longitude Latitude

SMAP-E 9 km grid X 150°15′52″E 31°59′50″S
SMOS 25 km grid P 150°2′36″E 31°53′27″S
SMOS 25 km grid Q 150°18′09″E 31°53′27″S
SMOS 25 km grid R 150°02′36″E 32°07′17″S
SMOS 25 km grid S 150°18′09″E 32°07′17″S
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independent variable and the predictor variables under different con-
ditions (De'ath and Fabricius, 2000). This approach does not require the
assumption of a globally linear relationship, nor a priori knowledge of
the mathematical form of nonlinear curve fitting methods (Breiman
et al., 1984).
The downscaling method employed here is similar to the NLDAS

product-based regression model developed by Fang et al. (2013, 2018)
and Fang and Lakshmi (2014), but with in-situ data and additional
factors. In this study, continuous long term in-situ observations of soil
moisture and temperature were used together with a time series of
remotely sensed NDVI data to develop the regression tree models by
season. The in-situ data from the SASMAS network provided details on
surface soil moisture change under different climatic conditions over
the range of soil types. Soil texture information was also considered in
the regression tree models, given the spatial variation in edaphic
characteristics for this semi-arid study site and its implication for the
spatio-temporal surface soil moisture dynamics (Chen et al., 2014; Cosh
et al., 2008). In particular, a large portion of the study area is covered
by vertisols, extensively swelling soils with high clay content. This type
of soil shows large structural and volumetric changes during wetting,
and this directly affects the soil water retention characteristics and near
surface soil moisture (Rüdiger et al., 2005). The soils were classified
into two classes as heavy clays (clay content > 35%) and other soils
(Bonan, 2015). The soil clay content was considered as a modulating
factor based on the effect of soil texture on the thermal conductivity,
with thermal conductivity directly proportional to the thermal inertia
(Engman, 1991).
The θμ and ΔT values of the top 5 cm soil profile at each monitoring

station were calculated from the SASMAS in-situ dataset between 2003
and 2014. The ΔT values (ΔT= LSTAM− LSTPM) were computed by
using the LST difference between early morning and afternoon based on
the approximate MODIS Aqua day and night overpass times over the
study area, i.e. 01:30 (LSTAM) and 13:30 h (LSTPM). The NDVI (Tucker,
1979) was used in the regression tree model, to account for the impact
of vegetation density in modulating soil temperature and soil moisture.
The NDVI is defined as:

= +NDVI NIR RED NIR RED( )/( ) (4)

where NIR and RED are the reflectance values from infrared and red
bands respectively. NDVI values vary from −1 to +1, with negative
values representing water, near zero values no vegetation cover (e.g.,
bare lands and urban areas), and values closer to +1 dense vegetation.
Three NDVI classes were defined for the classification of the ΔT − θμ
regression model based on the vegetation density, i.e., NDVI < 0.4
(grasslands or no vegetation), 0.4 < NDVI < 0.6 (abundant and vig-
orous vegetation), and NDVI > 0.6 (dense and vigorous vegetation)
(de Alcântara Silva et al., 2016). The NDVI values at each station over
the period of 2003–2014 were estimated by using MODIS 16-day NDVI
composites (MYD13A2) (1 km resolution).
Lastly, the four Austral seasons, spring (from September to

November), summer (from December to February), autumn (from
March to May), and winter (from June to August), were used to classify
the regression tree in view of the seasonal impact to the ΔT-θμ re-
lationship. In summary, the entire ΔT-θμ regression model was classi-
fied into 24 classes, i.e. three NDVI classes, two soil classes and four
seasonal classes. Fig. 7a shows the regression tree developed for the
Austral spring. The regression tree for the other seasons were similarly
developed.
The MODIS Aqua LST (MYD11A1) values over the Krui and Merriwa

stations showed a strong linear relationship with the SASMAS ob-
servations in 2015 with a R2 value of 0.74 at day time and 0.76 at night
time. The day and night time MODIS Aqua LST (MYD11A1) values over
SASMAS in-situ stations were compared against the top 5 cm SASMAS
in-situ soil temperature values at approximate MODIS overpass times
(13:30 h at day time and 01:30 h at night time). Consequently, MODIS
day time and night time LST values were bias corrected using a linear

calibration with the SASMAS observations and subsequently used to
calculate ΔT values at 1 km spatial resolution. The MODIS derived ΔT
values were input into the regression tree to calculate respective θμ
estimates at 1 km spatial resolution. The NDVI and soil clay content
values at each 1 km ΔT pixel were extracted from the MODIS 16-day
NDVI composites and the Soil and Landscape Grid National Soil
Attributes Maps respectively.
The coarse resolution soil moisture products (θSAT) were thereafter

downscaled to 1 km pixel p (θds, p) as:

= +
n
1 ,ds p est p SAT

n

est p, ,
1

,
(5)

where θest, p is soil moisture content estimated by the regression tree at
the 1 km pixel p, θSAT the satellite soil moisture product where p is laid
within its foot print, and n is the total number of 1 km pixels (p=1..n)
within the coarse resolution satellite pixel.

3.3. Evaluation of the downscaled products

Evaluation of the downscaled soil moisture products and algorithms
consisted of two parts: (1) assessing the accuracy of the downscaled
products against the SASMAS in-situ observations during 2015; and (2)
evaluating the consistency in spatial patterns between high resolution
L-band airborne soil moisture retrievals and the downscaled soil
moisture estimates derived from the upscaled airborne soil moisture
retrievals.

3.3.1. Validating the downscaled products with SASMAS in-situ
observations
The downscaled soil moisture products were compared with the

SASMAS in-situ observations of the top 5 cm soil profile from K3, M6
and S3 stations in 2015. Due to the limited data availability, only a
single station per downscaled pixel was compared; hence, subgrid-scale
spatial variability of soil moisture within a downscaled pixel could not
be assessed. However, in-situ soil moisture observations, albeit the
limited availability, were assumed to be a reasonable representation of
downscaled soil moisture products with the following reasons. First,
SASMAS soil moisture monitoring sites are able to represent their sur-
rounding landscape since they were established at carefully chosen
'time stable' locations (see Section 2.2.1). It is noteworthy to mention
that the intensive field sampling conducted at the NAFE’05 and the
careful positioning of stations supported the potential of using SASMAS
data for upscaling to a large spatial extent to validate coarse resolution
satellite soil moisture products without significant errors (Crow et al.,
2012; Panciera et al., 2008; Rüdiger et al., 2003, 2007). Second, sub-
grid spatial variability within the downscaled pixel deemed to be rather
small. There existed very little difference in environmental factors (e.g.,
land cover, vegetation, soil type, topography, meteorological factors)
that could contribute to large uncertainties in soil moisture within the
spatial extent of downscaled pixel. Indeed, a multiscale analysis by
Martinez et al. (2007) demonstrated very little soil moisture variability
at a fine (< 1 km2) spatial scale based on intensive field campaigns
conducted in this area during NAFE’05. Lastly, Chen et al. (2014)
showed the temporal stability of the SASMAS network sites using the
HYDRUS-1D soil water model. The sensitivity analyses revealed soil
type and leaf area index as the key parameters affecting soil moisture
variability through time. The calibrated model to a single site was able
to simulate soil water storage for closely located monitoring sites as
well as for distant sites (up to 30 km) if spatially variable rainfall was
allowed. Chen et al. (2014) demonstrated the potential usefulness of
continuous time, point-scale SASMAS in-situ observations and simula-
tions for predicting the soil wetness status over a catchment of sig-
nificant size (up to 1000 km2) across scales. Note that relative metrics
(see Section 3.3.3) were used in this validation process, due to the low
density of in-situ soil moisture monitoring stations.
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3.3.2. Validating the downscaling algorithms using NAFE’05 airborne
observations
One major problem in validating downscaled soil moisture products

with sparse in-situ networks is the large spacing between the mon-
itoring stations. When in-situ observations are used as reference ob-
servation to assess downscaled products, several problems could arise
from resolution cell representation, station-to-station biases, and con-
sistency of data records (Colliander et al., 2017b). Use of high spatial
resolution airborne soil moisture observations as reference observations
has been considered as a robust, alternative approach to validate spatial
downscaling methods (Colliander et al., 2017b; Merlin et al., 2008;
Piles et al., 2009; Wu et al., 2017). Due to unavailable resources, the
field experiment to collect a set of high resolution airborne soil
moisture observations could not be conducted during the study period.
Instead, our downscaling algorithms were further tested with the
NAFE’05 airborne soil moisture dataset over the 40 km×40 km study
area covering Krui and Merriwa River catchments as follows. This is the
only high resolution airborne soil moisture dataset available in our
study area. The ∼1 km resolution airborne soil moisture data were first
upscaled by taking the spatial mean over the study area to simulate a
coarse resolution satellite soil moisture pixel. The aggregated soil
moisture data were then downscaled to 1 km using the developed re-
gression tree models (Eq. (5)) with MODIS-derived NDVI and LST da-
tasets. If the LST datasets had significant spatial data gaps due to the
clouds on the NAFE’05 campaign days, the LST data prior to or just after
the campaign days were used assuming no significant variation in the
daily soil moisture between adjacent dates. Then, the spatial patterns of
the downscaled soil moisture were compared against the NAFE’05 1 km
resolution airborne soil moisture data and the absolute difference be-
tween the two datasets was calculated for each day. The region covered
by the dense vegetation along the southern border of the NAFE’05 study
area was masked and excluded from this analysis (Fig. 8a). The data
from 31st October 2005 was not considered in this comparison due to

the large data gaps caused by the cloud cover.

3.3.3. Performance metrics
The RMSE, ubRMSE, coefficient of determination (R2), Pearson’s

correlation coefficient (R) and coefficient of variation (CV) were used as
metrics in data comparisons. These metrics are computed as (Entekhabi
et al., 2010b; Colliander et al., 2018):

= =
n

RMSE
( )

,i
n

ds i obs i1 , ,
2

(6)

= =
n

ubRMSE
(( ¯ ) ( ¯ ))

1
i
n

ds i ds obs i obs1 , ,
2

(7)

where θobs,i is the ith value of soil moisture observations (in-situ or
airborne) used in these comparisons as the true values, θds,i the ith value
of the downscaled 1 km soil moisture products and n is the number of
observations. ōbs and d̄s are the means of observed and downscaled
soil moisture, respectively.
The R2 value, R and CV are estimated as:

=R 1
( )

( ¯)
,i reg i

i

2 ,
2

2 (8)

=
=n s s

R 1
( 1)

(
¯

)
¯

,
i

n
ds i ds

ds

obs i obs

obs1

, ,

(9)

=CV s
¯ , (10)

where θreg,i is the predicted soil moisture from a regression fit between
θds and θobs. sds and sobs are the standard deviations of downscaled and
observed soil moisture values, respectively. The standard deviation (s)
is estimated by:

Fig. 7. (a) The regression tree developed for the Austral spring. The ΔT and θμ values were classified based on the season, soil clay content and the NDVI value as
shown in the regression tree. (b) Regression Models developed for the class of clay< 35% and 0.4 < NDVI < 0.6 for (i) Austral summer, and (ii) Austral winter
seasons.
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= =
n

s
( ¯)

1
.i

n
i1

2

(11)

Here, θi is the soil moisture estimate at the ith observation (i=1:n)
and ¯ is the spatial or temporal mean of the soil moisture estimates.

4. Results

4.1. Comparison of coarse resolution satellite soil moisture products

The comparisons between the in-situ observations and satellite soil
moisture products are shown in Fig. 9. Fig. 9a shows the agreement
between SMAP-E products and the SASMAS in-situ data at SMAP-E
pixel X (Fig. 5b), along with the daily precipitation measured at the K3
station. The response of SMAP soil moisture to the precipitation is
evident in Fig. 9. The SMAP-E soil moisture product showed a good
agreement with the in-situ data at pixel X showing an ubRMSE value of
0.051 and R2 values of 0.73 (Fig. 9a). However, a slight under-
estimation was observed from the SMAP products when compared with
the in-situ data, particularly during the drying stage. Chen et al. (2017)
also explain an underestimation bias in SMAP data, especially in drying
conditions, possibly caused by the mismatch between the measuring
depths of in-situ sensors and L-band penetration depths. The SMOS soil
moisture products showed a notable underestimation when compared
against SASMAS in-situ observations (Fig. 9b) at pixel R (Fig. 5c). The
temporal pattern of soil moisture (i.e. climatology) was reasonably
captured by the SMOS products (Fig. 9b). An ubRMSE of 0.056 cm3/
cm3 with R2 value of 0.64 was found between SMOS 25 km gridded
product and in-situ data at this pixel. The limited in-situ observations
along with the errors in spatial averaging and instrument errors in in-
situ data were also potential error sources in these comparisons be-
tween satellite soil moisture products and in-situ observations. The
underestimation is less evident in SMAP compared to SMOS soil
moisture products. A number of studies have observed the same be-
haviour of a general under-estimation with SMOS (Al Bitar et al., 2012;
Dall'Amico et al., 2012; Gherboudj et al., 2012; Cui et al., 2017; Dente
et al., 2012; Pacheco et al., 2015; Niclòs et al., 2016). Some of the
possible reasons for the SMOS underestimation can be identified as; the
L-band penetration depth being less than 5 cm for wet soils (Ulaby
et al., 1986), inability to represent spatial heterogeneity at the coarser
resolution, in-situ measurements overestimating the soil moisture,

systematic bias created by the retrieval algorithm and the erroneous
ancillary data such as soil texture and land use (Al Bitar et al., 2012).
The improved instrument design and algorithm of SMAP (Karthikeyan
et al., 2017b) can also contribute to the better accuracy of SMAP.
The comparison between SMOS and SMAP-E soil moisture products

over the SMOS pixels P, Q, R and S shows a reasonably good agreement
with RMSEs of 0.089, 0.075, 0.072 and 0.072 cm3/cm3 (R2=0.58,
0.57, 0.69 and 0.68, p-values < 0.001 for all cases) over the SMOS
25 km pixels P, Q, R and S, respectively (Fig. 10).

4.2. Development of the downscaling model

The regression fits developed for the class with clay<35% and
0.4 < NDVI < 0.6 for Austral summer and winter are shown in Fig. 7
(i) and (ii). Around 20,000 (ΔT, θμ) data pairs obtained from ten
SASMAS stations from 2003 to 2014 were used to develop the regres-
sion tree model, based on the availability of reliable near surface
(0–5 cm) datasets. The large sample size collected over different climate
conditions was sufficient to capture the variability as required by the
regression tree classification.

4.3. Validating the downscaled products with in-situ data

Fig. 11a shows the comparison of the downscaled soil moisture
products of SMAP-E km, and SMOS, with the in-situ observations at K3,
M6, and S3 stations. The top 5 cm soil moisture data were unavailable
at the other SASMAS stations in 2015. Therefore, the only option was to
compare the downscaled data with the available in-situ measurements,
although these three monitoring stations are laid within separate 1 km
pixels. The downscaled soil moisture estimates of the satellite products,
SMAP-E and SMOS, have captured the temporal variability of soil
moisture with a good accuracy at all stations (Fig. 11a). At the M6
monitoring station, the downscaled products showed a general under-
estimation compared to the in-situ record. Lack of spatial representa-
tiveness of M6 station and instrument errors can be possible causes for
this mismatch. Fig. 11b shows the agreement between the in-situ data
and downscaled soil moisture estimates of SMAP-E and SMOS products.
These downscaled SMAP-E and SMOS soil moisture products showed
average ubRMSE values of 0.068 and 0.051 cm3/cm3 (with average R2

values of 0.40 and 0.61), respectively.

Fig. 8. (a) Land use/land cover, and (b) soil clay content over the NAFE’05 study area. The dense vegetation belt across the southmost region of the NAFE’05 study
area can also be identified as a divide of soil texture.
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Table 4 shows a summary of the agreement between the SASMAS in-
situ observations and the downscaled soil moisture product at stations
K3, M6, and S3. Downscaled SMOS products show better ubRMSE va-
lues and high R2 against in-situ data, compared to the downscaled
SMAP-E products. Fig. 12 illustrates the spatial variability of soil
moisture over the Krui and Merriwa River catchments, as captured by
the SMAP-E and SMOS soil moisture products and their downscaled

counterparts on 28th June 2015. This epoch was selected due to little
cloud cover of the MODIS LST scene. When compared to the coarse
resolution soil moisture products, it is evident that the downscale
products have captured the sub-catchment level spatial variability of
soil moisture at a much finer scale. It can be seen that the wet pixels in
the middle of the Krui River catchment and the northern half of the
Merriwa River catchment (Fig. 12) are closely related to the clay

Fig. 9. Comparison of the temporal patterns and agreement between SASMAS in-situ observations at top 5 cm soil profile and (a) SMAP-E, and (b) SMOS soil moisture
products. The daily precipitation shown in the figure is based on the in-situ observations at SASMAS K3 monitoring station.

Fig. 10. Comparison and correlation between SMOS and SMAP-E soil moisture products over Krui and Merriwa River catchments in 2015/16.
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content of the soils (Fig. 2a). The increasing soil moisture gradient to-
wards north, driven by the precipitation patterns and soil texture, is
visible in the downscaled products. The subpixel scale spatial patterns
of SMOS and SMAP soil moisture are similar, since these patterns are

based on the soil moisture estimates derived from MODIS LSTs.

4.4. Validating the downscaling algorithms with the NAFE’05 airborne
observations

Fig. 13a shows the distribution of the NAFE’05 soil moisture data of
the regional airborne campaign on 7th November, 14th November and
21st November 2005, with corresponding downscaled soil moisture
estimates. Soil moisture variability of 31st October 2005 was excluded
in this figure due large data gaps caused by clouds. The NAFE’05 re-
gional soil moisture datasets of the four subsequent campaign days
showed spatial means of 0.44, 0.36, 0.16 and 0.14 cm3/cm3 with CVs of
0.32, 0.37, 0.63 and 0.60 respectively over the 40×40 km study area.
This clearly showed a drying trend from 7th November to 21st No-
vember 2005. The SMAP-E soil moisture products show a mean value of
0.20 cm3/cm3 (standard deviation of 0.07 cm3/cm3) over the NAFE’05
study area during 2015 and 2016. The spatial average of the NAFE soil

Fig. 11. (a) Temporal variability of soil moisture as captured by the downscaled SMAP-E 9 km, and SMOS 25 km gridded products with respect to SASMAS in-situ
data at stations K-3, M-6, and S-3. (b) The agreement between the downscaled SMAP-E, and SMOS soil moisture products with SASMAS in-situ data.

Table 4
Agreement between SASMAS in-situ data and downscaled satellite soil moisture
data at monitoring stations K3, M6 and S3.

Downscaled
product

SASMAS monitoring station

K-3 M-6 S-3

ubRMSE
(cm3/cm3

R2 ubRMSE
(cm3/cm3

R2 ubRMSE
(cm3/cm3

R2

D/s SMAP-E 0.066 0.44 0.074 0.36 0.063 0.40
D/s SMOS 0.044 0.72 0.054 0.59 0.055 0.53
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moisture data in the 40 km×40 km study area over the 4 days showed
a mean value of 0.27 cm3/cm3 (standard deviation=0.15 cm3/cm3).
This shows that the NAFE’05 data shows slightly high soil moisture
content compared to the soil moisture content as measured by the
SMAP over the two years, yet displaying the typical soil moisture
conditions of the area.
The downscaled data showed mean soil moisture values close to the

NAFE’05 observations, but with less variability (Fig. 14). The response
from the saturated clay soils and the surface runoff, caused by the early
morning precipitation events is a probable reason for the high varia-
bility in NAFE’05 datasets. The SASMAS in-situ data shows precipita-
tion of ∼20mm at S2 on 30th and 31st October 2005. This included
light precipitation events (∼12mm) in the early morning of 31st Oc-
tober, i.e., a couple of hours before the flight time. This resulted in wet
conditions on 31st October 2005 observed from the NAFE'05 dataset. In
addition, the precipitation events on 31st October 2005 (Table 5)
caused large data gaps in the MODIS LST due to the dense cloud cover
on this day. A 12mm precipitation event was also recorded at S2 on 5th
November 2005 which explains the higher mean soil moisture values
observed from the NAFE’05 dataset compared to the average of the
SMAP soil moisture products over this area during 2015/16. Further-
more, Table 5 shows a general gradient of precipitation towards north
across the NAFE’05 study area. This can be a possible reason for the
higher soil moisture values in the northern part of the NAFE’05 area
compared to the southern part. The response from surface runoff and
soil saturation can also be identified as possible reasons for the extreme
wet pixels in the NAFE’05 dataset.
Fig. 13 shows a good agreement in the spatial patterns between

NAFE’05 data and downscaled soil moisture products. The lower soil
moisture values resulting from the high sand content in the southern
part of the 40 km×40 km NAFE’05 area (i.e. the southern parts of the
Krui and Merriwa River catchments) and the high soil moisture values
resulting from the high clay content in the mid-regions of the two sub-
catchments (Fig. 8b) were evident in both downscaled and NAFE’05
maps, especially during the dry conditions on 21st November 2005
(Fig. 13a). This highlights soil texture as a dominant factor regulating
spatial patterns of soil moisture in the study area. This is compatible
with the findings of Martinez et al. (2007) at the Stanley catchment,
explaining that the wettest areas of the catchment are dominated by the
clay soils.
The error maps shown in Fig. 13b illustrate the absolute error be-

tween observed and downscaled datasets of the NAFE’05. The two
datasets have a reasonable agreement showing an error< 0.1 cm3/cm3

for more than 80% of the area on 7th and 14th November 2005. Over
95% of the area shows an error less than 0.1 cm3/cm3 on 21st No-
vember 2005 under the dry conditions. Higher error values (> 0.1 cm3/
cm3) can be seen in the wetter pixels, possibly caused by higher pre-
cipitation in the northern part of the study area. A better agreement can
be seen between the two datasets with increasing catchment dryness
(Figs. 13 and 14). Overall, the comparison between NAFE’05 and
downscaled soil moisture datasets show an average RMSE of 0.07 cm3/
cm3 (with R value of 0.4).

5. Discussion and conclusion

This paper explored the feasibility of generating a time record of soil
moisture at high spatial resolution (1 km) using SMAP-E 9 km and
SMOS 25 km gridded satellite soil moisture products over two semi-arid
river catchments in the Upper Hunter Region of New South Wales,
Australia. The soil moisture and soil temperature dataset for the top
5 cm soil layer, obtained from the in-situ soil moisture network
(SASMAS) over the Goulburn River catchment, was used to develop a
thermal inertia based regression tree model between ΔT and θμ. The
regression tree model was classified based on the modulating factors;
season, vegetation density and soil texture. The MODIS LST products
were then used to estimate soil moisture at 1 km resolution from the
coarse satellite products using the rule-based regression tree model. The
accuracy of the downscaled soil moisture products was evaluated by
using the SASMAS in-situ and the NAFE’05 airborne datasets.
Both SMAP-E and SMOS soil moisture products showed a temporal

change consistent with the precipitation. SMAP-E soil moisture showed
an agreement with the in-situ data of 0.051 cm3/cm3 ubRMSE
(R2= 0.73), which is slightly higher than the accepted SMAP accuracy
of 0.04 cm3/cm3. The SMOS 25 km gridded product showed ubRMSE of
0.056 cm3/cm3 (R2= 0.64) against in-situ data. The unavailability of
evenly and densely distributed in-situ stations over the SMAP-E foot-
print are a major limitation of this comparison. Beside the measurement
errors from the in-situ sensors (∼0.03 cm3/cm3), soil cracking over the
clay soils was a serious issue for the near surface (0–5 cm) soil moisture
monitoring. In the dry periods, the cracks caused sensors to be not in
contact with the soils, whereas after precipitation, the soils get flooded
and swelled. This creates a challenge for maintaining near surface
sensors and assuring the data quality for in-situ observations. The
limited availability of in-situ observations and the error in spatial
averaging of in-situ data over the satellite footprints are the main
sources of errors in this comparison. Because of the limited availability
of the top 5 cm soil moisture observations, Senanayake et al. (2017)
tested the proposed downscaling approach with the in-situ data of
0–30 cm soil layer. Soil moisture and temperature data from five Krui
River catchment monitoring stations in 2015 (∼1700 data pairs) were
employed in this work, based on the premise that the daily mean of the
near surface soil moisture (0–5 cm) was closely related to the daily
mean soil moisture of the 0–30 cm soil layer in the study area (Martinez
et al., 2007). This study showed an RMSE of 0.14 cm3/cm3 when the

Fig. 12. The spatial variability of soil moisture as captured by the coarse re-
solution satellite soil moisture products and their downscaled counterparts of
(a) SMAP-E 9 km, and (c) SMOS 25 km gridded products on 28th June 2015
over the Krui and Merriwa River catchments.
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downscaled data were compared against the in-situ observations.
The downscaled soil moisture products of the SMAP-E and SMOS

showed ubRMSEs of 0.068 and 0.051 cm3/cm3, respectively, with the
SASMAS in-situ observations. The accuracy of the coarse resolution
satellite soil moisture products directly affects the accuracy of their
downscaled counterparts. It is noteworthy to mention that, the average
of the downscaled soil moisture products within a coarse resolution
satellite footprint was the same as the original value of the coarse re-
solution satellite soil moisture product (see Eq. (5)). The errors in

MODIS LSTs (Wan, 2008) and the uncertainties in clay content values
(Rossel et al., 2015) can also be identified as possible sources of errors.
Lack of in-situ network sites within 1 km pixel was a major limita-

tion in validating the downscaled soil moisture products. Therefore,
presenting metrics for absolute soil moisture (i.e. RMSE and bias) is
invalid. Accordingly, relative metrics were used in presenting the re-
sults of this validation (i.e. ubRMSE and correlation). In addition,
NAFE’05 data was also used in this study as a solution to lack of ground
measurements for validation. The downscaled soil moisture showed a

Fig. 13. (a) Comparison of the downscaled soil moisture products with NAFE’05 airborne dataset. The downscaled products of the closest date to the NAFE’05
regional airborne data collection were used in this comparison based on the cloud effect on MODIS LSTs. (b) The absolute difference between the soil moisture of
NAFE’05 airborne dataset and downscaled products on 7th November, 14th November and 21st November 2005 over the NAFE’05 study area. Data from 31st
October 2005 was excluded in this figure due to high cloud cover.
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good agreement with the spatial patterns shown by NAFE'05 airborne
campaign. Both NAFE'05 and downscaled data shows the spatial pat-
terns driven by soil texture. The clay-rich mid-catchment areas of the
Krui and Merriwa River (Fig. 8b) can be distinguished from the north
and south-most regions in the soil moisture maps (Fg.13a). This agrees

with the findings of the previous studies (Cosh et al., 2008; Cantón
et al., 2004; Gómez-Plaza et al., 2000) that have shown soil properties
and vegetation as the main factors affecting soil moisture variability in
semi-arid regions. The results show that the algorithms work well over
both spatially and temporally dry conditions compared to wet condi-
tions. Another major limitation of this downscaling method is the data
gaps in MODIS LST occurred due to the cloud cover. One possible ap-
proach to address this problem is by using the LST products from
geostationary satellites (Oyoshi et al., 2014; Yamamoto and Ishikawa,
2018). Although their spatial resolution is slightly coarser than MODIS
LST products, the high temporal resolution of the geostationary LST
data allows the retrieval of close representations of TAM and TPM. The
4 km spatial and one-hour temporal resolution of Multi-functional
Transport Satellite (MTSAT)-1R (Himawari-6) LSTs can be shown as an
example dataset of LST. However, use of geostationary satellites do not
completely ensure to avoid data gaps along a day due to the presence of
clouds. Piles et al. (2016) have proposed a technique to improve the
spatio-temporal resolution of soil moisture from the synergy of SMOS
and Meteosat Second Generation (MSG) Spinning Enhanced Visible and
Infrared Imager (SEVIRI) observations. SEVIRI is a geostationary orbit
optical imaging radiometer on-board the MSG satellite. Soil moisture
retrievals from SMOS with LST and Fractional Vegetation Cover (FVC)
products from the SEVIRI have been employed in this approach. In
addition, Djamai et al. (2016) proposed a method to estimate soil
moisture at high resolution on cloudy days, by combining the Canadian
Land Surface Scheme (CLASS) with DisPATCh model. This involves
interpolating the input data of CLASS at high resolution by kriging and
subsequent near surface soil moisture simulation and calibrating the
CLASS using the downscaled soil moisture from DisPATCh model. An-
other potential way of filling these data gaps caused by the cloud cover
is using the persistent spatial patterns of soil moisture. A number of
researchers have studied the temporal persistence of soil moisture
patterns (Vanderlinden et al., 2012; Brocca et al., 2009; Gómez-Plaza
et al., 2000; Cosh et al., 2008). However, the spatial pattern of catch-
ment soil moisture can be changed based on the factors such as pre-
cipitation pattern, seasonal vegetation dynamics and mean catchment
wetness (Famiglietti et al., 2008; Chen et al., 2014). Therefore, com-
prehensive studies on time stability of soil moisture is required prior to
such approach.
The methodology introduced in this study shows a good potential in

producing a time series record of high-resolution soil moisture over arid
and semi-arid regions. Future studies should be directed on further
refining the regression algorithms by combining model-derived datasets
and other forcing factors.
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Fig. 14. The distribution of NAFE’05 and downscaled soil moisture with the
absolute error between the two datasets over the 40 km×40 km study area on
7th November, 14th November and 21st November 2005.

Table 5
Weekly precipitation data recorded at the SASMAS monitoring stations during
the period of NAFE’05 regional airborne campaign.

Week Precipitation (mm)

Krui River catchment Merriwa River catchment

S2 K4 M1 M3 M4 M5

25 Oct – 31 Oct 17.0 18.2 22.0 11.8 19.0 16.6
1 Nov – 7 Nov 14.4 18.2 12.4 23.2 23.2 35.4
8 Nov – 14 Nov 11.0 8.4 1.4 5.0 11.2 8.8
15 Nov – 21 Nov 0 0 0.2 0 0 0
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