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a b s t r a c t

The skill of hydrologic models, such as those used in operational flood prediction, is currently restricted
by the availability of flow gauges and by the quality of the streamflow data used for calibration. The
increased availability of remote sensing products provides the opportunity to further improve the model
forecasting skill. A joint calibration scheme using streamflow measurements and remote sensing derived
soil moisture values was examined and compared with a streamflow only calibration scheme. The effi-
cacy of the two calibration schemes was tested in three modelling setups: 1) a lumped model; 2) a
semi-distributed model with only the outlet gauge available for calibration; and 3) a semi-distributed
model with multiple gauges available for calibration. The joint calibration scheme was found to slightly
degrade the streamflow prediction at gauged sites during the calibration period compared with stream-
flow only calibration, but improvement was found at the same gauged sites during the independent val-
idation period. A more consistent and statistically significant improvement was achieved at gauged sites
not used in the calibration, due to the spatial information introduced by the remotely sensed soil mois-
ture data. It was also found that the impact of using soil moisture for calibration tended to be stronger at
the upstream and tributary sub-catchments than at the downstream sub-catchments.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

River flooding is one the most destructive natural hazards,
accounting for a significant proportion of disaster-related fatalities,
economic losses, and ecological damage (Pagano et al., 2014;
Haynes et al., 2016). A timely, accurate, and reliable flood warning,
typically achieved through an event-based or continuous stream-
flow forecasting system, is critical for inundation analysis, emer-
gency preparedness and response (Sene, 2008).

As a core component of a typical streamflow forecasting system,
catchment hydrologic models simulate the runoff generation, i.e.,
either rainfall-runoff or snowmelt-runoff, and the flow concentra-
tion and propagation processes within a catchment and its river
network. While these models can be empirical, conceptual, or
process-based, implemented in a lumped or distributed manner,
they all suffer from uncertainties caused by forcing data, model
physics, initial condition quantification, and parameter estimation.
To reduce these uncertainties, and to meet the accuracy require-
ment of the streamflow forecasting application, these models are
typically constrained by observed data, either through batch cali-
bration to address systematic errors using historical observations,
or data assimilation to address random errors using real-time
observations (Li et al., 2016). Although various data assimilation
algorithms have been proposed and implemented, batch calibra-
tion is still an important and widely used tool due to the highly
conceptualized parameterizations in many streamflow forecasting
models (Emerton et al., 2016; Pagano et al., 2016).

To optimize their performance, hydrologic models tend to be
calibrated against all available gauged streamflow data. Neverthe-
less, it has been found that the models have reached their accuracy
limit unless new types of observations are integrated (Loumagne
et al., 2001b). Thanks to recent advances in remote sensing tech-
niques, there is a great opportunity to introduce remotely sensed
land surface state variables to further improve the model perfor-
mance (Grimaldi et al., 2016; Li et al., 2016).

Soil moisture is an important variable in catchment hydrologic
processes (Legates et al., 2011). It is used as an indicator of catch-
ment wetness, which is an essential initial condition for hydrologic
models – it has been generally found that a wet catchment has a
higher chance to lead to a high runoff ratio, and thus more likely
to lead to a high-flow event, indicating a high risk of flooding
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(Li et al., 2014). However, the availability of ground-based soil
moisture monitoring sites is limited; furthermore, these are point
measurements only representing a small spatial range (Romano,
2014). Remote sensing techniques provide a tool to obtain spatially
distributed near-surface soil moisture information from space.
Consequently, they have attracted increased interest by hydrologic
communities (Liu et al., 2012).

Remotely sensed soil moisture has been widely integrated into
soil moisture accounting or land surface models to improve near-
surface and/or root-zone soil moisture simulation. Meanwhile,
the hydrologic communities have also introduced remotely sensed
soil moisture for streamflow prediction (Li et al., 2016). Among
those soil moisture constrained streamflow prediction studies,
there has been a major effort on investigating the impact of soil
moisture data assimilation on forecasting/hindcasting skills
(Goodrich et al., 1994; Ottlé and Vidal-Madjar, 1994; Loumagne
et al., 2001a,b; Pauwels et al., 2001; Quesney et al., 2001;
Pauwels et al., 2002; Aubert et al., 2003; Francois et al., 2003;
Jacobs et al., 2003; Crow and Ryu, 2009; Brocca et al., 2010; Chen
et al., 2011; Draper et al., 2011; Brocca et al., 2012; Han et al.,
2012; Matgen et al., 2012; Alvarez-Garreton et al., 2014; Chen
et al., 2014; Massari et al., 2014; Ridler et al., 2014; Wanders
et al., 2014a,b; Alvarez-Garreton et al., 2015; Laiolo et al., 2015;
Lievens et al., 2015; Cenci et al., 2016; López López et al., 2016;
Yan and Moradkhani, 2016), with much fewer studies on utilizing
remotely sensed soil moisture data for batch calibration (Parajka
et al., 2006; Parajka et al., 2009; Sutanudjaja et al., 2014;
Silvestro et al., 2015; Kunnath-Poovakka et al., 2016; Rajib et al.,
2016; Kundu et al., 2017; López López et al., 2017). In-situ soil
moisture data were introduced for lumped hydrologic model cali-
bration, showing that adding soil moisture information additional
to streamflow observations can improve the robustness of the
model parameter estimation, which has the potential to lead to
more accurate streamflow forecasts (Zhang et al., 2015;
Thorstensen et al., 2016; Shahrban, 2017). However, when remo-
tely sensed soil moisture data were used, it was found to be hard
to achieve a consistent improvement in streamflow prediction
(Parajka et al., 2006, 2009). Along with the development of earth
observation techniques, the temporal coverage of remotely sensed
soil moisture products has been significantly improved, e.g., with
satellite revisit improved from 35 days in the Synthetic Aperture
Radar on European Remote Sensing satellites (SAR/ERS) to 1–3
days in the Advanced Scatterometer (ASCAT), the Soil Moisture
Ocean Salinity (SMOS), and the Soil Moisture Active Passive (SMAP)
missions. This provides a potential to further improve the batch
calibration. Recent related studies have been focused on imple-
menting these advanced remotely sensed soil moisture products
to calibrate a water resources accounting model (Kunnath-
Poovakka et al., 2016), distributed hydrologic models
(Sutanudjaja et al., 2014; Silvestro et al., 2015; López López et al.,
2017), and semi-distributed hydrologic models (Rajib et al.,
2016; Kundu et al., 2017). Certain levels of improvement on
streamflow simulations were achieved by calibrating hydrologic
models against remotely sensed soil moisture data compared with
uncalibrated models (Kunnath-Poovakka et al., 2016; Kundu et al.,
2017; López López et al., 2017). However, streamflow estimates
still tended to be better when the model was calibrated against
streamflow measurements (López López et al., 2017). Therefore,
as Kundu et al. (2017) pointed out at the end of their article, there
is a need to test the potential of using remotely sensed soil mois-
ture data together with streamflow measurements for batch cali-
bration of hydrologic models. A couple of studies have
investigated soil moisture–streamflow joint calibration schemes
(Sutanudjaja et al., 2014; Silvestro et al., 2015; Rajib et al., 2016),
and it has been found that introducing soil moisture information
in addition to streamflowmeasurements can address the equifinal-
ity issues, and thus lead to benefits in streamflow prediction. While
these findings are encouraging, there has not been a study that
investigated the impact of using soil moisture–streamflow joint
calibration on streamflow prediction at ungauged locations, which
is a practical question faced by operational hydrologic community.

From the practical perspective, it is not always the case that a
catchment has either no flow gauges or a dense gauge network.
There are many catchments with a limited number of flow gauges
available for model calibration (e.g., http://www.bafg.de/GRDC/EN/
Home/homepage_node.html). A typical example is that only one
gauge at the outlet of a catchment can be used for calibration while
there is a practical demand to predict streamflow at certain inter-
nal locations. In that case the forecasting/hindcasting skill in inter-
nal sub-catchments are normally not satisfactory. Remote sensing
techniques provide spatially distributed information of soil mois-
ture. However, whether including remotely sensed soil moisture
data in addition to the limited number of flow gauges for model
calibration can benefit forecasting at the ungauged internal loca-
tions has not been fully addressed, which is the main research
question for this study.

To test the added value of including remotely sensed soil mois-
ture for batch calibration, a joint calibration scheme using remo-
tely sensed soil moisture and gauged streamflow data was
compared with a traditional streamflow-only calibration scheme
through lumped and semi-distributed model setups. The model
performance was evaluated at both ‘‘gauged” (gauges used for cal-
ibration) and ‘‘ungauged” (gauges not used for calibration) loca-
tions for the calibration period as well as for an independent
validation period in a hindcasting mode, i.e., with observed forcing
data.
2. Catchments and data

Two catchments in southeast Australia were used for this study
(Fig. 1). The first is the Clarence River catchment upstream of Lily-
dale. The catchment is mainly covered by eucalyptus forest with
the main stream draining from northwest to southeast with a
quick flow propagation (�1 day). The second is the Condamine
River catchment upstream of Chinchilla, which adjoins the Clar-
ence. The upstream area is mainly covered by eucalyptus forest
while the downstream area is mainly covered by rainfed cropping
farm and pasture with the main stream draining from southeast to
northwest with a slow flow propagation (4–6 days). The two catch-
ments are geographically close to each other, but the hydrologic
features are quite different. The vegetation density is relatively
high in the Clarence and low in the Condamine, impacting the
quality of remotely sensed soil moisture products. The relatively
short flow response time in the Clarence relative to the Condamine
may affect the impact of initial catchment wetness on the stream-
flow forecasts. These different features make the two catchments a
good comparative case study.

The two catchments were delineated into sub-catchments
(Fig. 1) using the Australian Hydrological Geospatial Fabric
(http://www.bom.gov.au/water/geofabric/). Specifically, this was
done in two major steps:

� choose the forecasting locations and set them to be the outlets
of sub-catchments; and

� delineate the boundary of each sub-catchment by tracking the
contributing area upstream through the river network.

Each forecasting location was manually chosen based on two
criteria: 1) there is a flow gauge available; and 2) its related sub-
catchment is large enough to cover at least one SMOS pixel, e.g.,
with an area of over 625 km2.



Fig. 1. Study catchments and sub-catchment delineation together with flow gauge locations.
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Data used in this study include potential evapotranspiration
(PET), gauged precipitation, gauged streamflow, remotely sensed
near-surface soil moisture, and remotely sensed fractional vegeta-
tion cover (fc) for January 2010–June 2014. The PET, precipitation,
and fc were used as model inputs, while the streamflow and soil
moisture data were used for model calibration and/or validation.

The monthly gridded Australian Water Availability Project
(AWAP) PET dataset (Raupach et al., 2009; Raupach et al., 2012),
which was estimated from observed solar radiation using the
method developed by Priestley and Taylor (1972), was used in this
study. The sub-catchment PET values were extracted according to
the sub-catchment boundaries (described in Section 3), and con-
verted into hourly records with the assumption that it is constant
within each month. The variability of PET within a month was
ignored in this study. Nevertheless, it has been noted that the vari-
ation in PET has much less impact on streamflow than rainfall in
rainfall-runoff modelling (Samain and Pauwels, 2013; Bennett
et al., 2014). For this reason, the use of the monthly AWAP PET
for hourly streamflow forecasting has been widely implemented
in Australia (Pagano et al., 2011a; Li et al., 2014, 2015; Bennett
et al., 2016).

Gauged precipitation data were quality controlled against
AWAP daily rainfall based on a two-step approach (Robertson
et al., 2015), including:

� inconsistent data (anomalously high or low flows) censoring
based on double-mass plots; and

� low quality gauge removal according to the correlation with
AWAP daily precipitation.

The quality controlled hourly rainfall was then spatially inter-
polated to sub-catchments from rain gauges within a 10 km range
of each entire catchment using an inverse distance weighted
method.
Six streamflow gauges from the Clarence and five from the Con-
damine were selected as calibration/validation locations (detailed
in Section 3.3), according to the continuity of the streamflow data
and needs for the sub-catchment delineation. Hourly streamflow
data of the Clarence and Condamine basins were obtained from
the New South Wales Department of Primary Industries Water
(http://www.water.nsw.gov.au/) and the Queensland Department
of Natural Resources and Mines (https://water-monitoring.informa
tion.qld.gov.au/), respectively.

Soil moisture was extracted from the SMOS level 3 product
(reanalysis version) provided by the ‘‘Centre Aval de Traitement
des Données SMOS” (CATDS), which is a grid-based dataset with
an ascending pass at about 6 am and a descending pass at about
6 pm (local time). The approximate 43 km resolution data have
been posted onto a grid size of about 25 km with a temporal revisit
of 1–3 days. The soil moisture data were extracted according to the
sub-catchment boundaries and then averaged into each sub-
catchment by area weighting average.

The monthly fc was retrieved from the Moderate Resolution
Imaging Spectroradiometer (MODIS) data by the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) with a res-
olution of 500 m. As the scale of the fc data is much smaller than
the scale of the sub-catchments, the fc data were extracted by
the sub-catchment boundaries and then directly averaged for each
sub-catchment. The fc was also assumed to be constant within
each month.
3. Methodology

3.1. Experiment design

Riverine flood forecasting can be performed using a lumped or
distributed/semi-distributed catchment modelling system,
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depending on the catchment size, availability of streamflow
gauges, and rain gauge density. In this study, two calibration
schemes were applied in three model setups for a total of six
experiment scenarios (Table 1). The two calibration schemes were
1) a traditional calibration using gauged streamflow only; and 2) a
joint calibration using both streamflow and soil moisture data. The
three model setups were 1) a lumped model; 2) a semi-distributed
model (Semi-1) with the assumption that only one streamflow
gauge at each catchment outlet was available for model calibra-
tion; and 3) a semi-distributed model (Semi-2) with the assump-
tion that all the streamflow gauges at the outlets of the sub-
catchments were available for calibration.

The catchment/sub-catchment boundaries are shown in Fig. 1.
The PET, fc, and soil moisture were sampled into either a single
value for each catchment (for the lumped model) or different val-
ues for the sub-catchments (for the Semi-1 and Semi-2). The pre-
cipitation was interpolated into the centroids of the sub-
catchments for Semi-1 and Semi-2, and then integrated into a sin-
gle value for the lumped model by area-weighted average accord-
ing to the areas of the sub-catchments. For the Semi-1, the same
set of parameters was estimated for all sub-catchments, while all
other internal sub-catchments were assumed to be ‘‘ungauged”
and the measurements there were only used for validation. For
the Semi-2, each sub-catchment was calibrated in sequence from
upstream to downstream using the gauged streamflow at its out-
let. The streamflow and soil moisture data used for calibration
were assumed to be accurate, i.e., observational uncertainties were
not considered.
3.2. The hydrologic model

GR models (modèle du Génie Rural) have been widely used by
operational hydrologic forecasting communities. For instance, the
Australian Bureau of Meteorology incorporates the GR4H (an
hourly 4 parameter GR model) as the core of their operational 7-
day streamflow forecasting service (http://www.bom.gov.au/wa-
ter/7daystreamflow/). One challenge of using remotely sensed
near-surface soil moisture data to constrain the GR4H is the differ-
ent meaning of soil moisture between the model and the remote
sensing data. Specifically, like many other conceptual rainfall-
runoff models, the GR4H parameterizes the catchment wetness
into a single bulk soil water storage, which is not directly compa-
rable with remotely sensed near-surface soil moisture. To better
accept remote sensing information, Loumagne et al. (1996) repa-
rameterized the soil water storage of the GR4J (a daily version of
GR4H) into a two layer system, namely the GRHUM, in which a
near-surface soil moisture layer is embedded into the bulk soil
moisture layer and the two layers have the same rainfall input.
Francois et al. (2003) improved the original GRHUM into a new
version, namely the GRKAL, in which two independent near-
surface and root-zone soil moisture layers are parameterized and
Table 1
Experiment scenarios tested.

Scenario alias Model setup Calibration
scheme

Lumped Q-Cali Lumped model Streamflow
calibration

Lumped Joint-Cali Joint calibration
Semi-1 Q-Cali Semi-distributed with one

streamflow gauge available at the
outlet

Streamflow
calibration

Semi-1 Joint-Cali Joint calibration
Semi-2 Q-Cali Semi-distributed with multiple

streamflow gauges available
Streamflow
calibration

Semi-2 Joint-Cali Joint calibration
the drainage from the near-surface layer is used as the input for
the root-zone layer.

In this study, an hourly version of the GRKAL was adopted to
simulate the rainfall-runoff and catchment routing processes.
Fig. 2 provides a schematic of the model. The model can be viewed
as two sub-models: 1) a two-layer soil moisture accounting sub-
model; and 2) a catchment routing sub-model. In the soil moisture
accounting sub-model, the total precipitation Pn is firstly split into
infiltration (Ps) and direct runoff (Pn-Ps). Ps entering into the near-
surface soil layer is then drained through a two-layer soil system.
The actual total evapotranspiration (ET) is calculated as the sum
of the ET from the near-surface layer and the transpiration from
the root-zone layer. The output of the near-surface layer is used
as the input for the root-zone layer (hydraulic exchange), and the
final output of the two-layer system is the percolation from the
root-zone layer (Perc). The Perc is then added to Pn-Ps as a total
runoff (Pr) which then enters the catchment routing sub-model.

The catchment routing part of the GRKAL is essentially the same
as that of the GR4H, i.e., it incorporates two unit hydrographs and
one nonlinear routing storage to represent the time delay caused
by the runoff concentration process. Specifically, Pr is divided into
two parts with a fixed ratio: 10% of Pr is routed through a single
unit hydrograph (UH2) while 90% of Pr is routed through a cascade
of another unit hydrograph (UH1) and a routing store (R). F nomi-
nally represents underground water exchanges between the mod-
elled catchment and the adjacent catchments. Details about the
model were described by Francois et al. (2003).

In the lumpedmodel setup, the GRKAL was used as a standalone
tool to simulate the rainfall-runoff, the overland flow routing, and
the river channel routing processes. In the semi-distributed model
setups (the Semi-1 and Semi-2), the GRKAL was used to simulate
the hydrologic processes in each sub-catchment, and the output
of the GRKAL from each sub-catchment was entered into a linear
Muskingum river model and routed to the outlet of the entire
Fig. 2. The structure of the GRKAL model (Francois et al., 2003).
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catchment. The Muskingum model simplifies the shallow water
equations based on a finite-difference approximation. It parame-
terizes the water storage in the flow wave and river network
through a triangular wedge and rectangular prism. Details about
the Muskingum model were described by Nash (1959) and Cunge
(1969).

3.3. The calibration approach

The streamflow-only calibration was designed according to the
strategy implemented in the operational 7-day streamflow fore-
casting service by Australian Bureau of Meteorology. The Shuffled
Complex Evolution-University of Arizona algorithm (SCE-UA)
(Duan et al., 1992), which is currently used for the 7-day stream-
flow forecasting, was used to find the globally optimal parameter
set. For the objective function, it has been a tradition in the course
of developing the forecasting system in Australia to use an
unweighted average of several metrics sensitive to different range
of flows, e.g., high flows, low flows, mid-range flows, and bias
(Pagano et al., 2011b; Bennett et al., 2014; Li et al., 2015;
Bennett et al., 2016). This is because the use of a hybrid objective
can strength its ability to result in a more robust model to better
simulate the whole range of flows, which is also important in the
catchments investigated in this paper, e.g., drought and floods
are frequent in the Condamine and can happen during the same
year. Therefore, the objective function chosen in this study (Eq.
(1)), is expressed as an unweighted mean of two Nash-Sutcliffe
model efficiency scores of log transformed flows (sensitive to low
flows, Eq. (2)) and Box-Cox transformed flows (sensitive to mid-
range flows, Eq. (3)), a Kling-Gupta efficiency coefficient score
(sensitive to high flows and variance, Eq. (4)), and a mean Bias
score (Eq. (5)).

FQ ¼ F logNS þ FBoxNS þ FKGE þ Fbias; ð1Þ
where

F logNS ¼
XTc

t¼1
½lnðQsim;t þ mÞ � lnðQobs;t þ mÞ�2XTc

t¼1
½lnðQsim;t þ mÞ � lnð�Qobs;t þ mÞ�2

; ð2Þ

FBoxNS ¼
XTc

i¼1
ðQ 0

sim;t � Q 0
obs;tÞ

2

XTc

i¼1
ðQ 0

sim;t � �Q 0
obsÞ

2
; ð3Þ

FKGE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2 þ 1� rsim

robs

� �2

þ 1�
�Qsim

�Qobs

� �2
s

; ð4Þ

Fbias ¼ max
�Qsim

�Qobs
;
�Qobs

�Qsim

� �
� 1

� �2
; ð5Þ

with Qsim;t and Qobs;t being streamflow simulations and observations
at time t in the calibration period Tc; m is the smallest non-zero
streamflow observation in Tc; r is the Pearson correlation coefficient
between Qsim and Qobs; Q 0sim;t and Q 0obs;t are the Box-Cox trans-
formed streamflow, which can be expressed as

Q 0 ¼ ðQ þ 1Þc � 1
c

; ð6Þ

where c denotes a transformation parameter, which was set to be
0.3 as suggested by Li et al. (2015).

For the joint calibration scheme, a joint objective function,
which is essentially a weighted average between the objective
function for streamflow and the objective function for soil mois-
ture, was proposed in this study as

FJoint ¼ a � FQ þ ð1� aÞ � FSM ; ð7Þ
where a is a weighting coefficient and FSM is a single Nash-Sutcliffe
model efficiency score between the modelled (Ssim;t) and remotely
sensed soil moisture (Sobs;t) as
FSM ¼
XTc

i¼1
ðSsim;t � Sobs;tÞ2XTc

i¼1
ðSsim;t � �SobsÞ2

: ð8Þ

A key point of the joint objective function is to define a so as to
appropriately emphasize the importance of soil moisture informa-
tion. In the original GRKAL paper, Francois et al. (2003) suggested
to give a weight of 5/7 to streamflow, when near-surface soil mois-
ture, root-zone soil moisture, and streamflow were jointly used for
model calibration, with the justification that streamflow should
account for a larger weight than soil moisture as the objective
was streamflow forecasting. Nevertheless, only near-surface soil
moisture data was used in this study and therefore it was not jus-
tified to adopt the weight suggested in that paper. With the consid-
eration of their suggestion, a trial-and-error process was applied to
analyze a suitable value of a. Values of 0.5, 0.6, 0.7, 0.8, and 0.9
were tested, resulting in minimum objective function values of
0.19, 0.16, 0.15, 0.18, and 0.20 in the Clarence, and 0.36, 0.31,
0.27, 0.29, and 0.33 in the Condamine respectively, for the Semi-
1 model setups. Therefore, the value of 0.7 for awas chosen for this
study as it exhibited the lowest objective function value.

In the lumped model setup, only one lumped model parameter
set was obtained through calibration. In the Semi-1 model setup
(described in Table 1), as only the gauge at the catchment outlet
was assumed to be available for calibration, parameters were set
to be spatially uniform for all sub-catchments to reduce potential
equifinality issues due to over-parameterization, except for the
parameter L (Fig. 2) representing the length of the two unit hydro-
graphs. As shown by Li et al. (2013), the natural response time of
Australian catchments can typically be formulated as a power
function of the catchment area; therefore, the calibrated L was
scaled by the square root of each sub-catchment area to represent
the natural concentration delay. In the Semi-2 model setup, as all
internal and outlet gauges were used for calibration, the calibration
was done from the upstream sub-catchments to the downstream
sub-catchments, and independent parameter sets were estimated
for sub-catchments.
4. Results

The hourly hydrologic model was calibrated for all six scenarios
specified in Table 1 using the data from January 2010 to December
2012, with the first three months being a warm-up period. The cal-
ibrated parameter sets were then applied for model prediction in
an independent validation period, from January 2013 to June
2014, through a hindcasting mode. The performance of the mod-
elling system was evaluated in both the calibration and validation
periods in terms of streamflow predictions. Two statistics, includ-
ing the Nash-Sutcliffe model efficiency coefficient (NS) and FQ

defined in Eq. (1), were used to evaluate the accuracy of the
streamflow predictions, as shown in Tables 2–5. More specifically,
Tables 2 and 3 list NS and FQ in the Clarence catchment for the cal-
ibration and validation periods, respectively. Tables 4 and 5 show
the same results for the Condamine catchment. Both statistics
were calculated for the continuous hourly streamflow predictions
within the whole calibration/validation period. The NS was used
to evaluate the predictive skill with an emphasis on high flows,
while FQ was used to demonstrate the model performance in
accordance with the objective function used for calibration. Higher
NS and lower FQ values indicate a better model prediction.



Table 2
NS/FQ values of streamflow prediction in the Clarence River catchment during the calibration period. Bold numbers
indicate where the joint calibration (Joint-Cali) improved the streamflow prediction compared with streamflow
calibration (Q-Cali), while standard font numbers indicate where Joint-Cali performed worse than or equivalent to
Q-Cali. The box highlights the ‘‘ungauged” cases.

Table 5
As for Table 2 but for the Condamine catchment during the validation period.

Table 3
As for Table 2 but for the validation period.

Table 4
As for Table 2 but for the Condamine catchment during the calibration period.
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4.1. Comparison among models

For the lumped model setup, the entire catchment (Clarence/
Condamine) was assumed to be one bucket, and the streamflow
was only simulated at the catchment outlet (Lilydale/Chinchilla).
Therefore, the evaluation statistics (NS and FQ ) were not calculated
at the internal locations for the lumped modelling scenarios.
According to Tables 2–5, the lumped model resulted in a much
lower NS and higher FQ values compared with semi-distributed
models, in both catchments and both the calibration and validation
periods. For instance, the Q-Cali for the lumpedmodel gave a NS/FQ

of 0.71/0.29 at Lilydale and 0.54/0.49 at Chinchilla during the cal-



Y. Li et al. / Journal of Hydrology 557 (2018) 897–909 903
ibration period, which were worse than the 0.83/0.14 and
0.70/0.27 obtained for the Semi-1 at Lilydale and Chinchilla respec-
tively. This indicates that the lumped model is not suitable for such
large catchments. Lumped systems are generally limited in repre-
senting the spatial distribution of forcing and parameters, which
can lead to unsatisfactory results for large catchments. In the Con-
damine, the main river is long, the catchment shape is narrow, and
the flow velocity is slow due to the relatively flat topography.
Therefore, the unit hydrograph type routing in the GRKAL is not
suited to simulate the flow propagation in this river system. For
this reason, the performance of the lumped model at Chinchilla
was even worse than that at Lilydale according to the NS and FQ

values shown in Tables 2–5.
The semi-distributed model calibrated against all internal and

outlet gauges (Semi-2) generally outperformed the model cali-
brated against only the outlet gauge (Semi-1). The difference
between the Semi-1 and Semi-2 was relatively slight at the catch-
ment outlets, e.g., the differences in NS/FQ between the two sys-
tems were 0.02/0.01 at Lilydale and 0.07/0.07 at Chinchilla,
respectively, during the calibration period in Q-Cali. This is because
both semi-distributed models employ distributed forcing and
model structures, while the only difference being that the param-
eters were distributed in space in the Semi-2 but set to be uniform
in the Semi-1. However, the performance differences were much
more obvious at internal locations. This is expected as the internal
sub-catchments were not calibrated against the internal gauges in
the Semi-1.

The relative strength of the three model setups did not change
when soil moisture was included in the calibration, i.e., the Semi-2
still performed best (with the NS between 0.65 and 0.82, and the
FQ between 0.11 and 0.30) while the lumped was still the worst
(with the NS between 0.48 and 0.68, and the FQ between 0.29
and 0.55). However, the impact of soil moisture on streamflow pre-
diction varied among different modelling settings. In the lumped
and Semi-2 scenarios, the joint calibration scheme generally
degraded the NS and FQ during the calibration periods compared
with the traditional streamflow calibration scheme (with a NS
decrease between 0.01 and 0.08, and a FQ increase between 0
and 0.07 as shown in Tables 2–5). Nevertheless, a certain level of
improvement was seen in the validation period at some of the
gauges. More consistent improvement by using soil moisture infor-
mation was obtained in the Semi-1 in both the calibration and val-
idation periods. It should be noted that in the Semi-1, all the
internal sites were assumed to be ‘‘ungauged”, while in the lumped
and Semi-2 setups, all evaluations were conducted at ‘‘gauged”
locations.
4.2. Impact of soil moisture at gauged locations

The predictions at ‘‘ungauged” locations are highlighted by the
boxes in Tables 2–5, and thus the ‘‘gauged” examples are those
outside the boxes. The NS and FQ values summarized in Tables
2–5 indicate a consistent degradation in streamflow caused by
using soil moisture data at gauged locations during the calibration
period. This is also illustrated in Fig. 3 (a and c) – during the events
in the calibration period, the joint calibration led to worse predic-
tions compared with the streamflow calibration at both Lilydale
and Chinhilla. This is reasonable as minimizing error in streamflow
was expected to lead to optimal streamflow estimation, while
introducing additional soil moisture information sacrificed the
optimality of the streamflow simulation to reduce errors in the soil
moisture. Nevertheless, although the degradation was consistent
in the calibration period, it is encouraging to find the forecasts
were improved. This can be explained as an equifinality issue in
streamflow optimization – different parameter sets can lead to
similar performance for streamflow but with different results for
other variables, such as near-surface soil moisture (Sutanudjaja
et al., 2014; Silvestro et al., 2015). Therefore, minimizing errors
from both near-surface soil moisture and streamflow has the
potential to lead to more robust parameter sets which improve
the modelled soil moisture without impeding streamflow pre-
dictability significantly in the calibration period. The improved
robustness then has the potential to result in more accurate
streamflow future forecasts – this was to a certain extent shown
in this case study. Considering all the gauges in the two catch-
ments for the three model setups (Table 3 and 5), 9 out of 15
gauged cases were improved in terms of NS while 10 out of 15
were improved in terms of FQ by joint calibration in the indepen-
dent validation period. The events in the validation period at Lily-
dale and Chinchilla are shown in Fig. 3 (b and d): the improvement
was observed during the first peak flow at Lilydale, while similarly
during both flood peaks at Chinchilla.
4.3. Impact of soil moisture at ungauged locations

The predictions at ‘‘ungauged” locations are highlighted by the
boxes in Tables 2–5. Contrary to the ‘‘gauged” locations, stream-
flow predictions at ‘‘ungauged” locations were found to be more
consistently improved by using soil moisture for the calibration.
Specifically, 4 locations out of 5 in the Clarence and 3 locations
out of 4 in the Condamine exhibited a higher NS and a lower FQ

by joint calibration in both the calibration and validation periods.
This is also illustrated in Fig. 4, which shows that the joint calibra-
tion improved the prediction of some of the flood peaks in the cal-
ibration and validation events at Paddys Flat and Tummaville. The
improvement was more obvious than in gauged locations. This can
be explained as follows. When streamflow gauges are limited, the
spatially distributed soil moisture information becomes the only
information for internal sub-catchments. Introducing soil moisture
into the model calibration essentially strengthens the model in
predicting the spatial variability of hydrologic variables, e.g., soil
moisture and streamflow.
5. Discussion

5.1. Impact of sub-catchment locations

The impact at the ‘‘ungauged” sub-catchments caused by intro-
ducing soil moisture information was found to vary with the loca-
tion of the sub-catchments. For instance, the difference in NS
between the streamflow calibration and the joint calibration was
relatively small at the downstream locations, e.g., Jackadgery in
the Clarence and Loudouns Bridge in the Condamine, while the dif-
ferences tended to be larger at the upstream and tributary loca-
tions, e.g., Paddys Flat, Drake, Broadmeadows, and Nymboida in
the Clarence, as well as Warwick, Tummaville, and Fairview in
the Condamine. A similar pattern was also found in FQ values. This
can be explained by the fact that the downstream locations are clo-
ser to the calibration gauge, and thus more constrained by the
streamflow data. The upstream and tributary sub-catchments
compensated each other to optimize the flow prediction at the out-
let, being more sensitive to the spatial variability brought by the
soil moisture information. This was extremely obvious at Warwick,
whose NS/FQ was improved from 0.49/0.46 to 0.60//0.37 in the cal-
ibration period and 0.45/0.56 to 0.55/0.44 in the validation period,
as it was the most distant sub-catchment to Chinchilla in a long
river system.

It should be pointed out that not all upstream and tributary
sub-catchments were improved by using soil moisture, e.g.,
degradations were found at Nymboida and Fairview in both the



Fig. 3. Streamflow prediction at Lilydale and Chinchilla showing one flood event in the calibration period and another one in the validation period.
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calibration and validation periods. Nevertheless, whether the pre-
dictions were improved or not, the difference (impact of soil mois-
ture) tended to be stronger at the upstream and tributary sub-
catchments rather than at the downstream sub-catchments.

5.2. Significance of the improvement

As discussed before, including soil moisture information into
model calibration reduced the possible equifinality in global opti-
mization. This brought benefits in two aspects. Firstly, although
minimizing errors in soil moisture simulation degraded the perfor-
mance in streamflow prediction, the improved robustness in the
calibration was found to exhibit the potential to improve stream-
flow predictions during an independent validation period, imply-
ing a possibility to improve future forecasts. Secondly, remotely
sensed soil moisture brought useful spatial information to reduce
the equifinality issue caused by the lack of streamflow gauges,
and thus led to improvements in streamflow predictions at
ungauged locations. However, the improvements in the gauged
and ungauged locations were not consistent in all sub-catchments



Fig. 4. Streamflow prediction at ‘‘ungauged” locations of Paddys Flat and Tummaville showing one flood event in the calibration period and another in the validation period.
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according to the results shown in this study. To check the signifi-
cance of such ‘‘improvements”, hypothesis student t tests were con-
ducted for four groups of paired samples: 1) pairs of NS at
‘‘ungauged” locations from the streamflow calibration and joint cal-
ibration schemes (within the boxes in Tables 2–5); 2) pairs of FQ at
‘‘ungauged” locations from the two calibration schemes; 3) pairs of
NS at gauged locations from the two calibration schemes, but just in
the independent validation period (outside the boxes in Tables 3
and 5); and 4) pairs of FQ at gauged locations from the two calibra-
tion schemes in the independent validation period. The key proce-
dure to conduct the hypothesis test is summarized as follows:

� Null hypothesis: the mean difference is assumed to be equal to
or smaller than zero, i.e., including soil moisture for calibration
does not significantly improve the performance statistics (NS or
FQ );
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� Alternative hypothesis: the mean difference is greater than
zero, i.e., including soil moisture for calibration significantly
improves the performance statistics;

� Calculate sample differences, diðNSÞ ¼ NSi;Joint�Cali � NSi;Q�Cali or
diðFQ Þ ¼ FQ i; Joint� Cali� FQ i;Q � Cali;

� Calculate the mean of the sample differences, �d;
� Calculate the standard deviation of the sample differences,

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n �

Pn
i¼1ðdi � �dÞ2

q
, where n is the sample size (15 for gauged

cases and 18 for ungauged cases);

� Calculate the test statistic, t ¼ �d�0
r
_
=
ffiffi
n

p ;

� Calculate the probability (p) of the test statistic based on the
student t-distribution.

� Test the null hypothesis by comparing pwith target significance
degree.

Fig. 5 compares the distribution of the NS and FQ for the stream-
flow calibration and joint calibration schemes, while Fig. 6 shows
the histograms of the sample difference distribution. It can be
inferred that the improvement at ‘‘ungauged” locations brought
by using soil moisture information is relatively more notable, while
the improvement at gauged locations brought by the soil moisture
in the validation period is relatively less notable.

The results from the hypothesis tests are summarized in Table 6.
The p-values (probability) of the test statistics for ‘‘ungauged” loca-
tions were 0.0077 (<0.01) for NS and 0.0004 (<0.01) for FQ , which
indicate that the null hypothesis should be rejected in terms of
both NS and FQ ; the improvement was significant at both 0.05
and 0.01 significance degrees. The p-values for gauged locations
were 0.0953 (>0.05) for NS and 0.0637 (>0.05) for FQ , which imply
that the improvement was not significant with a significance
degree of 0.05.

According to the tests, it can be concluded that introducing
remotely sensed soil moisture data in addition to the gauged
streamflow for hydrologic model calibration brought statistically
significant improvement to streamflow prediction at ‘‘ungauged”
Fig. 5. Box-plots of NS and FQ values from the streamflow calibration and joint calibration
illustrates the NS/FQ distribution at the gauged locations.
locations. Whilst including soil moisture during calibration
degraded the streamflow prediction at gauged locations to a slight
extent, there was a possibility to improve the future forecasts at
those gauged locations due to the more robust model parameter
sets. However, the improvements obtained in this particular case
were not statistically significant. This should be further explored
in other catchments in the future.
5.3. Limitations in addressing uncertainties

The joint calibration approach proposed in this study exhibited
a stronger capability to address systematic errors in parameters
compared with the traditional streamflow-only calibration
approach. Nevertheless, other sources of uncertainties from inputs,
initial conditions and model structure were not addressed in this
study. For instance, in this case study, the sub-catchment rainfall
data were spatially interpolated from gauged rainfall, which is
prone to instrumental and interpolation uncertainties. The uncer-
tainty related to the interpolation process can be significant when
the topography is complex and the rain gauges are sparse.
Although the impact of PET was found to be much less than the
rainfall (Samain and Pauwels, 2013; Bennett et al., 2014), the use
of monthly interpolated gridded PET does ignore its variability
within each month. The model structure and parameter uncertain-
ties can also be considerable due to the high conceptualization in
the hydrologic models, e.g., the GRKAL and linear Muskingum rout-
ing procedure used in this study. These uncertainties could poten-
tially be further addressed through real-time updating by
assimilating soil moisture and/or streamflow measurements
(Wanders et al., 2014b; Alvarez-Garreton et al., 2015; Lievens
et al., 2015). Therefore, it would be necessary to investigate how
remotely sensed soil moisture can benefit the hydrologic predic-
tion through an integrated calibration and real-time data assimila-
tion system. A better estimation of the sources of uncertainties,
e.g., through error decomposition approaches (Li et al., 2014;
Mazrooei et al., 2015), could also be beneficial for understanding
schemes. (a)/(c) illustrates the NS/FQ distribution at the ungauged locations; (b)/(d)



Fig. 6. Histograms of the sample differences in NS and FQ from the streamflow calibration and joint calibration schemes. (a)/(c) illustrates the histogram of differences in NS/
FQ at the ungauged locations; (b)/(d) illustrates the histogram of differences in NS/FQ at the gauged locations.

Table 6
Significance test (student t) of improvement in NS/FQ :.

n Z p

Ungauged in all periods 18 2.6913/�4.0326 0.0077/0.0004
Gauged in the validation period 15 1.3755/�1.621 0.0953/0.0637
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the potential of various uncertainty reduction approaches, e.g.,
batch calibration and data assimilation.

In operational forecasting, forecasted rainfall and PET need to be
used to force the model, which can bring additional uncertainties
and affect the performance of the joint calibration approach exam-
ined in this study. Therefore, it is necessary to extend this study to
operational streamflow forecasting scenarios with the considera-
tion of forecasted forcing uncertainties.
6. Conclusions

This paper presented a joint calibration scheme using gauged
streamflow and SMOS near-surface soil moisture. The joint calibra-
tion scheme was compared with a traditional streamflow only cal-
ibration scheme in three model setups, i.e., a lumped model, a
semi-distributed model with only the gauge at the outlet available,
and a semi-distributed model with multiple gauges available.

It was found that semi-distributed models are more suitable
than lumped models in representing forcing and parameter spatial
variability so as to produce more accurate streamflow predictions
at the catchment outlets. The increase of the streamflow gauge
availability to a large extent improved the performance of the
semi-distributed model regardless of using soil moisture data for
calibration. However, the impact of the soil moisture varied among
different model setups.

A slight degradation in streamflow simulation was generally
found at the calibration locations during the calibration period
when soil moisture was used for calibration, which is expected.
However, improvements were also obtained in the independent
validation period for some sub-catchments, e.g., 9 out of 15
gauged cases were improved while 5 cases were degraded
slightly in terms of the NS. Although the improvement did not
pass the overall significance test, it unveiled a potential to
improve future forecasts through the identification of more
robust parameter sets by including soil moisture information
in the calibration. Future work can be dedicated to employ mul-
tiple sources of remotely sensed soil moisture data to further
address this issue.

A more consistent improvement, brought by using soil moisture
data, was identified at ‘‘ungauged” sub-catchments. This finding
was consistent with some previous studies in which data assimila-
tion approaches was applied, e.g., Wanders et al. (2014a) found
that internal locations were improved by integrating soil moisture
into a process-based model using the ensemble Kalman filter.
However, there has not been a study before to investigate the
potential to improve ungauged internal locations when batch cal-
ibration is used. It should also be noted that the physical linkage
between soil moisture and streamflow is typically strong in
process-based models and it make sense to detect improvements
in streamflow estimation when soil moisture simulation is
improved in those models. It is encouraging to find similar
improvements at ‘‘ungauged” locations through batch calibration
in a conceptual hydrologic model, and the improvement passed
the statistical significance test. Furthermore, it was also found that
the improvement was stronger at upstream and tributary sub-
catchments than the downstream locations. The usefulness of soil
moisture data for model calibration needs to be investigated under
operational forecasting scenarios in future work. It would also be
beneficial to use soil moisture for both batch calibration and data
assimilation in an integrated system to maximize the value
brought by soil moisture information.
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