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Soil moisture is among the key environmental variables controlling evaporation, infiltration and runoff.
However, the temporal evolution of soil moisture is not easy to measure or monitor at large scales due to
its spatial variability, which is largely driven by local variation in soil properties and vegetation cover.
Consequently, soil moisture estimates using land surface models are typically made using effective phys-
ical parameterisations based on low-resolution and/or erroneous soil property information. Thus, land
surface models have an urgent need for more accurate and detailed soil parameter data sets than are cur-
rently available, in order to undertake regional or global simulation studies at high spatial resolution and
with the required accuracy. To overcome this limitation, the possibility of estimating the soil hydraulic
properties through model calibration to remotely sensed near-surface soil moisture observation is
explored. The study presents a methodology that demonstrates this potential using a synthetic twin
experiment framework, thus avoiding the need to deal with possible model-observation biases. More-
over, it explores a range of scenarios, with the objective to determine the best meteorologic conditions
for soil property retrieval and hence the most efficient use of computational resources when applying
the methodology at large scales. These scenarios include: (a) short dry-down period, (b) short dry period,
(c) short wet-up period, (d) short wet period and (e) full 12-months with multiple wetting and drying
periods. The methodology was also tested for four different soil types including a homogeneous column
of sand, a homogeneous column of clay, a duplex column of clay over sand, and a duplex column of silty
sand over clay. The study showed that soil hydraulic parameters were best retrieved when using the full
12-month period, with the sequential retrieval of three parameters at a time being the most suitable
approach when retrieving the six parameters, with the most sensitive parameters retrieved first.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The moisture content of the soil is a key variable controlling the
exchange of water and energy fluxes between the land surface and
the atmosphere, as it affects the evaporation and plant transpira-
tion. Hence the soil moisture is an important contributor to
the development of weather patterns including precipitation
(Dirmeyer et al., 2009; Koster et al., 2004) and air temperature
(Timbal et al., 2001). Indeed, soil moisture plays an essential role
in most environmental processes (Seneviratne et al., 2010), and is
one of the few important hydrological variables that is directly
observable. Moreover, it has been declared an Essential Climate
Variable by the Global Climate Observing System (GCOS) (Stitt
et al., 2011), and is therefore a reportable land surface parameter
for the contributing members. However, the temporal evolution
of high-resolution soil moisture is not straight forward to monitor
across large scales, both from a logistical and an economic point of
view, due to its high spatial variability. Both active and passive re-
mote sensing methods are being utilized in soil moisture monitor-
ing, including the Advanced Microwave Scanning Radiometer for
Earth Observation System (AMSR-E; C- and X-band) (Njoku and
Li, 1997; Owe et al., 2008), Advanced Scatterometer (ASCAT;
C-band) (Albergel et al., 2009) and Soil Moisture and Ocean Salinity
(SMOS; L-band) (Kerr et al., 2010). However, remote sensing tech-
niques only provide information on the near surface layer of soil,
and so there is still a great reliance on the soil moisture evolution
predicted by land surface models to obtain profile soil moisture
information. Therefore, data assimilation techniques have been
used to constrain root zone moisture estimates using satellite
observations of near surface soil moisture (e.g. Albergel et al.,
2008; Walker and Houser, 2001).

Amongst other things, land surface models (LSMs) are used to
provide boundary conditions to weather and climate models, rep-
resenting the land surface feedbacks to the atmosphere. Conse-
quently, coupled land surface-atmosphere schemes must be able
to predict the energy, water, and carbon exchanges, with explicit
representation of vegetation and soil types. The LSMs generally
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require meteorological data (temperature, precipitation, radiation
and so on) and parameters of vegetation and soil characteristics
as inputs (Abramowitz et al., 2007). However, soil moisture esti-
mates using land surface models typically suffer from physical
parameterisation based on low-resolution and/or erroneous soil
property information (Grayson et al., 2006). Soil hydraulic param-
eters are either measured in situ or in a laboratory as point mea-
surements. Consequently, it is impractical to use this approach to
derive detailed information on spatial variability of the soil proper-
ties due to the time consuming nature of the tests and the ex-
penses involved (Steele-Dunne et al., 2010). Hence, pedotransfer
functions (empirical equations) are typically used to describe the
relationship between the required soil hydraulic properties and
easily measurable soil properties such as soil texture (Wösten,
1997; Wösten et al., 2001). Extrapolation over large areas yields
crude estimates of soil hydraulic properties with large standard
deviations (Vereecken et al., 1989, 1990), the accuracy of which
deteriorates with the extent of the extrapolation, and thus ad-
versely affects the accuracy of the model simulations. The origin
of most global and local soil property maps is the Food and Agricul-
tural Organization of the United Nations (FAO) soil texture map,
known as the ‘‘World Soil Classification’’ (Latham, 1981), with
the soil hydraulic properties estimated from look-up-tables for
‘typical’ soil types (e.g.: Clapp and Hornberger, 1978; Rawls et al.,
1982). Yet, soils are a heterogeneous resource that changes on
the scale of centimeters, and so hydraulic parameter estimates
from a typical soil type have large deviations from reality.

Satellite based remote sensing is able to supply time series
information of surface soil moisture data with 2–3 day repeat
intervals over wide areas. However, given that there are several
satellites orbiting the earth that provide soil moisture information,
it would be possible to obtain daily moisture time series by comb-
ing these different products. Such data can potentially be used to
estimate the hydraulic properties of the soil profile, through model
calibration of observed and predicted surface soil moisture con-
tent. However, only a few studies have attempted to exploit such
an approach. One of the earliest, perhaps the first, to estimate
the soil hydraulic parameters from passive microwave measure-
ments and atmospheric forcing data was by Camillo et al. (1986).
In their study, a soil physics model was used to solve the heat
and moisture flux equations in the soil profile, and a microwave
emission model used to predict the soil brightness temperature.
The model hydraulic parameters were then varied until the simu-
lated soil brightness temperature agreed with the remotely sensed
measurements from a dual-polarized L-band radiometer. However,
the experiment was conducted within a time-frame of only 3 days
on three artificially modified plots, and did not capture the full
wetting and drying cycle of the soils. Santanello et al. (2007)
undertook a similar study using a 6-week extended dry down per-
iod immediately following a rainfall event, and concluded that bet-
ter performance can be expected when data during and
immediately following a rainfall event are used. Harrison et al.
(2012) extended the case study of Santanello et al. (2007) to in-
clude uncertainty estimation of soil hydraulic properties, conclud-
ing that remotes sensing estimates of soil moisture can lead to
improved characterization of the uncertainties in land surface
modelling. One major difference between the above studies and
the work presented in this paper is, the soil hydraulic parameters
are retrieved directly as opposed to inferring from the particle size
distribution. More recently, a genetic algorithm was used by Ines
and Mohanty (2008) to identify the soil water retention and
hydraulic conductivity functions, through the inversion of a
soil–water–atmosphere–plant (SWAP) model using observed
near-surface soil moisture as a search criterion. Their study
focused on three hydrological cases, a homogeneous column of soil
under free-drainage, a homogeneous column of soil with a shallow
water table, and a heterogeneous soil column under free-drainage.
This study found that the soil hydraulic properties for only the sur-
face layer could be identified for the heterogeneous soil column.
The methodology was also tested with laboratory measured soil
moisture, matric potential and hydraulic conductivity data, dem-
onstrating that an effective homogeneous soil unit may fail to
accurately represent a highly heterogeneous soil profile. The
point-scale study of Ines and Mohanty (2009) was then tested for
large-scale parameter estimation using soil moisture data from air-
borne remote sensing. An important observation of this study was
that any uncertainties in the remotely sensed data at the retrieval,
calibration or geoprojection stages can propagate directly to the
derived soil hydraulic parameters at the pixel-scale. However, they
have only focused on homogeneous columns of soil in all their
work, and therefore have not explored the possibility of retrieving
hydraulic parameters for a heterogeneous soil.

There has also been a recent synthetic study by Montzka et al.
(2011), which explored the impact of the temporal sampling rate
on the ability to correct model states and estimate soil hydraulic
parameters. They used the method of sequential data assimilation
with a one-dimensional mechanistic soil water model on four dif-
ferent homogenous soil types. Consequently, their study did not
encompass heterogeneous soils, meaning that they did not investi-
gate the capability of retrieving the soil hydraulic parameters for
both the surface and root zone of the soil profile simultaneously,
using surface observations. However, they did demonstrate that
the 3-day repeat period of the Soil Moisture and Ocean Salinity
(SMOS) mission is suitable for correcting model simulation biases
that result from false parameterization, thus reducing the uncer-
tainty of soil hydraulic parameters. This is important, as it confirms
the potential to retrieve soil hydraulic parameters using remotely
sensed surface soil moisture information from satellite missions
such as SMOS.

This paper develops a methodology, and determines the level of
accuracy that can be expected, for soil hydraulic property estima-
tion from heterogeneous soil profiles using near surface soil mois-
ture observations, such as those that are available from satellites.
Moreover, this paper identifies the meteorological conditions un-
der which the soil hydraulic parameters are best retrieved, so as
to optimize the computational efficiency when applied to large
areas. First, the most sensitive soil hydraulic parameters are iden-
tified through a series of single parameter retrieval experiments,
followed by testing under a range of soil types, and application
to multi-parameter retrieval for duplex soil profiles. This study
uses the Joint UK Land Environment Simulator (JULES) as the mul-
ti-layered land surface model (Best et al., 2011; Clark and Harris,
2009; Clark et al., 2011), and an optimization method that is based
on the complex, collective behavior of individuals in decentralized,
self-organizing systems, falling within the category of ‘swarm
intelligence’ (Kennedy and Eberhart, 1995).
2. Site and data description

The work presented in this paper focuses on the Y3 site
(34.6208S, 146.4239E) located near Yanco, New South Wales, Aus-
tralia. This is one of the OzNet soil moisture monitoring sites
(Smith et al., 2012); http://www.oznet.org.au/, and is co-located
with the Bureau of Meteorology (BoM) automatic weather station
(AWS) 074037. The soil is of duplex nature, with the first layer
(horizon A) being approximately 0.30 m deep. The site has an ele-
vation of 164.7 m above mean sea level with the dominant surface
soil type being silty sand (Australian Bureau of Rural Science). The
surface (0–8 cm) soil moisture has been measured every 5 s and
averaged to 30 min intervals while the surface soil temperature
(4 cm) has been measured at 6 min intervals. The precipitation
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was measured by the use of a tipping bucket rain gauge, with the
cumulative rainfall recorded every 6 min (Smith et al., 2012).

This work focuses on the year 2003, which was a year where the
soil moisture ranged from extremely dry (0.04 m3/m3 at the sur-
face and 0.12 m3/m3 at the root zone) to extremely wet (0.45 m3/
m3 at the surface and 0.38 m3/m3 at the root zone) conditions as
shown in Fig. 1. Daily rainfall totals were a maximum of 120 mm
for the year 2003. The half-hourly atmospheric forcing data needed
to drive the land surface model were derived from the Yanco AWS
data (Siriwardena et al., 2003). Initial conditions for the surface
layer, corresponding to both the truth run and optimization pro-
cess, were derived from in situ observations of soil moisture and
temperature. The texture information for the selected soil type
was obtained from the default Food and Agriculture Organization
of the United Nations’ (FAO) soil texture map as well as from site
observed particle size distribution data, and the soil properties
used as input to JULES were calculated using the pedo-transfer
functions of Cosby et al. (1984).

To facilitate the investigation of meteorological conditions and
their impact on soil hydraulic property retrieval, five different
weather scenarios were selected as shown in Fig. 1, including short
dry-down (SDD), short dry (SD), short wet-up (SWU), short wet
(SW), and year-long (LT) periods. The methodology was tested
for four soil profiles as; (a) homogeneous column of sand, (b) hori-
zon A with loamy/silty sand and horizon B with clay, (c) same as
(b) but with the horizons inter-changed and, (d) homogeneous col-
umn of clay. The soil hydraulic parameters estimated from Cosby
et al. (1984) pedo-transfer functions using the particle size distri-
bution data corresponding to each chosen soil were termed as
‘true’ parameters. The reason for using field observed meteorolog-
ical and initial surface soil moisture conditions to create the syn-
thetic time series of ‘‘truth’’ soil moisture is to make this data as
close as possible to typical field observations, but without any
model biases. To obtain initial root zone soil state values through-
out the profile from the surface observations, the LSM model was
spun-up to equilibrium.

3. Model description

The land surface model of this study is the JULES multi-layered
land surface model (Best et al., 2011; Clark and Harris, 2009; Clark
Fig. 1. Simulated surface (top) and root zone (bottom) soil moisture, the shaded areas from
up (SWU), the short wet period (SW) and, long term (LT) periods.
et al., 2011). It was used to simulate time-series soil moisture cor-
responding to pre-determined soil hydraulic parameters, which
provide the ‘true’ parameter values and corresponding surface
and root zone soil moisture time-series. Soil hydraulic parame-
ter(s) were then perturbed to represent the range of uncertainty
in one or more parameters, yielding what has been termed here
as the ‘test’ parameters and time-series soil moisture. Next the par-
ticle swarm optimizer was used to ‘retrieve’ the perturbed param-
eter(s) by comparing the predicted and ‘true’ surface soil moisture.
The ‘retrieved’ parameter(s) are then validated against the ‘true’
parameter value(s), and the root zone soil moisture corresponding
to the ‘retrieved’ parameter(s) validated against the ‘true’ soil
moisture of the root zone. A schematic of the methodology is
shown in Fig. 2.
3.1. Joint UK Land Environment Simulator – JULES

The Joint UK Land Environment Simulator (JULES) is a process
based land surface model (LSM) that simulates the fluxes of carbon,
water, energy and momentum between the land surface and the
atmosphere, and is a derivative of the Met Office Surface Exchange
Scheme (MOSES) (Cox et al., 1999). It can function either as a
stand-alone model or coupled to a global circulation model. In a
previous study, Bandara et al. (2011) assessed the performance of
JULES and recommended it as a suitable model for this type of
study.

The JULES LSM consists of four sub-models: soil, snow, vegeta-
tion and radiation (Best et al., 2011; Clark and Harris, 2009; Clark
et al., 2011). Of these, the focus is on the soil sub-model and the
simulation of soil moisture. By default, JULES uses four soil layers
of 0.10 m, 0.25 m, 0.65 m and 2.0 m thickness, resulting in an over-
all soil depth of 3.0 m. However, both the number of layers and
their thickness can be varied by the user, with the parameters
and initial state values specified for each of the soil layers. Rich-
ard’s equation and the Brooks and Corey (1964) constitutive rela-
tionships are used in the calculation of soil moisture. JULES has a
tiled model of sub-grid heterogeneity with nine surface types
available; broad leaf trees, needle leaf trees, C3 (temperate) grass,
C4 (tropical) grass, shrubs, urban, inland water, bare soil and ice.
However, the work presented here is for a single one-dimensional
left to right represent, the short dry-down (SDD), the short dry (SD), the short wet-
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soil column with the surface assumed to be bare soil. This assump-
tion does not impact the synthetic results here. Moreover, the re-
sults are expected to be representative of those from application
in low-to-moderate vegetation conditions, as the vegetation would
only have a small impact on the evapotranspiration and the depth
in the soil from which moisture is extracted by roots.

The soil hydraulic parameters that are retrieved in this paper in-
clude; (a) Clapp and Hornberger exponent, (b) hydraulic conduc-
tivity at saturation, (c) soil matric suction at air entry, (d)
volumetric fraction of soil moisture at saturation, (e) volumetric
fraction of soil moisture at the critical point, equivalent to a soil
suction of 3.364 m and, (f) volumetric fraction of soil moisture at
wilting point, assumed to be for a soil suction of 152.9 m; see
Table 1.
3.2. Particle Swarm Optimization – PSO

Particle Swarm Optimization (PSO) is an algorithm based on the
complex, collective behavior of individuals in decentralized, self-
organizing systems, and are created through a population of indi-
viduals that interact both with each other and with the community
(Kennedy and Eberhart, 1995). Swarms of birds, colonies of ants,
and schools of fish are some of the examples that can be identified
from nature. One advantage of Particle Swarm Optimization (PSO)
is that it is easy to understand and to implement (Kennedy and
Eberhart, 1995). The main feature is that it is less susceptible to
getting trapped in a local minimum since it is population-based,
and it has the capability to control the balance between the local
and global search space (Engelbrecht, 2005b). It has been imple-
mented successfully in a diverse range of applications such as cal-
Table 1
Overview of the six soil hydraulic parameters, along with their respective symbol,
descriptive name, and unit where applicable.

Parameter
(shortened name)

Parameter name and unit

b Clapp and Hornberger exponent (–)
Ks Hydraulic conductivity at saturation (mm/s)
wa Soil matric suction at air entry (m)
hs Volumetric fraction of soil moisture at saturation (m3/

m3)
hc Volumetric fraction of soil moisture at critical point (for

a soil suction of 3.364 m) (m3/m3)
hw Volumetric fraction of soil moisture at wilting point (for

a soil suction of 152.9 m) (m3/m3)
ibration of water and energy balance models (Scheerlinck et al.,
2009), multi-machine power-system stabilizers (Abido, 2002),
practical engineering designs (Hu et al., 2003), and structural
designs (Perez and Behdinan, 2007).

In the context of PSO, individuals are referred to as ‘particles’
and are flown through a hyper-dimensional search space
where changes to the particle’s position are based on the social-
psychological tendency of the individual to mimic the success of
others (Engelbrecht, 2005b). Any changes to the position of parti-
cles within the search space are thus influenced by the experience
or knowledge of its neighbors as well its’ own. The algorithm con-
sists of three parts; (a) the momentum that states that the velocity
of the ‘swarm’ cannot change abruptly, (b) the ‘cognitive’ or per-
sonal part (c1) that indicates the particle learns from its own flying
experience and fitness and, (c) the ‘social’ part (c2) that represents
the cooperation with the other particles or the learning from the
flying experience of the group (Kennedy and Eberhart, 1995). How-
ever, one disadvantage of updating the velocity of the ‘swarm’ of
the algorithm is that it may become too high and cause particles
to pass ‘good’ solutions or vice versa, such that the search space
is explored inadequately. To overcome this problem, Shi and Eber-
hart (1998) found that the use of an additional parameter, termed
as ‘inertia weight’, could be used to control the velocity. The work
presented here uses the PSO code from Scheerlinck et al. (2009).

As a first step of applying PSO, the ‘best’ parameters for driving
the swarm in PSO need to be identified and specified. This is essen-
tial because the algorithm uses four parameters, three inherent
parameters, and the population size to define the behavior of the
swarm. The first factor considered in this work was the size of
the swarm, as larger swarms need a higher number of iterations
to converge compared to smaller swarms, with very small swarms
not yielding good solutions. Eberhart and Shi (2000) showed that a
population size of 30 is an adequate sample size. This was also
adopted by Trelea (2003), Engelbrecht (2005b), Scheerlinck et al.
(2009) and others. Hence, a population size of 30 particles was cho-
sen for this study.

Shi and Eberhart (1998) suggest that when w (the inertia
weight) is less than 1, the PSO is able to find the global minimum
quite fast because the PSO tends to act like a local search algorithm
under this scenario and focuses on an acceptable solution within
the initial search space. When w P 1, the velocities of the swarm
increase with time, the swarm diverges, and the particles fail to
change direction towards regions with potential minima (Engelbr-
echt, 2005a). Moreover, Engelbrecht (2005a) states that c1 > c2 is
more beneficial when applied to multimodal problems as lower
values of c1 and c2 yield smooth particle trajectories. The windows
that best fit the work presented in this paper were identified from
existing literature, as discussed above, and parameter w was varied
between 0.2 and 0.5, c1 between 1 and 2, and c2 between 0.8 and 2,
in steps of 0.1. From trial and error it was found that the best com-
bination of parameters for this problem was w = 0.4, c1 = 1.4 and
c2 = 1.3.

The objective function used by PSO in this paper is the root
mean square error (RMSE). It is necessary to restrict the parame-
ter(s) within the parameter space during the optimization process
so that it does not attempt to move beyond physical values during
the application of the algorithm. This restriction is achieved
through specification of the model parameter range. To further
constrain the parameter from jumping to either end of the param-
eter space, an extra penalty was added to the RMSE calculated be-
tween the true and simulated soil moisture. The penalty was such
that the parameter to be retrieved was given an initial approximate
or best-guess value, with a variation of three times the standard
deviation of that parameter, thereby making the parameter space
somewhat smaller and directing the optimization algorithm away
from boundary values.
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4. Sensitivity studies

By decreasing the number of soil parameters to be retrieved, the
complexity of the parameter space is reduced, thereby making the
optimization more reliable, meaningful and speedy. It was there-
fore necessary to identify those soil parameters that have the most
influence over the moisture simulation, through sensitivity studies.
Consequently, pre-selected soil parameter variables were per-
turbed across a physically meaningful range and the corresponding
output assessed for the impact. The JULES model simulates a vari-
ety of states and fluxes including soil temperature, soil moisture,
soil evaporation, transpiration and so on. Since the focus of this
study is on soil moisture, other data will not be discussed further
in the study. As not all of the soil parameters contribute equally to-
wards moisture simulation, the importance of some might be un-
der-represented by the results presented here.

Sensitivity is typically defined as the relative magnitude of
changes in the model response as a function of relative changes
in the values of model input parameters (Nearing et al., 1990).
Thus, this study uses a single-value sensitivity index that repre-
sents a relative normalized change in output to a normalized
change in input. The higher the absolute value of the index, the
greater the impact an input parameter has on a particular output.
An index of 1.0 indicates that the output responds to the same de-
gree as the tested input is perturbed around an average range; a
negative value indicates that the input and output are inversely re-
lated (Al-Abed and Whiteley, 2002; Nearing et al., 1990; Walker,
1996). The sensitivity index (S) is defined as

S ¼ O2 � O1

I2 � I1

� �
Iavg

Oavg
ð1Þ

where I1 and I2 are the smallest and highest input values tested for a
given parameter, Iavg is the average of I1 and I2, O1 and O2 are the
model output values corresponding to I1 and I2, and Oavg is the mod-
el output value corresponding to Iavg (approximately the average of
O1 and O2). The sensitivity index is calculated for each model time
step and as it is both dimensionless and independent of the magni-
tude of the input and output, its value can be used to compare the
sensitivity of the model to different variables (Baffaut et al., 1996).

For each parameter tested for sensitivity, three soil moisture
time series have been established using the published soil param-
eter data and the accompanying standard deviations given in Clapp
and Hornberger (1978). The first time series was generated using
the parameter value minus the standard deviation, the second cor-
responds to the parameter value itself, and the third time series
was from the parameter value plus the standard deviation. These
three soil moisture time series were taken as the values of O1, Oavg

and O2 respectively, with the parameter sensitivity index calcu-
lated as a time series with a single value of S at each instance of
time. Fig. 3 shows the surface and root zone sensitivity indices
for each of the eight soil parameters used in JULES. A common scale
ranging from �1 to 2 has been used to facilitate easy comparison,
and hence some parameters that are more sensitive to soil mois-
ture simulation exceed these ranges. Table 1 gives an overview
of the six soil parameters that have been identified as showing
the highest impact on soil moisture simulation.

The sensitivity analysis results in Fig. 3 show that during the ex-
treme dry period at the beginning of the year, the LSM is sensitive
only to changes in the volumetric fraction of soil moisture at critical
point while being insensitive to changes in all other parameters. Un-
der the wet conditions observed during the months of June to Sep-
tember, the volumetric fraction of soil moisture at saturation
displays a near-zero trend which is due to the fact that at the point
of near-saturation, changes to the parameter will not affect the soil
moisture simulation. For the same period, the volumetric fraction
of soil moisture at saturation and the matric potential at air entry
display changes according to the wetness and dryness of the soil as
air entry is not possible near saturation. These results imply that
the significance of these soil parameters is dependent on the mois-
ture state, and that their response is correlated to the current state.
However, the purpose of this sensitivity analysis was to identify
the soil parameters that most influence the soil moisture simulation.
Hence, of the eight soil parameters that have an impact on soil mois-
ture, the volumetric fraction of soil moisture at critical point and at
saturation, as well as the Clapp and Hornberger exponent, show
the highest sensitivity. The hydraulic conductivity at saturation,
the volumetric fraction of soil moisture at wilting point and the soil
matric suction at air entry, show much less, but none-the-less
important, sensitivity. In contrast, the dry heat capacity and dry
thermal conductivity show minimal sensitivity and so are elimi-
nated from the list of retrievable parameters.
5. Parameter retrieval

The schematic of the parameter retrieval process is shown in
Fig. 2, and was briefly discussed already under Section 3. This study
proposes the retrieval of the root zone soil hydraulic parameters
from surface soil moisture observations alone, and hence it was
necessary to correctly specify the initial states for both the surface
and root zone. Therefore the observed near-surface soil moisture
and soil temperature were used as initial conditions for the surface
layer while the results corresponding from the spin-up were used
for the root zone.

As the first step of testing the proposed methodology, single
parameters were retrieved by perturbing parameters one at a time,
representing the uncertainty in published soil hydraulic parameter
data. The inclusion of single-parameter-at-a-time retrieval was to
investigate the complete range of optimization possibilities, from
a single parameter (one for each soil type) right through to all six
parameters (for each soil type), thus accounting for complexity of
search space and parameter cross-correlation identified by Vrugt
et al. (2003). Using the predicted soil moisture resulting from per-
turbed parameters, together with the surface soil moisture obser-
vations time series, the original set of ‘true’ parameters
throughout the soil column are retrieved. The optimized parame-
ters have the prefix ‘retrieved’ throughout the paper.

The second step was to jointly retrieve all six parameters, as op-
posed to individually. Three methods were used for this; (a) all six
parameters retrieved simultaneously, (b) sequential retrieval of
two parameters at one time and, (c) sequential retrieval of three
parameters at one time. In the sequential retrieval, (b) and (c),
the combinations were from the most sensitive to the least sensi-
tive parameters.

All four soil type combinations were tested under the five dif-
ferent meteorological periods identified. The corresponding RMSE
between the soil moisture using the true and retrieved parameters
were calculated along with the Nash–Sutcliffe model efficiency
coefficient (Nash and Sutcliffe, 1970). The Nash–Sutcliffe coeffi-
cient E can range from �1 to 1, with a perfect match between
the modelled simulation and observation resulting in a value of
E = 1. When E = 0, the model predications are as accurate as the
mean of the observed data, whilst for values of E < 0 the observed
mean is a better predictor than the model.
6. Results and discussion

6.1. Retrieval of one parameter at a time

The first objective of the study was to identify the meteorolog-
ical condition under which the selected hydraulic property can



Fig. 3. The sensitivity index (S) plotted against time for each soil parameter.
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best be retrieved. The RMSEs calculated under the different
meteorological conditions (Table 2) and the corresponding
Nash–Sutcliffe model efficiency coefficients (Table 3) were com-
pared, together with the ‘retrieved’ and ‘true’ parameter values,
as summarized in Table 4. It is immediately clear when comparing
the retrieval efficiency of the four soil types, that the retrieval was
not able to adequately optimize the parameters of the clay/sand
combination, apart from the 12-month long (LT) scenario. Con-
versely, the highest skill for soil parameter retrieval across all
meteorologic conditions was for the homogeneous column of clay
when compared to the other soil types. The results are found to be
similar for the homogeneous column of sand and the silty sand/
clay combination.

It is also observed that some parameters are better retrieved
under different meteorologic conditions for different soil types.
For example, the volumetric fraction of soil moisture at critical
point could be retrieved under all meteorological conditions for a
homogenous column of clay, which is opposite to the mixed soil
column comprising of clay/sand, where retrieval was only possible
during the long term period. For the mixed column of silty loam/
clay, the retrieval worked well only for the long term and short
dry-down periods, while all meteorological conditions apart from
the short dry period showed good results for the homogeneous col-
umn of sand.
When there is a homogeneous column of soil, the parameter
space is smaller and less complicated, compared to a mixed soil
column. Because of this, the retrieval of parameters is compara-
tively better under all the meteorological conditions tested. In this
case, it is observed that the non-complexity of the parameter space
plays a more significant role than the inherent soil characteristics.
Sandy soil is swift to react to changes and during the short-dry sea-
son, quickly becomes de-coupled between the surface and root
zone, thereby influencing the retrieval capability of the selected
soil hydraulic parameters. For the mixed column of clay/sand
(where horizon A comprises of a 0.30 m of clay), the layer of fine
clay on the upper horizon takes a long time to react to any changes
near the surface, thereby constraining any changes that occur to
the sandy soil on the lower horizon. Hence, the longer the time-
series, the more time there is for the top soil to react to changes,
and subsequent changes to the root zone. Silty loam can have up
to 29% clay and therefore takes more time to react to changes com-
pared to a sandy soil, but considerably less time compared to a clay
soil. Hence, soil parameter retrieval could only be achieved with
the silty loam/clay column during the longest time-series. The dry-
ing-down period was selected after a very significant rainfall of
about 120 mm/day following an extremely dry period. This wet-
ting event has contributed to the models capability for hydraulic
parameter retrieval within the short dry-down period.



Table 2
The root mean square error (RMSE) between surface and root-zone soil moisture using ‘retrieved’ and ‘true’ soil hydraulic parameters when retrieving only one parameter at a
time. Results are for a silty sand/clay soil type under the five different meteorological conditions tested. The sequence of parameters is listed from the most sensitive to the least
sensitive.

Parameter RMSE (m3/m3)

Short wet-up period Short wet period Short dry-down period Short dry period Long term period

Surface Root zone Surface Root zone Surface Root zone Surface Root zone Surface Root zone

hc 1.65e�05 5.80e�06 2.07e�09 1.15e�10 0.0000 0.0000 0.0000 0.0000 4.00e�05 1.15e�05
hs 0.0204 0.0300 0.0156 0.0441 0.0015 0.0210 0.0002 0.0124 0.0029 0.0019
b 0.0006 0.0004 0.0002 6.60e�05 0.0003 0.0005 8.48e�05 8.66e�05 0.0004 0.0002
Ks 0.0027 0.0055 0.0000 0.0000 0.0045 0.0179 9.04e�05 0.0008 0.0104 0.0034
hw 3.08e�09 1.94e�10 2.07e�09 1.15e�10 1.41e�09 9.84e�11 0.0000 0.0000 1.64e�07 3.25e�08
wa 0.0000 0.0000 3.24e�05 1.43e�05 2.69e�07 5.52e�07 2.58e�05 0.0001 0.0024 0.0017

Table 3
As for Table 2 but with Nash–Sutcliffe model efficiency coefficients (E).

Parameter Nash–Sutcliffe model efficiency coefficients (E)

Short wet-up period Short wet period Short dry-down period Short dry period Long term period

Surface Root zone Surface Root zone Surface Root zone Surface Root zone Surface Root zone

hc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
hs 0.8642 0.9899 0.9395 0.4663 0.9992 0.7535 0.9999 0.4729 0.9985 0.9964
b 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999 0.9999
Ks 0.9977 0.9881 1.0000 1.0000 0.9930 0.7775 1.0000 0.9999 0.9803 0.9817
hw 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9924

Table 4
Matrix showing the cases where individual parameter retrieval was successful for the different soil types and meteorological conditions tested. The solid circle shows instances
where the parameter was retrieved within 5% of the ‘true’ value, E is greater than 0.9, and the RMSE is less than 0.009 m3/m3; the open circle shows that parameter retrieval was
attempted but was unsuccessful.

Parameter Sand Silty sand/clay Clay/sand Clay

SWU SW SDD SD LT SWU SW SDD SD LT SWU SW SDD SD LT SWU SW SDD SD LT

hc d d d s d s s d s d s s s s d d d d d d

hs d d d d d s d d d d s s s d d d d s s s

b s s d d d d d d d d s s s s d d d d d d

Ks d s s d d s d s d d d s s s d d d d d d

hw s s s s s s s s s d s s s s d s s s s d

wa d d d d d d d d d s s s d s d d d d d d

Table 5
The ‘true’ and ‘retrieved’ soil parameter values for horizons A (HA – silty sand) and B
(HB – clay) for the long term period with single parameter retrieval.

Parameter ‘True’ parameter values ‘Retrieved’ parameter values

HA HB HA HB

hc 0.215 0.384 0.2149 0.3998
hs 0.419 0.457 0.4238 0.4597
b 4.65 13.57 4.648 13.571
Ks 0.0081 0.0011 0.0090 0.0015
hw 0.095 0.290 0.1000 0.2999
wa 0.153 0.313 0.1700 0.3858
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The volumetric fraction of water at wilting point is not retrieved
so readily as the other soil parameters. In fact, it was not possible
to retrieve this parameter for the homogeneous column of sand at
all, with retrieval for the other soil types only achieved under the
long term condition. The Nash–Sutcliffe model efficiency parame-
ter for the volumetric fraction of water at wilting point was unity
in most cases, indicating that the simulation and ‘true’ observa-
tions of soil moisture are a perfect match. Since this parameter is
mostly important in the calculation of leaf photosynthesis, the bare
soil assumption of this study is likely to have impacted any conclu-
sions in relation to this parameter.

While the methodology was tested for four soil types encom-
passing all spectra of soil texture, the site of interest mainly con-
sists of silty loam covering a deeper layer of clay. In addition, it
was noted from Table 4 that the 12-month period yielded the best
results for all soil types across the range of tested meteorological
conditions. Similarly, Table 5 focuses on the ‘true’ and ‘retrieved’
parameter values for horizons A and B for the silty sand/clay soil
type combination shown in Tables 2 and 3 under the long term sce-
nario. From Table 5, it is seen that the Clapp and Hornberger coef-
ficient and the volumetric fraction of soil moisture at critical point
are retrieved to an accuracy of 99.9%, whereas the other parame-
ters, apart from the suction at air entry, are within 5% of the ‘true’
values. The RMSE for the volumetric fraction of soil moisture at
wilting point is close to zero with a Nash–Sutcliffe of unity, indicat-
ing a perfect retrieval. However, the bare soil of this study is likely
the cause of model insensitivity to changes in the parameter (as
per the summary in Table 4).
6.2. Retrieval of multiple parameters at one time

Results corresponding to the ‘‘simultaneous’’ retrieval of all six
parameters in Table 6 are based on three different approaches. The
first approach retrieves the six parameters at once; the second is
the sequential retrieval of two parameters at a time, while the
third approach is the sequential retrieval of three parameters at a



Table 6
Retrieved soil parameters (top) and associated RMSE in derived soil moisture (bottom) under the long term period for three different multi-parameter retrieval scenarios with
simultaneous and sequential retrieval; horizon A (HA – silty sand) and B (HB – clay).

Parameter Simultaneous retrieval of of all 6 parameters Sequential retrieval of 2 parameters at a time Sequential retrieval 3 of parameters at a time

HA HB HA HB HA HB

hc 0.1431 0.2542 0.2086 0.2558 0.2231 0.2786
hs 0.4698 0.4316 0.4130 0.4579 0.4158 0.4587
b 5.146 13.234 4.752 13.289 4.711 13.304
Ks 0.0033 0.0006 0.0086 0.0465 0.0072 0.0630
hw 0.0801 0.2423 0.1784 0.2210 0.1152 0.1341
wa 0.0333 0.0722 0.0445 0.0126 0.1528 0.0760

Surface Root zone Surface Root zone Surface Root zone
Moisture (m3/m3) 0.0445 0.0126 0.0236 0.0153 0.0153 0.0184
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time. In all three methodologies, the surface and root zone hydrau-
lic parameters corresponding to the entire soil profile have been
retrieved simultaneously. Fig. 4 shows the soil moisture time series
analogous to Table 6, where the soil moisture was simulated from
the ‘true’ and ‘retrieved’ parameters.

It is observed that Fig. 4c shows the best match between the
surface layer soil moisture time series using the ‘true’ and ‘re-
trieved’ parameters, while Fig. 4a has the ‘best’ match for the root
zone, when compared to the other scenarios. The retrieved param-
eters of Horizon A (HA) for the first scenario do not match closely
with the ‘true’ values, resulting in a relatively high RMSE value (al-
most 50% more) when compared to the second and third ap-
Fig. 4. The surface (left) and root-zone (right) soil moisture for the 12-month period usin
sequential retrieval of 2 parameters at a time, and (c) sequential retrieval of 3 paramete
proaches. The parameters for HA are best retrieved under the
third method, having the lowest RMSE of 0.015 m3/m3, with the
second approach performing slightly less well with a RMSE of
0.023 m3/m3. This is again due to the fact that the parameter space
is made comparatively more complex when soil hydraulic param-
eters are being retrieved for two soil horizons. However, for the soil
hydraulic parameters for Horizon B (HB), the RMSEs are opposite to
HA. The lowest RMSE of 0.012 m3/m3 corresponds to the first sce-
nario (almost 50% higher) while the highest value is given by the
sequential retrieval of three parameters (about 70% higher). It is
also observed that the RMSEs corresponding to all three scenarios
differ by a maximum value of 0.006 m3/m3.
g ‘true’ and ‘retrieved’ parameters: (a) simultaneous retrieval of all 6 parameters, (b)
rs at a time.
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The Clapp and Hornberger coefficient and the soil moisture at
saturation have consistently been retrieved within an accuracy of
5% of the ‘true’ values under all three scenarios. Hence, it can be
stated that these parameters can be retrieved from any of the three
approaches. The root zone soil moisture is not as dynamic as the
surface layer and thus, unless the most sensitive parameters alter
significantly, the changes are not captured. If the true root zone soil
moisture is available and is used in the soil hydraulic parameter re-
trieval process, it will allow a better match for the retrieved param-
eters corresponding to the root zone. However, this is not typically
the case, and since only the top 5 cm (surface) soil moisture is ob-
served by satellite remote sensing, this study has investigated the
alternative method of obtaining the soil hydraulic parameters of
the root zone using only the surface data.

7. Conclusions

The soil parameters most sensitive to the soil moisture simu-
lation using the JULES model were identified as: (a) the volumet-
ric fraction of soil moisture at the ‘critical point’, (b) the
volumetric soil moisture at saturation, (c) Clapp and Hornberger
exponent, (d) the hydraulic conductivity at saturation, (e) the soil
matric suction at air entry, and (f) the volumetric fraction of soil
moisture at wilting point, in this order of priority. A methodology
was developed and tested for retrieving these parameters based
on surface soil moisture observations, as would be available from
remote sensing, for a range of different meteorological condi-
tions; (a) short dry-down, (b) short dry, (c) short wet-up, (d)
short wet and, (e) 12-month periods, with the objective of iden-
tifying the most suitable meteorological condition for the retrie-
val. The overall observation was that soil hydraulic parameters
were best retrieved when using a12-month period of observa-
tion, which includes several wetting and drying cycles. It was
also observed that parameters are best retrieved when there is
a higher percentage of clay in the soil column as opposed to a
more sandy soil.

Different parameter combinations were tested for the simulta-
neous retrieval of two or more parameters, including all 6 param-
eters at the same time, and the 2 or 3 most sensitive parameters
consecutively. It was found that parameters could not be re-
trieved with perfection using any of the three methods, despite
the perfect input and simulation conditions of this twin study.
However, some parameters were retrieved more closely than oth-
ers, including the volumetric fraction of water at saturation and
Clapp and Hornberger exponent. Irrespective, the RMSEs between
the true soil moisture and that predicted when using the re-
trieved parameters were less than 0.02 m3/m3 for both surface
and root zone, further demonstrating the poor sensitivity of the
volumetric fraction of water at wilting point and the soil matric
suction at air entry to soil moisture prediction. The best approach
for retrieving all six soil hydraulic parameters for a duplex sand/
clay soil type was found to be sequentially retrieving the three
most sensitive parameters followed by the remaining three less
sensitive parameters.
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