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ABSTRACT

An increased understanding of the uncertainties present in rainfall time series can lead to improved con-

fidence in both short- and long-term streamflow forecasts. This study presents an analysis that considers errors

arising from model input data, model structure, model parameters, and model states with the objective of

finding a self-consistent set that includes hydrological models, model parameters, streamflow, remotely

sensed (RS) soil moisture (SM), and rainfall. This methodology can be used by hydrologists to aid model and

satellite selection. Taking advantage of model input data reduction andmodel inversion techniques, this study

uses a previously developed methodology to estimate areal rainfall time series for the study catchment of

Warwick, Australia, for multiple rainfall–runoff models. RS SM observations from the Soil Moisture Ocean

Salinity (SMOS) and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E)

satellites were assimilated into three different rainfall–runoff models using an ensemble Kalman filter

(EnKF). Innovations resulting from the observed and predicted SM were analyzed for Gaussianity. The

findings demonstrate that consistency between hydrological models, model parameters, streamflow, RS SM,

and rainfall can be found. Joint estimation of rainfall time series andmodel parameters consistently improved

streamflow simulations. For all models rainfall estimates are less than the observed rainfall, and rainfall

estimates obtained using the Sacramento Soil Moisture Accounting (SAC-SMA) model are the most con-

sistent with gauge-based observations. The SAC-SMA model simulates streamflow that is most consistent

with observations. EnKF innovations obtained when SMOS RS SM observations were assimilated into the

SAC-SMA model demonstrate consistency between SM products.

1. Introduction

The analysis and understanding of the uncertainty

associated with streamflow observations and simulations

can aid in the reduction of socioeconomic and environ-

mental costs of floods and promote robust decision-

making in water management applications (McMillan

et al. 2017). An improved understanding of the un-

certainty in streamflow simulations will allow water

authorities to make informed and reliable decisions that

affect drought management, water allocations, flood

resilience, and agricultural demand. The major sources

of uncertainty in streamflow simulation and forecasting

are errors in model input data, model structure, model

parameters, and model states (Vrugt 2016). This paper

addresses a knowledge gap that currently exists in the

combined analysis of errors arising from these sources.

In rainfall–runoff models, soil moisture governs the

proportion of rainfall that contributes to surface and

subsurface flows (Tebbs et al. 2016). Consequently, re-

cent studies have focused on skillfully updating rainfall

observations using remotely sensed (RS) soil moisture

(SM) observations (Crow 2007; Pellarin et al. 2008;

Crow et al. 2009, 2011; Kucera et al. 2013; Pellarin et al.

2013; Brocca et al. 2014, 2015; Ciabatta et al. 2015). Such

techniques are particularly good at correcting volumet-

ric rainfall errors. However, satellites observing SM pass

over catchments every 2–3 days and do not provide the

daily observations required by these techniques. Con-

versely, rainfall estimates obtained solely via the inver-

sion of streamflow measurements (Hino 1986; Kavetski

et al. 2006a,b; Vrugt et al. 2008; Kirchner 2009; Renard

et al. 2010; Teuling et al. 2010; Renard et al. 2011;

Adamovic et al. 2015) have maintained good temporal

resolution. It is expected that rainfall estimates obtained

via inverting streamflow observations will benefit from
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the intermediate soil moisture states being constrained

byRS SMobservations. To date there are no studies that

have combined the inversion of streamflow and RS SM

observations to obtain rainfall estimates. As such, two

dominant techniques to estimate rainfall from soil

moisture are highlighted.

First, RS SM observations have been used to update

an Antecedent Precipitation Index (API) forced by

satellite rainfall (Crow et al. 2009), with theAPI updates

assumed to be correlated with the errors between the

satellite rainfall and actual rainfall. This assumption

implies that the observed soil moisture is influenced by

past rainfall and that losses due to percolation and po-

tential evapotranspiration (PET) are negligible. It is

therefore expected to work best in catchments and for

events in which minimal surface runoff occurs.

The second dominant technique is the direct estima-

tion of rainfall from the knowledge of relative soil

moisture. Kirchner (2009) used first-order approxima-

tions to the water balance equation to describe catch-

ments as simple dynamical systems, thus enabling

rainfall to be estimated from streamflow or soil moisture

observations. Brocca et al. (2013, 2014) made simplifi-

cations to the soil water balance equation to enable the

direct estimation of rainfall from the knowledge of rel-

ative soil moisture. These simplifications assume that all

rainfall infiltrates and that PET is zero when rainfall

occurs. The technique has successfully been applied at

several sites throughout Europe (Brocca et al. 2015;

Ciabatta et al. 2015) and has also been demonstrated to

improve flood modeling (Massari et al. 2014). While

these techniques have shown encouraging results, re-

stricting the analysis to events and catchments in which

all rainfall infiltrates places a limitation on the applica-

bility of the techniques.

To effectively utilize soil moisture observations to

estimate or correct rainfall for complex catchments or

events that exhibit both surface and subsurface flows, it

is imperative that the main sources of error, and the

methods to account for them, be considered. Errors in

rainfall–runoff modeling can arise from model input

data, model structure, model parameters, and model

states (Vrugt 2016). The objective of data assimilation

is to incorporate observations of the system to mini-

mize errors. Prior to data assimilation techniques being

used to estimate or correct input data, the hydrologic

community largely considered the three main types of

data assimilation to be system identification, parame-

ter estimation, and state estimation (Liu and Gupta

2007). System identification suggests that, in addition

to the concept of equifinality in which multiple pa-

rameter sets tend to arrive at equally acceptable solu-

tions, there are a range of models that have multiple

parameter sets that can adequately describe a hydro-

logic system (Neuman 2003).

The focus of parameter estimation has shifted from

deterministic parameter estimation toward stochastic

parameter estimation (Vrugt 2016). This shift is largely

due to the advancement of computational power and

acceptance of equifinality within the modeling commu-

nity. Deterministic parameter estimation techniques are

focused on finding a unique parameter set that best

describes a hydrologic system via the minimization of an

objective function. However, the choosing of an objec-

tive function is subjective (Vrugt 2016) and often leads

to finding a parameter set that is able to only partially

describe the hydrologic system. Consequently, each ob-

jective function may perform well in some catchments

or flow situations and poorly in others. Thus, deter-

ministic parameter estimation quite often produces

a parameter set that does not adequately simulate

streamflow in forecasting situations. The aim of sto-

chastic parameter estimation is to select all parameter

sets that are able to adequately describe the hydrologic

system. Sampled parameter sets are ranked based on an

objective function, the effectiveness of which is de-

pendent on assumptions made about model and mea-

surement error (Vrugt 2016). Few studies have focused

on elucidating the link between parameter estimation

and input error (Vrugt et al. 2008; Kavetski et al. 2006b;

Renard et al. 2011). However, it is likely that when

combined with efforts to constrain state estimates these

techniques will become more valuable.

Pauwels (2008) describes an alternative to tradi-

tional parameter estimation schemes in which Monte

Carlo simulations, in conjunction with the ensemble

Kalman filter (EnKF) are used to estimate model pa-

rameters instead of the traditional model states.

Moradkhani et al. (2005) have demonstrated that the

EnKF and particle filter can be used to simultaneously

estimate model parameters and states. Vrugt et al.

(2005) demonstrated that data assimilation via the

EnKF can be used in conjunction with the Shuffled

Complex EvolutionMetropolis–University of Arizona

(SCEM-UA) algorithm (Vrugt et al. 2003). These

studies provide techniques that are able to explore

links between parameter estimation and the simula-

tion of observed states.

This paper builds upon previous works (Wright et al.

2017a,b) to simultaneously explore the links between

model-estimated rainfall time series, model structure,

model parameter estimates, and modeled states. Rain-

fall time series and model parameters are estimated

from multiple models by taking advantage of model

input data reduction techniques, an objective function

that balances rainfall and streamflow estimates and the
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Markov chain Monte Carlo (MCMC) sampler known

as the Differential Evolution Adaptive Metropolis

(DREAMZS; Vrugt and Ter Braak 2011) algorithm. The

DREAMZS algorithm uses Bayesian inference to esti-

mate parameter distributions. RS SM observations

are assimilated to provide a link between the multiple

models, the model-estimated rainfall time series, the

model parameters, and the modeled states. Throughout

this paper it is assumed that considerable biases are

potentially present in rainfall and soil moisture obser-

vations. In other words, the observations do not neces-

sarily represent the true rainfall or soil moisture for the

catchment. The objective for this paper is to find a self-

consistent set that includes a hydrological model, rain-

fall, and satellite-based soil moisture dataset that all

act to minimize (i) the corrections applied to rainfall

data, (ii) the error between the simulated and RS SM,

and (iii) the error in streamflow simulations predicted

by the model. The methodology presented treats the

problem as one with three possible hydrologic models,

whereby model parameter distributions and rainfall

time series are estimated simultaneously. After the

rainfall time series were estimated, in separate steps, RS

SM observations from two satellites were assimilated

into each model, whereby the error between simulated

and RS SMwas assessed. This suboptimal yet pragmatic

method allows the hydrologist to find a parameter set

that is consistent with the hydrologic model, the RS SM

values, the streamflow data, and the retrieved rainfall

amounts. A caveat of this approach that users need to

be aware of is that some of this self-consistency can be

the result of compensating errors.

2. Model description

a. General overview

Three models were selected based on their wide-

spread acceptance by the hydrologic community as well

as their demonstrated ability to assimilate RS SM (Li

et al. 2016). The Sacramento Soil Moisture Accounting

(SAC-SMA) model simulates the dominant soil mois-

ture characteristics while the probability distributed

model (PDM) simulates variable catchment soil mois-

ture using a chosen probability density function. The

hydrological model (HyMod) represents a simplified

version of the PDM. Illustrations depicting the models’

key characteristics are given in Fig. 1, with only brief

descriptions of the models provided here. Table 1 de-

scribes the parameters and the parameter limits used in

the estimation of model parameters. For more complete

descriptions, the interested reader is referred to the

cited papers.

b. SAC-SMA

A comprehensive description of the SAC-SMA

model is given by NWSRFS (2002). The model was

applied using the 13 parameters recommended by

Peck (1976). The model consists of one surface layer

and an upper and lower soil moisture layer. The pro-

portion of rainfall that contributes to direct runoff and

infiltration is governed by a variable impervious area.

The upper soil layer is composed of tension and free

water stores while the lower soil layer is composed of

tension and primary and supplementary free water

stores. Evapotranspiration is able to occur from both

tension water stores, as well as the surface water store.

The extent to which free water can supplement tension

water due to losses by evapotranspiration is only re-

stricted in the lower layer. The lower layers’ primary

and supplementary free water stores contribute to

base flow. The model consists of six states and 13

parameters.

c. HyMod

HyMod is a derivative of the PDM (Moore 2007). The

model itself consists of a nonlinear soil moisture store

succeeded by a series of three linear quick-flow stores in

parallel with a linear slow-flow store. Themodel consists

of five states, one for each store, as well as five param-

eters. The parameters govern the maximum storage

capacity of the watershed, the spatial variability of the

soil moisture store, the separation of flow from the soil

moisture store to the quick-flow and slow-flow stores,

and the residence time for the quick-flow and slow-flow

stores, respectively.

d. PDM

The PDM (Moore 2007) assumes the soil moisture

stores within a catchment to have variable capacities

that can be represented by a Pareto distribution. Upon

incident rainfall, parts of the catchment that have shal-

low soil moisture stores can generate runoff while other

parts retain water. The stores are also subject to losing

water via groundwater recharge and evapotranspiration.

Surface runoff is routed through a cascade of two linear

stores, while subsurface flow is routed through one lin-

ear store. Outflow from both stores are combined as

streamflow. The model consists of four states, one for

each store, as well as nine parameters.

3. Dataset

a. General overview

This study used daily rainfall, PET, and streamflow

data from the study catchment as input to the hydrological
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models. RS SM observations were used to compare

simulated soil moisture states.

b. The catchment of Warwick

Figure 2 presents the location of the Warwick catch-

ment within the southeast corner of Queensland,

Australia, and the Condamine–Culgoa basin. The

experiment presented in this manuscript was conducted

on a small subcatchment of the Condamine–Culgoa

basin, more specifically, the Warwick catchment. The

1360km2 catchment fosters a strong agricultural com-

munity that has been subjected to several significant

flood events. At times of prolonged drought, reaches of

the river have ceased to flow. The length of the perennial

channels is 78 km while the maximum elevation dif-

ference along the channel is 308m. Reasons for

FIG. 1. Diagrams representing the main characteristics of the hydrological models used in the

experiment.
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choosing the analysis period from 1 January 2007

through 31 March 2013 include the availability of good-

quality rainfall, PET, and streamflow data; three major

floods; and an overlap in Soil Moisture Ocean Salinity

(SMOS) and Advanced Microwave Scanning Radiom-

eter for Earth Observing System (AMSR-E) RS SM

observations.

c. Rainfall, PET, and streamflow

Daily rainfall data obtained from eight gauges were

aggregated to obtain a catchment areal rainfall estimate

using the inverse distance weighting (IDW) method,

while monthly PET data from the Australian Water

Availability Project (AWAP; Raupach et al. 2012) were

used. The IDWmethod to interpolate rainfall at a point

has been shown to outperform other common areal

rainfall estimation techniques used in hydrology (Ly

et al. 2011). When applying the IDW method, the five

gauges closest to the catchment centroid were used. If

for any given time step there was no observations

recorded at one or more of these gauges, then ob-

servations from the next nearest gauge(s) were used.

As the distance from the rainfall gauge to the centroid

increased, that rainfall gauge had less influence on

the catchment areal rainfall estimate. Consequently,

using more than five gauges does not significantly

alter the catchment areal rainfall estimate. The min-

imum, maximum, and calculated IDW rainfall vol-

umes were 2764, 3406, and 3205mm, respectively.

The techniques outlined in this paper are easily

transferable to other methods that are used to esti-

mate catchment areal rainfall estimates. Continuous

height measurements from a crump weir were con-

verted to streamflow using periodically updated rat-

ing curves (Queensland Government 2017). Daily

streamflow and rainfall observations from 1 January

2007 to 31March 2013 for theWarwick catchment can

be seen in Fig. 3.

TABLE 1. Parameters and ranges for hydrological models used in the estimation process.

Parameter Description Units Range

SAC-SMA

UZTWM Upper-zone tension water capacity mm 1.00–150

UZFWM Upper-zone free water capacity mm 1.00–150

LZTWM Lower-zone tension water capacity mm 10.00–500

LZFPM Lower-zone free water primary capacity mm 10.00–1.00 3 104

LZFSM Lower-zone free water supplemental capacity mm 5.00–400

UZK Upper-zone free water withdrawal rate day21 1.00 3 1021–7.50 3 1021

LZPK Lower-zone primary free water withdrawal rate day21 1.00 3 1024–2.50 31022

LZSK Lower-zone supplemental free water withdrawal day21 1.00 3 1022–8.00 31021

ZPERC Maximum percolation rate — 1.00–500

REXP Exponent of the percolation equation — 1.00–5.00

PFREE Fraction percolation from upper- to lower-zone free

water storage

— 0.00–8.00 3 1022

PCTIM Minimum impervious fraction of the watershed area — 0.00–1.00 3 1021

ADIMP Additional impervious area — 0.00–4.00 31021

PDM

Cmax Maximum store capacity mm 1.00–500

B Pareto distribution exponent that controls spatial variability

of Cmax

— 1.00 3 1024–1.80

be Actual evaporation exponent — 0.10–5.00

bg Recharge function exponent — 0.20–6.70

kb Baseflow constant hmm22 1.00–2000

Cmin Minimum store capacity mm 0.00–500

St Soil tension storage capacity mm 0.00–500

k1 Time constant for linear reservoir h 1.00–300

k2 Time constant for linear reservoir h 1.00 3 1027–30 000

HyMod

Cmax Maximum store capacity mm 1.00–500

b Pareto distribution exponent that controls spatial variability

of Cmax

— 0.10–2.00

a Factor that distributes flow between Rs and Rq — 0.010–0.99

Rs Residence time of slow flow store day 0.00–0.10

Rq Residence time of slow flow store day 0.10–0.99
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d. Remotely sensed soil moisture

In different experiments RS SM data from the SMOS

and AMSR-E satellites were assimilated into the lumped

hydrological models. TheAMSR-E soil moisture dataset

consists of 1078 observations and is part of

the National Aeronautics and Space Administration

(NASA) Land Parameter Retrieval Model (LPRM)

Level 3 descending product for the time period begin-

ning 2 January 2007 and ending 29 September 2011 (de

Jeu and Owe 2011). The SMOS soil moisture dataset

consists of 581 observations and is part of the Level 3

descending product obtained from the Centre Aval de

Traitement des Données SMOS (CATDS) for the time

period beginning 15 January 2010 and ending 30 March

2013. Since the nighttime is the time of day when the

surface temperature is vertically and horizontally most

homogeneous, the descending pass observations are

more likely to be representative of spatial soil moisture

than the ascending pass observations. Studies have

shown the descending pass observations to be more

representative of the surface soil moisture (Draper et al.

2009). Consequently, they were selected for this study.

Soil moisture for the Warwick catchment was obtained

by averaging the seven SMOS and four AMSR-E pixels

that cover the Warwick catchment. Even though both

products have a similar footprint size, a different num-

ber of pixels were used as their centers have different

locations. In the time period in which both satellites

are active and observing soil moisture there were 387

AMSR-E observations and 307 SMOS observations.

FIG. 2. A locality map showing the study catchment of Warwick, its location within the Condamine–Culgoa basin,

and Australia. The notation ‘‘m AMSL’’ in the legend denotes ‘‘meters above mean sea level.’’
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There are 194 days in which there are both AMSR-E

and SMOS observations. Figure 4 shows the AMSR-E

and SMOS volumetric soil moisture data used in this

study. It can be observed that theAMSR-E soil moisture

observations are continuously wetter than the SMOS

soil moisture observations. Both satellites measure

near-surface soil moisture. The majority of the observ-

able differences between the AMSR-E and SMOS da-

tasets are a result of different instrumentation and

retrieval algorithms. Leroux et al. (2014) compared RS

SM data with in situ soil moisture data and demon-

strated that AMSR-E soil moisture has a variable sea-

sonal bias and up to 2–3 times more error than SMOS

soil moisture data.

4. Experiment design

a. Rainfall estimation

Prior to the assimilation of RS SM into the models,

rainfall was estimated. The rainfall estimation process is

described using Fig. 5. The estimation of rainfall time

series along with model parameter distributions began

by reducing input data to a dimensionality that makes it

computationally feasible for modern parameter esti-

mation algorithms to estimate rainfall parameters. As

recommended by Wright et al. (2017a), the discrete

wavelet transform (DWT) was used to reduce the ob-

served rainfall time series to a set of parameters. The

rainfall time series for the estimation period was rep-

resented by 115 DWT parameters. The Daubechies 1,

db1 wavelet, and four levels of decomposition were

chosen to allow for reasonable computational speed.

Only the approximation parameters were modified.

The hydrological models used a 100-day spinup period

before a 1825-day estimation and 357-day evaluation

period. Using the DREAMZS algorithm a sample of

115 rainfall1 d (model parameters) was drawn. Rainfall

was reconstructed from the parameters before being

used as input to the hydrological model. Estimates of

both rainfall and streamflow were then evaluated using

an objective function that balances streamflow and

rainfall. This process was iterated until convergence was

FIG. 4. SMOS (x) and AMSR-E (￮) RS SM observations for the Warwick catchment.

FIG. 3. Rainfall and streamflow observations for the Warwick catchment.
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FIG. 5. A representation of the process used to reduce model input data and estimate rainfall for different

hydrological models.
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reached. As per Gelman and Rubin (1992) conver-

gence is deemed to have been reached when all of the

sample trajectories are smaller than the R̂ convergence

diagnostic of 1.2. To adequately sample the converged

rainfall time series and parameter distribution, the

sample trajectories were run until the convergence

criteria were met for more than 25% of sample gen-

erations (Vrugt 2016). Consequently, the EnKF was

individually run for each of the 125 000 unique rainfall

time series and model parameter sets obtained from

each hydrologic model. For further detail regarding

the rainfall estimation process, the reader is referred

to Wright et al. (2017b). The streamflow simulations

generated in the rainfall estimation process were

benchmarked against a traditional parameter estima-

tion approach, which assumes no input error and only

estimates model parameters. DREAMZS was used

as the sampling algorithm to estimate the model pa-

rameter distribution. A Gaussian objective function

(Thiemann et al. 2001) was used.

b. Assimilation of remotely sensed soil moisture
observations

Using the retrieved rainfall, the SM assimilation can

now be performed. In general, similarities between

RS SM and modeled SM will be more evident post-

assimilation. Without assimilation a bias of zero may

still be achieved, but there would be a larger spread.

Therefore, to assess the compatibility of RS SM with

different hydrological models and rainfall and parame-

ter estimates, the EnKF has been chosen to assimilate

RS SM observations into the hydrological models.

RS SM was only assimilated during the joint rainfall

and model parameter estimation period. Assimilations

begin on 15 January 2010 and end on 27 September

2011. A brief description of the EnKF is given in this

section; for a more complete discussion, the reader is

referred to Reichle et al. (2002).

Assimilation of SM data was conducted separately

for each of the 125 000 individual rainfall time series

estimates. Model error was taken into account for

each data assimilation run by forcing each model

with a 32-member ensemble. The ensemble members

were generated by adding random multiplicative

heteroscedastic Gaussian error to the input rainfall

series. The standard deviation (SD) of the Gaussian

distribution was equivalent to 10% of the observation.

The model was propagated forward in time until an

observation was available for assimilation.

When an observation was made available, the state

vectors were, when possible, transformed to unitless co-

ordinates. Descriptions of the states for each of the

models are given in Table 2. For the SAC-SMA model,

this is written as

XSAC-SMA
i 5

�
UZTWC

i
/UZTWM UZFWC

i
/UZFWM LZTWC

i
/LZTWM

LZFSC
i
/LZFSM LZFPC

i
/LZFPM ADIMC

i
/(UZTWM1LZTWM)

�T
, (1)

where XSAC-SMA
i is the SAC-SMA state vector at time

step i, and T denotes the transpose. For the PDM this is

written as

XPDM
i 5 [S=S

max
Sbf

1
SurSto

0
SurSto

1
]T , (2)

where XPDM
i is the PDM state vector at the time step i.

For HyMod this is written as

XHyMod
i 5 [x

1
x
2
x
3
x
4
x
5
=C

max
]T , (3)

where XHyMod
i is the HyMod state vector at time step i.

To be compatible with the volumetric soil moisture

observations from RS the saturated soil moisture model

states need to be scaled by their associated porosity f.

The dominant soil type in Warwick has been identified

TABLE 2. Hydrological model states used in the data assimilation

process.

State Description Units

SAC-SMA

UZTWC Upper-zone tension water content mm

UZFWC Upper-zone free water content mm

LZTWC Lower-zone tension water content mm

LZFSC Lower-zone free water supplemental

content

mm

LZFPC Lower-zone free water primary content mm

ADIMC Additional impervious area storage

content

mm

PDM

S Soil moisture store mm

Sbf1 Baseflow store mm

SurSto0 First surface store mm

SurSto1 Second surface store mm

HyMod

x1 First surface store mm

x2 Second surface store mm

x3 Third surface store mm

x4 Baseflow store mm

x5 Soil moisture store mm
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as loamy sand (CSIRO 2017), for which the porosity

has been determined to be 0.45 (Rawls et al. 1982).

ParameterXSAC-SMA
i was transformed to the observation

space by HSAC-SMA (the SAC-SMA transformation ma-

trix), where

HSAC-SMA 5 ½f 0 0 0 0 0 � . (4)

ParameterXPDM
i is transformed to the observation space

by HPDM, where

HPDM 5 ½f 0 0 0 � . (5)

Parameter XHyMod
i is transformed to the observation

space by HHyMod, where

HHyMod 5 ½ 0 0 0 0 f � . (6)

To aid in the identification of hydrologic models and

parameters consistent with streamflow, RS SM, and

estimated rainfall, RS soil moisture observations were

assimilated without applying bias correction techniques

that rescale observed data to model climatology. The

primary motivation for not rescaling RS SM data to

themodel climatology is that rescaling data assumes that

no bias is present in the model and thus eliminates

options to explore model bias. While rescaling RS SM

observations to the climatology of the model using

CDFmatching is a commonly applied approach (Reichle

and Koster 2004), Pauwels and De Lannoy (2015) sug-

gest that CDF matching does not provide optimal

results. Further, rescaling the RS SM observations to

the SM simulated by the 125 000 unique parameter sets

for each model would hinder the retrieval of a self-

consistent system. The innovations were calculated post-

assimilation and are defined as

innov
i
5Obs

i
2HmodelXmodel

i , (7)

where innovi and Obsi are the innovations and the ob-

servations at the ith time step, respectively. Parameter

Hmodel is the transformation matrix for a selected model

and transforms saturated soil moisture into volumetric

soil moisture, and Xmodel
i is the ensemble mean for the

state vector at time step i for a selected model.

5. Results and discussion

a. Estimated rainfall and impact on streamflow
simulations

Prior to discussing the results from the assimilation

routine, it is important to discuss the impact of rainfall

estimation on streamflow simulations. Table 3 shows the

mean and standard deviation of root-mean-square error

(RMSE) obtained for the traditional parameter and

rainfall estimation approaches. This demonstrates that

the use of model input data reduction and a dual ob-

jective function is able to produce streamflow simula-

tions that are more consistent with observations when

compared to streamflow simulations obtained from

a traditional parameter estimation approach in which

only model parameters are estimated. A reduction in

RMSE between observed and simulated streamflow

was achieved for the two estimation approaches for

each model. Yet, not all models achieved the same

reduction in RMSE. The observed difference in the

reduction in RMSE between models can be due to

overparameterization of a model or a model’s inade-

quate ability to account for complex dynamics within a

catchment. While the RMSE was reduced for the rain-

fall estimation approach, the SD increased. This may

have occurred as a result of the increase in the number

of parameters estimated and/or the introduction of

a likelihood function that considers both rainfall and

streamflow.A cumulative time series of the observed and

estimated rainfall is displayed in Fig. 6. It is worth noting

that the mean rainfall estimates from the SAC-SMA

model are considerably closer to the observed rainfall

than those obtained from the PDM and HyMod. The

rainfall estimated using the PDM and HyMod has a sig-

nificantly smaller variance than the variance in rainfall

estimated by the SAC-SMA. While each of the models

were constrained by the same boundary conditions,

the short- and long-term rainfall dynamics estimated

by each model are considerably different. Each of

these estimated rainfall time series produce streamflow

simulations with the lowest RMSE for that model.

This observation clearly demonstrates the importance

of model selection. The gauged rainfall observations

were not considered to be an objective truth. Conse-

quently, comparing individual observed and estimated

rainfall events was not considered to be as fruitful as

finding a self-consistent set that includes hydrological

models, model parameters, observations and simulations.

TABLE 3. Maximum a posteriori (MAP), mean, and SD of

RMSE throughout the estimation period for a traditional param-

eter estimation approach and joint estimation of model parameters

and rainfall approach.

RMSE streamflow (m3 s21)

Traditional Rainfall

Model MAP Mean SD MAP Mean SD

SAC-SMA 0.3606 0.3619 0.0005 0.2154 0.2175 0.0012

HyMod 0.4828 0.4832 0.0002 0.4141 0.4175 0.0011

PDM 0.3792 0.3796 0.0002 0.3452 0.3479 0.0010
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The mean rainfall estimates from all of the models are

drier than the observed rainfall, yet the streamflow

simulated is more consistent with observations than

that obtained from observed rainfall. The cause of this

phenomenon cannot be determined from this study.

However, a possible explanation is that the spread of

rain gauges does not provide sufficient density to cap-

ture the true catchment areal volume. It is also possible

that the drier rainfall estimates are a result of negatively

biased streamflow observations. This would suggest that

improvements in streamflow measurement techniques

can be made. Regardless of whether or not this is the

case, the objective of finding self-consistent rainfall time

series, model parameters and RS SM observations that

simulate streamflow observations well remains.

b. Daily innovations

The next step in the analysis is to assess the results of

the soil moisture assimilation. The daily innovation for

each of the 125 000 rainfall time series and their re-

spective model parameter sets are shown in Fig. 7. Each

of the panels represents a different model and RS SM

combination. For the modeled SM and RS SM to be

considered consistent with each other, the innovation

time series must vary around zero. Deviations from

this demonstrate inconsistencies in either the modeled

SM and/or the RS SM. When assimilating SMOS RS

SM into both the SAC-SMA model and HyMod, in-

novation time series that vary around zero are obtained.

This indicates that SM modeled by the SAC-SMA

model and HyMod are consistent with the SMOS RS

SM observations. Innovation time series with means

larger than zero are observed when assimilating the

AMSR-E RS SM into each of the three models. Inno-

vation time series with means smaller than zero are

observed when SMOS RS SM observations were

assimilated.

It can be observed in Fig. 4 that, when compared

to the SMOS RS SM observations, the AMSR-E RS

SM observations show less seasonal variability. Conse-

quently, the variation of innovations around zero in the

assimilation of the SMOS RS SM into the SAC-SMA

FIG. 6. Cumulative rainfall series for the Warwick catchment. Observed rainfall is plotted

using the solid black line, the gauges that observed the lowest and highest rainfall volumes are

plotted using the black dashed lines, and the mean and 5th–95th percentile rainfall estimates

are represented by the dashed red line and gray shading, respectively.

AUGUST 2018 WR IGHT ET AL . 1315



and HyMod models suggests that these models capture

the seasonality in SM that are observed by SMOS.

Conversely, the daily innovations vary approximately

around zero when the PDM assimilates AMSR-E soil

moisture, thus suggesting that the PDM captures the

seasonality in SM that is observed by AMSR-E. These

findings indicate that unscaled RS SM observations are

not inherently inconsistent with modeled SM. Incon-

sistencies between RS and modeled SM may be present

due to a combination of poor rainfall estimates, soil

moisture observations, and/or a model structure that

does not adequately describe the SM dynamics. Con-

sistency between RS and modeled SM does not, how-

ever, guarantee adequate SM or streamflow simulations

or rainfall estimates. Similarly, as seen in Table 3, areal

rainfall obtained from gauged observations does not

produce streamflow simulations that are most consistent

with observations. This suggests that the rainfall obser-

vations may not be representative of catchment rainfall.

When evaluating a rainfall–runoff model’s suitability

for forecasting purposes, it is essential that the model

is able to adequately simulate past streamflow obser-

vations. The results demonstrate that good streamflow

simulations and consistency between RS and modeled

SM can be obtained from rainfall estimates that are

inconsistent with gauged rainfall observations. Conse-

quently, careful consideration needs to be paid toward

uncertainty in all components of the water cycle before

claims are made that a rainfall–runoff model is able to

simulate good streamflow for the right reasons.

c. Innovation mean for the assimilation period

Over the course of the assimilation period, the in-

novation mean at each time step ideally varies around

FIG. 7. Daily innovation mean for the ensembles. The symbols represent the mean daily innovation mean for the

125 000 rainfall time series and model parameter sets while the gray shading indicates the 5th–95th percentile daily

innovation mean. Each panel represents a different model–RS SM assimilation combination.
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zero. The mean of the innovations for the entire time

series was calculated for each of the 125 000 rainfall time

series and parameter sets, models, and RS SM products

and presented in Fig. 8. The most consistent model and

RS SM combinations have innovation means that are

centered around 0 and rainfall volumes closest to

3205mm, the observed rainfall volume over the rainfall

estimation period. When assimilating SMOS SM, the

mean innovations from the SAC-SMAmodel are largely

contained between 0.01 and20.03mmmm21. Themean

innovations for the five remaining experimental com-

binations do not have both positive and negative values.

Consequently, some inconsistencies between the chosen

model, RS SM product, and/or rainfall estimates are pres-

ent. The rainfall volumes estimated with the SAC-SMA

model are contained between 2900 and 3300mm. This

variance in estimated rainfall volume is larger than that

shown by theHyMod andPDMrainfall estimates. Further,

the extent of rainfall volumes obtained by the SAC-SMA

model encompasses the observed rainfall volume of

3205mm for the Warwick catchment. This suggests that

the rainfall estimates obtained using the SAC-SMA are

more likely to be consistent with SMobservations that are

considered to be most consistent with the truth. Without

CDF matching, the SAC-SMA configuration will not

benefit from assimilating AMSR-E SM observations.

When SMOS SM observations were assimilated into

HyMod, the mean innovations were close to 0. However,

the lack of consistency between the HyMod rainfall

estimates and the observed gauge-based rainfall demon-

strates that the innovations alone do not provide

sufficient evidence to draw a positive conclusion.

Further inconsistencies are observed between the mean

innovations obtained for SAC-SMA and HyMod when

assimilating AMSR-E observations, as well as the mean

innovations obtained for SAC-SMA and HyMoD

when assimilating SMOS observations. Conversely,

only small inconsistencies are observed with the

mean innovations in the PDM/AMSR-E experiment.

This result should serve as a warning to hydrological

modelers. A soil moisture product that has been dem-

onstrated to have a seasonal bias and up to 2–3 times

more error than SMOS SM (Leroux et al. 2014) shows

consistency with modeled SM when assimilated into a

hydrological model that was forced by rainfall estimates

that are known to be inconsistent with gauge-based

observations. Uncertainty in all components of the

water cycle needs to be considered. The methodology

presented provides a step toward obtaining robust

streamflow forecasts by finding a self-consistent set that

includes hydrological models, model parameters,

streamflow observations, rainfall estimates, and soil

moisture observations. This study did not include PET,

as Oudin et al. (2006) and Samain and Pauwels (2013)

have demonstrated that watershed-scale models are

relatively insensitive to random and systematic errors in

the PET data. Future studies may incorporate PET. The

demonstratedmethodology can be used to reject models

and RS SM observations for a given catchment.

6. Conclusions

Previous studies have demonstrated that rainfall

estimates obtained via the sole inversion of either

FIG. 8. (left) The 2D histogram shows the mean of the daily innovation mean for each of the 125 000 rainfall time

series and model parameter sets along with the estimated rainfall volumes throughout the estimation period for

each of themodels andRS SM combinations. (right)A zoom into the 2D histogram for the case when the SMOSRS

SM product is assimilated into the SAC-SMAmodel. The black solid and two dashed lines represent the IDW and

minimum and maximum rainfall observations, respectively.
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streamflow or soil moisture are often unrealistic or

lack temporal specificity. This research builds upon a

previously developed rainfall estimation methodology

by analyzing rainfall estimates using innovations from

the assimilation of RS SM data. The methodology pre-

sented can be used by hydrologists to make informed

choices regarding model choice and satellite choice.

Permutations of estimated rainfall time series, model

parameter sets, hydrological models, and RS SM data

were analyzed for self-consistency. Rainfall estimates

were obtained for the SAC-SMA, HyMod, and PDM

rainfall–runoff models via a process that involved

the dimensionality reduction of input data using the

DWT. An objective function that balances estimates of

streamflow and rainfall was used in conjunction with

the sampling algorithm DREAMZS to simultaneously

estimate model parameters and rainfall time series.

Cumulative plots of the estimated rainfall time series

showed that streamflow simulations more consistent

with gauge observations can be simulated with model-

dependent rainfall estimates, and that some models

also simulated streamflow that is more consistent with

gauge observations, even though rainfall time series that

are not consistent with gauge-based observations were

estimated. The range of estimated rainfall time series

was found to be dependent on the model. EnKF in-

novations with mean close to 0 were obtained when

SMOS and AMSR-E RS SM products were assimi-

lated into HyMod and the PDM, respectively. Yet, the

rainfall estimates from these models are still discarded

as their rainfall volumes during the rainfall estimation

period were not consistent with the range of rainfall

volumes observed at the gauges. Rainfall estimates,

streamflow simulations, and EnKF innovations that are

consistent with observations were obtained using the

SAC-SMA and SMOS RS SM. To be considered ro-

bust, rainfall estimates obtained via inversion need

to produce streamflow simulations and simulate soil

moisture states that are consistent with their respective

observations.
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