JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D08108, doi:10.1029/2003JD003765, 2004

A methodology for snow data assimilation in a land surface model

Chaojiao Sun'

Hydrological Sciences Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt,
Maryland, USA

Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA

Jeftrey P. Walker

Department of Civil and Environmental Engineering, University of Melbourne, Parkville, Victoria, Australia

Paul R. Houser

Hydrological Sciences Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt,
Maryland, USA

Received 11 May 2003; revised 4 March 2004; accepted 22 March 2004; published 27 April 2004.

[1] Snow cover has a large influence on heat fluxes between the land and atmosphere
because of its high albedo and insulating thermal properties. Hence accurate snow
representation in coupled land-ocean-atmosphere global climate models has the potential
to greatly increase prediction accuracy. To this end, a one-dimensional extended Kalman
filter analysis scheme has been developed to assimilate observed snow water equivalent
into the NASA Seasonal-to-Interannual Prediction Project (NSIPP) catchment-based
land surface model. This study presents the results from a set of data assimilation “twin”
experiments using an uncoupled version of the land surface model. First, “true” snow
states are generated by spinning-up the land surface model for 1987 using an observation-
constrained version of the European Centre for Medium-Range Weather Forecasts
(ECMWF) 15-year Re-Analysis (ERA-15) data set for atmospheric forcing. A degraded
1987 simulation was then made by initializing the model with no snow on 1 January 1987.
A third simulation assimilated the synthetically generated snow water equivalent
“observations” from the true simulation into the degraded simulation once a day. This
study illustrates that by assimilating snow water equivalent observations, which are readily
available from remote sensing satellites, other state variables (i.e., snow depth and
temperature) can be retrieved and effects of poor initial conditions removed. Runoff and
atmospheric flux predictions are also improved.  INDEX TERMS: 1863 Hydrology: Snow and ice
(1827); 3260 Mathematical Geophysics: Inverse theory; 3322 Meteorology and Atmospheric Dynamics: Land/
atmosphere interactions; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data
assimilation; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; KEYWORDS. snow assimilation,
extended Kalman filter, GCM initialization

Citation: Sun, C., J. P. Walker, and P. R. Houser (2004), A methodology for snow data assimilation in a land surface model,
J. Geophys. Res., 109, D08108, doi:10.1029/2003JD003765.

ranging from about 7% to 40% during the annual cycle
[Hall, 1988]. Moreover, the energy demanded by snowmelt
can significantly cool the surface and the overlying air
[Dewey, 1977; Namias, 1985; Baker et al., 1992; Groisman
et al., 1994]. Thus surface air temperature forecasts from
numerical weather prediction are very sensitive to the snow
cover extent and thickness. For example, improvement of
snow physics in the NCEP (National Centers for Environ-
mental Prediction) ETA operational forecast model substan-
tially reduced a 2 m daytime air temperature cold bias for
snow covered areas [Mitchell et al., 2002]. Further, snow

1. Introduction
1.1. Importance of Snow

[2] Snow plays an important role in governing the Earth’s
global energy and water budgets, as a result of its high
albedo, low thermal conductivity, and considerable spatial
and temporal variability [Hall, 1998]. Snow cover is one of
the most highly varying hydrological quantities on the
Earth’s surface [Gutzler and Rosen, 1995], with the North-
ern Hemisphere mean monthly snow covered land area
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covered landscapes adjacent to bare soil regions have been
found to produce mesoscale wind circulations [Johnson et
al., 1984] and snow cover variability has been shown to
affect climate patterns in coupled climate simulations. Using
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the NESDIS (National Environmental Satellite, Data, and
Information Service) snow cover data [Robinson et al.,
1993], Cohen and Entekhabi [1999] demonstrate that early
season Eurasian snow cover variations are associated with
dominant modes of midlatitude variability in the Northern
Hemisphere winter. In addition, recent observational studies
[Lo and Clark, 2002; Bamzai and Shukla, 1999] have
shown an inverse relationship between antecedent snow
mass or snow cover extent and Asian and North American
summer monsoon intensity. Hence any long term coupled
climate system prediction is dependent on accurate snow
information.

[3] Because of its low thermal conductivity, snow can
insulate the underlying soil and impede the depth and
severity of soil freezing [Lynch-Stieglitz, 1994; Sud and
Mocko, 1999]. While the energy balance is the primary
driver of the Earth’s atmospheric circulation system and
associated climate, the water budget is also significantly
modified through snowmelt processes. Being a medium-
term water store, snow plays an important role in springtime
runoff generation and flood production [Hall, 1988], and
can provide a substantial component of the annual water
budget. In many northern latitude regions (e.g., California),
spring meltwater from the winter snowpack is the greatest
source of water in the annual soil moisture budget [4guado,
1985]. Therefore, to achieve accurate runoff and soil mois-
ture prediction, which provides feedback to climate predic-
tion [Koster and Suarez, 1995], it is important to accurately
initialize snow cover in climate model forecasts.

1.2. Snow Observations

[4] Owing to considerable subgrid-scale spatial and tem-
poral snow variability, and deficiencies in model snow
physics, realistic global climate model snow prediction is
difficult [Liston et al., 1999]. Any land surface model
initialization based solely on model spin-up will be affected
by these problems. While there is a demonstrated need for
routine snow observation (snow water equivalent, snow
depth, snow temperature and hence snow cover), particu-
larly for climate model initialization, routine ground-based
snow observations are uncommon. In the United States,
daily snow depth measurements are available at airports and
from a network of volunteer observers. Snow course and
SNOTEL (Snowpack Telemetry) sites collect more detailed
snow data (snow depth, snow water equivalent and snow
temperature), but these data are only collected in remote
areas of the mountainous western states (information on
SNOTEL can be found on the following Web site: http://
www.wce.nres.usda.gov/snotel/). In Canada, daily ground-
based snow depth observations have been made at most
synoptic stations since the 1950s, but the observing network
is concentrated over the southern, more populated regions.
Snow course observations are widely distributed throughout
all of the provinces and territories, but they are made
infrequently (weekly, biweekly or monthly) [Brown et al.,
2003]. Even though the in situ North American observations
are among the best in the world, they are insufficient for
global climate model initialization due to extreme snow
depth heterogeneity.

[s] In contrast, remote sensing has the capability for
providing snow information with the spatial coverage and
temporal resolution needed for global climate model initial-
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ization. Remote sensing observations average out the small-
scale variability inherent to in situ snow observations,
therefore producing better climate-relevant snow informa-
tion. Operational weekly snow cover analyses over North
America have been produced from visible satellite obser-
vations by NOAA since 1966 [Robinson et al., 1993].
Although this is the longest remotely sensed snow record
available, it only provides the snow cover rather than snow
mass information. While visible-infrared satellite sensors,
such as the Moderate Resolution Imaging Spectroradiom-
eter (MODIS) onboard Terra and Aqua currently provide
the highest daily snow cover spatial resolution (500 m),
they only work for cloud-free conditions. These high-
resolution observations can provide information on frac-
tional coverage of snow, which complements passive
microwave observations that have coarser resolution, but
fractional snow cover observation alone is difficult to use
for quantitative snowpack initialization. Infrared sensors
can also provide surface skin temperature information for
cloud free areas. However, these temperature observations
may not represent the surface snow temperature, especially
when vegetation protrudes above the snowpack. When
high-resolution snow cover and surface skin temperature
observations are used together with snow mass observa-
tions from passive microwave sensors, synergistic benefits
may be derived for estimating snowpack states. Since
research-quality data sets of simultaneous snow cover,
snow depth, and snow water equivalent observations are
still under development [Robinson, 2002], we focus on
using passive microwave observations in this study.

[6] Passive microwave sensors can measure SnOw mass
(snow water equivalent) under both nighttime and cloudy
(nonprecipitating) conditions, which persist during much
of the high latitude snow season. Since November 1978,
the Scanning Multichannel Microwave Radiometer
(SMMR) and the Special Sensor Microwave Imager
(SSM/I) have been acquiring passive microwave observa-
tions. SMMR observations (resampled to /4 degree by /4
degree resolution) are available from 1978 to 1987, and
SSM/I observations (resampled to '/ degree by '/, degree
resolution) are available since 1987. With the launch of
the Earth Observing System (EOS) Aqua satellite in
May 2002, high-quality passive microwave snow water
equivalent observations are available from its Advanced
Microwave Scanning Radiometer for EOS (AMSR-E)
instrument. AMSR-E is a passive microwave radiometer
expected to produce 10 km resolution snow water equiv-
alent observations.

[71 Chang et al. [1987] have developed a commonly
used algorithm to derive snow water equivalent and snow
depth from passive microwave data based on a radiative
transfer model with several assumptions. They assumed
that snow crystal size remains constant (0.3 mm) through-
out the season. In reality, snow crystals evolve with the
season and weather conditions [Foster et al., 1997], and
their size is the most important factor in determining the
algorithm accuracy. Vegetation cover can also impose
large uncertainties in passive microwave sSnow water
equivalent estimation. For instance, Brown et al. [2001]
showed that the boreal forest snowpack mass estimated
from passive microwave observations was consistently
underestimated. In a recent study, J. L. Foster et al.
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(Quantifying the uncertainty in passive microwave snow
water equivalent observations, submitted to Remote Sensing
of Environment, 2004) have addressed these uncertainties
and estimated errors in snow water equivalent observations
derived from passive microwave measurements, based on
snowpack age, climate, vegetation, topography, and bright-
ness temperature measurement error. When the snowpack is
wet, snow information is difficult to extract from passive
microwave radiometry. Therefore only nighttime satellite
overpasses are commonly examined, as there is a higher
probability that the snowpack is not actively melting at
night. Information on snowpack melt status, though not
used in this study, could be used to further constrain model
snow dynamics.

1.3. Snow Assimilation

[8] The few studies that have constrained model pre-
dictions with snow observations have generally replaced
the modeled snow states with observations directly; this
assimilation method is commonly called “direct inser-
tion.” For example, Liston et al. [1999] used this approach
successfully in identifying deficiencies in a regional cli-
mate model associated with snow distribution, and Rodell
et al. [2004] have used direct insertion to assimilate
MODIS snow cover observations into the Global Land
Data Assimilation System (GLDAS). J. Jin and N. L.
Miller (An analysis of climate variability and snowmelt
mechanisms in mountainous regions, submitted to Journal
of Hydrometeorology, 2003) also used this technique to
investigate snowpack impact on climate variability and
snowmelt mechanisms in mountainous regions.

[o] Direct insertion assumes that observations are perfect,
and model forecasts do not contain useful information.
However, the reality is that model prediction can sometimes
be more accurate than observations; for example, model-
predicted snow depth can be more accurate than remotely
sensed observations in densely vegetated areas. The prop-
agation of information to coupled state variables in direct
insertion is accomplished only through model physics.
B. A. Cosgrove and P. R. Houser (Impact of surface forcing
biases on snow assimilation, submitted to Journal of
Hydrometeorology, 2003) found that large water balance
errors occur when imperfectly modeled snow melting pro-
cesses interact with the direct insertion of perfect snow
observations. Constraining these biases in assimilation
systems is important for achieving optimal assimilation
results [Dee and da Silva, 1998; Dee and Todling, 2000],
and is an important topic for future research.

[10] An improvement on direct insertion is the statistical
interpolation scheme (also called optimal interpolation).
Brasnett [1999] used this scheme to assimilate snow depth
observations from synoptic stations into a very simple
snow accumulation, aging and melt model driven by
numerical weather prediction precipitation forecasts and
screen-level temperature analyses. The resulting global
snow depth analysis was found to be more accurate than
a climatological estimate. Recently, Brown et al. [2003]
applied this method to generate a gridded monthly snow
depth and snow water equivalent data set for North
America, using snow depth observations from the United
States cooperative stations and Canadian climate stations.
They found that the gridded results agreed well with in
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situ and satellite data over midlatitudinal regions during the
AMIP II (Atmospheric Model Intercomparison Project II)
period (1979—1996). These results provide impetus for the
development of advanced assimilation methods and satellite
observations to produce accurate snow fields for global
climate model initialization.

[11] In this study, we use the statistical Kalman filter
approach to assimilate snow water equivalent observations,
which accounts for relative observation and prediction
uncertainty to produce a statistically optimal estimate.
We study the assimilation of satellite snow water equiva-
lent observations made by passive microwave sensors,
because snow water equivalent is crucial for estimating
water fluxes in hydrologic models and surface albedo in
numerical weather prediction models [Robinson and
Kukla, 1985]. Moreover, it is the total mass (i.c., snow
water equivalent, which is the product of snow depth and
density) in the snowpack that directly determines its
passive microwave response; this is the basis for passive
microwave snow water equivalent estimation. Thus for this
study we only assimilate remotely sensed snow water
equivalent, and allow the model to predict the snow
density evolution. While directly replacing snow model
state variables with observations is possible, this does not
account for the relative prediction and observation errors,
and does not provide a framework for correcting the
nonobserved but highly correlated snow depth and heat
content model state variables.

[12] This study explores how routinely available passive
microwave snow water equivalent observations can be
assimilated efficiently into a state-of-the-art land surface
model with a physically based snow submodel, using the
extended Kalman filter. This methodology is developed
through a series of numerical experiments using synthetic
model-generated snow water equivalent observations. It is
shown that sequential snow water equivalent assimilation
can also retrieve the snow depth and snow temperature
fields, and that runoff and atmospheric flux predictions are
improved.

2. Models
2.1. Land Surface Model

[13] This study uses the NASA Seasonal-to-Interannual
Prediction Project (NSIPP) catchment-based land surface
model of Koster et al. [2000], which abandons the
traditional rectangular land surface discretization approach
in favor of topographically based hydrological catchment
elements. The model includes an explicit subcatchment-
scale soil moisture and evaporation variability treatment
where each catchment is divided into three regimes:
saturated, stressed (wilting) and unstressed. In this appli-
cation about 5000 catchments are used to model the North
American continent, with an average catchment size of
3600 km®.

[14] The forcing data for the catchment-based land
surface model, including air temperature and humidity at
2 m height, wind speed at 10 m height, total and
convective precipitation, downward solar and longwave
radiation, and atmospheric pressure, were derived from the
15-year (1979-1993) ECMWF Re-Analysis (ERA-15) that
was scaled to match monthly averaged meteorological
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Figure 1. Snow model schematic: (a) Single-layer mode

(when snow coverage <1). (b) Three-layer mode (when
snow coverage = | and total snow water equivalent W, >
13 mm).

observations [Berg et al., 2003]. Initial conditions were
obtained from “spinning-up” the catchment-based land
surface model by iterating the model over the same year
of atmospheric forcing for 10 years, by which time most
catchments had reached equilibrium. The topographic, soil
and vegetation parameter specifications are the same as in
the work of Walker and Houser [2001], with the catch-
ment boundaries and topographic parameters derived from
a 30 arc second (about 1 km) digital elevation model of
North America [Ducharne et al., 2000]. The soil and
vegetation parameters are from the first International
Satellite Land Surface Climatology Project (ISLSCP) ini-
tiative [Sellers et al., 1996].

2.2. Snow Submodel

[15] The catchment-based land surface model includes the
Lynch-Stieglitz [1994] snow submodel. This physically
based snow model accounts for snowpack evaporation,
sublimation, condensation, radiation interactions, precipita-
tion as rain or snowfall depending on the air temperature,
snowmelt, and metamorphosis [see also Stieglitz et al.,
2001]. The snow model operates in both single-layer and
three-layer modes, depending on the snowpack depth, with
three prognostic variables per layer (see Figure 1): snow
water equivalent ¥, snow depth D (a function of snowpack
density p and W) and heat content H (a function of W and
snow temperature 7).

[16] To eliminate numerical problems associated with
extremely thin snowpacks and to ensure a smooth transi-
tion from snow-free to complete snow coverage, the snow
model makes use of a single snow layer, a fractional
snow coverage factor o, and a critical minimum total
snow water equivalent value W, of 13 mm (equivalent
to a 87 mm fresh snowpack with a 150 kg/m® density). As
snow accumulates, the single layer snowpack is assumed
to grow horizontally from a no snow condition (o = 0)
with W, to complete snow coverage (o = 1). Once there is
complete coverage (W, = 13 mm and o = 1), the
snowpack grows vertically. Likewise, during snowmelt or
sublimation, the snow model reverts to a single-layer mode
once total snow water equivalent W7 reduces to 13 mm
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(typically equivalent to a 65 to 43 mm deep mature snow-
pack corresponding to a density of 200 kg/m> to 300 kg/m®)
for a = 1, and then begins to decrease « toward 0 for this
fixed W7 of 13 mm. In the single-layer mode, the snow
model outputs homogeneous density and temperature infor-
mation for all three layers (for consistency), with the layer
depths as defined below.

[17] During periods when the catchment is completely
covered with snow (W7 > 13 mm), the snow model operates
in the three-layer mode, with separate physics for each
layer. To capture the diurnal surface radiating temperature
range, imposed snow depth geometry is applied at each time
step. The layering geometry is set to keep the first layer
(indexed from top to bottom such that layer 1 interacts with
the atmosphere and layer 3 interacts with the soil) thin (D; <
0.05 m), and remaining snow partitioned between the
second and third layers to best represent the temperature
gradients within the snowpack.

[18] The specific snow depth modeling rules are as
follows. For the total catchment snowpack depth Dy =
D, + D, + Ds, for the three-layer mode (o = 1), the depth
of each layer is:

D, = 0.34(D7 — 0.05) if Dr >02m (1)

Dy = 0.66(Dy — 0.05)

Dy = 025Dy
D, = 0.50 Dy if Dy <0.2m. )
D; = 025Dy

[19] For single-layer mode (i.e., o < 1), only (2) is used
for the layer depths. Thus at the end of each time step the
snow layer boundaries are moved, with the associated snow
water equivalent and heat content variables redistributed
accordingly. This process is required to: (1) maintain a thin
surface layer that insulates the lower layers from atmo-
spheric cooling; (2) maintain a thin lower snow layer for
small snowpacks (D7 < 0.2 m), to deal with large snow-soil
temperature gradients, and a thicker lower snow layer for
large snowpacks (D7 > 0.2 m) when snow-soil temperature
gradients are expected to be small; and (3) assure that
model snow layers do not inadvertently disappear during
melting and sublimation.

3. Assimilation Method
3.1. Extended Kalman Filter

[20] We use the extended Kalman filter (EKF) to assim-
ilate total snow water equivalent observations into the
NSIPP land surface model, because the Kalman filter
explicitly takes into account the dynamical nature of model
and observation errors, which evolve with time, to produce
a statistically optimal model state estimates for linear
systems [Gelb, 1974]. It also provides a framework to
account for model and forcing biases. When the model is
nonlinear, the EKF predicts model error covariance with
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linearized model dynamics, and advances model states
according to the full nonlinear model. The EKF has been
widely used in atmospheric and ocean models [e.g., Ghil
and Malanotte-Rizzoli, 1991; Fukumori et al., 1999; Verron
et al., 1999; Keppenne, 2000], coupled ocean-atmosphere
models [e.g., Sun et al., 2002], and land surface models
[e.g., Walker and Houser, 2001]. Miller et al. [1994] discuss
a number of distinct Kalman filter extensions to nonlinear
systems.

[21] To facilitate our discussions, we briefly describe the
EKF equations here. The EKF consists of two steps. First,
the model integrates forward in time to produce “forecast”
states x" and their expected uncertainty P, based on the best
estimate of the state variables x* and their uncertainty P* at
the last time step. Second, when an observation is available,
the model forecast and its uncertainty is “updated”. The
state variables are updated by adding to the forecast states
the difference between the forecast and actual observation,
weighted by the Kalman gain K. Using the ‘““unified
notation” of Ide et al. [1997], the EKF forecasting equa-
tions are

X (t) = My [X*(t5-1)) 3)
Pi(4) = M P2 (4 )M]_ | + Q_y, 4)

where M is the nonlinear model function, M is the
linearized model operator, P is the forecast error covariance,
and Q is the model error covariance. The superscripts “a”
and “f” denote “analysis” and “forecast™ steps, and the
superscript “T”” denotes the “transpose’ operator.

[22] The best estimate of the system state vector x* and
associated covariances P are updated by

X () = x" (1) + Kied (5)
P*(1) = (I - KiHy) P (1), (6)

where K is the Kalman gain matrix,
Ky = P (0 H] [H P () HT + Ry] (7)

and dy is the so-called “innovation vector,” which is the
difference between the observed value and model-predicted
value at an observing location,

dy = Yi — Hy [Xf(l‘k)], (8)

and y is the observation vector, R is the observation error
covariance, H is the observation function, and H is the
linearized approximation of the observation function H.

3.2. Application of the Extended Kalman Filter

[23] In this study, we use a one-dimensional extended
Kalman filter to assimilate total snow water equivalent
observations without considering spatial correlations be-
tween neighboring catchments. Since we use a one-dimen-
sional land surface model, the only spatial correlation
among state variables is through large-scale (greater than
50 km) atmospheric forcing correlation. Therefore a one-
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Model forecast

Model SWE > 0?

Prescribe fresh snow
density p; =150 kg/m3
and snow temperature
as T=T,,at 2m height

Compute layer density
and temperature p;, T;
from model

Update layer depth D;using
(1) and (13); if total depth
D;<=0.2m, then
recompute D;using (2)

Update layer depth D;
using (2)

‘ Update layer SWE using D;and p, ‘

‘ Update layer heat content using (15) ‘

Figure 2. Flowchart showing assimilation procedure.

dimensional filter is a safe assumption for this study and
yields substantial computational savings.

[24] In principle, it is possible to make corrections to
the unobserved prognostic state variables (i.e., snow depth
and heat content) by using the Kalman filter update
equations (through the cross-correlation information
contained in the forecast model covariances), since snow
depth (a function of snowpack density and snow water
equivalent) and heat content (a function of snow temper-
ature and snow water equivalent) are strongly correlated
with snow water equivalent. However, because of the
somewhat arbitrary nature of the snow model layer
geometry and its evolution (snow model layers appear
and disappear, and snow mass is arbitrarily redistributed
between layers as snowpack evolves), the correlations
estimated from the model numerics were not well defined
and this approach to update unobserved model states
through the Kalman filter was abandoned.

[25] Instead, we use the Kalman filter to update model
total snow water equivalent from observations, and rely
upon the model physics to incorporate this highly correlated
information into the snow depth and heat content variables.
Since snowpack density and temperature (diagnostic varia-
bles) are not strongly correlated with total snow water
equivalent, we assume they do not change immediately
following a total snow water equivalent update, and use the
model-predicted density and temperature to update the snow
depth and heat content. When snow is observed but not
predicted by the model, no snow density and temperature
estimates are available from the model. In that case, we
estimate the snow density to be 150 kg/m® (fresh snow) and
use the 2-m air temperature as the snow temperature to
update snow depth and heat content.

[26] Figure 2 shows a flowchart of the assimilation
procedure. At each time step, a check is made to see if
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the observation SWE is available. If not, the model inte-
grates one time step forward. If an observation is available,
snow density and temperature in each layer are computed.
Density p; in layer i is calculated as

pi = P Wi/ (Dicv), )

where p,, = 1000 kg/m® is the liquid water density and o is
the catchment fractional snow cover. The temperature 7; and
fraction of ice f;; are also diagnosed as

T=0
it H +p, LW >0 (10)

ﬁ.i = 71{!/ (pr/ VVI)
and

T, = (Hz + /1Py Ly VVi)/(CvJ D; OL)
if H; + Pw Lf W <0,
ﬁﬁ,‘ - 10
(11)

where L, is the heat of fusion (J kg '), and C,; is the heat
capacity of snow in layer i (J Kg ' K™'). C,; is derived
from the heat capacity of ice as in the work of Verseghy
[1991, equation (29)],

Cyi= Cvjce(pi/pice): (12)

where C,,;.. =2062 ] Kg~' K™, and p,, is the ice density,
Pice = 920 kg/m®.

[27] The Kalman filter is then used to assimilate total
snow water equivalent Wy (Wp = W, + W, + W3). The
fractional snow cover « is updated as soon as W7 has been
updated (o = W/ W,). If the three-layer mode is required
(ov=1), then snow depths and layer thicknesses are updated
by the relationship

a(pi D1 + p2D2 +p3D3) = p, Wr, (13)
using the appropriate substitution for D, from (1) or (2). The
original snow density estimates and computed layer
thicknesses are then used to compute the updated snow
water equivalent for each layer by

pwVVi = OLp[Di' (14)

Likewise, the updated snow water equivalent and original

temperature estimates are used to compute the heat content
for each layer from

H; = T;Cy Dy — friLy Wi (15)

[28] If the relationship between W; and the threshold
value for full snow coverage W, deems that the snow model
should be in single-layer mode (W < W), i.e., a < 1, the
single-layer snow depth and heat content are computed

directly from the updated total snow water equivalent Wy
using (14) and (15).

4. Numerical Experiments

[20] We undertook a set of numerical “twin” experi-
ments to develop the method to assimilate daily snow
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water equivalent ‘““observations” in North America. The
“observation” and evaluation data used in this study were
generated from model output. The “twin” experiment is
an important first step in the development of a data
assimilation system. These types of experiments allow us
to determine the feasibility of the assimilation approach
under known conditions, namely the “truth.” This paper
shows how through the assimilation of snow water equiv-
alent observations, the snow depth and heat content can
also be retrieved. By using a perfect model with perfect
forcing and observations, we can clearly demonstrate how
snowpack state variables may be retrieved when the initial
conditions are poorly known. Testing of this methodology
using remotely sensed snow water equivalent observations
from both SMMR and SSM/I is the focus of a subsequent
paper.

[30] The North American temporal and spatial snow-
pack evolution used here was generated by the catch-
ment-based land surface model using the parameter
specification, forcing data and spin-up initial conditions
described above. This simulation provided the “truth”
data for evaluation of our numerical experiments (hereaf-
ter referred to as the “truth” run) and the “observation”
data for assimilation. To mimic the remotely sensed
passive microwave snow observations, the daily total
snow water equivalent from the truth run was taken as
our observation. The data used to evaluate the assimila-
tion included snow water equivalent, snow depth, snow
density, snow temperature, snow cover fraction, upward
short- and long-wave radiation, as well as runoff and
evapotranspiration from the truth run.

[31] The truth run is contrasted with a degraded simula-
tion to illustrate snowpack initialization error impact on
snow state and atmospheric flux prediction, and the Kalman
filter efficiency to correct poor snow state and atmospheric
flux predictions. This simulation (hereafter referred to as the
“open loop” run) used the same model, parameters and
atmospheric forcing as the truth run, but with degraded
initial conditions. The initial conditions are identical to the
spin-up described above, with the exception that all snow-
pack memory was erased on 1 January 1987 (i.e., it was
prescribed that no snow existed anywhere even though it
was in the middle of the snow season). We could have used
snow climatology as the initial condition, but we choose this
extreme condition to illustrate the robustness of our assim-
ilation scheme.

[32] The extended Kalman filter assimilation experiment
(hereafter referred to as the “assimilation run’’) started with
the same degraded initial conditions as the open loop run,
assimilating one total snow water equivalent observation
per day. Note that availability of daily observations is not a
requirement of the EKF; observations can be assimilated in
EKF whenever they become available. To undertake the
Kalman filter assimilation, the linearized model function M
and knowledge of model and observation error statistics are
required (see equations 4, 5, 6 and 7). We compute M using
a numerical approximation (forward finite difference) to the
snow prognostic Jacobian matrix. Since we only use the
Kalman filter to update total snow water equivalent, we
only need to forecast the total snow water equivalent
variance and not the covariances between all nine snow
prognostic variables. Hence only the total snow water
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Figure 3. Snow simulation comparisons on 5 January 1987 over North America for snow water
equivalent (in mm, top row); snow depth (in mm, second row); average temperature (in °C, third row);
and areal snow fraction (bottom row) from (a) open loop run (with degraded initial condition), (b) truth
run (using spin up initial condition), and (c) assimilation (with degraded initial condition and assimilation

of daily total snow water equivalent observations).

equivalent Jacobian (now reduced to a scalar) needs to be
calculated.

[33] The error statistics, including model error covari-
ances Q, initial forecast error P' (at time 7 = 0), and
observation error covariances R, are specified as following.
We used an initial (20 mm)* variance of model forecast
error variance P’ a (10 mm)* model error variance Q, and a
(5 mm)® total snow water equivalent observation error
variance R. Note that these variances are only used in the
EKF, while the “truth” and “observations” in the twin
experiments do not include additional added noises.

5. Results and Discussion

[34] Figures 3 and 4 compare snowpack forecasts from
the open loop, assimilation and truth runs near the start of

January and middle of February, respectively. Figures 3a
and 4a shows the impact of degraded snowpack initial
condition on snow forecast in the open loop run, as
compared to the truth run in Figures 3b and 4b. In
contrast, the assimilation scheme recovered the snow water
equivalent, snow temperature and snow fraction after only
five days of assimilation; see Figures 3¢ and 4c. Note the
snow depth in the assimilation run is overestimated ini-
tially (Figure 3). That is because we depend on the model
to provide a snow density estimate. With the degraded
initial condition, the assimilation run starts with the default
150 kg/m® fresh snow density, which is lower than the
mature snowpack density. After one-and-half months,
snow depth from the assimilation run has been recovered
(Figure 4), since the density value becomes closer to the
true value as the assimilation progresses. In contrast, snow
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Figure 4. Same as Figure 3, except simulations are for 14 February 1987.

density and depth in the open loop run never converged to
the true values.

[35] The snow temperature and snow fraction variables
also maintain differences between the open loop and truth
runs. While these are more subtle, they are not insignif-
icant. It is not surprising that the assimilation is very
effective in retrieving the snow water equivalent, since it
is directly observed. However, the ability to also effec-
tively retrieve the snow temperature and snow depth from
this observation is significant. The snow temperature
discussed here is the three-layer average, weighted by
each layer’s mass. It is a diagnostic variable that is a
function of snow water equivalent and heat content, and
while strongly coupled to the air temperature, the effect is
dampened by the snowpack’s thermal properties, through
both the snow water equivalent and snow depth. As the
snow water equivalent and/or snowpack depth increases,
it provides a greater insulation to the underlying snow. In
the assimilation run, the snow temperature was recovered
very rapidly due to the quick recovery of snow water

equivalent. In contrast, the open loop run produced a very
limited snow water equivalent amount, resulting in the
forecast temperature being generally colder than the true
temperature, especially in northeastern Canada (Figures 3a
and 4a).

[36] As an example, Figure 5 shows the snowpack
evolution time series for two typical catchments. The
individual snow water equivalent and snow depth time
series over these two catchments clearly show how the
assimilation run rapidly approached the true snow water
equivalent and gradually converged to the true snow
depth with time. This convergence of the snow depth
with time is a direct reflection of the snow density
convergence, which occurs via the model physics as the
snowpack matures. In contrast, snow water equivalent,
snow depth and snow density estimates in open loop runs
stay below the true values throughout the three-month
period.

[37] The assimilation snow forecast error location,
magnitude and persistence can be seen more clearly in
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Figure 5. Snow water equivalent (top row), snow depth
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two typical catchments; the horizontal axis is time (days).
The heavy line is truth, light line is assimilation, and dash-
dotted line is open loop.
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Figure 6, which shows assimilation error snapshots
(as the difference between the assimilation and truth)
on three different dates: 5 January, 14 February, and
15 March 1987. As expected, the assimilation run has
very small snow water equivalent errors, since the direct
observation is assimilated. The total snow water equiva-
lent assimilation errors are likely due to numerical round
off (Figure 6, top row), with the error being only a small
fraction of one percent of the snow water equivalent.
However, snow depth is prominently overestimated near
the start of the assimilation run (5 January), due to snow
density underestimation. By the middle of February, the
assimilation run had recovered the snow depth in most of
the areas, except for northeastern Canada. There are also
some average snow temperature differences between the
assimilation and truth runs near the start of the assimi-
lation run, but these differences diminished as the assim-
ilation run progressed. The persistent snow temperature
warm bias over northeastern Canada directly reflects the
increased insulating properties of the deeper snowpack
forecast.

[38] Figure 7 shows the root-mean square error and
mean error time series for the assimilation and open
loop runs over the three-month period (January to

SWE
(mm) |
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Figure 6. Snow state assimilation error (assimilation-truth) over North America: snow water
equivalent (top row, in mm), snow depth (middle row, in mm), and snow temperature (bottom row,
in °C) for (a) 5 January 1987, (b) 14 February 1987, and (c) 15 March 1987.
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Figure 7. Root-mean square (RMS) and mean error of assimilation (solid) and open loop runs (dotted)
averaged over the North American continent: (a) snow water equivalent RMS errors, (b) snow water
equivalent mean errors, (c) depth RMS errors, (d) depth mean errors, (e) density RMS errors, and

(f) density mean errors.

March), averaged over North America. This shows how
the continental average errors in the assimilation run
reduce quickly to zero, while errors in the open loop
run remained unchanged for snow water equivalent,
decreased slowly for snow depth, and increased for snow
density. This figure again shows how there is an initial
snow depth over-estimation due to a snow density under-
estimation.

[39] An important motivation for snow assimilation is
the potential impact on flood and climate forecasting.
Hence a comparison between monthly averaged runoff
and atmospheric fluxes (evapotranspiration, upward short-
wave radiation and upward longwave radiation) from the
open loop run and assimilation runs for February 1987 is
shown in Figure 8. In general, the differences between the
assimilation and truth runs are negligible (Figure 8c),
while the differences between the open loop and truth
runs are significant (Figure 8b), except for evapotranspi-
ration. This is a direct result of the extremely low
evapotranspiration rates at this time of the year over
snow-covered northern latitudes. In comparison to the
truth (Figure 8a), the assimilation impact on the snow
states has significantly improved both upward shortwave
and longwave radiation, which are strongly affected by
snow impact on surface albedo. Because February is in the
middle of the winter snow season, snowmelt-induced
runoff is likely to be quite low, and hence the effects of
assimilation on runoff are negligible. However, it can be

seen that runoff predictions are nonetheless significantly
improved by the assimilation for areas along the southern
edge of the snow belt where snowmelt-induced runoff is
occurring.

6. Conclusions

[40] A methodology for generating global climate model
snowpack initialization that does not rely on land surface
model spin-up has been described. This methodology
produces the snowpack states by assimilating total snow
water equivalent observations using the extended Kalman
filter. A series of numerical experiments using this meth-
odology illustrate that snowpack states (snow water
equivalent, snow depth and snow temperature/heat con-
tent) may be retrieved from total snow water equivalent
observations which are readily available from passive
microwave remote sensing. Moreover, the effect of snow-
pack forecast errors on the energy and water balance (i.e.,
evapotranspiration, runoff and both upward longwave and
shortwave radiation) has been demonstrated, with the
assimilation having a significant positive impact on these
flux estimates.

[41] This study has demonstrated that by assimilating
total snow water equivalent observations using the ex-
tended Kalman filter, and reconstructing the other prog-
nostic snow states (snow depth and heat content) through
the use of diagnostic model variables (snow density and
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for February 1987.

temperature), all snowpack prognostic variables can be
retrieved efficiently. This is because snow water equiva-
lent is highly correlated with snow depth and heat
content, while independent of snow density and temper-
ature. It should be noted that this twin experiment has not
accounted for model simulation or observation biases,
even though they are often inevitable in reality. This
important issue is beyond the scope of the current paper,
and is an important future research topic.
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