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A methodology for initializing soil moisture in a global
climate model: Assimilation of near-surface

soil moisture observations

Jeffrey P. Walker'2 and Paul R. Houser!

Abstract.

Because of its long-term persistence, accurate initialization of land surface soil

moisture in fully coupled global climate models has the potential to greatly increase the
accuracy of climatological and hydrological prediction. To improve the initialization of soil
moisture in the NASA Seasonal-to-Interannual Prediction Project (NSIPP), a one-
dimensional Kalman filter has been developed to assimilate near-surface soil moisture
observations into the catchment-based land surface model used by NSIPP. A set of
numerical experiments was performed using an uncoupled version of the NSIPP land
surface model to evaluate the assimilation procedure. In this study, “true” land surface
data were generated by spinning-up the land surface model for 1987 using the
International Satellite Land Surface Climatology Project (ISLSCP) forcing data sets. A
degraded simulation was made for 1987 by setting the initial soil moisture prognostic
variables to arbitrarily wet values uniformly throughout North America. The final
simulation run assimilated the synthetically generated near-surface soil moisture
“observations” from the true simulation into the degraded simulation once every 3 days.
This study has illustrated that by assimilating near-surface soil moisture observations, as
would be available from a remote sensing satellite, errors in forecast soil moisture profiles
as a result of poor initialization may be removed and the resulting predictions of runoff
and evapotranspiration improved. After only 1 month of assimilation the root-mean-
square error in the profile storage of soil moisture was reduced to 3% vol/vol, while after
12 months of assimilation, the root-mean-square error in the profile storage was as low as

1% vol/vol.

1. Introduction

Because of the long-term persistence of moisture content in
the land surface, its accurate initialization in fully coupled
global climate models has the potential for significant improve-
ment in climatological and hydrological prediction. Knowledge
of soil moisture content in the top few meters has been shown
to influence the prediction of precipitation [Koster and Suarez,
1995] and atmospheric circulations [Fast and McCorcle, 1991],
through its control on partitioning of the available energy into
latent and sensible heat exchange [Delworth and Manabe, 1989;
Shukla and Mintz, 1982]. Furthermore, the effects of evapora-
tive dependence on soil moisture content have been observed
up to 1 km above the Earth’s surface [Fast and McCorcle,
1991]. The presence of horizontal gradients in soil moisture
content have been found by Fast and McCorcle [1991] to in-
duce circulations similar to sea breezes in the absence of syn-
optic forcing, which feedback to modify both the spatial dis-
tribution and the intensity of precipitation. Moreover, Koster
and Suarez [1995] have found that sea surface temperatures
have a much smaller effect on precipitation prediction over
land than the land surface soil moisture content, particularly in
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the tropics and midlatitudes. The effect of land surface soil
moisture content on variation in annual precipitation over
continents has been found to be particularly strong during
summer when moist convection dominates. In addition, Del-
worth and Manabe [1989] have found that springtime soil mois-
ture content has a substantial influence on the summer climate
at midlatitudes.

The current soil moisture content and its distribution influ-
ence not only the current climatic conditions but also the
future climate through its long-term persistence or memory
effect [Beljaars et al., 1996]. Because anomalies of soil moisture
content are persistent on seasonal-to-interannual timescales,
they create persistent anomalous fluxes of latent and sensible
heat, thereby increasing the persistence of near-surface atmo-
spheric relative humidity and temperature [Delworth and
Manabe, 1989]. Such persistence has been observed by Koster
and Suarez [1995] in areas of high soil moisture content with
high evaporation rates. In these areas, high soil moisture con-
tent instigates increased precipitation and thereby amplifies
precipitation anomalies. Delworth and Manabe [1988, 1989]
have found that smaller values of potential evaporation (which
typically decreases poleward) are correlated with more slowly
changing anomalies of soil moisture content (with longer time-
scales). In the tropics and during the summer season, however,
larger values of potential evaporation allow fluctuations of soil
moisture content to have a substantial effect on the variability
of the lower atmosphere [Delworth and Manabe, 1989].

Soil moisture content and its spatial distribution clearly in-
fluences land surface processes with the potential to severely
impact atmospheric variability, which can have a major influ-
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ence on climate forecasts. Thus there is a demonstrated need
for routine observations of soil moisture content and its distri-
bution, particularly for initialization of climate predictions with
a global climate model. The collection of routine soil moisture
observations has been curtailed primarily by the extreme het-
erogeneity of soil properties, topography, land cover, evapora-
tion, and precipitation, causing soil moisture content to be
highly variable both spatially and temporally. Consequently,
the value of operational monitoring of soil moisture content by
in situ methods is rather limited for global scale problems.
Currently, remote sensing methods provide the most feasible
capability for providing the necessary soil moisture measure-
ments for initialization of the soil moisture states in global
climate models, as they average out small-scale variability to
better sample the climate-relevant soil moisture patterns.

Global measurements of soil moisture content have been
made with the C-band radiometer on the Scanning Multifre-
quency Microwave Radiometer (SMMR) instrument (M. Owe,
personal communication, 2001) which flew during 1978 to
1987. Current passive microwave satellite instruments, Special
Sensor Microwave Imager (SSM/I) and Tropical Rainfall Mea-
suring Mission (TRMM), have only higher-frequency radiom-
eters, making soil moisture measurement problematic. How-
ever, the Advanced Microwave Scanning Radiometer for the
Earth (AMSR-E) observing system instruments due for launch
in the near future on the EOS Aqua and ADEOS-II satellites
will have C-band radiometers, once again making global mea-
surement of soil moisture possible. An L-band radiometer, the
optimal wavelength for soil moisture measurement, is not
likely to be in space before 2005. While passive microwave
instruments currently have a large footprint, 150 km for
SMMR and 60 km for AMSR-E, global measurement of soil
moisture content from these instruments is less problematic
than for the active microwave instruments with footprints on
the order of tens of meters. Furthermore, because of oversam-
pling, the passive microwave measurements may generally be
interpolated to a finer resolution (50 km for SMMR and 25 km
for AMSR-E). Moreover, the land surface component of cur-
rent-day global climate models are typically run with a spatial
resolution on the order of 50 to 100 km, which is compatible
with the scale of passive microwave measurements.

Soil moisture remote sensing, however, is limited to mea-
surement of soil moisture content in the near-surface layer of
soil, consisting of the top few centimeters at most. These upper
few centimeters in the soil are the most exposed to the atmo-
sphere and vary rapidly in soil moisture content, on the order
of hours [Raju et al., 1995; Capehart and Carlson, 1997] in
response to rainfall and evaporation. In fact, the soil surface
may change from wet to dry within a period of 1 or 2 days
[Jackson et al., 1976], with deeper soil moisture content chang-
ing more slowly. Thus to be useful for climatic and meteoro-
logical studies, remote sensing information must be related to
the complete soil moisture profile in the unsaturated zone, as
any individual observation will largely reflect the climatic ef-
fects of the last few hours, rather than the average for the
interobservation period. Therefore for remote sensing obser-
vations to be valuable in applications, methods must be devel-
oped to estimate the soil moisture profile (top few meters of
soil) using the near-surface (top few centimeters) measure-
ments of soil moisture content that these sensors provide.

Only a small number of studies have used remotely sensed
near-surface soil moisture measurements as either input to a
land surface model [Jackson et al., 1981; Prevot et al., 1984;
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Bruckler and Witono, 1989; Lin et al., 1994; Ottlé and Vidal-
Madjar, 1994; Saha, 1995; Houser et al., 1998] or as verification
data [Giacomelli et al., 1995]. The reasons for this are (1) that
remote sensing data are just beginning to gain acceptance in
the hydrologic community as an operational tool for measuring
the near-surface soil moisture content; (2) assimilation of re-
mote sensing data requires the development of land surface
models that simulate soil moisture for a thin near-surface layer
which is compatible with the nature of the remote sensing
observations [Lakshmi and Susskind, 1997], and (3) routine
remote sensing of soil moisture content is not yet available. In
addition, techniques for updating the land surface model with
remote sensing data require investigation, and the near-surface
soil moisture observations must be proven useful when used
with land surface models [Georgakakos and Baumer, 1996].

This paper illustrates, using a numerical experiment with
synthetic observation data, how remote sensing data might be
used to initialize the soil moisture states in a global climate
model. Moreover, it is shown how the soil moisture content,
evapotranspiration, and runoff forecasts from a land surface
model are improved when near-surface soil moisture data are
assimilated into the land surface model. Furthermore, we ob-
serve that the structure of the land surface model modifies the
effectiveness of the assimilation method.

2. Models

Previous studies have illustrated that an assimilation scheme
having the characteristics of the Kalman filter is most effective
for updating of the forecast land surface states [e.g., Houser et
al., 1998; Walker et al., 2001]. Such schemes have the advantage
of being able to update more than just the observed state value,
through the correlation with other states and state values in
other locations. In this study, the Kalman filter assimilation
scheme is used to update the soil moisture prognostic variables
in the land surface model of Koster et al. [2000] with synthetic
“observations” of the near-surface soil moisture content.

2.1. Extended Kalman Filter

The Kalman filter assimilation method is a linearized statis-
tical scheme that provides a statistically optimal update of the
system states based on the relative magnitudes of the model
system state estimate and observation covariances. The prin-
cipal advantage of this approach is that the Kalman filter pro-
vides a framework within which the entire system is modified,
with covariances representing the reliability of the observations
and model prediction.

The Kalman filter algorithm [Kalman, 1960] tracks the con-
ditional mean of a statistically optimal estimate of a state
vector X, through a series of forecasting and update steps. To
apply the Kalman filter, the equations for evolving the system
states must be written in the linear state space formulation of
(1). When these equations are nonlinear, the Kalman filter is
called the extended Kalman filter and is a first-order lineariza-
tion approximation of the nonlinear system. The forecasting
equations are [Bras and Rodriguez-Iturbe, 1985]

XnJrl/n = A" Xn/n + U+ (wn)’ (1)

2;;+1/n = A"- Eg/n . An"' + Qn, (2)

where A is the state propagation matrix relating the system
states at times n + 1 and n, U is a vector of forcing, w is the

model error, ¥, is the covariance matrix of the system states,
and Q is the covariance matrix of the system noise (model
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error), defined as E[w - w"]. The notationn + 1/n refers to the
system state estimate at time n + 1 from a forecasting step,
and n/n refers to the system state estimate from either a
forecasting or an updating step at time 7.

The covariance evolution equation consists of two parts: (1)
propagation by model dynamics and (2) forcing by model er-
ror. The first, which is computationally the most demanding
step in the Kalman filter algorithm, expresses how the dynam-
ical processes in the forecast model affect the error covariance
matrix. The second part of the covariance evolution equation
represents the cumulative statistical effect of all processes that
are external to or not accounted for in the forecast model [Dee,
1991, 1995].

For the update step, the observation vector Z must be lin-
early related to the system state vector X through the trans-
formation matrix H.

Z=H-X+Y+ (v), (3)

where Y is the vector of state-independent terms and v ac-
counts for observation and linearization errors.

The best estimate of the system state vector X is updated
through the observation vector Z by means of Bayesian statis-
tics. The system state vector and associated covariances are
updated by the expressions [Bras and Rodriguez-Iturbe, 1985]

Xn+1/n+1 — Xrﬁrl/n + Kn+1(zn+1 _ (Hn+l . XnJrl/n + Yn+1)), (4)
2;:+1/n+1 — (I _ Kn+1 . Hn+l) . E;Hrl/n . (I _ Kn+1 . Hn+1)T
+ Kn+] . Rn+1 . Kn-HT’ (5)

where T is the identity matrix. The Kalman gain matrix K" !
weights the observations against the model forecast. Its weight-
ing is determined by the relative magnitudes of model uncer-
tainty embodied in 7% with respect to the observation
covariances R* ™!, defined as E[v - v']. The Kalman gain is
given by

Kn+l — 2n+1/n . Hn+l7(Rn+l + Hn+l . 2n+1/n . Hn+17')7l. (6)

The key assumptions in the Kalman filter are that (1) the
continuous time error process w is a Gaussian white noise
stochastic process with the mean vector equal to the zero
vector and covariance matrix equal to Q; and (2) the discrete-
time error sequence v is a Gaussian-independent sequence
with the mean equal to zero and the covariance equal to R. The
initial state vector X”° is also assumed Gaussian with mean
vector X”° and covariance matrix 3%/,

The Kalman filter model error forecasting equation in equa-
tion (2) is dependent upon (1) an initial system state error
covariance matrix 3%°; (2) a model error forcing term Q; and
(3) the system state forecasting equation described by the lin-
ear state space formulation in equation (1). The system state
error covariance matrix is often initialized using degree-of-
belief estimates of the errors in initial states to specify the
diagonal elements (variances) of the initial covariance matrix,
with the off-diagonal elements (covariances) set to zero [Geor-
gakakos and Smith, 1990]. The model error forcing term Q
results from inaccurate specification of the model structure as
a result of (1) linearization of the model physics (including
subgrid variability); (2) estimation errors in the values of
model parameters; and (3) measurement errors in the model
input (e.g., errors in precipitation). This is the most difficult
component of the Kalman filter to identify correctly [Geor-
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Figure 1. Schematic of the catchment-based land surface
model soil moisture prognostics.

gakakos and Smith, 1990]. Hence this term is generally chosen
ad hoc [Ljung, 1979]. The variance of the observations R can be
identified reliably in most cases, since it depends on the char-
acteristics of the measuring device [Georgakakos and Smith,
1990].

2.2. Land Surface Model

The land surface model used in this study is the catchment-
based land surface model of Koster et al. [2000], illustrated
schematically in Figure 1. It is a nontraditional land surface
modeling framework that includes an explicit treatment of
subgrid soil moisture variability and its effect on runoff and
evaporation. A key innovation in this approach is the shape of
the land surface element. Koster et al. [2000] abandon the
traditional approach of defining quasi-rectangular land surface
elements with boundaries defined by the overlying atmospheric
grid. Instead, they define the fundamental land surface ele-
ment to be the hydrological catchment, with boundaries de-
fined by the topography. The catchments used in this applica-
tion are at level 5 in the Pfafstetter system [Verdin and Verdin,
1999] with an average catchment area of 4400 km?.

This land surface model uses TOPMODEL [Beven and
Kirkby, 1979] concepts to relate the water table distribution to
the topography. The consideration of both the water table
distribution and the nonequilibrium conditions in the root
zone leads to the definition of three bulk moisture prognostic
state variables (catchment deficit, root zone excess, and surface
excess) and a special treatment of moisture transfer between
them. The framework of this land surface model provides a
method for calculating the saturated, stressed (wilting), and
unstressed fractions of the catchment and their respective soil
moisture content from the three prognostic variables. Alterna-
tively, the catchment average soil moisture content may be
evaluated.

The catchment deficit is defined as the average amount of
water per unit area that must be added to the soil of the
catchments to bring the entire catchment to saturation, assum-
ing equilibrium conditions in the unsaturated zone. If equilib-
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rium conditions could be assumed in the unsaturated zone, the
catchment deficit by itself would be sufficient to characterize
the complete moisture state of the catchments. To account for
such nonequilibrium behavior, root zone and surface zone
excess storages are introduced. These “excess” storages are the
amount by which the moisture in the root and surface zones
deviate from the moisture content implied by the local equi-
librium moisture profile. While the catchment deficit distribu-
tion is described by the distribution of topographic index, there
is no distribution presumed for the excess in the root and
surface zones. However, as a result of the catchment deficit
distribution, the root zone and surface zone soil moisture con-
tents are spatially variable according to topography.

The catchment-based land surface model soil moisture prog-
nostic variable forecasting equations are given by

n+1

srfexc”"! = srfexc” — srflow + i — es, (7

n+1

rzexc""' = rzexc" + srflow — rzflow — ev, )

catdef"*! = catdef” — rzflow + baseflow + et, 9)

where srfexc (m) is the surface excess, rzexc (m) is the root
zone excess, catdef (m) is the catchment deficit, and the su-
perscript n is the time tag. The redistribution between the
surface excess and the root zone excess srflow (m) and between
the root zone excess and the catchment deficit rzflow (m) is
given by

srflow = srfexc(At/T,), (10)

(11)

where At (s) is the time step size, and 7, = f(srfexc, rzexc) and
T, = f(rzexc, catdef) are empirical moisture transfer timescale
functions (s). The baseflow (m) is given by baseflow = f(cat-
def), while the soil infiltration i (m), bare soil evaporation es
(m), transpiration ev (m), and evapotranspiration et (m) are all
described by functions of the form f(srfexc, rzexc, catdef). A
complete description of this model is given by Koster et al.
[2000] and Ducharne et al. [2000].

rzflow = rzexc(At/t,),

2.3. Application of the Kalman Filter

In this study we have used a one-dimensional Kalman filter
for updating the soil moisture prognostic variables of the
catchment-based land surface model. A one-dimensional Kal-
man filter was used because of its computational efficiency and
the fact that at the scale of catchments used, correlation be-
tween the soil moisture prognostic variables of adjacent catch-
ments is only through the large-scale correlation of atmo-
spheric forcing. Moreover, all calculations for soil moisture in
the land surface model are performed independent of the soil
moisture in adjacent catchments.

2.3.1. Covariance forecasting. Forecasting of the soil
moisture covariance matrix using Kalman filter theory requires
a linear forecast model. However, forecasting of the soil mois-
ture prognostic variables (surface excess, root zone excess, and
catchment deficit) in the catchment-based land surface model
is nonlinear. Hence forecasting of the soil moisture prognostic
variables covariance matrix was achieved through linearization
of the soil moisture forecasting equations. The linearization
was performed by a first-order Taylor series expansion of the
nonlinear forecasting equations (7)—(9). Using this approach,
the covariance forecasting matrix is given by

11,767

Table 1. Values for Standard Deviations of the Forecast
Model Error Covariance Matrix Q (mm/min)
Value
srfexc 0.0025
rzexc 0.025
catdef 0.25
dsrfexc"™!  gsrfexc"!  gsrfexc’!
dsrfexc” drzexc" dcatdef”
A drzexc"t!  drzexc'™!  drzexc'! "
| osrfexc” arzexc” dcatdef” | (12)
dcatdef™™! gcatdef*™! ocatdef""!
asrfexc” orzexc” dcatdef”

Calculation of these derivatives may be done numerically, re-
lieving the need for deriving analytical expressions. However,
this results in an increased computational cost of ~m times the
analytical solution, where m is the number of dependent prog-
nostic variables to be included in the assimilation.

For the initial covariance matrix, diagonal terms were spec-
ified to have a standard deviation of the maximum difference
between the initial prognostic state value and the upper and
lower limits. This represents a large uncertainty in the initial
soil moisture prognostic state values. In fact, the true initial soil
moisture prognostic variable could be anywhere within the
possible range. Off-diagonal terms were specified to be zero
initially, suggesting a zero correlation between the initial error
in the three soil moisture prognostic state variables. The diag-
onal terms of the forecast model error covariance matrix Q
were taken to be the predefined value given in Table 1, with the
off-diagonal terms taken to be zero. The assumption that er-
rors in the three soil moisture prognostics resulting from errors
in the model physics are independent is valid as the physics
used for forecasting these three prognostic state variables are
independent. This is unlike typical land surface models that
vertically discretize the soil and apply the same physics to the
soil moisture prognostic variables for each of the soil layers.

2.3.2. Kalman filter observation equation. To perform
an update of the soil moisture prognostic variables with the
Kalman filter, the observation of near-surface soil moisture
content must be linearly related to the soil moisture prognostic
variables. In the land surface model used in this study, the soil
moisture prognostic variables are the surface excess, root zone
excess, and catchment deficit and are related to the observed
soil moisture of the surface layer 6, (vol/vol) through a com-
plicated nonlinear function

srfexc

04 = f(rzexc, catdef) + P
1

(13)

where z, is the surface layer thickness (0.02 m). The complete
expansion of this function is given in Appendix A. A first-order
Taylor series expansion of the nonlinear function f,, allows for
evaluation of the surface soil moisture equation

1 of. of. srfexc
= L2 2
z, drzexc dcatdef catdef

dcatdef

. *® . *
Jrzoxc  TZEXC catdef }, (14)

+re-
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Table 2. Uniform Soil Properties Specified for North
America

Soil Property Value
Saturated surface hydraulic conductivity 22X10 7 ms™!
Transmittivity decay factor 326 m !
Saturated soil matric potential, iy, —0.281 m
Soil texture parameter, b 4
Root zone depth 1m
Wilting point wetness, o,,, 0.148/¢

where the asterisk refers to prognostic variable values about
which the Taylor series expansion is evaluated.

3. Numerical Experiments

A set of numerical identical twin experiments have been
undertaken for the entire continent of North America, in order
to illustrate the effectiveness of the assimilation scheme in
providing an accurate estimate of the soil moisture storage
throughout the entire soil profile given periodic near-surface
soil moisture observations. Such an estimate may then be used
for the initialization of a global climate model. The corre-
sponding influence of errors in soil moisture content on the
forecast of evapotranspiration and runoff has also been illus-
trated. Finally, we observe that the structure of the land sur-
face model and its linearization for covariance forecasting
modifies the effectiveness of the assimilation.

3.1. Model Input Data

In this study, atmospheric forcing data and soil and vegeta-
tion properties from the first International Satellite Land Sur-
face Climatology Project (ISLSCP) initiative [Sellers et al.,
1996] have been used as model input for the year 1987. Such
data include air temperature and humidity at 2 m, surface wind
speed, atmospheric pressure, precipitation, downward solar
and longwave radiation, greenness, leaf area index, surface
roughness length, surface snow-free albedo, zero plane dis-
placement height, vegetation class, soil porosity, soil depth,
and soil texture. Soil properties not defined by ISLSCP were
taken to be uniform across North America with the values
given in Table 2. Catchment boundaries and topographic pa-
rameters were derived from a 30 arc sec (=1 km) digital ele-
vation model of North America from the United States Geo-
logical Survey EROS Data Center [Ducharne et al., 2000]. The
initial model states for 1987 in each of the 5018 catchments
used to model the entire North America were determined by
driving the model to equilibrium at the beginning of 1987 to
avoid a nonequilibrated spin-up signal.

3.2. Observation and Evaluation Data

Using the land surface model of Koster et al. [2000], the
initial conditions from spin-up, and the model input data de-
scribed above, the temporal and spatial variation of soil mois-
ture content across North America was forecast for 1987. The
forecasts of near-surface soil moisture content were output
once every 3 days to represent the near-surface soil moisture
measurements from remote sensing satellites. In addition to
soil moisture content (Plates 1-3) the land surface model pro-
vided estimates of total evaporation and runoff (Plate 5) for
each of the catchments. This simulation provided the “true”
soil moisture content and water balance data for comparison
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with degraded simulations both with and without assimilation.
Moreover, it allowed evaluation of the effectiveness of assim-
ilating near-surface soil moisture data for improving the land
surface model forecasts of soil moisture content and water
budget components, when initialized with poor initial condi-
tions.

3.3. Results and Discussion

To illustrate the effect of soil moisture initialization errors
on the model’s prediction, and the effectiveness of the Kalman
filter assimilation scheme, comparisons are made with a de-
graded simulation. In the degraded simulation the initial con-
ditions were taken from the spin-up described above, with the
exception that soil moisture prognostic variables were set to
arbitrarily wet values uniformly across the entire North Amer-
ica. Using the degraded soil moisture initialization, the land
surface model was run with the same atmospheric forcing data
as used to derive the observation and evaluation data above.
Two separate simulations were undertaken. The first used only
the degraded initial conditions and forcing data, while the
second assimilated the near-surface “observations” from the
true simulation once every 3 days. The soil moisture forecasts
from both of these simulations are compared with the true
simulation in Plates 1-3, at the end of January, July, and
December, respectively. The limitation of using the same
model to forecast the land surface states as is used to derive the
observation and evaluation data (identical twin experiment) is
the implied assumption that you have a perfect model and the
observations are unbiased, which is rarely, if ever, the case in
reality. By using a different model to derive the observation
and evaluation data than that used to forecast the land surface
states (fraternal twin experiment), this assumption may be
offset. However, such a study was beyond the scope of this
paper.

Plate 1la illustrates how poor the degraded soil moisture
initial conditions were compared to the true simulation (Plate
1b) and that even after 1 month, there was very little improve-
ment of the degraded simulation toward the true simulation.
Apart from the near-surface layer, there was very little change
in the spatial distribution of soil moisture. This, however, may
be contrasted with the soil moisture forecast using assimilation
of near-surface “observations” (Plate 1c). This simulation
shows a very close agreement between the near-surface layers
of the true simulation and the assimilated forecast, as would be
expected. Moreover, apart from a small portion of the North
American interior, there is a good agreement between the soil
moisture contents in both the root zone and the entire soil
profile.

By the end of July there was some improvement in the soil
moisture forecast of the degraded simulation (Plate 2a) toward
the true simulation (Plate 2b), but even after 12 months of
simulation (Plate 3a), there was still a large portion of North
America with significant errors in the soil moisture forecast.
This improvement in the degraded simulation of soil moisture
content was only observed for catchments located in the low
latitudes, where evapotranspiration rates are high year-round.
The difference between the degraded and the true soil mois-
ture simulations is entirely due to the error introduced in the
initial conditions, so the improvement in the degraded simu-
lation is purely a result of land surface model spin-up. This is
because soil moisture content is a bounded variable, with the
effects of wrong initialization being lost whenever the soil dries
out or becomes fully wet. In contrast to the degraded simula-
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Figure 2. Spatial variation in total soil depth (mm) across the North American continent.

tion, the soil moisture forecast with assimilation (Plate 2c)
continued to track the true simulation for regions where the
true soil moisture was already retrieved. Some small localized
errors in the soil moisture forecast persisted at the end of July,
but by the end of December (Plate 3c), very little error re-
mained.

The location, magnitude, and persistence of errors in the soil
moisture forecast can be seen more clearly in Plate 4. Errors in
the soil moisture forecasts have persisted longer in some re-
gions of North America than in others, even though they are in
the same climatic regime and had the same amount of initial-
ization error. The correlation of each model parameter with
the spatial distribution of error in soil moisture in the entire
soil profile at the end of January was analyzed. It was found
that the distribution of soil depth had the greatest correlation
with this residual soil moisture error.

Figure 2 shows a plot of soil depth for North America. When
comparing with Plate 4a (bottom row), particularly for soil
depth greater than 3 m, there is a distinct relationship between
soil depth and error in soil moisture retrieval, especially for
drier regions where the initial error was greater. Thus the fact
that deeper soil moisture is less physically connected with the
surface soil moisture, leads to a reduced impact of surface soil
moisture assimilation on the forecast of total soil moisture
content. Although the correlation between a near-surface soil
moisture measurement and that of the entire soil profile is
small for regions with very deep soil, it is still greater than for
traditional land surface models that use a vertical discretiza-
tion of the soil profile [Houser et al., 1998]. This is a result of
the equilibrium profile assumption used in the catchment-
based land surface model, where the catchment deficit prog-
nostic variable is the basis for calculating the near-surface soil
moisture content (see Appendix A). Departures from this
equilibrium profile are accounted for by the surface and root
zone excess storages, which typically account for a much
smaller contribution in the calculation of soil moisture content
both near the soil surface and at depth.

The temporal evolution of error for the entire North Amer-
ican continent is given in Figures 3 and 4 for the degraded
simulations without and with assimilation, respectively. Figure
3 shows a slow but clear and consistent improvement in the soil

moisture profile of the degraded simulation as a result of the
land surface model spinning-up to the true initialization. How-
ever, even after 12 months, there are still significant errors in
soil moisture content for the entire soil profile. In contrast,
Figure 4 shows a rapid initial improvement over the first month
of assimilation, followed by a more gradual but nonetheless
persistent improvement in soil moisture forecasts for both the
root zone and the entire soil profile. The assimilation scheme
overcorrects the soil moisture forecast in the near-surface layer
and root zone at the first update, but this is rectified at the
second update. After the second update, the assimilation
scheme tracks the soil moisture content in the near-surface
layer almost exactly. Moreover, the error in soil moisture fore-
casts for the three soil depths is negligible after around 8
months of simulation.

A common approach to forecasting the model error covari-
ance matrix using the Kalman filter is dynamics simplification
[Todling and Cohn, 1994]. Using such an approach, only the
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Figure 3. Temporal variation of error in soil moisture simu-
lation with degraded initial conditions for soil moisture.
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dominant physical processes are used in forecasting of the
error covariance matrix. In our application of the Kalman
filter, the most obvious application of the dynamics simplifica-
tion approach was to ignore the infiltration and evaporative
terms from the prognostic equations (as these are the most
difficult to linearize), focusing only on the redistribution of
moisture within the soil. This assumes that the correlation
between near-surface and deep soil moisture is strongly de-
pendent on the redistribution between soil moisture storages
and only weakly dependent to the external forcing. An alter-
native way to view this is to consider that infiltration and
exfiltration is prescribed solely by the atmospheric conditions
and is independent of the soil moisture content.

The effect of using the dynamics simplification approach to
forecasting the error covariance matrix in the catchment-based
land surface model is demonstrated in Figure 5. The first 50
days of the time series is almost identical to that of Figure 4;
however, beyond that both the root-mean-square error and
mean error increase until about day 300. Moreover, the mean
error time series shows a systematic error in the soil moisture
forecasts of the near-surface layer, with the near-surface layer
consistently drying too much and being topped up by the as-
similation.

This deterioration in assimilated soil moisture is well corre-
lated to the period of most active evapotranspiration in the
Northern Hemisphere. The temporal variation of average
evapotranspiration across North America is shown in Figure 6.
Hence the assumption that correlation between near-surface
soil moisture and the deeper soil moisture stores is only weakly
dependent on the evapotranspiration is invalid.

The improvement in evapotranspiration and runoff predic-
tion from the assimilation of near-surface soil moisture obser-
vations, over the simulation with degraded soil moisture con-
tent, is shown in Plate 5 for the month of July. Table 3 gives the
mean daily evapotranspiration and runoff rates across North
America for these simulations. The results show a large impact
of incorrect soil moisture content on the prediction of evapo-
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Figure 4. Temporal variation of error in soil moisture simu-
lation with degraded initial conditions for soil moisture and
assimilation of synthetic near-surface soil moisture observa-
tions.
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Figure 5. Temporal variation of error in soil moisture simu-
lation with degraded initial conditions for soil moisture and
assimilation of synthetic near-surface soil moisture observa-
tions with only partial covariance forecasting.

transpiration, which is the main feedback from the land surface
model to the atmospheric model used in coupled runs of cli-
mate prediction. However, through the assimilation of near-
surface soil moisture observations alone, we have illustrated
that errors in evapotranspiration forecasts may be significantly
reduced. Moreover, errors in the runoff component, which
feeds back to the ocean model, may also be reduced.

4. Conclusions

A methodology for generating soil moisture initialization
states for global climate models which does not rely on spin-
ning-up the land surface model has been described. Rather,
this methodology relies on the assimilation of remotely sensed
observations of near-surface soil moisture content using a one-
dimensional Kalman filter. A series of numerical experiments
using the proposed methodology has illustrated that the true
soil moisture content may be retrieved for the entire soil pro-
file from remote sensing observations of the near-surface soil
moisture content. Moreover, the effect of errors in soil mois-
ture forecasts on the partitioning of atmospheric forcing into
evapotranspiration and runoff has been illustrated.

This study found that the assimilation of near-surface soil
moisture content works best for regions with shallower soils,
particularly depths less than 3 m. The soil moisture retrieval
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Figure 6. Temporal variation of average evapotranspiration
for North America.
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Table 3. Mean Daily Evaporation and Runoff Rates From
Three Simulations of North America in July 1987 (mm/d)

Evapotranspiration Runoff
Degraded simulation 2.95 0.79
True simulation 1.95 0.65
Degraded simulation 2.01 0.65

with assimilation

through assimilation still works for regions with greater soil
depth, it just occurs more slowly. This is a direct result of the
correlation between near-surface soil moisture content and soil
moisture content at depth decreasing as the separation in-
creases. Furthermore, we observe that the structure of the land
surface model modifies the effectiveness of the assimilation
method. The unique physics used in the catchment-based land
surface model is well suited to the assimilation of near-surface
soil moisture observations, as its dominant prognostic moisture
state variable (catchment deficit) has a significant correlation
with near-surface soil moisture content, except in very deep
soils. Traditional land surface models generally have a vertical
layering structure whose correlation is comparatively modest.
This approach still works for other land surface models, but the
improvement with depth occurs more slowly.

Appendix A: Surface Soil Moisture Calculations

The minimum soil wetness (volumetric soil moisture divided
by porosity) w,, _ (—) in the root zone soil moisture distribu-
tion at equilibrium based on the catchment deficit catdef (m),
with physical constraints 0 < catdef = 9., , is given by

(1 + vy, - catdef,)
V4) . . 2\ (15)
(1 + v, catdef, + y;- catdef?)

Wz = Y4 + (1 -

where 9., (m) is the maximum catchment deficit, vy, are
topography-related parameters defining the minimum root
zone wetness to construct the root zone soil moisture wetness
distribution [Ducharne et al., 2000], and

catdef, = min (catdef, 9.,,).

(16)

The parameter 9., (m) is a moisture threshold above which
soil moisture is no longer controlled by TOPMODEL assump-
tions.

Integrating the root zone soil moisture distribution from
,  to infinity, the mean root zone soil wetness w,. (—) at
equilibrium, based on catdef, being below ., , is given by

b, = € T om) -1- 2 + + 2 17
Wz = € Wz P Wy o’ (17)

where « is a shape parameter used to construct the root zone
soil wetness distribution as a function of catdef, and topogra-
phy-related parameters [Ducharne et al., 2000]. If the catch-
ment deficit is such that a water table no longer exists, the
equilibrium mean root zone soil wetness w;zeq is ramped by a
scaling factor such that

wwp)(ﬂcdmx - Catdef)
-V

’
( w Zeq

wrzeq = Wy

cdmax cdlim

catdef > 9, , (18a)

11,773

W, = ® catdef = 9,
eq

(18b)

’
TZeq cdiim>

where ,,,, (—) is the wilting point soil wetness.
The mean nonequilibrium root zone soil wetness w,. (—) is
calculated by adding the root zone excess storage rzexc (m),

with physical constraints L ﬂ,zeq = rzexc = 9,
Y, such that
rzexc
W, = wrzg,, ,a ’ (19)

TZmax

where 4,, (m) and 9,, (m) are the minimum and maxi-
mum soil moisture storage limits in the root zone, respectively.
Extrapolating the root zone soil wetness to the surface using an
equilibrium profile assumption and then adding the surface
excess storage srfexc (m), the surface soil moisture content 6,
(vol/vol), with physical constraints 6,,, = 0, = ¢, may be
calculated by

srfexc

— —1/b
l»llrz ZZ) + , (20)

lllsat

where 6, (vol/vol) is the wilting point soil moisture, ¢ (vol/
vol) is the soil porosity, b (=) is the Clapp and Hornberger
[1978] soil texture parameter, z; (m) is the thickness of the
surface layer, z, (m) is the distance from the midpoint of the
surface layer to the midpoint of the root zone layer, i, (m) is
the saturated soil matric potential, and ¢, (m) is the root zone
matric potential given by

— -b
l1Urz - llfsat C W,y .

Gsrf = (b(

Zy

(21)
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