
International Journal of Applied Earth Observations and Geoinformation 104 (2021) 102584

0303-2434/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Leaf nitrogen content estimation using top-of-canopy airborne 
hyperspectral data 

Rahul Raj a,b,c,*, Jeffrey P. Walker b, Rohit Pingale c, Balaji Naik Banoth d, 
Adinarayana Jagarlapudi e 

a IITB-Monash Research Academy, India 
b Monash University, Melbourne, Australia 
c Indian Institute of Technology, Bombay, India 
d Professor Jayashankar Telangana State Agricultural University, India 
e Indian Institute of Technology, Bombay, India   

A R T I C L E  I N F O   

Keywords: 
Hyperspectral sensing 
Leaf nitrogen content 
Drone 
Precision agriculture 
CHNS 

A B S T R A C T   

Remote estimation of leaf nitrogen content is a critical requirement for precision farm management. Precise 
knowledge of nitrogen distribution in the crop enables farmers to decide the fertilisation amount required at 
specific locations on the farm. Importantly, nitrogen related molecules in plants are transported using water 
molecules, and water molecules surround the amide bonds (a plant protein created from nitrogen). Conse-
quently, the nitrogen in various crop parts loses its activity in the absence of sufficient water molecules. The 
association of water molecules around plant proteins makes the optical remote estimation of plant nitrogen 
challenging as nitrogen and water molecules simultaneously affect the reflectance data. Moreover, the coarse 
spatial resolution of satellite data and sparse canopy coverage at early growth stages of the crop make it chal-
lenging to estimate leaf-level nitrogen contents. Accordingly, this research developed a leaf nitrogen content 
estimation model using drone-based top-of-canopy 400–1000 nm pure pixel hyperspectral images collected from 
a maize research farm treated with different water and nitrogen levels. Leaf level spectral signatures were also 
collected using a field spectroradiometer and used to identify indices more sensitive to nitrogen than water. The 
leaves were also destructively sampled for obtaining ground truth leaf water and nitrogen content. Red-edge 
region bands of electromagnetic spectra were identified to be sensitive to leaf nitrogen content. A synthetic 
data was created using maximum and minimum values of these indices and crop growth stage information, 
which was further used for training a gradient-boosting machine model to estimate leaf nitrogen content from 
drone-based hyperspectral images. The estimated leaf nitrogen content values from drone observations were 
critically analysed with respect to leaf water content values. For water-stressed areas, the model gave an R2 and 
RMSE of 0.63 and 2.74 mg/g, respectively. However, the model did not perform adequately for well irrigated 
areas, having an R2 and RMSE of 0.26 and 4.54 mg/g, respectively.   

1. Introduction 

Plants can uptake soil nitrogen as nitrate and ammonia and utilise it 
for plant growth (Ohyama, 2010). Thus for agriculture purposes, fer-
tiliser in the form of ammonia (NH3) or ammonium nitrate (NH4NO3) is 
supplied to the farm to provide sufficient nitrogen to the soil (Mason, 
1977; Craig and Wollum, 1982; Gezgin and Bayrakll, 1995; van 
Grinsven et al., 2015). Moreover, nitrogen is a mobile macronutrient in 
plants that changes its content temporally (Kutman et al., 2011; 

Masclaux-Daubresse et al. 2010), tending to move from old leaves to 
new/fresh leaves in order to increase their biomass (Masclaux-Dau-
bresse et al. 2010). Nitrogen is also a critical nutrient for biomass cre-
ation in grain-producing plants, with plant nitrogen concentration 
decreasing as dry biomass of the canopy increases (Chen et al., 2010). 
Interestingly, this trend is similar to the change in leaf water content 
over progressive crop growth stages (Raj et al., 2021). 

Approximately, 30–50% of nitrogen in green leaves is in the form of 
D-ribulose 1–5-diphosphate carboxylase (RuBisCO) (Kokaly, 2001), 
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being the key photosynthetic enzyme/protein in green leaves (Gutter-
idge and Gatenby, 1995; Andersson and Backlund, 2008). Other func-
tional involvement of nitrogen in plants is in the form of different 
proteins (Schrader, 1984; Howitt and Udvardi, 2000). Maintaining the 
nitrogen level in plants above a critical value is very important because 
nitrogen is used to form biomass with the progress in growth stages 
(Leghari et al., 2016). This critical value represents the minimum ni-
trogen concentration to be maintained in the plant so as to maximize 
crop growth (Blumenthal et al., 2008). However, using a high amount of 
nitrogen in the farm is not only expensive but leads to water pollution, as 
the irrigated water is wasted through runoff and leaching (Knox et al., 
2012; Elrashidi et al., 2005), meaning that optimal use of fertilisers 
should be applied on the farm. 

Interestingly, water is also a major contributor to the protein’s three- 
dimensional structure (Franks, 1988), and protein controls the structure 
of its surrounding water, known as the hydration of protein (Franks, 
1988). This protein hydration is critical, as its biological activity reduces 
in the absence of hydrating water (Chaplin, 2006). Consequently, the 
association of water and protein makes it difficult to estimate the precise 
amount of nitrogen in a crop and more so remotely. 

The remote estimation of canopy/leaf nitrogen content essentially 
depends on the vibrational properties of the amide bonds of the plant 
proteins (Kokaly, 2001; Damodaran, 2008). Nitrogen shows higher light 
absorption characteristics in ultraviolet bands (Ogawa et al., 1964) and 
short-wave infrared bands (Widlowski et al., 2015). The various 
stretching, bending, and torsion in the different amide bonds present in 
proteins have shown absorption characteristics at wavelengths longer 
than 3000 nm (Haris and Chapman, 1994). Table 1 shows the light 
absorption wavelengths for amide bonds in proteins (Haris and 
Chapman, 1994). Moreover, researchers have also found a few wave-
lengths in the 400–2500 nm region (515, 520, 525, 550, 575, 743, 1116, 
2173, and 2359 nm) of the electromagnetic spectrum correlated to ni-
trogen content (Thenkabail et al., 2016). However, apart from 2173 and 
2359 nm wavelengths (Kokaly, 2001), none of the other bands have 
known causation (small absorption features) for this correlation. 

There is no known nitrogen/protein absorption wavelength available 
between the 400–1000 nm region of the electromagnetic spectrum, 
which has a light absorption sensitivity to the nitrogen content in the 
leaves. Thus, the only logical way that the 400–1000 nm reflectance data 
can be used for nitrogen estimation is through empirical proxy re-
lationships with parameters such as greenness (Hansen and Schjoerring, 
2003) and chlorophyll of the crop (Curran et al., 1992; Haboudane et al., 
2002), or some empirical relations between vegetation indices and 
vegetation nitrogen content (Reyniers et al., 2006; Hansen and 
Schjoerring, 2003; Chen et al. 2010). 

Some studies have shown a correlation between red-edge-based 
indices and nitrogen content of the crop. The double peak canopy ni-
trogen index (DCNI) is an example of a red-edge-based index where 720, 
700, and 670 nm wavelengths were used (Chen et al. 2010). The DCNI 
formula, along with other indices, is shown in Table 2. Similarly, Yao 
et al. (2010) used a spectroradiometer with 400–2500 nm range to 

collect canopy level reflectance from a wheat crop. Yao et al. (2010) 
studied various indices, and the involvement of 720, 725, and 736 nm 
wavelengths showed the usefulness of the red-edge region for nitrogen 
estimation. In another study, Feng et al. (2008) also used red-edge re-
gion wavelengths to estimate wheat crop leaf nitrogen. Feng et al. 
(2008) recommended spectroradiometer-based reflectance signatures to 
create red-edge position index (Cho and Skidmore, 2006) and mND705 
(normalised difference index at 705 nm) (Sims and Gamon, 2002) 
indices for leaf nitrogen content estimation. 

Stroppiana et al. (2006) experimented with data from a index, called 
the optimal normalized difference index (NDIopt), to be more sensitive 
than the traditional normalized difference vegetation index (NDVI) to 
changes in the plant nitrogen concentration while also being less 
affected by crop biophysical properties. Du et al. (2016) estimated ni-
trogen content in rice leaves using 32-band active hyperspectral sensing. 
The central wavelength of these bands was between 500 and 910 nm, 
with four wavelengths in the red-edge region. The authors used a total of 
32 bands for making a machine learning model, with a maximum R2 of 
0.75 obtained. In another study, Fan et al. (2019) used canopy level 
spectroradiometer-based spectral signatures from a maize crop to esti-
mate leaf nitrogen content. Partial least square regression analysis was 
carried out on the collected data resulting in R2 of 0.77. Similarly, Tan 
et al. (2018) collected temporal spectroradiometer-based hyperspectral 
reflectance spectra from an experimental wheat crop canopy. The study 
was focused on a statistical analysis of available methods of leaf nitrogen 
estimation, with an index named NREAI found to give the highest R2 of 
0.97, with chlorophyll used as a proxy indicator for estimating leaf ni-
trogen. Tian et al. (2014) also used spectroradiometer-based canopy 
(including background) reflectance spectra of a rice crop and found the 
simple ratio of 553 and 537 nm bands more reliable for leaf nitrogen 
content estimation under various cultivation conditions. 

In a drone-based study, Liu et al. (2017) used spectral signatures 
(450–950 nm) of a wheat crop at different growth stages. Field-based 
spectroradiometer readings were also collected simultaneously. A few 
bands, including from the red-edge region, were selected using corre-
lation analysis. The Back Propagation (BP) neural network and multi-
factor statistical regression method were implemented on the selected 
bands for the leaf nitrogen content model training and evaluation. The 
model gave an R2 between 0.85 and 0.96 for different growth stages of 
the crop. Similarly, Liang et al. (2018) used ground-based spectroradi-
ometer and aircraft-based hyperspectral data from an experimental 
winter wheat farm. However, this was mixed-pixel data as the spatial 
resolution of the aircraft data was 3 m. First-derivative indices at 520 nm 
and 715 nm were found to produce an R2 of 0.75. The authors recom-
mended to use less than 30 nm bandwidth for leaf nitrogen content 
estimation. Tian et al. (2011) created two-band and three-band hyper-
spectral indices for estimating paddy canopy-level leaf nitrogen con-
centration. The data was collected from ground, airborne (AVIRIS), and 
spaceborne (Hyperion satellite) platforms. The newly identified two- 
band index - R533

R565, and three-band index R705
R717+R491 resulted in an R2 less 

than 0.76. The use of the green-colour wavelength region shows that the 
higher correlation was due to the difference in green colour among 
different nitrogen treatment plots. 

In very few studies, leaf water and nitrogen contents were studied 
together using hyperspectral data. Strachan et al. (2002) used canopy- 
level 350–1000 nm hyperspectral data to demonstrate the maize 
development under nitrogen and water stress conditions. Canonical 
discriminate analysis was used to classify different nitrogen rate can-
opies. The authors suggested to carry out more research to understand 
the dynamics of nitrogen estimation under various water stress condi-
tions. In another study, Feng et al. (2016) developed a water resistance 
nitrogen index (WRNI) and tested it on a winter wheat crop. Canopy 
level reflectance spectra were collected (~400–1000 nm), and plants 
were destructively sampled for estimating leaf water content and leaf 
nitrogen content. WRNI was calculated using the ratio of normalised 

Table 1 
Infrared wavelength absorption of amide bonds in protein (adapted from Haris 
and Chapman, 1994).  

Wavelength (nm) Chemical bond origin 

3030 –NH stretching 
3225 N–H stretching 
5917–6250 C––O stretching, C-N stretching, N–H bending 
6349–6757 C-N stretching, N–H bending 
7686–8137 C-N stretching, C––O stretching, N–H bending, O––C-N 

bending 
13030–16000 O––C-N bending 
12500–15630 –NH bending 
16500–18620 C––O bending 
50,000 C–N torsion  
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difference red-edge (Fitzgerald et al., 2006) and a floating-position 
water band index (Strachan et al., 2002). The WRNI gave R2 between 
0.79 and 0.85. Corti et al. (2017) conducted a pot experiment under 
different water and nitrogen treatments. Spectroradiometer-based 
400–1000 nm spectral signatures were collected and used to estimate 
crop biophysical and biochemical properties, including leaf water and 
nitrogen content. All of the crop parameters were estimated using 
various indices. However, no analysis was presented to understand the 
effect of water and nitrogen variables on their estimation. 

From the above literature, it was found that very little work is 
available on pure-pixel analysis for remote estimation of leaf nitrogen 
content with respect to the change in leaf water content. Considering the 
association of water molecules with plant protein, the bands or indices 
for estimating leaf nitrogen content from visible to near-infrared region 
(400–1000 nm) are expected to be affected by the water molecules 
around plant proteins. None of the available studies have checked if 
their models are resulting in high correlation with leaf nitrogen simply 
due to their sensitivity to vegetation water content. Moreover, the 
indices available in the literature were created and tested for mixed- 
pixel data, and there has been no equivalent study with pure pixels. 
Accordingly, narrow-band pure-pixel hyperspectral data has been used 
in this study to estimate leaf nitrogen content, and the results analysed 
with respect to change in leaf water content. 

2. Materials and methods 

In this study, leaf-level narrow-band and pure pixel spectral signa-
tures were collected using a drone-based hyperspectral imager and 
hand-held spectroradiometer. Both data were recorded around the same 
time in the 400–1000 nm range. The leaves from which 
spectroradiometer-based spectral signatures were collected were sub-
sequently plucked and the leaf total nitrogen content were obtained 
using the Dumas method based CHNS instrumental analyser (Dhaliwal 
et al., 2014). The collected data were then used to identify the bands and 
indices more sensitive to change in leaf nitrogen content (LNC) than leaf 
water content (LWC). The maximum and minimum values of indices, 
growth stage information, were then used to create synthetic linear data 
to train a gradient boosting machine learning algorithm (GBM). Drone- 
based hyperspectral data were used to evaluate the model, and the re-
sults critically analysed with respect to LWC information. The frame-
work of this research is shown in Fig. 1. 

2.1. Site description and data acquisition 

This research was conducted during the post-monsoon (Rabi) season 
of 2018–19, in a research farm located at 17◦19′28′′N and 78◦23′56E, as 
shown in Fig. 2. A ‘Cargil 900 m gold’ maize crop variety was used for 
this study. Three different irrigation levels and nitrogen treatments were 
used, combinations of which resulted in nine unique treatment plots. 

Table 2 
Indices found to be used for leaf nitrogen content estimation in literature.  

Index Formula short form Full form Reference 

(1 + 0.45)
(
R2

800 + 1
)

R670 + 0.45  
Viopt  Optimal vegetation index Reyniers et al., 2006 

R573 − R440

R573 + R440  

NDVIg− b  Green-blue normalised difference vegetation index Hansen and Schjoerring, 2003 

R720 − R700

R700 − R670
R720 − R670 + 0.03  

DCNI  Double peak canopy nitrogen index Chen et al. 2010 

R450

R550  

BGI2  Blue Green Index 2 Chen et al. 2010 

MCARI
MTVI2  

Combined Index 
MCARI = [(R700 − R670 − 0.2)(R700 − R550) ]

(
R700

R670

)
Eitel et al., 2007Daughtry et al., 2000Haboudane et al., 2004 

MTVI2 = 1.5*
(1.2*(R800 − R550) − 2.5*(R670 − R550) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*R880 + 1)2 −
(
6*R800 − 5*R

1
2
670

)
− 0.5

√

3*
[
(R700 − R670 − 0.2)

*(R700 − R550)

](
R700

R670

)
TCARI Transformed chlorophyll absorption in reflectance index Haboudane et al., 2002   

Fig. 1. The structure of the leaf nitrogen content estimation model used in this research.  
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These nine treatments were replicated thrice to create a total of 27 plots. 
Fig. 2(c) shows the layout of these treatments, where I1, I2, and I3 
represent low, moderate, and high irrigation plots, while N1, N2, and N3 
represent low, moderate, and high doses of nitrogen treatments, 
respectively. A detailed explanation of the site can be found in Raj et al. 
(2021). 

Drone-based hyperspectral data were collected using a Bayspec OCI- 
FHR (400–1000 nm; 241 bands; 2.4 nm FWHM) push-broom hyper-
spectral imager. A DJI Matrice 600 hexacopter was used to fly the 
hyperspectral camera at a height of 50 m above the research farm. As the 
imager was of the line-scanner (push-broom) type with frame rate of 50 
fps, the speed of the drone was fixed at 2 m/sec. As shown in Fig. 3, the 
imager was fitted inside a gimbal attached to a DJI Matrice 600 hexa-
copter drone. The gimbal is one of the crucial parts of the system, 
keeping the imager stable while the drone is flying, minimising vibra-
tions that can affect ortho-distortions, artifacts, missing spatial lines, and 
out-of-focus issues (Oehlschläger et al., 2018). 

The data was collected at six-leaf, pre-tasselling, tasselling, silking, 
dough, and maturity crop growth stages on sunny days with clear sky 
conditions. Around the same time as the drone-based data collection, an 
SVC GER1500 spectroradiometer (400–1000 nm; 381 bands; 2.1 nm 
FWHM) was used to collect the leaf spectra of a single leaf from each 
treatment plot. To minimise the angle effect on the reflectance spectra, 
spectroradiometer was operated as per the suggestions given by He et al. 
(2016). Destructive sampling of the same leaf was then carried out, and 
the leaves were packed into pre-weighed airtight zip bags. Analytical 

balance with 10th of a milligram accuracy was used for weighing pur-
poses. Later, individual leaf-filled zip-bags were again weighed, and the 
subtraction of before and after weights of zip-bags used as the fresh 
weight of the leaves. The leaves were then cut into small pieces, put into 
a pre-weighed aluminum foil vessel, and weighed again. The leaf-filled 
aluminum foil vessel was then put into an oven at 60 ◦C for around 72 h 
to get completely dry samples. The dried samples in the aluminum foil 
vessels were weighed again, and the dry weight of the leaves obtained. 
The fresh weight and dry weight of the leaf samples were used to obtain 
the leaf water content using 

LWC =
Freshweight − Dryweight

Freshweight
(1) 

The dry leaves were then ground separately and passed through a 
sieve to get finely powdered samples. The powdered samples were then 
fed into a ThermoFisher Scientific FlashSmart Elemental Analyzer 
(CHNS instrument) to obtain the nitrogen content in each leaf sample. A 
total of 272 leaf samples were analysed using the CHNS instrument. The 
CHNS analyser works on the Dumas method in which flash combustion 
is done for instantaneous oxidation of the sample. Later, a chromato-
graphic column and thermal conductivity detector were used to separate 
and detect the combustion products. The CHNS analyser was calibrated 
using k-factor analysis of 2.5-Bis (5-tert-butyl-benzoxazol-2-yl) thio-
phene (also known as BBOT). Leaf powder samples in a quantity of 3–4 
mg were used for the analysis. Each leaf sample was replicated twice, 
and every 50th sample was replicated thrice in the CHNS analyser to 
check the consistency of the results. Average values of these replications 
were assigned as ground-truth leaf nitrogen content. The CHNS-based 
LNC was considered actual LNC. Fig. 4 shows the step-by-step 
approach used, starting from leaf collection to making its fine powder. 

2.2. Preprocessing of hyperspectral data 

The collected spectroradiometer data had a high-frequency noise 
associated with it. A Savitsky-Golay filter was used to smooth the data by 
removing high-frequency noise. Fig. 5 shows the raw and smooth spectra 
of a leaf. The hyperspectral sensor on the UAV was a line scanner type 
from Bayspec, requiring the raw data to be preprocessed in their cube 
creator software. The software does the radiometric correction and 
orthorectification and gives a hyperspectral cube. However, the pixel 
radiometric values contained high-frequency noise that needed to be 
corrected using the Savitsky-Golay filter, similar to the 

Fig. 2. (a) Map of India with highlighted study area; (b) The research farm top-of-canopy image; (c) The layout of the research farm indicating the treatments given 
to each plot. I1, I2, I3 and N1, N2, N3 represent low, moderate and high doses of water and nitrogen treatments, respectively. 

Fig. 3. (a) Hyperspectral Imager installed inside a gimbal and (b) the complete 
gimble setup installed on a DJI Matrice 600 hexacopter drone. 

R. Raj et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102584

5

spectroradiometer data correction. The hyperspectral data also had 
some missing lines in some of the stitched tiles. These missing lines were 
corrected by replacing the missing values with band-wise average values 
of adjacent pixels. 

2.3. Index creation for leaf nitrogen content 

The indices identified in this research were created using the narrow- 
band, pure pixel leaf-level hyperspectral signatures obtained from the 
spectroradiometer data. The 381 bands of the sapectroradiometer were 
used to create 72,390 (381C2) unique two-band normalised difference 
indices using 

Normaliseddifferenceindex(NDI)=
Reflectanceatbandi− Reflectanceatbandj
Reflectanceatbandi+Reflectanceatbandj

(2)  

where iand j are spectroradiometer bands. The correlation coefficient 
between each of the 72,390 indices and LNC was obtained and presented 
as a heatmap in Fig. 6(a). Interestingly, highly correlated areas in the 
index-LNC correlation heatmap were found to be the same as highly 
correlated areas in the index-LWC correlation heatmap published in Raj 
et al. (2021). This restricted use of the index-LNC correlation heatmap 
for finding nitrogen-sensitive indices independently from information 
on water content as the same indices were also highly sensitive to LWC. 
To find the indices more correlated with LNC than LWC, a correlation 
difference heatmap between the LNC and LWC heatmap was created. 
The difference heatmap is shown in Fig. 6(b). After comparing the 
correlation heatmaps and the difference heatmap, four indices were 
selected for further analysis. The identified wavelengths for these 
indices are indicated in Fig. 6 and listed in Table 3. Out of these four 
indices, only the RedEdge1 index showed spatial variability on the 
drone-based image. Thus, the RedEdge1 index along with the DCNI 
index from literature was selected for further analysis. 

2.4. Leaf nitrogen content estimation model 

Drone-based hyperspectral band images were used to create farm- 
index maps for the newly identified index - RedEdge1 (Table 3) and 
the DCNI index (Chen et al., 2010). The spatial resolution of the farm 
map was around 1 cm resulting in most canopy pixels being a pure pixel. 
The purity of the vegetation pixels resulted in higher narrow-band NDVI 
values of each vegetation pixel when compared to NDVI values of 
background pixels. Pixels having an NDVI value less than 0.7 were either 
non-vegetative or mixed pixel at the leaf edges. These lower NDVI pixels 

Fig. 4. Process indicating spectroradiometer and drone-based leaf-level hyperspectral data collection. Further, the leaves were destructively sampled, oven-dried, 
ground, and used in the CHNS analyser. The obtained leaf water (LWC) and nitrogen (LNC) content were coupled with respective leaf hyperspedctral signatures 
and saved as csv files. 

Fig. 5. Raw spectra having high-frequency noise (majorly after 900 nm), and 
its smooth version after applying a Savitzky -Golay filter. 
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were therefore assigned a null value in the map. A similar background 
removal approach was used in Raj et al. (2021). 

Synthetic data was created for model training, using the maximum 
and minimum values of individual pure pixel vegetation index maps. As 
RedEdge1 and DCNI were both positively correlated with LNC, the 
minimum and maximum values were assigned to the minimum and 
maximum ground-truth LNC, respectively. A straight line was interpo-
lated between the extreme values and 1000 random Gaussian distrib-
uted points generated within 10% of the interpolated value as shown in 
Fig. 7. Along with the synthetic index data, a decreasing trend of LNC 
with progressive growth stages was modeled using days after sowing 
(DAS) information. The DAS-LNC data was created using Gaussian noise 
around a third-order polynomial fit to the median values of ground truth 
data. Use of synthetic data for model training will reduce the model 
dependence on collected data resulting in improved model repeatability. 

A GBM model for LNC estimation was trained on 20,000 sampled 
points from the synthetic data. The GBM model was chosen for its 
promising performance in Raj et al. (2021). Moreover, the property of 

the GBM model to convert weak learners to strong learners by per-
forming sequential improvement of decision trees (Friedman, 2001) 
made it a suitable choice for LNC estimation. Optimal hyperparameters 
of the model were obtained using a GridSearchCV algorithm (Zhao et al., 
2020). The best parameters were obtained with a learning rate of 0.395, 
minimum sample split of 12, and number of estimators of 1,900. The 
LNC obtained from the GBM model was termed as estimated LNC. 

3. Results 

The temporal ground-truth LNC for various irrigation and nitrogen 
treatment plots are shown in Fig. 8. LNC was found to be decreasing with 
progress in growth stages from 6-leaf to maturity in all the treatments. 
The plants were found to be responsive to nitrogen application as LNC 
increased temporarily, especially for those plots treated with limited 
irrigation. The effect of different soil nitrogen treatments on actual leaf 
nitrogen content was found to be reduced for sufficiently irrigated plots. 

Various indices identified from the literature (Table 2) have been 
tested to estimate LNC. These indices were created to estimate canopy 
nitrogen content and, to date, mainly tested on canopy-level low spatial 
resolution data. The performance of these indices on pure-pixel narrow- 
band data was poor. Apart from DCNI, no other index available in 
literature could give an R2 greater than 0.05. The RedEdge1 index 
(identified in this research) and DCNI (identified from literature) farm 
index maps were created. Average index values for each treatment were 
used to create scatter plots with respective CHNS-based LNC values. As 
shown in Fig. 9, it was found that the RedEdge1 index and DCNI were 
correlated to LNC with an R2 of 0.27 and 0.20, respectively. 

The GBM model estimated temporal and spatial distribution of crop 
LNC is shown in Fig. 10. Comparison of these maps with LWC showed 
that, in general, LNC was high in the areas where LWC was also high. 
Although this is true, as LNC and LWC have a high correlation (R2 of 0.7) 
as shown in Fig. 11, the efficiency of the LNC model could be checked by 
analysing the LNC distribution in the same LWC area. The analysis of 
water-stressed and non-water stressed plots was undertaken separately 
to see the effect of different LWC on the LNC model. Moreover, the 
correlation between estimated LNC and CHNS-based LNC was made. 
The maps were analysed for the 6-leaf and pre-tasseling stages, where 
the water-stressed plots gave an R2 of 0.63 and RMSE of 2.74 mg/g, but 
the plots with higher LWC gave an R2 of 0.26 and RMSE of 4.54 mg/g. 
This shows that the LNC model can identify nitrogen stress areas from 

Fig. 6. (a) Heatmap of R2 between narrow-band normalized difference indices and leaf nitrogen content. (b) The heat map of LNC-LWC correlation coefficient 
difference R’ showing only those indices having a superior correlation with LNC compared to LWC. Indices in the white part of heatmap are correlated more with 
LWC than LNC. 

Table 3 
Pure pixel, narrow-band indices identified in this research for LNC estimation.  

Index Formula Short from Range Usability 

R545 − R422

R545 + R422  

GBslopeIndex  0–0.35 Spectroradiometer data only 

R826 − R547

R826 + R547  

GreenNIRIndex  0.2–0.8 

R747 − R718

R747 + R718  

RedEdge2Index  0.1–0.5 

R725 − R711

R725 + R711  

RedEdge1Index  0.2–0.4 Spectroradiometer and drone data  

Fig. 7. The synthetic data for RedEdge1, DCNI, and DAS relation with LNC.  
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the water-stressed plots, but the model could not perform well for re-
gions where no water stress was present. This is a limitation of the 
model, suggesting that the LNC model should only be applied once the 
LWC model has been used to classify low and high LWC areas, as sug-
gested in Raj et al. (2021). The scatter plots between estimated LNC and 
CHNS-based LNC for different conditions are shown in Fig. 12, with the 
model giving an R2 of 0.33 and RMSE of 5.35 mg/g when tested on 6-leaf 
and pre-tasseling stage data with no discrimination of water-stressed 
regions. However, the model accuracy increased to an R2 of 0.63 and 
RMSE of 2.74 mg/g when applied to only the water-stressed regions. 

Fig. 8. Temporal CHNS-based LNC values for different irrigation and nitrogen 
treatment plots. 

Fig. 9. Scatter plot between ground truth LNC and plot-wise averaged index 
value of (a) RedEdge1 and (b) DCNI index. 

Fig. 10. Colour-coded farm leaf nitrogen map obtained from the trained GBM 
showing nitrogen content in plant leaves on (a) 6-leaf stage and (b) pre- 
tasseling stage. 

Fig. 11. Scatter plot between LWC and LNC indicating a strong dependence of 
LNC on LWC. 

Fig. 12. (a) Scatter plot between estimated and CHNS-derived LNC values for 
all plots; (b) Water stress classification-based scatter plot for all plots; (c) 
Growth-stage based scatter plot for water-stressed plots only; (d) Growth-stage 
based scatter plot for non-water stressed plots only. 
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4. Discussion 

The indices used in this research – DCNI and RedEdge1 – were 
created using bands from the red edge region of the electromagnetic 

spectrum. Chen et al. (2010), who introduced the DCNI index, presented 
a detailed analysis of the sensitivity of nitrogen concentration to the 
relative height changes in the peaks of derivative spectra of the leaf 
spectral signature. In this research, those peaks were found in the red- 
edge zone of the spectra around 700 nm and 720 nm, as depicted in 
Fig. 13. Importantly, Chen et al. (2010) found that the nitrogen con-
centration in the leaves was highly correlated with the relative height 
changes of those peaks, which can be estimated using the ratio of the 
average heights of the two peaks. However, Chen et al. (2010) did not 
give any scientific reasoning for this high correlation. Chen et al. (2010) 
also added the 670 nm wavelength in the DCNI index to reduce the ef-
fects of LAI on the index, which may be helpful for mixed pixel data, but 
not for pure-pixel data. The LNC model presented in this research was 
for pure vegetation pixels, which enabled the RedEdge1 index to give 
better results than DCNI without adding other factors in the index to 
remove the effects of crop biophysical properties. 

The literature-based indices presented in Table 2 did not show high 
correlation with leaf nitrogen content. This may be because literature- 
based indices, until now, have been mostly validated for canopy level 
nitrogen content which are influenced by the biomass and other bio-
physical properties of the crop available in each pixel area. However, in 
this research the indices were tested for pure-pixel leaf level total ni-
trogen content which is independent of any crop biophysical properties. 

One crucial observation made in this research is that the identified 
indices tended to lose sensitivity to LNC estimation as the bandwidth 
broadened. Fig. 14 shows the comparative correlation difference heat-
map between LNC and LWC created with different bandwidth data. The 
analysis was undertaken on bandwidth correlation difference heatmaps 
created using a 2 nm to 11 nm bandwidth dataset. The indices performed 
similarly until 5 nm bandwidth data, with the correlation reducing 
drastically as the bandwidth further broadened. Thus, this research 
suggests that for distinguishing LNC and LWC, data should be collected 
with sensors having the central wavelengths given in Table 3 with a less 
than 5 nm bandwidth. 

5. Conclusion 

There are no known amide bond absorption bands available in the 
400–1000 nm electromagnetic range which can be directly used for leaf 
nitrogen content estimation. However, the red edge of the electromag-
netic spectrum was found to be sensitive to crop leaf nitrogen content. 
The peaks in the derivative spectra of red-edge between 700 and 725 nm 
(bandwidth less than 5 nm) have been found more sensitive to leaf ni-
trogen content than leaf water content. Moreover, it was found neces-
sary to differentiate between water-stressed and non-stressed areas as 
the proposed LNC model performed better for water-stressed crops. 
Importantly, recommendations of this LNC study are that sensors for 
mapping LNC should be based on narrow bands (bandwidth less than 5 
nm) centered at and around 700 and 725 nm, and any future research for 
LNC estimation should also consider the sensitivity of leaf water content 
on their model. 
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