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ARTICLE INFO ABSTRACT

Keywords:
Early-stage vegetation water stress

Remotely sensed estimation of leaf water content (LWC) using optical data at early crop growth stage is
important for identification of water-stressed plants. However, its accurate estimation is cuirently a major
challenge due to the coarse spatial and spectral resolution of the available optical data, and the atmospheric
impact on satellite-based remotely sensed data. Moreover, during early growth stages the canopy coverage is
low, increasing the effect of the bare soil background on low spatial resolution data. Consequently, broadband
optical data is insensitive to overtone frequencies of O-H stretching bonds of water molecules. Accordingly, this
research developed a new model for estimating LWC based on newly identified, pure-pixel, water sensitive
indices from high spatial resolution hyperspectral data. A hand-held field spectroradiometer and drone-based
hyperspectral imager were used to collect temporal high spectral resolution hyperspectral data (Range:
400-1000 nm; Bandwidth: ~2.1 nm) at leaf level, together with destructively sampled leaves to measure their
LWC using the oven-drying method. The spectroradiometer data were used to explore the wavelengths sensitive
to vibrational overtone frequencies of O-H bonds of water molecules present in leaves. A total of seven water-
sensitive wavelengths were identified, and corresponding normalised indices created for use with pure pixel
narrowband hyperspectral data from vegetation. Farm scale maps of LWC were then created using drone-based
hyperspectral data, based on minimum and maximum values of the above indices and ‘days after sowing’ in-
formation, through a gradient boost machine (GBM) model. The early growth stage maps of LWC were able to
distinguish between water-stressed and well-irrigated plots with an R? of 0.93 and RMSE of 1.6% (g/g).

Pure-pixel narrowband water-sensitive vegeta-
tion indices

Drone-based hyperspectral imaging

Leaf water content

1. Introduction farm management, information about the spatio-temporal distribution

of crop water content plays a crucial role.

Water is one of the most important input parameters for any grain
crop production (Gabriel et al., 2017) as irrigation management has a
major control on plant growth (Gonzalez-Dugo et al., 2010). Accord-
ingly, crop water stress increases the difference between attainable and
actual yield, with the ‘yield gap’ minimized through optimized irriga-
tion (Mueller et al., 2012). Water also helps nutrients from the soil to
travel to various parts of the plant, and so even with adequate nutrients
supplied to the soil, the crop may show nutritional deficiency if the crop
is suffering from water stress (Wang and Xing, 2016). Thus, for optimal

One way to identify potentially water-stressed areas in the farm is
through soil moisture mapping. However, remote sensing techniques are
currently incapable of directly measuring soil moisture across the
effective root zone (—30-50 cm) of grain crops (Etminan et al., 2020;
Shen et al., 2020; Xu et al., 2016; Finn et al., 2011; Walker et al., 2004).
Accordingly, leaf water content (LWC) was used in this research to
identify the water stress in plants by using narrowband hyperspectral
data. This was done on the basis that diffuse radiation reflected towards
the remote sensor from the plants contains information about
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Fig. 1. (a), (b), and (c) shows the symmetric asymmetric, and bending stretch in water molecules. The red colour atom represents the oxygen (O) atom, and the grey
colour atoms represent hydrogen (H) atoms. The arrows show the direction of motion of the atoms. (d), (e), and (f) show the three liberation modes of water
molecules with respect to x, y, and z axes (adapted from Chaplin, 2008). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

mesophyll’s numerous air/cell interfaces of the leaves, which relate to
the LWC of the plant (Vogelmann, 1993).

There are two different perspectives to plant water stress — instan-
taneous water stress and long-term water stress (Aroca, 2012). The effect
of instantaneous water stress is a lowering of the LWC, which affects the
gaseous exchanges between plants and their atmosphere (Ma et al.,
2018). However, long-term water stress significantly affects crop bio-
physical parameters like Leaf Area Index, canopy height, and yield (Ma
etal., 2018; Reddy et al., 2003; Blum, 2011; Pinheiro and Chaves, 2011).
Thus instantaneous water stress in the crop that is not adequately
managed creates the basis for long-term water stress, leading to a sig-
nificant crop yield reduction (Hsiao et al, 1976). Conversely, the
instantaneous water stress gives an early indication of potential yield
loss (Ma et al., 2018), which can be avoided with correct ongoing irri-
gation management.

The LWC during early crop growth stage needs to be maintained
above a critical value. For example, if the LWC of maize leaves goes
below 82.5% (g/g) during the seedling/jointing stage, the photosyn-
thetic rate may be reduced by as much as a factor of 3.2 (Ma et al., 2018).
Moreover, the reduction in LWC below a critical level increases the loss
in turgor pressure, further minimising the cell division and enhance-
ment, resulting in inhibited leaf expansion and stomatal closure, which
delays the gaseous exchanges between the plant and the atmosphere
(Hsiao, 1973; Schulze and Hall, 1982; Blum, 2011; Pinheiro and Chaves,
2011). Thus, early detection of water-stressed plants by estimating LWC
provides significant opportunities to ameliorate the stress through
suitable agronomic management for improved crop yield.

Various sensors have been used for remote estimation of leaf (or
vegetation) water content, including microwave (Huang et al., 2015;
Hunt et al., 2011; Merlin et al., 2010; Yilmaz et al., 2008), thermal
(Merlin et al., 2010; Yilmaz et al., 2008), and optical (Neinavaz et al.,
2017; Gao et al., 2015; Ceccato et al., 2001; Clevers et al., 2010).
However, microwave is low spatial resolution (Abowarda et al., 2021),
thermal gets affected by the soil temperature especially when the canopy
coverage is low (Han et al., 2016; Kim et al., 2016) and short-wave
infrared are affected by the atmosphere (Thompson et al., 2019;
Sicard et al., 1998). While the water absorption wavelengths above
1000 nm range (1940 nm, 1450 nm, and 1190 nm) have been the pri-
mary wavelengths for vegetation water sensing after atmospheric

correction (Thenkabail and Lyon 2016), having stronger absorption of
the electromagnetic spectrum than water absorption wavelengths be-
tween 400 and 1000 nm (Thenkabail and Lyon, 2016; Carter, 1991),
sensors operating in this range are much more expensive and difficult to
maintain. Importantly, a secondary water absorption band exists

Table 1
Water absorption bands in the visible and NIR region of the EM spectrum.
EM Absorption Reason for absorption Reference
region Wavelength
VIS 401 nm Fifth and sixth overtone of  Pope and Fry, 1997
449 nm vibrational symmetric and Stomp et al., 2007; Pope
asymmetric stretches of and Fry, 1997
O—H bands
514/520 nm Fifth overtone of Braun and Smirnov,
vibrational symmetric and 1993; Sogandares and
asymmetric stretches of Fry, 1997; Yakovenko
O—H bands et al., 2002; Stomp et al.,
605 nm Fourth overtone of 2007
vibrational symmetric and
asymmetric stretches of
O—H bands
660 nm Combined overtone of Tsubomura et al., 1980;
vibrational symmetrie, Braun and Smirnov, 1993
asymmetric and bending
stretches of O—H bands
698 nm Fourth overtone of Braun and Smirnov, 1993
vibrational symmetric and
asymmetric stretches of
O—H bands
IR 750/760 nm Small absorption peak due ~ Tsubomura et al., 1980;
to third overtone of Braun and Smirnov, 1993
vibrational symmetric and
asymmetric stretches of
O—H bands
836,850 nm Small absorption shoulder
due to Combined overtone
of vibrational symmetric,
asymmetric, and bending
stretches of O—H bands
970/975 nm Second overtone of Tsubomura et al., 1980;

vibrational symmetric,
and asymmetric stretches
of O—H bands

Biining-Pfaue, 2003;
Stomp et al., 2007
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Fig. 2. The framework of the leaf water content (LWC) model development and evaluation.

between 400 and 1000 nm at around 970 nm (Thenkabail and Lyon
2016). Moreover, other wavelengths within the 400-1000 nm range also
show sensitivity towards water molecules, but cannot offer any water
content information in broadband and mixed pixel data. Accordingly,
400-1000 nm hyperspectral airborne data has been selected for the
estimation of LWC here, being readily available at high resolution from
UAV platforms.

Absorption of electromagnetic radiation by water molecules is
determined by rotational transitions, intermolecular and intramolecular
vibrational transitions, and electronic transitions of H,O molecules.
Rotational transition and intermolecular vibrational transitions are
responsible for absorption in the microwave and far-infrared electro-
magnetic (EM) spectrum region (Mohoric and Bren, 2020), with the
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electronic transitions creating absorption in the ultraviolet region (Un-
derwood and Wittig, 2004). Absorption in the mid infrared (MIR) range
is due to intramolecular vibrational transitions (Hunter et al., 2018),
while in the VIS and NIR regions water absorption is majorly due to a
stretching overtone frequency and vibrational absorption of the O-H
bands of H,0O molecules (Chaplin, 2008).

Water molecules vibrate in the symmetric stretch, asymmetric
stretch, bend stretch and three liberation modes shown in Fig. 1
(Chaplin, 2008). Even though the VIS and NIR regions show very low
water absorption characteristics compared to after 1000 nm, the water’s
overtone bands have been found to create spectral niches for photo-
synthetic organisms (Stomp et al., 2007). At 401 and 449 nm, water
absorption can be seen due to the fifth and sixth overtone of vibrational

Dummy plots
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Fig. 3. (a) The geographical location of the farm that lies in the southern part of India and falls under a semi-arid zone. (b) The False-colour composite map of the
research farm having leaf-level high-resolution hyperspectral data. Dummy plots shown are not part of research plots.



R. Raj et al.

Table 2

Treatment information of the research farm for Rabi (Winter 2018-19). Here,
CPE represents cumulative potential evaporation in mm, and IW means irrigated
water in mm (50 mm for this research).

Treatment Meaning Application rate

N1 High N stress 100 kg/ha

N2 Ideal nitrogen 200 kg/ha

N3 Overdose nitrogen 300 kg/ha

I1 High water stress Irrigation @ IW/CPE = 0.6
12 Moderate water stress Irrigation @ IW/CPE = 0.8
13 No water stress Irrigation @ IW/CPE = 1.2

symmetric, and asymmetric stretches of O—H bands (Pope and Fry,
1997; Stomp et al., 2007). It has also been found that the fifth overtone
of the intramolecular stretches produces a very small absorption at 514
nm (Yakovenko et al., 2002; Sogandares and Fry, 1997; Braun and
Smirnov, 1993; Stomp et al., 2007). At 605 nm, a fourth overtone band
of symmetric and asymmetric stretches has been documented (Yako-
venko et al., 2002; Sogandares and Fry, 1997; Braun and Smirnov, 1993;
Stomp et al., 2007). At 660 nm, absorption occurs due to combined
vibrational symmetric, asymmetric, and bending stretches of O-H
overtone bonds (Tsubomura et al., 1980; Braun and Smirnov, 1993)., At
698 nm, the fourth overtone of vibrational symmetric, and asymmetric
stretches of the O-H bands has created water absorption in the EM
spectrum (Braun and Smirnov, 1993). Spectroscopy has also shown a
small absorption peak at 750 nm due to the third overtone of vibrational
symmetric, and asymmetric stretches of O-H bands (Tsubomura et al.,
1980; Braun and Smirnov, 1993). A water absorption shoulder has been
observed at around 836-850 nm due to the combined overtone of
vibrational symmetric, asymmetric, and bending stretches of O—H
bands (Tsubomura et al., 1980; Braun and Smirnov, 1993). At 970 nm,
water absorption band is found due to the second overtone of vibrational
symmetric, and asymmetric stretches of O—H bands (Biining-Pfaue,
2003; Stomp et al., 2007). Table 1 shows the list of water absorption
bands found from literature.

Most of the existing LWC estimation models available in hyper-
spectral sensing are based on mixed-pixel (vegetation and visible
background in the same pixel) data taken either from satellite or high-
altitude airborne platforms. These platforms can map huge areas but
suffer from coarser spatial resolution (mixed-pixel) data that cannot

420 nm

970 nm

Reflectance

1
1

0]

Reflectance (-)
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capture the changes happening in the weak water-sensitive bands
(Kokaly and Clark, 1999), especially when the crop is at the early growth
stage with little canopy coverage (Cheng et al., 2006; Chen et al., 2005),
due to the higher overtones of the water’s O-H molecule stretching
frequencies losing sensitivity for broadband and mixed pixel data
(Thorpe et al., 2006; Thenkabail et al., 2002; Fan et al., 2009; Jones and
Sirault, 2014). Moreover, optical observations from high altitude plat-
forms are highly affected by atmospheric interference (aerosol, water
vapour content, and various gases present in the atmosphere), which is
incredibly challenging to correct due to limitations of ‘atmospheric
correction’ algorithms (Gao et al., 2009; Zheng and Zeng, 2004).
Accordingly, the small changes in these bands are unable to provide
useful information on critical vegetation parameters from these sensors
(Hadjimitsis et al., 2004).

Interestingly, Kim et al. (2010) used active hyperspectral sensing
(whereby a consistent light source is used to illuminate the target to
eliminate atmospheric effects) to identify the plant water stress on
young apple trees and found narrowband 750 nm wavelength observa-
tions useful for LWC estimation. From Table 1, it can be seen that a small
absorption peak exists at 750 nm due to the third overtone of vibrational
symmetric and asymmetric stretches of O—H bonds. Moreover, Zygiel-
baum et al. (2009) has used 400-750 nm spectroradiometer data and
found the 520 nm wavelength useful in the retrieval of relative water
content from maize. In another study, Corti et al. (2017) has used the
partial least square algorithm to estimate water stress in spinach plants
using line-scanner camera-based 400-1000 nm hyperspectral data.
However, Corti et al. (2017) could not point out specific bands related to
water stress but gave ranges of wavelength based on the PLS algorithm.
Feilhauer et al. (2015) have used PROSPECT model data along with leaf
level spectroradiometer data (400-2500 nm) of various crops to select
spectral bands for LWC (g/cm?) estimation. Using an ensemble
approach, bands near 750 nm were identified from the 400-1000 nm
range for LWC estimation. From the 1000-2500 nm range, 1412 nm,
1978 nm, 2004 nm, and 2401 nm were identified for LWC estimation.
While Casas et al. (2014) identified that the longer short-wave infrared
region based indices gave improved correlation with canopy water
content, this data is not readily available. Consequently, this paper has
developed a new method for LWC estimation to identify the water-
stressed areas of a farm at an early growth stage of the crop by using
narrowband hyperspectral (400-1000 nm) drone-based high resolution
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Fig. 4. Hyperspectral data cube - a three-dimensional representation of a hyperspectral image. Here, X and Y represent the spatial dimension while the Z dimension
(denoted by2) shows the spectral information according to wavelength for each pixel in the image. The top layer of the cube is showing an RGB map of a section of the
farm. The spectral information of a vegetation and soil pixel is shown at the right of the plot.
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Fig. 5. Three leaf spectra per leaf of each subplot were collected using a hand-held spectroradiometer. The same leaves were destructively sampled, weighed, oven-
dried, and leaf water content (LWC) calculated based on the difference between fresh and dry leaf weights. The obtained information about LWC was then saved with
the respective leaf spectra along with days after sowing information for further data analysis.

data, thus overcoming the limitations of broadband, high altitude, low
resolution data.

2. Materials and methods

In this study, a drone-based push-broom hyperspectral (400-1000
nm) imager was used to collect temporal data from a research farm.
Hand-held spectroradiometer data was collected coincident with the
flights to provide leaf level spectral signatures (400-1000 nm) from
plants grown in plots treated with different water and fertiliser doses.
These leaves were subsequently plucked and the LWC estimated using
the oven drying method. The hand-held spectroradiometer and associ-
ated LWC data were then used to identify the pure-pixel narrowband
normalised indices sensitive to LWC. The bands involved in the LWC
indices were chosen based on their response to different water vibra-
tional absorption regions of the electromagnetic spectrum. These indices
were then calculated using the farm-scale hyperspectral images
collected using the drone, and the minimum/maximum values of these
indices and respective LWC used to generate synthetic data for training a
gradient boosting machine (GBM) model. The GBM model was then
evaluated on the actual farm data. The framework of this research is
shown in Fig. 2.

2.1. Site description and data acquisition

The study was carried out during the post-monsoon season (Rabi) in a
semi-arid area of Hyderabad, Telangana, India (17°19'27.2"N -
17°19'28.3"N and 78°23'55.4"E — 78°23'56.2"E). The farm location is
shown in Fig. 3(a), being in the semi-arid zone with an average annual
rainfall of 822 mm and annual potential evapotranspiration between
1700 and 1960 mm. The area has light red sandy-loam soil with around

one meter of soil depth and bedrock beneath it. Maize crop (Zea mays L.)
of variety ‘Cargil 900 m gold’ was selected for the research. The farm
was maintained by Agricultural Research Institute, Professor Jaya-
shankar Telangana State Agricultural University, Hyderabad, Telan-
gana, India. The crop was sown during 2018-19 Rabi season (Post
monsoon), with data collection during all growth stages of the crop
growth. The experiment was laid out in split-plot design with a combi-
nation of three irrigation schedules and three fertilisation levels based
on a climatological approach (Halagalimath, 2017). The ratio of irri-
gation water (IW) and cumulative pan evaporation (CPE) was used to
decide the day on which plots need to be irrigated. Irrigation at IW/CPE

Table 3
Data collected from the research farm and their respective uses in this research.

Data Instrument used Number of Use of the data
samples per
plot/pixel
size
Hyperspectral Spectroradiometer Three Indices
signatures (SVC GER1500) signatures creation
(400-1000 nm) per leaf
sample
High spatial and Hexacopter-mounted Spatial Model training
temporal Bayspec Hyperspectral ~ resolution ~ and testing
resolution top-of- imager 2 cm
the-canopy (400-1000 nm)
hyperspectral Spectral
images resolution —
2.4 nm
Leaf water content 60-72 hour in an oven  One leaf per Ground-
at 60 °C plot truthing the
leaf water
estimation
model
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Fig. 6. Synthetic Leaf water content (LWC) data for the newly created indices and ‘days after sowing’ (DAS) information. The dashed red lines represent the
interpolated values between the minimum and maximum of the index and LWC. The black dots represent Gaussian distributed points. The dashed line in the DAS-
LWC plot represents a second-order polynomial fit line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

ratio of 0.6, 0.8, and 1 was selected for plots with three irrigation levels.
During each irrigation, 50 mm water was supplied to the scheduled plots
through pipes directed through a water meter. Accordingly, IW was kept
constant (50 mm) and daily readings from pan evaporimeters (in mm)
used to find the IW/CPE ratio and thus timing of irrigation for the
different plots. Three levels of nitrogen fertilisation (100, 200, and 300
kg nitrogen ha™1) were given to each irrigation plot type. This combi-
nation of three irrigation and three fertilisation levels resulted in nine
unique plots, and so with each replicated thrice, there was a total of 27
subplots (3 water x 3 nitrogen x 3 replications), as shown in Fig. 3(b).
Each plot of size 4.2 m x 4.8 m was treated with one of the three
different water and nitrogen levels to enable the subplots to be at low,
medium and high water and fertiliser stress conditions. For each treat-
ment, a plant to plant spacing of 20 cm and row to row spacing of 60 cm
was adopted, resulting in a plant density of — 8.33 plants per m2. Ni-
trogen was applied to all the plots at three different stages — sowing, six-
leaf stage, and tasseling stage. Table 2 shows the various treatments used
to create the plots drone-based top-of-canopy push-broom hyperspectral
camera (Bayspec OCI-F-HR hyperspectral imager) was used to collect
top-of-canopy farm images in the 400-1000 nm spectral range. The data
were captured temporally from a height of 50 m above the ground
having around 1 cm spatial resolution. The created hyperspectral cube
of the farm map is shown in Fig. 4. After collection of hyperspectral
images, a hand-held spectroradiometer of make Spectra Vista GER 1500
was used to colleet leaf spectral signatures from one leaf of each of the
27 subplots. Three spectroradiometer readings were acquired from each
leaf, and the leaf plucked and packed in an airtight pre-weighed zip bag
for measuring the LWC. Fig. 5 shows the process of spectroradiometer
data collection and LWC measurement. Table 3 shows the types of data
collected from the farm.

2.2. Index selection for leaf water content

The number of bands in the spectroradiometer and hyperspectral
imager data was 381 and 242, respectively. However, most of the bands
in narrowband hyperspectral data show a high correlation to each other
and thus contain similar information (Thenkabail and Lyon 2016). The

% Q
Q
d:% o

&
o

Learning rate: 0.405
c O

0.095 0.295 0.305 0.405

0.105 0.2

Fig. 7. Hyperparameter tuning graph for the Gradient Boosting Machine
(GBM) algorithm. The best set of parameters was obtained at learning rate —
0.405, minimum sample split — 7, and the number of estimators — 400.
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bands having redundant information or not having any relation with
LWC should therefore be removed from the analysis as they create un-
necessary complexity (Thenkabail and Lyon 2016). Thus, it is crucial to
select only those bands which contain information about the LWC. One
such approach of dimensionality reduction can be to choose only one
band from the highly correlated set of bands. However, this band cor-
relation method may discard the highly correlated bands having critical
information about the crop parameter being measured (Kumar et al.,
2001). Accordingly, Partial Least Square Regression has been used as a
popular algorithm in chemometrics to reduce dimensionality, but this
approach may not distinguish bands having little effect on the LWC
(Hanrahan and Patil, 2005). Moreover, these models remain completely
empirical in nature. It, therefore, becomes imperative to identify
important bands for estimation of a specific crop property based on the
science behind the electromagnetic spectrum’s reflectance properties.
In this research, spectroradiometer data was used for identification
of bands/indices for estimation of leaf water content. From 381 bands of
spectroradiometer data ranging from 400 to 1000 nm, a total of 72,390
possible unique normalised difference indices were created according to

Normalised difference index (NDI) =

International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102393

where iand j are bands ranging from 400 to 1000 nm. Each of the indices
was correlated with the actual leaf water content (measured after oven
drying the leaves). The correlation heatmap is discussed in the results
section. The highly correlated zones of the indices-LWC correlation
heatmap were analysed with respect to the water-sensitive bands pre-
sent in the 400-1000 nm wavelength region as discussed in the intro-
duction section and in Table 1 towards LWC with drone-based
hyperspectral data and only worked well with spectroradiometer data,
limiting use of the later four indices in drone-based sensing applications.

2.3. Leaf water content estimation model

Based on the three newly identified indices (FOSBNDI-1, FOSBNDI-2
and COSBNDI), and the second version of Enhanced Vegetation Index
(EVI12), farm index-maps were created using the drone-based hyper-
spectral data. EVI2 was selected due to its proven capability of being
sensitive to equivalent water thickness of the canopy (Cheng et al., 2006,
2008), and calculated according to (Jiang et al., 2008)
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Fig. 8. Box-whisker plot of temporal leaf water content. I1, 12, and I3 are low, moderate, and no water stress treatment conditions, respectively. The secondary y-axis

shows the irrigation and rainfall information.
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As the images’ spatial resolution was 1 cm, most of the vegetation
pixels were scanned as pure pixels. However, to remove the background
pixels (non-vegetation pixels) from the farm index maps, narrowband
NDVI values of all the pixels were thresholded at a value of 0.7 and
assigned a null value. These pixels included mostly non-vegetation
pixels and some mixed pixels at the edges of the field.

The maximum and minimum value of each index-map of pure pixels
was then used to generate synthetic data for model training as follows.

Depending on the index and LWC relation (whether positively or
negatively correlated), extreme index values were assigned to the
highest and lowest LWC values, respectively. Assuming a linear rela-
tionship, a straight line was interpolated between the extreme values of
the indices and LWC, as shown by the dashed line in Fig. 6. The linear
relation was chosen as it has no spectral saturation (Tian et al., 2011),
and Pasqualotto et al. (2018) and Sun et al. (2019) have found that a
linear relation with LWC gives a better estimation than exponential or
polynomial relations. Considering the interpolated values as being the
mean of an observational distribution for LWC, 1,000 Gaussian

Table 4
Vegetation pure pixel, narrowband indices for estimation of leaf water content.
Index short from Full form Range Usability
Formula
R660 — R420 COSBNDI Combined overtone of stretching bands - normalised difference index —0.50 to 0.30 (Negative Spectroradiometer and drone
R660 + R420 correlation) data
R529 — R698 FOSBNDI-1 Forth overtone of stretching bands - normalised difference index 1 —0.35 to 0.45 (Postive
R529 + R698 correlation)
R529 — R605 FOSBNDI-2 Forth overtone of stretching bands - normalised difference index 2 —0.20 to 0.45 (Positive
R529 + R605 correlation)
RA475 — R449 FSOSBNDI Fifth and sixth overtone of stretching bands - normalised difference index —0.20 to 0.45 (Negative Spectroradiometer data only
R475 + R449 correlation)
R750 — R970 SAPSBNDI Small absorption peak of stretching bands - normalised difference index —0.27 10 0.68 (Positive
R750 + R970 correlation)
R791 — R970 SOSBNDI Second overtone of stretching bands - normalised difference index ~--0.15 to 0.65 (Positive
R791 + R970 correlation)
R800 — R847 WASCOSBNDI Water absorption shoulder due to combined overtone of stretching bands - ~0 to 0.2 (Positive
R800 + R847 normalised difference index correlation)
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Fig. 10. Evaluation of the GBM model trained on the synthetic data against
spectroradiometer data. The dots of the scatterplot are semi-transparent.
Relatively darker areas of the scatterplot shows overlapping of points in
those regions.

distributed points were generated within 10% of the interpolated LWC
value. The generated points are shown by the black dots in Fig. 6. Along
with this index-LWC synthetic data, crop growth-stage based LWC syn-
thetic data was also created. Here a second-order polynomial fit line was
selected as it gave a better representation of the temporal LWC, with a
Gaussian noise generated within 5% of the interpolated LWC values.

A total of 20,000 sets of points were used from the synthetic data to
train the GBM model developed to estimate LWC. The GBM was selected
as it combines the predictions from multiple decision trees to generate a
final prediction. The GBM performs the sequential improvement of de-
cision trees to convert weak learners into strong learners, and produce
the best metrics for the algorithm to fit the data by tuning the hyper-
parameters (Friedman, 2001). The hyperparameters of the GBM
regression were tuned, and the optimal values selected for model’s
weights. The hyperparameter tuning result is shown in Fig. 7. The model

International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102393

trained on synthetic data was then implemented on the index maps
obtained from the drone-based hyperspectral data.

3. Results

The temporal details of irrigation, rainfall, LWC, and growth stages
are shown in Fig. 8. The various treatments provided in the subplots
resulted in different water content of the plant leaves. The general na-
ture of decreasing LWC means that the water percentage in a leaf per
unit fresh leaf weight (Ma et al., 2018) reduces as the crop moves to-
wards maturity. Another critical observation of Fig. 8 is that the LWC in
the I3 irrigated plots were higher than I1 irrigated plots until the tas-
selling stage. After the tasselling stage, the I3 irrigated plants showed
lower LWC than the 11 irrigated plants. This occurred due to delayed
growth stage in the 11 irrigated crops. The I3 irrigated plants showed
higher LWC than I1 irrigated plants during the crop’s vegetative stage.
Tasseling, silking, dough, and marturity stages were found to be delayed
for I1 irrigated plants when compared to 13 irrigated plants. It was also
seen that until 28 DAS, when all the plots were irrigated uniformly, the
LWC was also in the same range for all the plots. On 28 DAS, when only
the I3 plots were irrigated, the LWC was seen to be higher in I3 than I1.
Rainfall around 60 DAS made the LWC in the same range for all the
plots. These temporal variations in LWC show the capability of detecting
instantaneous water stress in a maize crop using LWC information.

The LWC correlation heatmap created using 72,390 unique indices as
explained in Eq. (1) is shown in Fig. 9. Analysis of the correlation
heatmap clearly showed that the wavelengths associated with water
absorption bands created the highest correlation regions. Thus, index
selection was made based on those indices that gave the highest corre-
lation when coupled with the water absorption bands. Fig. 9 shows the
heatmap with marked water absorption wavelengths. The indices
created using brown/red zone wavelengths showed maximum correla-
tion, while the indices created using the violet zone showed the least
correlation with maize LWC. The identified indices are shown in Table 4.

The GBM model created in this research was evaluated on spec-
troradiometer based index data with an R? of 0.93 and RMSE of 1.6% (g/
g), as shown in Fig. 10. The GBM model was also evaluated for the 6-leaf
stage (35 DAS) and late-vegetative stage (56 DAS) farm maps. Fig. 11
shows the colour-coded farm maps for better visualisation of the spatial
distribution of LWC in the farm. The map visualisation methods
explained in Crameri et al. (2020) have been used to create the color
coded LWC maps of the farm. Accordingly, the farm-map has been

Leaf water content percentage

Fig. 11. Colour coded leaf water content (LWC) maps of a maize farm. (a) The LWC farm map at the 6-leaf stage (35 days after sowing); (b) The LWC farm map at
late-vegetative stage (56 days after sowing). The LWC difference of well irrigated (solid line boxes with I3 irrigation), moderately irrigated (dashed line boxes) and

less irrigated (dotted line boxes) plots can be easily seen in the farm maps.
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Fig. 12. Box-whisker plots of estimated and ground-truth leaf water content for
the 6-leaf stage and late vegetative stage plants. The 6-leaf stage data were
collected at 35 days after sowing (DAS) and the late vegetative stage data were
collected at 56 DAS. I1, I2, and I3 represent the three irrigation levels applied in
the different plots of the research farm, with I3 representing sufficient irriga-
tion, I2 moderate, and I1 water-stressed plots.

smoothed with a gaussian filter and overlayed with different line-type
boxes to indicate the 11, 12, and I3 irrigation plots. For the 6-leaf and
late vegetative stage maps, water-stressed plots (I1) could easily be
identified as having lower LWC. This can be verified from the box-
whisker plot shown in Fig. 8, where the 35 and 56 DAS plant’s LWC
of 11 plot were less than that for the I3 plot plants. However, the visual
difference between 12 and I3 plots cannot be seen. The box-whisker plots

400,
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of different irrigation treatment plots and ground truth data are shown
in Fig. 12.

4, Discussion

The water absorption indices and LWC model developed in this
research can be used for early growth stage (from 6-leaf stage to tas-
selling stage) leaf water content estimation of a crop using narrowband
pure pixel airborne optical data. Indices were developed using hand-
held spectroradiometer data taken from approximately 10 cm distance
from leaves and applied to drone-based data obtained from about 50 m
distance from the leaves, with three of the seven indices found to show
the sensitivity needed for LWC estimation of crops treated with different
irrigation amounts. This highlights the utility of the three indices
(FOSBNDI-1, FOSBNDI-2, and COSBNDI) in the field of drone-based
sensing. However, as these indices have been derived from pure vege-
tation pixel data, implementation of these indices on mixed pixel data
may drastically reduce the sensitivity to LWC. Importantly, with the
distance between the leaves and the drone-based sensor being only 50
m, the atmospheric effect on the hyperspectral data is minimal
compared to that on satellite or airborne data. However, the other four
LWC indices identified from the spectroradiometer (FSOSBNDI,
SAPBNDI, SOSBNDI, and WASCOSBNDI) may still have lost their
sensitivity when applied to UAV data due to the increased distance be-
tween the leaf and sensor. Importantly, by training the model to syn-
thetic data, the model will have a reduced dependence on the collected
data, meaning that it should be applicable to other fields and seasons
with the same maize variety.

Another interesting observation is that these indices lose sensitivity
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Fig. 13. Comparison of heatmaps of the coefficient of determination between normalised difference vegetation indices of different bandwidth and leaf-water content.
The bandwidths used to create these heatmaps are as follows: (a) 2 nm, (b) 8 nm, (c) 11 nm, (d) 18 nm, (e) 22 nm, and (f) 30 nm. The indices created used the

wavelengths shown on the x and y-axis as per Eq. (1).
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as the bandwidth is increased. The analysis was done on different
bandwidth data (2 nm to 30 nm) by creating multiple index-LWC cor-
relation heatmap. The correlation heatmap comparison is given in
Fig. 13. A correlation similar to the 2 nm bandwidth indices is observed
until 11 nm bandwidth, after which there is substantially less sensitivity
towards LWC. Thus, this research suggests that for LWC estimation,
sensors should be made by considering the wavelengths given in Table 4
as central wavelength with less than 11 nm bandwidth for each band.
Moreover, researchers from different parts of the world should use and
test the indices/wavelengths presented in Table 1 and Table 4 on various
crops to estimate LWC.

There are multiple studies which have used hyperspectral data to
estimate the leaf/vegetation water content. However, most of them have
acquired data from the entire 400-2500 nm range to utilise the primary
water absorption bands. Moreover, process-based models like PROS-
PECT/ PROSAIL do not produce any change in the 400-900 nm spectra
when LWC changes in the crop. Pasqualotto et al. (2018) have used
airborne 400-2500 nm data to get the canopy water content for multiple
crop types (lucerne, corn, potato, sugar beet and onion). The authors
have used primary water absorption bands to get water absorption area
and depth water index. Using these indices with an exponential fit, the
authors achieved an R2 of around 0.75, but the madel could not perform
well for areas having less than 30% of vegetation cover. Herrmann et al.
(2020) used an 11 band drone-based hyperspectral imager to collect
temporal data from a maize crop. The study identified 570 nm and 620
nm wavelengths as being more sensitive to different irrigation crop
treatments. The study also estimated relative crop water content using a
partial least square regression on all 11 bands (420, 440, 490, 550, 640,
670, 700, 740, 780, 860 and 910 nm) with an R? of 0.55.

In another study, Sun et al., (2019) used spectroradiometer data in
the range 400-2500 nm to estimate LWC of a winter wheat crop. Various
indices were tested and an R? of 0.77 achieved. Cheng et al. (2011) used
350-2500 nm spectroscopic data to estimate the LWC of 47 species
present in the tropical forests of Panama using continuous wavelet
analysis. The model had an R? in the range of 0.71-0.75. In contrast,
Corti et al., (2017) used 400-1000 nm hyperspectral imager data to
estimate spinach canopy water content using a partial least square
regression model and achieved an R% of 0.87. By comparison, the
research presented in this paper achieved an R? of 0.93 and RMSE of
1.6% (g/g) even when applied exclusively to early vegetative stages of
the maize crop. This shows that the 400-1000 nm sensors’ cost-
effectiveness and usefulness of identified optimal bands make this
range equally powerful for pure-pixel data as compared to 400-2500 nm
data. Moreover, the sensors that capture data in the range of 400-2500
nm are costly and give enormous data volumes, which also creates
storage and analysis issues.

5. Conclusion

This research has developed a new approach for leaf water content
(LWC) estimation at an early crop growth stage using hyperspectral data
from only the 400-1000 nm range. Seven indices were created using
spectroradiometer data based on the overtone frequencies of O-H bonds
of water molecules. Three of the seven indices were shown to have
sensitivity for LWC estimation from drone-based hyperspectral data. The
model created from these indices has shown precise estimation of LWC
at the 6-leaf stage and before tasselling stage of the crop growth with an
R2 of 0.93 and RMSE of 1.6% (g/g). This early growth stage LWC esti-
mation can be used to identify water-stressed plots and thus potential
yield loss can be avoided. Accordingly, this model can be used for esti-
mating spatial and temporal LWC changes across farms in near real-time
to undertake decision making on irrigation management.
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