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ABSTRACT 
 
This study has compared preliminary estimates of effective 
leaf area index (LAI) derived from fish-eye lens 
photographs to those estimated from airborne full-waveform 
small-footprint LiDAR data for a forest dataset in Australia. 
The full-waveform data was decomposed and optimized 
using a trust-region-reflective algorithm to extract denser 
point clouds. LAI LiDAR estimates were derived in two 
ways (1) from the probability of discrete pulses reaching the 
ground without being intercepted (point method) and (2) 
from raw waveform canopy height profile processing 
adapted to small-footprint laser altimetry (waveform 
method) accounting for reflectance ratio between vegetation 
and ground. The best results, that matched hemispherical 
photography estimates, were achieved for the waveform 
method with a study area-adjusted reflectance ratio of 0.4 
(RMSE of 0.15 and 0.03 at plot and site level, respectively). 
The point method generally overestimated, whereas the 
waveform method with an arbitrary reflectance ratio of 0.5 
underestimated the fish-eye lens LAI estimates. 
 

Index Terms— Full-waveform, LiDAR, Leaf area 
index (LAI), Canopy height profile, Small-footprint 
 

1. INTRODUCTION 
 
Small footprint full-waveform LiDAR data have become 
increasingly available in recent years. Recording of the 
whole backscattered signal at regular time intervals of 
typically 1ns gives the possibility to adjust the off-line 
processing to the user’s needs and provides detailed 
information on target distribution along the laser line-of–
sight. These type of data find their major application in 
vegetation studies, as these are areas where the most 
multiple returns are triggered and where information about 
structure is of great value and interest for biogeoscience 
applications. 

Several studies attempted to describe vegetation 
structure using full-waveform laser data. Lefsky et al. [1] 

presented canopy height profile and canopy volume 
methods to characterize the total volume and spatial 
organization of foliage and gaps within the forest canopy 
applied to LiDAR large footprint data. Harding et al. [2] 
expanded  and modified the canopy height profile method 
and applied it to the same type of data.  

This study follows the assumptions and general 
steps presented in [2] but modifying and adapting them to 
small-footprint  RIEGL LMS-Q560 data. Leaf area index 
(LAI) estimates (one sided leaf surface area per unit ground 
area) and canopy description accounting for occlusions and 
energy decrease with increasing range were derived in this 
way. The LAI estimates from raw waveform were then 
compared to LiDAR discrete points and to fish-eye lens 
photography LAI estimates. Since neither LiDAR nor fish-
eye photography distinguishes between woody and foliar 
elements, the LAI estimates considered in this paper may be 
referred to as plant area index (PAI). 
 

2. STUDY AREA AND DATA 
 
The study area is located in New South Wales in Australia, 
in the Gillenbah forest, near the town of Narrandera. The 
most common tree species in the forest is White Cypress 
Pine (Callitris glaucophylla) with occasional Grey Box 
(Eucalyptus microcarpa) in Site 1, 10 and 17 and Monterey 
Pine (Pinus radiata) present only in Site 1.  

Twelve sites were measured in the field. Each site 
consisted of five circular plots (12.62m radius): one in the 
centre (C) and one at approximately each cardinal direction 
(N, S, E, W). All trees with diameter at breast height (DBH) 
larger than 5cm within the plot limits were measured. The 
field measurements included tree height, crown base height, 
location, DBH and species. Terrestrial photographs and 
upward-pointing fish-eye lens photographs were also taken. 
Effective LAI was calculated from fish-eye lens 
photographs taken in the centre and in the four cardinal 
directions of each plot, with the final LAI value computed 
as the average of five photographs. The LAI for the whole 
site was calculated as an average of plot level LAI 
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measurements in each site. The fish-eye LAI estimates were 
obtained using HemiView software by computing the 
fraction of sky obscured by vegetation. In this study 
preliminary results for four out of twelve sites are presented. 
The clumping effect of canopy elements was at this stage 
neglected. 

The LiDAR data were acquired by Airborne 
Research Australia on September 6th 2011 with a full-
waveform RIEGL LMS-Q560 instrument as part of The 
Third Soil Moisture Active Passive Experiment (SMAPEx-
3) [3]. The laser instrument was mounted on a light aircraft 
and flown at 350m above ground level (AGL) resulting in 
0.175m footprint diameter and an average point spacing of 
9.5 points/m2. Both transmitted and received waveforms 
were recorded and sampled with a frequency of 1GHz (1 
nanosecond spacing). The LiDAR data corresponding to 
field measurements at plot and site level were extracted 
from the swaths of data for each of the four sites. 
 

3. METHODS 
 
3.1. Gaussian decomposition 
 
All LiDAR datasets were processed to detect peaks and 
optimised with the trust-region-reflective algorithm. A 
custom Gaussian decomposition procedure was used to 
detect weak returns, so as to provide more complete 
structure of the vegetation. The details of the procedure can 
be found in [4].  In order to enable further analysis and 
comparison to other datasets the data was calibrated and the 
backscattering coefficient [5] was calculated for each return. 
Backscattering coefficient was used to help separate ground 
returns from other returns in order to generate a Digital 
Terrain Model (DTM) for each site. Gaussian 
decomposition provided point clouds of XYZ coordinates 
with additional attributes for each plot and site. The 
elevations were then normalized by the DTM in order to 
obtain relative values.  
 
3.2. Discrete Point LAI estimation 
 
Discrete point LAI was calculated from the points extracted 
from waveforms. The probability (P) of pulses reaching the 
ground without being intercepted was calculated as the 
number of single-peak waveforms returned from the ground 
(��) to the total number of waveforms incident on the area 
of interest	(�).  The LAI was then calculated as the negative 
natural logarithm of this probability [6] according to: 
 

��		
� = 	− ln(�) = 	−ln	(
��

�
)            (1) 

 
3.3. Canopy Height Profile and ‘Waveform LAI’ 
 
The received waveforms as well as the DTM and location of 
the peaks were used to generate a canopy height profile 
(CHP). The CHP generation was performed in five stages: 

waveform alignment, return energy profile, canopy closure 
profile, cumulative leaf (plant) area profile and canopy 
height profile. In comparison to large footprint laser 
scanning data, small footprint laser waveforms do not 
always have a ground return. Due to that fact CHP 
processing cannot be applied to those waveforms and 
therefore they would have to be excluded from the 
processing, which may subsequently bias the results. To 
avoid that, the data were aggregated during the returned 
energy calculation to provide one profile for the whole 
dataset whether plot or site. 
 
3.2.1. Waveform-alignment 
Because of slight ground level differences across the sites, 
the waveforms needed to be aligned according to their 
elevation above ground level first. In order to do so, the 
XYZ coordinates of the last peak in the waveform train were 
computed, and the DTM points within 0.5m proximity of 
that point used to calculate the local mean ground elevation.  
The optimised noise level was subtracted from the raw 
waveforms and the beginning and end of the waveforms 
found. The relative elevation of the beginning of the 
waveform was then calculated and matched with the 
elevation of the appropriate 15cm bin in the height array. 
 
3.2.2. Returned energy 
The area underneath each waveform graph was calculated 
separately for each bin as the area of a trapezium. This area 
(intensity) was then output to the array of appropriate height 
bins. Subsequently, a mean intensity value per bin for the 
dataset was computed. Due to the difference in reflectance 
between vegetation and ground at the laser wavelength 
(ground is approximately twice as reflective as vegetation), 
the value of bins corresponding to ground return were then 
multiplied by 0.5 (WF0.5). The same reflectance ratio was 
tested in [7], who also used data acquired at 1550nm, 
nevertheless the authors proved that using locally-adjusted 
reflectance ratio delivers better results. Thus, an attempt to 
adjust the ratio to the specifics of the study area was 
undertaken. The soil in the study area region is mostly a 
mixture of sand, silt and clay [3]. According to [8] those soil 
types have the following reflectance at 1550nm: 0.52, 0.64, 
0.44, respectively. Taking the average of those values and 
estimating the typical vegetation reflectance at 1550m from 
[8] the ratio between vegetation and ground was found to be 
0.4 rather than 0.5.  A variant of waveform method was 
therefore examined with 0.4 as the reflectance ratio 
(WF0.4). All this led to a single profile of the energy 
returned from a dataset for each reflectance ratio tested. 
 

3.2.3. Canopy Closure 
The graph of the returned energy was processed to obtain 
canopy closure. First, the ground return was separated from 
the canopy part of the graph. Second, cumulative area 
underneath the energy graph from the top of the vegetation 
layer was calculated and normalized by the total cumulative 
area (including ground return). 
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3.2.4. Leaf/plant area index 
To correct the effect of occlusion, the profile of canopy 
closure was transformed into a LAI graph by using natural 
logarithm and canopy closure (Eq. 2), which represents a 
fraction of sky obscured by the vegetation [1]. The last 
vegetation bin’s value was treated as total LAI. 
 

��		
� = −ln	(1 − �������)              (2) 
 

3.2.5. Canopy height profile 
Canopy height profile was computed by converting 
normalized LAI into incremental height distribution. The 
CHP represents the relative vertical distribution of canopy 
components [2]. CHP will not be presented and discussed 
here further as it will be a subject of another publication. 
 

4. RESULTS AND DISCUSSION 
 
Tables 1 to 6 summarise the LAI estimates obtained by the 
two LiDAR methods: WF0.5/0.4 – waveform method with 
0.5/0.4 reflectance ratio and PT – discrete point method, and 
compare them to fish-eye lens estimates (FEye). Site level 
LiDAR LAI values were generated in two ways: (a) as an 
average of plot level estimates (WFA0.5/0.4, PTA) to 
enable direct comparison to fish-eye site level LAI (Table 5) 
and (b) from processing LiDAR data over the whole site 
(50m radius centred at central plot) (Table 6).  

In general, the WF0.5 method underestimates, 
whereas the PT method overestimates LAI in comparison to 
fish-eye lens values at the plot level (Figure 1, left). The 
RMSE for plots vary between 0.14-0.21 for WF0.5 and 
between 0.24-0.36 for PT method depending on the site. 
Changing the reflectance ratio to 0.4 (WF0.4) in most cases 
lowers the RMSE (0.05-0.21). If all 20 plots are considered 
together the RMSE at plot level is 0.17 for WF0.5, 0.15 for 
WF0.4 and 0.31 for PT.  The R2 for waveform methods is 
0.51, whereas for point method it drops to 0.40 (Figure 1, 
left). The correlation between the data is thus moderate. 

At the site level the underestimation of WF0.5 
method and overestimation of PT method is also evident. 
The RMSE at site level is much lower than that of plot level 
with 0.10/0.12 for WFA/WF0.5 and 0.22/0.17 for PTA/PT 
methods depending on the way site level LAIs are derived. 
Using the lower reflectance ratio (WF0.4) significantly 
improves estimates at the site level, which no longer exceed 
±10% of fish-eye LAI value. The RMSE also drops 
drastically to 0.03/0.05 (WFA/WF0.4). The R2 values 
improve as well at the site level, reaching 0.95/0.84 for 
WFA/WF0.4, 0.95/0.69 for WFA/WF0.5 and 0.66/0.63 for 
PTA/PT depending on the way site level estimates are 
derived (Figure 1, right). The sample is very small though so 
those values need to be considered with caution. As 
expected, averaged plot-level LAIs (a), match better fish-eye 
lens estimates (with the exception of PT method). 

Furthermore, all LiDAR estimates for Site 1 are 
exceptionally close to fish-eye LAI value (within ±10%). 
This may be due to the fact that the fish-eye estimates for 

that site were derived in a different way. Two transects of 
six fish-eye photos each, along North-South and East-West 
direction were taken and used to estimate the site level LAI 
value rather than using the average of plot level LAIs. The 
fact that they agree so closely with LiDAR estimates 
suggests that this method of field measurement may be more 
suitable for site level LAI estimates for this study area. 

 

Table 1. Comparison of LAI for plots in Site 1  
1 FEye WF0.5 WF0.4 PT 
C 0.84 0.46 (-46%) 0.55 (-34%) 0.44 (-48%) 
E 0.64 0.62 (-3 %) 0.75 (+16%) 0.72 (+11%) 
N 0.54 0.61 (+14%) 0.73 (+36%) 0.83 (+54%) 
S 0.31 0.50 (+63%) 0.60 (+96%) 0.51 (+65%) 
W 0.61 0.47 (-23%) 0.56 (-7%) 0.58 (-5%) 

RMSE 0.21 0.21 0.24 
 

Table 2. Comparison of LAI for plots in Site 10 
10 FEye WF0.5 WF0.4 PT 
C 0.82 0.73 (-11%) 0.87 (+5%) 1.25 (+51%) 
E 0.67 0.54 (-19%) 0.65 (-3%) 0.97 (+44%) 
N 0.82 0.63 (-23%) 0.75 (-8%) 1.21 (+48%) 
S 0.70 0.60 (-13%) 0.72 (+3%) 1.15 (+65%) 
W 0.68 0.51 (-25%) 0.62 (-10%) 0.83 (+22%) 

RMSE 0.14 0.05 0.36 
 

Table 3. Comparison of LAI for plots in Site 17 
17 FEye WF0.5 WF0.4 PT 
C 0.72 0.72 (-0%) 0.85 (+18%) 1.06 (+47%) 
E 1.00 0.60 (-40%) 0.72 (-29%) 0.77 (-23%) 
N 0.76 0.57 (-25%) 0.68 (-10%) 0.84 (+11%) 
S 0.64 0.69 (+8%) 0.81 (+28%) 1.01 (+59%) 
W 0.58 0.57 (-1%) 0.68 (+18%) 0.81 (+41%) 

RMSE 0.20 0.17 0.27 
 

Table 4. Comparison of LAI for plots in Site 23 
23 FEye WF0.5 WF0.4 PT 
C 0.35 0.34 (-4%) 0.41 (+18%) 0.44 (+24%) 
E 0.87 0.62 (-29%) 0.74 (-15%) 0.95 (+9%) 
N 0.82 0.67 (-19%) 0.79 (-3%) 1.55 (+89%) 
S 0.33 0.25 (-23%) 0.33 (-1%) 0.40 (+21%) 
W 0.19 0.28 (+47%) 0.35 (+81%) 0.37 (+91%) 

RMSE 0.14 0.10 0.25 
 

Table 5. Comparison of averaged plot LAI for each site 
SITE FEye WFA0.5 WFA0.4 PTA 

1 0.59 0.53 (-10%) 0.64 (+9%) 0.61 (+4%) 
10 0.74 0.61 (-18%) 0.72 (-2%) 1.08 (+46%) 
17 0.74 0.63 (-15%) 0.75 (+1%) 0.90 (+22%) 
23 0.51 0.43 (-16%) 0.52 (+2%) 0.74 (+44%) 

RMSE 0.10 0.03 0.22 
 

Table 6. Comparison of LAI at site level (whole site) 
SITE FEye WF0.5 WF0.4 PT 

1 0.59 0.53 (-10%) 0.64 (+9%) 0.62 (+5%) 
10 0.74 0.56 (-24%) 0.67 (-10%) 0.98 (+33%) 
17 0.74 0.60 (-19%) 0.71 (-3%) 0.87 (+18%) 
23 0.51 0.44 (-14%) 0.54 (+4%) 0.71 (+39%) 

RMSE 0.12 0.05 0.17 
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Figure 1. Comparison of LiDAR to Fish-eye LAI estimates. 

Left - plot level; Right – site level 
 

The reason why the point method overestimates 
LAI so significantly may be because the definition of LAI 
depends on the point passing through the canopy to the 
ground to have a zero area cross-section. In reality the laser 
beam has a finite cross-section and is therefore, more likely 
to be intercepted by vegetation, causing an increase in the 
calculated LAI. Furthermore, the point method does not take 
into account the intensity of the pulses and treats all of them 
equally, therefore, the proportion of area of incidence is not 
taken into account. Another thing worth considering is that 
the LAI values over the site of interest are very low. Thus, 
even small fluctuations in LAI estimates due to errors in 
decomposition and changes in the number of identified 
single peak waveforms reaching ground will have a higher 
impact on the point–method derived LAI than in the case of 
denser forest with higher LAI values. 

On the other hand, fish-eye photography is 
believed to underestimate LAI of coniferous canopies due to 
clumping effect [9]. Thus, one could conclude that point 
method could be closer to real LAI values. Nevertheless, 
neither the fish-eye nor the LiDAR are corrected for this 
effect therefore this should not affect the results of effective 
LAI. The waveform method, especially with study area-
adjusted reflectance ratio, provides the results most closely 
matching those of fish-eye.  

 

6. CONCLUSIONS 
 

This study presents a procedure to derive effective LAI, 
adapted to small footprint airborne full-waveform LiDAR 
data. As a result waveform LiDAR LAI estimates are 
derived and compared to discrete point LiDAR and fish-eye 
lens photography LAI estimates. The discrete point method 
is based on points extracted from the waveform in the 
process of Gaussian decomposition and typically provides 
much higher estimates in comparison to the fish-eye method 
(RMSE of 0.31 and 0.22 at plot and site level, respectively). 
The waveform method, based on the raw light curve of 
waveforms, depending on the reflectance ratio between 

vegetation and ground, provides similar estimates to the 
fish-eye photo technique with some degree of 
underestimation when an arbitrary reflectance ratio of 0.5 is 
used (RMSE of 0.17 and 0.10 at plot and site level, 
respectively). With the study area-adjusted ratio, the RMSE 
drops to 0.15 at plot and to 0.03 at site level. 

In practice, LAI is still very difficult to measure 
and fish-eye lens estimates cannot be taken as absolute truth. 
They strongly depend on where the photograph is taken and 
should also be corrected for the clumping effect. Future 
work will focus on examining the remaining sites to provide 
larger and more reliable samples and on investigating the 
influence of plot-adjusted (or even smaller area) reflectance 
ratios between vegetation and ground on LAI estimates. 
Correction for the clumping effect will also be explored. 
Waveform LiDAR light curves representing vertical 
distribution of foliage should provide alternative and more 
representative estimates of LAI than hemispherical 
photography because of their continuous spatial coverage.  
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