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Abstract

Knowledge of soil moisture content in the root zone is important throughout a wide range of environmental
applications, yet adequate monitoring or modelling of this parameter, particularly at larger spatial scales, is
difficult due to its high spatial and temporal variability. To overcome the land surface model limits on soil
moisture estimation accuracy, point measurement spatial coverage limits, and microwave remote sensing
spatial-temporal sampling limits, we reduce uncertainties through a combination of these approaches. The
land surface model, forced with observation constrained European Centre for Medium-range Weather
Forecasts (ECMWF) reanalysis data, is used to estimate the spatial and temporal variation of soil moisture
content. Near-surface soil moisture measurements from the 6.6 GHz (C-band) channels of the Scanning
Multi-channel Microwave Radiometer (SMMR) are then assimilated using a Kalman filter to correct for soil
moisture estimation errors. Comparison with the limited ground-based point measurements of soil moisture
content found a net improvement when near-surface soil moisture observations were assimilated.
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Introduction

Soil moisture spatial and temporal variability is a
key land surface parameter in many applications,
from weather and climate prediction to early
warning systems (e.g. flood forecasting), climate-
sensitive socio-economic activities (e.g. agri-
culture and water management) and policy
planning (e.g. drought relief and global warming).
However, accurate regional soil moisture
knowledge is elusive, due to an inability to
economically monitor the spatial variation in soil
moisture from traditional point measurement
techniques. As a result, land surface models have
been relied upon to provide an estimate of the
spatial and temporal variation in land surface soil
moisture. However, due to uncertainties in
atmospheric forcing, land surface model
parameters and land surface model physics, there
is significant variation in soil moisture estimates
from different land surface models.

Microwave remote sensing provides an all-
weather capability for measuring the spatial
distribution of soil moisture content for regions
with low to moderate levels of vegetation cover,
but is limited to the top few centimetres of soil and
to a revisit interval of once every few days. Point
measurements of soil moisture, remote sensing,
and land surface modelling each have significant
limits in estimating soil moisture content for use in
critical applications. Therefore, a soil moisture

monitoring system that combines these soil
moisture information sources in a strategy that
minimises their individual limitations must be
used, as illustrated in Figure 1.

Despite the first remote sensing satellite having
been launched more than two decades ago,
remote sensing measurements of near-surface
soil moisture content have not found wide spread
use. This is largely a result of not having a
dedicated space-borne remote sensing mission
for soil moisture measurement. However, soil
moisture remote sensing information is available
from the 6.6 GHz (C-band) channel of the

Figure 1 Illustration of the soil moisture
estimation problem.
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Scanning Multi-channel Microwave Radiometer
(SMMR), flown on board the Nimbus-7 satellite
from 1979 to 1987, and the 10.6 GHz (X-band)
channel of the Tropical Rainfall Measuring
Mission (TRMM), which is significantly affected by
vegetation and is only available between 38.5°N
and 38.5°S. The Advanced Microwave Scanning
Radiometer for the Earth observing system
(AMSR-E) is scheduled for launch on the Aqua
satellite in mid 2002, once again providing global
space-borne radiometer measurements at
C-band. It is highly unlikely that there will be
dedicated L-band (1-2 GHz) soil moisture sensor
in space before 2005. Since C-band data is the
best that we can hope for over the next several
years, the historic SMMR data set provides an
excellent data source in preparation for using
AMSR-E observations.

In this paper, a land surface model is forced with
observation constrained European Center for
Medium-range Weather Forecasts (ECMWF)
reanalysis data to estimate the spatial and
temporal variation of soil moisture content. To
correct for errors in modelled soil moisture
estimates, near-surface soil moisture measure-
ments derived from the 6.6 GHz channels of
SMMR are assimilated using a Kalman filter. The
soil moisture estimates, both with and without
assimilation, are compared with ground-based
point measurements of soil moisture. This paper
presents the first known use of space-borne near-
surface soil moisture observations within an
assimilation framework.

Models

Land Surface Model
The land surface model used in this study is the
catchment-based land surface model of Koster et
al. (2000), illustrated schematically in Figure 2. It
uses a non-traditional land surface model
framework that includes an explicit treatment of
sub-grid soil moisture variability and its effect on
runoff and evaporation. A key innovation in this
model is the shape of the land surface element;
the hydrologic watershed as defined by the
topography, rather than an arbitrary grid.

This land surface model uses TOPMODEL
(Beven and Kirkby, 1979) concepts to relate the
water table distribution to the topography. The
consideration of both the water table distribution
and non-equilibrium conditions in the root zone
leads to the definition of three bulk moisture
prognostic variables (catchment deficit, root zone
excess and surface excess) and a special
treatment of moisture transfer between them.

Using these three prognostic variables, the
catchment may be divided into regions of
stressed, unstressed and saturated soil moisture
regimes, and the soil moisture content of the
surface (top 2 cm), root zone (top 1 m) and
complete soil profile (from 1 to 3.5 m) calculated.
A complete description of this land surface model
is given by Koster et al. (2000) and Ducharne et
al. (2000), and is summarised further by Walker
and Houser (2001).

Kalman Filter
The Kalman filter is a common approach used for
finding the model representation that is most
consistent with observations, a process known as
data assimilation. Using this approach, the
conditional mean of a statistically optimal estimate
of a state vector (ie. the soil moisture content from
the land surface model) and its covariance matrix
are tracked through a series of forecasting and
update steps.

Using a linear set of model forecasting equations,
estimates of the model states (i.e. soil moisture)
and their covariances (standard deviation and
correlation with other states) are made through
time. At times when observations are made, the
estimates of the model states and their associated
covariances may be corrected through a Kalman
filter update, so as to reflect the new information
provided by the observation. The Kalman filter
correction added to the state estimate is the
difference between the observation and predicted
observation, weighted by their relative
uncertainties (Kalman filtering is essentially just
an application of Bayes theorem). Corrections are
made to unobserved states (i.e. deep soil

Figure 2 Schematic of the catchment-based
land surface model.



moisture) through the estimate of correlation
between state values. The reader is referred to
Walker and Houser (2001) for a more detailed
discussion of the Kalman filter, the Kalman filter
equations and their application to the catchment-
based land surface model.

In this study, we have used a one-dimensional
Kalman filter for updating the soil moisture
prognostic state variables of the land surface
model. A one-dimensional Kalman filter was used
because of its computational efficiency and the
fact that at the scale of catchments used,
correlation between the soil moisture prognostic
states of adjacent catchments is only through the
large-scale correlation of atmospheric forcing, soil
parameters and topography. Moreover, all
calculations for soil moisture in the land surface
model are performed independent of the soil
moisture in adjacent catchments.

For the initial covariance matrix, diagonal terms
were specified to have a standard deviation of the
maximum difference between the initial prognostic
state value and the upper and lower limits, with
off-diagonal terms specified as zero. The diagonal
terms of the forecast model error covariance
matrix were taken to be the predefined values of
0.00025, 0.0025 and 0.025 mm/min for surface
excess, root zone excess and catchment deficit
respectively, with the off-diagonal terms taken to
be zero. The assumption of independence for
errors in the three soil moisture prognostic
variables due to errors in the model physics is
valid, as the physics used for forecasting these
three prognostic variables are independent. This
is unlike typical land surface models that vertically
discretise the soil and apply the same physics to
the soil moisture prognostic variables for each of
the soil layers.

Data Sets

Model Paramaters
The catchment-based land surface model requires
topographic, soil and vegetation parameters. The
topographic parameters are the mean, standard
deviation and skewness of the compound
topographic index. The catchment delineations
and topographic index statistics were taken from
the HYDRO1K (HYDROlogically correct 1 km)
data set (http://edcdaac.usgs.gov/gtopo30/hydro/),
which is based on the GTOPO30 digital elevation
model. Scaling of the 1 km topographic index data
to the equivalent of 100 km data was performed
as suggested by Wolock and McCabe (2000). The
catchments used in this application are at level 5

in the Pfafstetter system (Verdin & Verdin, 1999)
with an average catchment area of 4400 km2.

Soil parameters include porosity, wilting point,
saturated hydraulic conductivity, the Clapp and
Hornberger (1978) soil texture parameter,
saturated matric potential and total soil depth.
Apart from soil depth, soil parameters were
inferred from dominant soil texture information
given by the 5′ × 5′ resolution Food and
Agriculture Organisation (FAO) digital soil map of
the world, using the suggested values in Cosby et
al. (1984).  Total soil depth was taken from the
first International Satellite Land Surface
Climatology Project (ISLSCP) initiative (Sellers et
al., 1996a) 1° × 1° resolution global data set.
Catchment partitioning and timescale parameters
required by the catchment-based land surface
model were pre-processed using the topographic
and soil parameters by the methodology of
Ducharne et al. (2000).

Vegetation parameters included vegetation type,
greenness fraction and leaf area index. The Leaf
Area Index (LAI) is defined as the ratio of leaf
area to soil area while the greenness fraction is
defined as the fraction of leaf area index that is
photosynthetically active. A simplified version of
the SiB vegetation classification (Sellers et al.,
1986) was used, with raw vegetation type
information taken from the ISLSCP Initiative 1
data set. Many of the land surface model�s
vegetation-dependent parameters are taken
directly from the SiB framework. Climatologies for
monthly values of greenness fraction and LAI
were derived from Advanced Very High
Resolution Radiometer (AVHRR) measurements
of Normalised Difference Vegetation Index (NDVI)
at 1° × 1° resolution using the relationships of
Sellers et al. (1996b), by averaging the parameter
estimates over the time period of 1982 to 1990.
The AVHRR data are adjusted for sensor
degradation, volcanic aerosol effects, cloud
contamination and solar zenith angle variations
(Los et al., 2000). The snow free albedo was
calculated from the LAI, greenness fraction,
vegetation type and a look-up table (Koster and
Suarez, 1991), while zero plane displacement
height and momentum roughness length was
calculated from the month of year, vegetation type
and a look up table (Koster and Suarez, 1996).

Forcing Data
Atmospheric forcing data were from the
observation constrained 15-year (1979-1993)
ECMWF Re-Analysis (ERA-15) data set (Berg et
al., 2001). The original ERA-15 data set is on a
Gaussian grid with an equatorial resolution of
approximately 1.125° and a temporal resolution of
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6 hours. The atmospheric data fields used
included: air temperature and humidity at
2 m, wind speed at 10 m, total and convective
precipitation, downward solar and longwave
radiation and atmospheric pressure.

The atmospheric data fields from reanalysis are
subject to significant model bias, so we
constrained the reanalysis fields to monthly
average observations using a bias correction
technique. The ERA-15 reanalysis, constraining
observations, and land surface model fields were
on a number of different projections, so the data
sets were interpolated directly to the catchment
grid for bias correction and use by the land
surface model. In this way, the number of
interpolations was kept to a minimum and the
interpolation error minimised. After interpolation of
both the ERA-15 data fields and the observational
data fields, observation constraints were imposed
using a difference or ratio correction, depending
on the field. The reader is referred to Berg et al.
(2001) for a complete description of the
observation constrained forcing data set
development.

Initial Conditions
While the assimilation of near-surface soil
moisture has the potential to correct for poor initial
conditions (Walker & Houser, 2001), it was
desired to have as accurate initial conditions as
possible. In this way, the impact of near-surface
soil moisture assimilation on improving the soil
moisture estimation could be observed directly.
The initial land surface model states for 1 January
1979 were derived from driving the catchment-
based land surface model to equilibrium. The
spin-up equilibrium states were obtained by
cycling the land surface model with the 1979
atmospheric forcing data for 10 years.

Evaluation Data
So far as the authors are aware, continuously
measured in-situ point soil moisture data is
publicly available for only three locations
throughout the entire North American continent
during the SMMR period of 1979 to 1987 (Robock
et al., 2000). These locations are all within the
United States and consist of 6 stations across two
small catchments in southwestern Iowa (1972 to
1994), an 18-station network in Illinois (1981 to
1986) and an 89-point transect in New Mexico
(1982 to present). Many more North American soil
moisture observation networks were developed in
the 1990�s, but these are not directly applicable to
the SMMR era focus of this study.

In this paper, we analyse the simulation results
from 1979, thus limiting ourselves to the Iowa data

set (41.2°N, 95.6°W) for evaluation purposes.
While both catchments were planted with a
summer corn crop, two different techniques were
used to prepare the soil. The soil moisture data
were measured in layers using both
thermogravimetric and neutron probe techniques;
the top four layers were 7.8 cm thick, the next four
were 15.2 cm thick, and the last five were 30.5 cm
thick. The soil moisture was measured from April
through October approximately once a fortnight
(Entin et al., 2000).

Observation Data
Near-surface soil moisture observation data were
derived from the 6.6 GHz vertically and
horizontally polarised brightness temperature
measurements from the space-borne SMMR
instrument on board the Nimbus-7 satellite. The
radiative transfer model of Mo et al. (1982) was
used to solve for the near-surface soil moisture
content and vegetation optical depth
simultaneously using the microwave polarisation
difference index non-linear iterative optimisation
procedure of Owe et al. (2001). Constant values
for single scattering albedo and roughness, and
equal horizontal and vertical polarisation optical
depth values were assumed. Soil temperature
was estimated from the 37 GHz vertically
polarised brightness temperature measurements,
soil properties were from the FAO soil map, and
dielectric constant was related to soil moisture
content by the Wang and Schmugge (1980)
dielectric mixing model.

Due to power constraints onboard the Nimbus-7
satellite, the SMMR instrument was only turned on
for alternate days. The satellite orbited the Earth
approximately 14 times per day, with local noon
(ascending) and local midnight (descending)
equator crossings. With a 780 km swath width and
150 km footprint at 6.6 GHz (25 km at 37 GHz),
complete coverage of the Earth required about six
days, with repeat coverage in the mid-latitudes
about every three to four days. The SMMR
brightness temperature swath data (Njoku et al.,
1998) were provided as daily 0.25° × 0.25°
resolution global maps. If the footprint centre fell
within a grid then the grid was assigned that
brightness value, while multiple brightness values
within a grid were averaged.

In the analysis of SMMR data for near-surface soil
moisture, brightness temperature values affected
by water bodies (i.e. along the coastline and
surrounding the Great Lakes) and brightness
temperature values with a surface temperature
value of less than 1°C were excluded due to the
possibility of frost, ice, frozen soil or snow.
Likewise, brightness temperature values for areas
with a large optical depth value were excluded, as



vegetation was considered to be too great to
permit measurement of the near-surface soil
moisture content. Accuracy estimates for the soil
moisture observation data were derived from
standard error propagation theory (Mikhail and
Ackerman, 1976), using prescribed standard
deviations for the brightness temperature
measurements and soil properties.

While there was no calibration of the near-surface
soil moisture retrieval algorithm to ground
measured soil moisture data, results compared
well with point measurements of soil moisture in
the top 10 cm layer and satellite-derived
vegetation index data from optical sensors (Owe
et al., 2001). The comparisons were for two test
sites in Illinois that maximised the number of soil
moisture stations in each site. The test sites had a
mixture of pasture, cropland and woodland.

Results

The simulations presented in this paper are for
1979; the results for simulations from other years
will be forthcoming in future papers. The
animation in Figure 3 shows the land surface
model response to precipitation in both the snow
and soil moisture fields. It also shows how the
satellite data comes in swaths and is only
available for snow-free areas and areas with low
to moderate vegetation cover. Moreover, it shows
that after only a very short period of assimilation
(from mid March) there are notable differences
between the land surface model predictions of soil
moisture with and without assimilation for central
North America. It is possible that this is due to
irrigation not accounted for in the model, but this
has not been verified.

Figure 3 Animation for March, April and May of 1979, showing the impact from assimilation of SMMR
near-surface soil moisture observations on the land surface model estimates of near-surface
(top 2 cm), root zone (top 1 m) and total profile (up to 3.5 m). Soil moisture fields are updated once
every 6 hrs with the exception of the SMMR data, which is shown twice. Click the icon to start.

animation.avi



Figure 4 Evaluation of SMMR assimilation in the catchment-based land surface model
catchment in Iowa, United States of America; a) surface, b) root zone and c) total 
Assimilation results (solid yellow line) are compared with model simulation without assim
(dashed green line), point soil moisture measurements (solid red circles) and SMMR surfa
moisture data (open white circles). Satellite observations were not assimilated when the land s
model predicted snow on the ground, as given by the snow water equivalent (SWE; dotted re
Note that surface soil moisture content is 2 cm from the land surface model, approximatel
from SMMR measurements at C-band, and 7.8 cm from point measurements.
a)
b)
c)
 for a
profile.
ilation

ce soil
urface
d line).
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Figure 4 shows a time series comparison of the
soil moisture estimates both with and without
assimilation, and evaluation with the field
measured soil moisture data for three depth
intervals in Iowa during 1979. These results show
that the assimilation has yielded a vast
improvement in the soil moisture estimate for all
depths during the months of May and June, with
the estimates without assimilation vastly
underestimating the soil moisture content. No
improvement was made in the soil moisture
estimate with assimilation prior to May, due to
snow on the ground and an inability to measure
the near-surface soil moisture content from space
when there is snow cover. During the months
following June, the soil moisture estimate with
assimilation converged back towards the soil
moisture estimate without assimilation, which is
drier than the field measured soil moisture
content. This appears not to be a limitation of the
assimilation algorithm, but rather a limitation of the
land surface model and the remotely sensed soil
moisture observations, as outlined below.

The near-surface soil moisture estimate with
assimilation is in good agreement with the
remotely sensed data, as expected, but the
remotely sensed data indicates a much drier near-
surface soil moisture content than the field
measured soil moisture data beginning from
around June. While it is difficult to make
conclusive comments regarding the accuracy of
SMMR derived near-surface soil moisture data
from comparison with the field measured soil
moisture, due to a disparity in layer depths and
the representativeness of averaging a few point
measurements to describe the spatial average, it
would appear that the SMMR derived soil
moisture content is underestimated for this
particular site during the summer months. It is
possible that the apparent underestimation of
SMMR near-surface soil moisture measurements
is a result of high vegetation biomass masking the
soil once the corn crop approached maturity.
However, the greater uncertainty in SMMR near-
surface soil moisture measurements during this
period is not adequately reflected by the
observation error covariance matrix, meaning that
when the Kalman filter is used to make an update
of the soil moisture profile, it preferentially uses
the observed near-surface soil moisture content
over the model predicted value. The net result of
this is to artificially dry the soil moisture estimate,
both in the near-surface layer and at depth.
However, assimilation has still yielded a net
improvement in the soil moisture estimate when
comparing with the limited point data.

These results highlight the need for accurate
unbiased near surface soil moisture measure-

ments and an adequate characterisation of their
uncertainty by the error estimates if data
assimilation is to be a viable tool for soil moisture
estimation.

Conclusions

This paper has presented results from the first
known study to use space-borne measurements
of near-surface soil moisture content to estimate
the spatial and temporal variation of soil moisture
content at the continent scale by the process of
data assimilation. While remotely sensed
measurements of near-surface soil moisture
content appear to be underestimated for the
evaluation site in southwestern Iowa during the
summer months of 1979, the soil moisture
estimate with assimilation was an improvement
over the estimate without assimilation, when
compared to the point measurement data,
particularly during the months of May and June.
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