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Abstract

Finding an operational parameter vector is always challenging in the application of hydrologic

models, with over-parameterization and limited information from observations leading to uncer-

tainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural

parameter vector. This paper presents a new methodology, called the patient rule induction

method for parameter estimation (PRIM-PE), to define where the behavioural parameter vectors

are located in the parameter space. The PRIM-PE was used to discover all regions of the parameter

space containing an acceptable model behaviour. This algorithm consists of an initial sampling pro-

cedure to generate a parameter sample that sufficiently represents the response surface with a

uniform distribution within the “good-enough” region (i.e., performance better than a predefined

threshold) and a rule induction component (PRIM), which is then used to define regions in the

parameter space in which the acceptable parameter vectors are located. To investigate its ability

in different situations, the methodology is evaluated using four test problems. The PRIM-PE sam-

pling procedure was also compared against a Markov chain Monte Carlo sampler known as the

differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed

hydrological model calibration problem with two settings (a three-parameter calibration problem

and a 23-parameter calibration problem) was solved using the PRIM-PE algorithm. The results

show that the PRIM-PE method captured the good-enough region in the parameter space suc-

cessfully using 8 and 107 boxes for the three-parameter and 23-parameter problems, respectively.

This good-enough region can be used in a global sensitivity analysis to provide a broad range of

parameter vectors that produce acceptable model performance. Moreover, for a specific objective

function and model structure, the size of the boxes can be used as a measure of equifinality.
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1 INTRODUCTION

A spatially distributed hydrological model is a numerical simplification

of water cycle processes in a spatially explicit way, often based on a

grid. Many such models have been developed over the last decades

(e.g., Arnold, Srinivasan, Muttiah, & Williams, 1998; Borah et al. 2002;

Famiglietti & Wood, 1994; Liang, Lettenmaier, Wood, & Burges, 1994;

Refsgaard et al. 1995; Wigmosta, Vail, & Lettenmaier, 1994; van Dijk

2010). To optimally apply these models, an efficient and effective

calibration is needed. Two types of approaches have been developed for

calibration: (a) manual approaches, which rely mostly on expert judge-

ment and (b) automatic approaches, which employ computer-based

routines to find the best parameter vector(s). Although manual cal-

ibration still has the potential to provide a good estimation of the

parameters, it needs a significant amount of expert labour to obtain an

acceptable result (Gupta, Sorooshian, Hogue, & Boyle, 2013). So the

development of robust automatic calibration methods that also provide

parameter uncertainties is required.
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One of the main difficulties in automated calibration (hereafter

simply referred to as calibration) is equifinality (Beven, 1993). This

issue can be approached from two points of view. First, equifinal-

ity can be interpreted as a problem that arises from an inadequate

goodness-of-fit measure (or objective function). This means that, due

to the overall averaging that is inherent to single value objective

functions, different simulation outputs can result in similar objective

function values. This reasoning logically led to the development of

multi-objective calibration methods (e.g., Yapo, Gupta, & Sorooshian,

1998). Efstratiadis and Koutsoyiannis (2010) reviewed the application

of multi-objective calibration studies from the previous decade, con-

cluding that in complex problems with uncertainty, a multi-objective

approach can augment identifiability of parameters.

Second, the mismatch between model complexity and information

delivered to the model from observations can be a reason for equi-

finality. To solve this problem, two different types of solutions have

been proposed: solutions that reduce the model complexity to match

the available information of the observation data (e.g., Arkesteijn and

Pande, 2013; Bardsley, Vetrova, & Liu, 2015; Diodato, Brocca, Bel-

locchi, Fiorillo, & Guadagno, 2014; Dooge, 1997; Fenicia, Kavetski, &

Savenije, 2011; Hill, 2006; Schoups, van de Giesen, & Savenije, 2008;

Sivakumar, 2008; Sivapalan, Zhang, Vertessy, & Blöschl, 2003; Tonkin &

Doherty, 2005) and solutions that accept insufficiency of the observa-

tion information while retaining all plausible parameter vectors until a

new of observation becomes available. In the latter case, the inability to

find a behavioural parameter vector is understood to represent uncer-

tainty in the results. Consequently, different simulations using different

plausible parameter vectors are shown to be a set of plausible results

(Franks & Beven, 1997; Freer, Beven, & Ambroise, 1996). It is noted that

uncertainty quantified in this way does not include the model struc-

tural uncertainty caused by the model inadequacy itself. Previous stud-

ies have attempted to quantify structural uncertainty using different

model structures (e.g., Clark et al., 2015; Viney et al., 2009). However,

the assessment of model structural uncertainty is beyond the scope of

this paper.

To quantify parameter uncertainty, statistical methods such as

Bayesian inference have been routinely used in hydrological model

parameter estimation. Bayesian methods estimate the posterior

parameter distribution, conditional on observations by merging a prior

knowledge about the parameters and information from observations.

Research on Bayesian parameter estimation, initiated in the early

1980s (e.g., Kuczera, 1983; Sorooshian & Dracup, 1980) is a field of

continued interest (e.g., Ajami, Duan, & Sorooshian 2007; Bates &

Campbell, 2001; Duan, Ajami, Gao, & Sorooshian, 2007; Hsu, Morad-

khani, & Sorooshian, 2009; Keating, Doherty, Vrugt, & Kang, 2010;

Kuczera & Parent, 1998; Laloy, Rogiers, Vrugt, Mallants, & Jacques,

2013; Malama, Kuhlman, & James, 2013; Marshall, Nott, & Sharma,

2004; Samanta, Clayton, Mackay, Kruger, & Ewers, 2008; Schoups &

Vrugt, 2010; Shafii, Tolson, & Matott, 2014; Smith & Marshall, 2008;

Smith, Marshall, & Sharma, 2015; Smith, Sharma, Marshall, Mehrotra,

& Sisson, 2010; Thyer et al., 2009; Vrugt, Ter Braak, Clark, Hyman, &

Robinson, 2008; Vrugt, Ter Braak, Diks, et al., 2009; Wöhling & Vrugt,

2011). However, the complexity and non-linearity of models causes

difficulties in summarizing posterior distributions and is a major obsta-

cle that Bayesian inference for hydrological calibration faces. (Marshall

et al., 2004; Vrugt, 2016). To overcome these difficulties, a number of

Monte Carlo based methods were developed to assist modellers to

generate samples from posterior distributions and estimate parameter

distributions based on these.

One of the best known methods for uncertainty analysis based on

Bayesian inference is the Generalized Likelihood Uncertainty Estima-

tion (GLUE; Beven & Binley, 1992) method, which uses the Monte Carlo

approach to generate samples from the posterior distribution. GLUE

has been widely used in hydrological model calibration. The applica-

tion of GLUE has been widely criticized for two reasons. First, the

informal likelihood function that is often used and, second, the usage

of a simple uniform sampling procedure. This sampling approach may

work well for low dimensional problems, but it is computationally prob-

lematic for a high dimensional parameter space. Samples generated

using this assumption are highly likely to be inefficiently scattered over

the entire parameter domain (Blasone et al., 2008; Iorgulescu, Beven,

& Musy, 2005; Jia & Culver, 2008; Kuczera & Parent, 1998; Stedinger,

Vogel, Lee, & Batchelder, 2008; Vrugt, Ter Braak, Gupta, et al., 2009).

This sample dispersion in high-dimensional problems causes a signif-

icant reduction in the chance of generating near optimal parameter

vectors. When calibrating a 13 parameter lumped model at the water-

shed scale, Jia and Culver (2008) found just 381 near-optimal parame-

ter vectors out of 50,000 trials. However, it should be noted that there

is nothing in the GLUE framework that prevents a formal likelihood

function and/or a more efficient sampling method being applied (e.g.,

Blasone et al., 2008).

In addition to the GLUE framework, there are a number of other

approaches of sampling that have been developed to overcome

the computational difficulties. The basis of the majority of these

approaches are Markov chain Monte Carlo (MCMC) approaches. To

effectively produce a more focused sample around the regions with

a higher likelihood and avoid sampling too much in less important

regions, the MCMC approach uses a Markov chain that generates a

random walk through the parameter space. Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953) developed the random walk

Metropolis algorithm. A number of variants of the random walk

Metropolis were developed including Metropolis–Hastings (Hastings,

1970), adaptive Metropolis (Haario, Saksman, & Tamminen, 2001),

delayed rejection adaptive Metropolis (Haario, Laine, Mira, & Saksman,

2006), shuffled complex evolution Metropolis algorithm (Vrugt, Gupta,

Bouten, & Sorooshian, (2003)), differential evolution Markov chain (Ter

Braak, 2006), and differential evolution adaptive Metropolis (DREAM;

Vrugt et al., 2008; Vrugt, ter Braak, Gupta, et al., 2009).

The outputs of these methods are samples from posterior parame-

ter distribution. They can be used to calculate the posterior distribution

mean, variance, skewness, kurtosis, the higher moments of the distri-

bution, the marginal distributions of individual parameters, the joint

probability distribution between two parameters, or a fitted parametric

density function. Unfortunately, in high dimensional and complex prob-

lems, these statistics cannot provide an interpretation of the posterior

distribution shape. Having such an interpretation assists modellers in

understanding the global sensitivity of the model performance to its

parameters and provides a broad understanding of the range of param-

eter vectors that produce acceptable model performance, which is very

valuable in hydrological modelling. For instance, it can be used as a prior
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to a statistical inference of model parameters. Having a continuous

space of a good-enough region of the parameter space is also beneficial

when the reproduction of a new parameter vector ensemble within the

good-enough region is of interest, especially when the model is compu-

tationally expensive to run. In this situation, the continuous definition

is useful to produce a new good-enough sample effortlessly.

The patient rule induction method (PRIM; Friedman & Fisher, 1999)

is a tool that is used to find a region of interest using a discrete sam-

ple and then define it in an interpretable way using a set of hypercubes

(or boxes). PRIM is a well-known method in the field of decision-making

under deep uncertainty conditions and is mostly known as a part

of robust decision-making (Bryant & Lempert, 2010; Lempert, 2002;

Lempert et al., 2016; Lempert, Popper, & Bankes, 2003; Shortridge &

Guikema, 2016) framework. However, despite the ability of PRIM to

find a region of interest using a discrete sample, this tool has not been

tested for parameter uncertainty analysis of hydrological models.

The aim of this study is to propose a methodology based on PRIM,

called here the PRIM for parameter estimation (PRIM-PE), which

determines all the plausible model parameterizations that produce

good-enough model performances as an interpretable region in the

form of a set of hypercubes (boxes). This region is defined as an area that

contains all of the parameters with an objective function value better

than a predefined threshold. The resulting region represents a border

that separates the good-enough region from the rest of the parame-

ter space. This border is technically an interpretable approximation of

a cross-section of the objective function. The main innovation of the

PRIM-PE is the form of its final results. In this algorithm, an easier to

interpret definition of the good-enough region helps the modellers to

know the model and its reaction to the parameters in an alternative

way. Moreover, the low theoretical complexity facilitates the PRIME-PE

implementation while it provides an accurate understanding of the

model. The PRIM needs a sample of evaluated parameter vectors. Every

sample of parameter vectors will lead to reliable box edges as long as

the sample is well spread in the vicinity of the border. On the basis

of this, the characteristics of an efficiently spread sample for the cur-

rent methodology differ from an efficiently spread sample for other

Bayesian methods, which try to generate the sample uniformly (uni-

form sampler in some of the GLUE applications) or with higher den-

sity at the region with a higher likelihood. Therefore, a new sampler

is also proposed to generate an appropriate and efficient sample. The

PRIM-PE methodology was first tested with a number of mathematical

test problems. Then, it was benchmarked against the DREAMZS (Laloy

& Vrugt, 2012; Vrugt, 2016) method by solving a 5-parameter hydro-

logical model, and finally, it was used to calibrate a spatially distributed

hydrological model.

2 METHODOLOGY

2.1 The PRIM-PE approach

Given the uncertainties and presence of equifinality inherent in calibra-

tion, each parameter vector performing better than a specific thresh-

old is valuable. Therefore, to assist in finding regions containing these

parameter vectors, a new parameter estimation approach (PRIM-PE)

FIGURE 1 Schematic of the patient rule induction method for
parameter estimation (PRIM-PE) methodology

is proposed. This algorithm starts with generating a parameter sam-

ple that includes several different parameter vectors, which are then

used to generate simulations. On the basis of a predefined set of rules,

the generated parameter vectors are then categorized as a “success”

or “failure.” The success rules should be able to separate sets with

good-enough performance from the unacceptable. A good choice for

such rules could be a number of objective functions and thresholds

to test the plausible sets. Finally, the PRIM routine is used to define

a sequence of “hypercubes” (referred to from herein as boxes) in the

parameter space that cover just the successful points. These boxes are

in fact a set of boundaries for the parameter values that form a hyper-

cube in parameter space. If the sample size is large enough, modeller

can be sure that any random parameter vector generated within these

boxes will result in good-enough simulations and hence represent a

good-enough parameter vector. Thus, the region that these boxes cover

are referred to as the good-enough region. Figure 1 shows a schematic

of the algorithm.

The first step in this method is to define a number of rules to cate-

gorize different parameter vectors into the failure or success category.

The easiest way to do this is to choose one or more objective func-

tion(s) with a cut-off threshold for each. A parameter vector can then

be considered as a successful solution if all (or a subset) of its objective

functions are better than the corresponding thresholds. Many differ-

ent formulations for measuring the goodness-of-fit are proposed in

the literature. Legates and McCabe (1999) reviewed different types

of objective functions and concluded that correlation-based objective

functions are not suitable to assess the performance of hydrological

models and that the Nash–Sutcliffe efficiency (NSE), root mean square

error, and mean absolute error are preferable. In this study, the NSE is

used as the objective function. The formulation of the NSE is
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NSE = 1 −
T∑

t=1

(Qt
o − Qt

m)2

(Qt
o − Qo)2

, (1)

where Qt
o and Qt

m are the observed and modelled value at the tth time

step, T is the number of time steps, and Qo is the averaged observed

value. It is noted that despite the popularity of the NSE, there are some

disadvantages in using it as an objective function. The most important is

its high sensitivity to extreme values (Legates & McCabe, 1999). After

defining the objective function, a cut-off threshold is determined on the

basis of expert judgement and the objectives of the problem. However,

it can also be chosen as a small amount worse than the global optimum

objective function value: Even though the equifinality issue causes

difficulty to find the optimal solution, finding an approximation of the

best objective function is easily possible. In this study, the best objec-

tive function value was first approximated using a genetic algorithm

(Goldberg, 1989) optimization procedure. In order to define a

good-enough region around the best objective function value, the

threshold is then defined slightly lower than the optimal objective

function value by a subjectively chosen fraction. After defining the

objective functions and thresholds, a set of physically meaningful

ranges for parameter values are defined by the modeller.

The second step involves an optional sensitivity analysis. It provides a

better overall understanding of the simulation system, and it also helps

to pay more attention to highly sensitive parameters, discarding the

less sensitive parameters, and consequently reduce the dimensional-

ity of the problem. In this study, the sensitivity analysis was performed

by changing one parameter at a time. Although the optimum solution

calculated in the previous step is only one of the possible optimum

solutions, it can be used as the centre point in the sensitivity analysis.

Furthermore, the results of the sensitivity analysis can be verified after

finding the good-enough region using random points from that region.

After the first two steps, a sample of parameter vectors, which is

representative of the model response surface, is generated. To obtain a

reliable result, the density of produced samples within the parameter

space should be sufficiently high. In principle, the parameter estima-

tion process can be undertaken using a completely random sample, but

obtaining such a dense sample in a high-dimensional problem could eas-

ily be computationally problematic. Therefore, a sequential sampling

procedure is proposed to effectively reduce the sample size, while pre-

serving the density of points in the desired region in the parameter

space (step 3).

To be more specific, a high density of points in and near the suc-

cessful region is necessary, but the density of points in the surrounding

failure region is not important. For instance, consider a two-parameter

problem (Figure 2), which shows two randomly generated samples with

a low (500 points) and a high (2,000 points) density. As can be seen, the

denser sample is more illustrative of the successful area. The sequential

procedure that is proposed here produces a sample with higher density

around the successful area and lower density elsewhere. Figure 2c is a

varying density sample with 500 points, which illustrates the boundary

of good-enough region more accurately than Figure 2a with the same

sample size.

The sampling approach starts with generating a completely ran-

dom initial sample and simulating its members. After that, the points

are sorted on the basis of their success. Then, the successful points

are sorted on the basis of their local densities, and the failure points

are sorted on the basis of their objective function values. Figure 3

shows an example of the sorting procedure. The local density is defined

as the distance to the kth nearest point (k is a small integer). After sort-

ing, the first n1 points (regular parents) in addition to n2 points from the

failed population (failed parents) are selected to produce the new gen-

eration. The selection of the failed parents is based on a tournament

selection (Miller & Goldberg, 1995) so that a number of the failed points

(t points) are selected randomly and among them the points with the

lowest local density chosen as a failure parent. This selection strategy

improves the chance of searching in the low density regions to spot the

other potentially good-enough regions.

After selecting the parents, m points are generated randomly around

each selected point in a distance less than the average local density of

successful points (n1, n2, and m should be set by the modeller). After

generating the new points, they are added to the sample, and the pro-

cess is again repeated. The stop criterion for this iterative process is

defined on the basis of the final sample size or average local density of

successful points. This process assists in producing a sample of points

with a good density in the successful region, and in problems with mul-

tiple optima, it can produce a sample with a sufficient density in all of

the optima regions.

It should be noted that generating new points becomes challeng-

ing when the parent is located near the edges of the parameter space.

In this situation, there is possibility of producing infeasible children

(points out of the parameter space). Three main strategies can be

(a) (b) (c)

FIGURE 2 Examples of different sampling approaches: (a) 500 points; (b) 2,000 points; and (c) 500 points using the proposed sampling method
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FIGURE 3 An example of sorting in the sampling procedure. Consider a problem with an objective function (that should be maximized) in the
range of [0, 10] and a predefined threshold equal to 7. In the first generation, 4 points (out of 20 points) perform better than the threshold (the grey
area); they are sorted on the basis of the density functions, whereas the rest of the points are sorted on the basis of the objective functions

adopted for such situations: (a) to discard those children and produce

new ones, (b) to map the infeasible children into the feasible space, and

(c) to artificially expand the domain and assign a low value as the objec-

tive function of those children. The first and second strategy lead to a

higher density at the locations that the infeasible points are mapped

into. Conversely, by expanding the parameter space, the uniformity of

the sample is retained, but a number of infeasible points emerge at the

final sample. In this study, the later strategy was adopted.

The fourth and final step is to extract the sequence of boxes that

define the good-enough region using the PRIM method. Here, a brief

description of the PRIM methodology is presented. Full details are

available in Friedman and Fisher (1999).

PRIM is a clustering algorithm that finds one or more boxes in

the parameter space using three criteria: density, coverage, and inter-

pretability. Density is defined as the total number of successful points

divided by the total number of points inside the box. Coverage is the

total number of successful points inside the box divided by the total

number of successful points, and interpretability is approximated by

the number of dimensions defining each box. Figure 4a shows a box

sequence with lower density than Figure 4b but higher interpretability.

As can be seen, each box in the result of PRIM can be expressed in

the form of a subset of parameters which are constrained by upper and

lower bounds, such that

B = {aj < xj < bj, j ∈ L}, (2)

where B is the box boundary set, xj is the jth parameter, aj and bj are the

lower and upper bounds, and L is the number of parameters. In order

to find these subsets, the PRIM uses a two-step procedure: peeling

and pasting. In the peeling step, a box (B) covering the whole parame-

ter space is considered as an initial box; then, in an iterative procedure

among available peeling alternatives, the one that increases the den-

sity of successful points inside the box by removing the box is removed.

(Figure 5a). The peeling alternatives are narrow boxes on each side of

the main box. This iterative process is continued until the density or cov-

erage criteria exceed a predefined value. Consequently, various alterna-

tive boxes can be defined on the basis of a different density or coverage

criteria. Generally, by increasing the value of the acceptable density, the

size of the boxes, and as a result their coverage, reduces, while the num-

ber of boxes needed to represent the good-enough region increases.

FIGURE 4 Example of sequence of boxes with different criteria: (a) low density and high interpretability and (b) high density and low interpretability
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FIGURE 5 Top panel: the row peeling procedure. Bottom panel: the pasting procedure. Black dashed lines represent the options to be removed in
the peeling procedure, white dashed lines represent the options to be added in the pasting procedure, and the grey area is the removed parts. (a)
The initial box that contains all points and four options to be peeled. (b and c) The illustrations of the remaining box after removing the first and
second parts. (d) The final box at the end of the peeling procedure. (e) The options of the pasting in the first and second pasting stages. (g) The final
box (B1). After finding the final box, the successful points are removed from the sample and (h) used for the next step to find the next box

Consequently, it is harder to interpret a larger sequence of boxes. Thus,

there is an inherent trade-off between the acceptable density, the cov-

erage, and the interpretability of the resulting box sequence. The opti-

mal density should be selected on the basis of the type of problem. For

instance, if one is looking for a rough estimate of a “region of inter-

est” with a high interpretability, a lower acceptable density should be

chosen. Alternatively, if an accurate representation of the “region of

interest” is required, a higher density and greater number of smaller

boxes should be considered. In the parameter estimation applications

of PRIM, high density boxes are preferred because accurate boxes are

sought to perfectly partition the parameter space.

At the end of the peeling procedure, the pasting procedure starts.

The pasting process is an inverse version of peeling in which narrow

boxes are added to the sides of the main box in each iteration. Figure 5b

shows the pasting process. After finding the final box, the success-

ful points inside the box are removed from the sample pool, and the

process to find the next box starts. Finally, after removing all success-

ful points, the final sequence of boxes is considered the good-enough

region. Bryant (2009) developed a tool to perform a PRIM analysis

called The Scenario Discovery Tool to Support Robust Decision Mak-

ing. In this study, this tool, with minor modifications to automatize the

procedure, is used for the PRIM analysis.

2.2 MCMC sampling with DREAMZS

To benchmark the proposed method, the results were validated against

the results of the DREAMZS algorithm (Laloy & Vrugt, 2012; Vrugt,

2016), which is an elegant approach to quantify parameter uncertainty

and posterior distributions. This algorithm is an adaptive multiple-chain

MCMC simulation, being an adaptation of an MCMC algorithm enti-

tled the shuffled complex evolution Metropolis algorithm (Vrugt et al.,

2003). The DREAMZS methodology runs multiple chains simultane-

ously, to explore the entire parameter space. This method uses a

snooker sampling approach (Ter Braak & Vrugt, 2008) on the basis of

an archive of the past states of the chains rather than their current

states. A detailed description of the DREAMZS algorithm was presented

in Laloy and Vrugt (2012). In this paper, the test case of Vrugt et al.

(2008) is used to validate the PRIM methodology.

3 PRIM-PE METHOD EVALUATION

In order to test the performance of the PRIM-PE in different situa-

tions, a number of test problems were solved including (a) modelling

a cosine function using a linear equation to show general character-

istics of the proposed method, (b) a banana shape distribution fitting

problem to test its ability in the identification of a curved good-enough

region, (c) a multiple optima problem to test the applicability of mul-

tiple good-enough regions, and (d) a lumped rainfall–runoff hydro-

logical model calibration problem. As was mentioned in the previous

sections, the PRIM-PE method consists of a sampling and a rule induc-

tion component. In the current section, to evaluate the method per-

formance, the characteristics of the sampling procedure were first

explored and compared against an existing MCMC method (DREAMZS).

The rule induction component (PRIM) was then employed to detect the

good-enough region as a sequence of interpretable boxes, and the accu-

racy of those boxes was finally evaluated. It should be emphasized that
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any sample can be used as the input to the rule induction component

(including the sample from the MCMC methods). For instance, among

the resulting points from DREAMZS, those that make up a given per-

centage of the probability mass of the target cumulative distribution

function can be considered as successful points. However, the sam-

pling procedure in the PRIM-PE method was designed to optimize the

efficiency and accuracy of the rule induction component (PRIM) by

producing a uniformly distributed sample over the good-enough region.

3.1 A two-dimensional banana-shaped distribution

fitting test problem

Because the PRIM defines the good-enough region as a sequence of

boxes, a concern arises regarding its ability to face highly non-linear

and/or concave good-enough regions. To overcome this concern, a

two-dimensional non-linear banana-shaped distribution was used to

test the PRIM-PE capability to cope with such problems. This test

problem has previously been used to test different parameter uncer-

tainty quantification problems (e.g., Vrugt et al., 2003). This distribution

is a twisted bivariate normal distribution. The density function is

f(𝜃1, 𝜃2) = exp

(
−1

2

(
𝜃2

1

100
+

(𝜃2 + b𝜃2
1
− 100b)2

1

))
, (3)

in which 𝜃1 and 𝜃2 are the parameters and b is a constant, which deter-

mines the non-linearity. In this study, a value of 0.1 was assigned to b,

and the logarithm of the density function was used as the objective

function. Figure 6a shows the response surface of this problem.

3.1.1 Sampling efficiency and accuracy

To evaluate the efficiency and accuracy of the PRIM-PE sampling proce-

dure, three samples with different sizes (i.e., 1,000, 5,000, and 10,000)

were generated. As can be seen in Figure 6a, the best value of Figure 3

is slightly higher than −4.2, so the threshold for the PRIM-PE was

selected as −5. The top panel in Figure 7(a–c) shows these samples.

In these figures, the blue and red points represent the successful

(behavioural) and failure (non-behavioural) points, and the black line is

the good-enough region. According to these figures, it is observed that

PRIM-PE managed to produce samples that are uniformly distributed

over the good-enough region and a narrow buffer around it. This

uniformity reveals the border efficiently. As shown in the figures, even

the sample with the lowest size (1,000 points) had a uniform distribu-

tion and an acceptable coverage.

In the next step, to have a better understanding about the character-

istics of the samples, three samples with the same sizes as the previous

ones (i.e., 1,000, 5,000, and 10,000) were generated by the DREAMZS

method. For this purpose, prior PDFs were considered to be uniform

distributions, and the likelihood function was Equation 3. However, the

concentration of the points in the good-enough region can potentially

be improved by applying informed prior Probability Density Functions

(PDF). The second panel of Figure 7 (d–f) shows these samples. The red

points represent all parameter vectors that were evaluated, and the

blue points are the parameters that were selected as part of the chain

to express the target distribution. The resulting samples had higher

concentrations at the central parts (the region with higher likelihood),

and they perfectly captured the target probability distributions. By

comparing the first two panels, it can be concluded that, although the

resulting samples of both methods reveal the good-enough boundaries,

the PRIM-PE, due to its sample uniform distributions, was more effi-

cient for this purpose, and it provides a better opportunity to define the

good-enough boundary accurately. Conversely, the PRIM-PE was not

as accurate as the MCMC methods (more specifically, the DREAMZS)

at generating a sample with the target distribution, which is not a

PRIM-PE objective.

It should be mentioned that a step likelihood function (just simi-

lar to the goodness measure of the PRIM-PE) was also tested for the

DREAMZS algorithm. The resulting sample was poorly distributed and

has not captured the good-enough region properly (result is not pre-

sented here). The main reason is, if an appropriate density function is

not applied as the likelihood function, due to a poorly defined Metropo-

lis ratio, the DREAMZS algorithm cannot properly search the domain.

Consequently, it is unlikely that desirable results will be achieved.

3.1.2 Accuracy of PRIM

After generating a sample, the rule induction component (PRIM) of the

PRIM-PE could be employed to define the good-enough region as a

set of boxes. Figure 7 (g–i) illustrate these boxes for different samples.

According to these figures, by increasing the sample size, the accuracy

of the boxes in terms of correctly capturing the good-enough region

FIGURE 6 Response surfaces of the test problems: (a) banana-shaped distribution fitting; (b) cosine; and (c) multi-optima
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 7 Comparison of the sampling processes for the two-dimensional banana-shaped distribution fitting test problem. The bottom row
represents the histograms of the points being categorized as non-behavioural (blue) and behavioural (orange). (a) 1,000 points (PRIM-PE); (b)
5,000 points (PRIM-PE); (c) 10,000 points (PRIM-PE); (d) 1,000 points (DREAMZS); (e) 5,000 points (DREAMZS); (f) 10,000 points (DREAMZS); (g)
1,000 points (Boxes); (h) 5,000 points (Boxes); (i) 10,000 points (Boxes); (j) Boxes accuracy (1,000 points); (k) Boxes accuracy (5,000 points); (l) Boxes
accuracy (10,000 points)
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increased. It should be noted that the PRIM algorithm in this example

was forced to produce the boxes with 100% density (meaning that all

the points inside the boxes should be behavioural). However, it can be

seen that, in the examples with a lower sample sizes, there were some

overestimations and underestimations, which were caused by low den-

sity in those specific points. For instance, in places with lower number

of failure points at the edge, the algorithm wrongly detected the bound-

ary towards outside the good-enough region. This means that, using a

high density sample at edges can help the PRIM to avoid this errors.

3.1.3 Validation

To validate the resulting boxes, their skill in representing the

good-enough region should be evaluated. To do so, a number of inde-

pendent samples (with the same size of the training samples) were

generated, and the resulting box sequences were employed to dis-

tinguish the behavioural and non-behavioural points. Figure 7(j–l)

represents the histogram of the points being categorized as

non-behavioural (blue) and behavioural (orange), and the vertical line

shows the threshold (which was selected as −5). The accuracy of the

produced boxes is measured as the ratio of the number of correctly rec-

ognized behavioural and non-behavioural points to their total number.

According to these figures, the resulting boxes could successfully rec-

ognize more than 85% of the behavioural and non-behavioural points

in all experiments, and these ratios increased by increasing the sample

size. The detailed values of accuracies are represented in Table 1.

3.2 Cosine test problem

The second problem is a cosine test problem. In this problem, a cosine

function as "truth" was modelled by a simple equation. The truth rela-

tion between X and Y is given by

Y = cos(X), (4)

with the model equation

Y = 1 − a(X + 𝜖)n (5)

used to simulate Equation 4 and a and n the parameters to be esti-

mated. Accordingly, 1,000 samples were randomly generated in the

range of [−𝜋, 𝜋] with the true value of the corresponding Y calculated

using Equation 4. For each parameter vector, the NSE was calculated

for the results of Equation 5. In this equation, 𝜖 represents a normal

Gaussian random noise with 0.1 and 0.2 mean and standard deviation.

Figure 6b shows the response surface of this test problem. The highest

possible value of NSE for this problem is approximately 0.9. A slightly

lower value of 0.8 was considered as the threshold. Similar to previous

test problem, first, the PRIM-PE sampling procedure and the DREAMZS

were used to generate samples with different sizes (1,000, 5,000, and

10,000). After this, the good-enough region was detected by the PRIM.

For this problem, a likelihood function consistent with previous studies

(e.g., Vrugt (2016)) was adopted for DREAMZS. This likelihood function

transforms the residual between the truth and simulated Y values in

a Gaussian likelihood function. Moreover, all prior PDFs were consid-

ered to be uniform distributions. Similar to the first case study, by using

informed prior PDFs and likelihood function, the DREAMZS is expected

to generate a sample with higher concentration in the good-enough

region. The top panel of Figure 8 shows the sample and box sequence

generated using the PRIM-PE and the sample generated using the

DREAMZS with size of 1,000. The details of the validation for all the

experiments with different sample sizes are presented in Table 1. A

same pattern as the first test problem was obtained. By increasing the

sample size, more accurate box sequences were achieved. Another con-

siderable point is the better accuracy of this test problem using a lower

number of boxes. The main reason for this difference is the simpler

(less concave) shape of the good-enough region so that the boxes could

better represent the region.

TABLE 1 Accuracy of the PRIM-PE resulting boxes in detecting the good-enough region

Problem No. pars Threshold MAD (%) Sample size No. of boxes 𝜶 (%) 𝜷 (%)

Banana-shaped 2 −5 100 1,000 70 86.7 86.4

−5 100 5,000 213 95.4 91.8

−5 100 10,000 348 96.3 93.6

Cosine 2 0.8 100 1,000 31 94.0 92.6

0.8 100 5,000 102 97.5 94.8

0.8 100 10,000 147 98.3 94.4

Multi-optima 2 0.7 100 1,000 23 96.5 87.5

0.7 100 5,000 75 98.7 96.8

0.7 100 10,000 109 99.1 97.6

HYMOD 5 16.1 100 50,000 924 80.7 99.5

16.2 100 50,000 1,101 81.0 99.0

16.5 100 50,000 1,152 88.0 98.5

1.7 100 50,000 1,392 88.6 97.8

HYMOD15 15 14.5 80 1,000,000 5,350 78.9 96.5

14.5 90 1,000,000 7,932 70.1 98.4

14.5 100 1,000,000 9,778 65.2 97.7

Note. 𝛼 = the percentage of behavioural points that were detected correctly; 𝛽 = the percentage of
non-behavioural points that were detected correctly; HYMOD = hydrological model; MAD = minimum
accepted density; PRIM-PE = patient rule induction method for parameter estimation.
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(a) (b) (c)

(d) (e) (f)

FIGURE 8 Comparison of the sampling processes for the cosine and multi-optima test problems with 1,000 sample size: (a) PRIM-PE sample
(cosine); (b) box sequence (cosine); (c) DREAMZS sample (cosine); (d) PRIM-PE sample (multi-optima); (e) box sequence (multi-optima); and (f)
DREAMZS sample (multi-optima)

3.3 Multi-optima test problem

The third test problem is designed to test the ability of the PRIM-PE in

a problem with multiple optima and also with optimum points located

at the edges of the parameter space. The formulation of its objective

function is

f =

{
(𝜃1+𝜃2)2

2
+ (𝜃1−𝜃2)4

8
, |𝜃1| and |𝜃2| < √

2

0 , |𝜃1| or |𝜃2| ⩾ √
2

. (6)

Figure 6c shows the response surface of this test problem. Two opti-

mum points and consequently two good-enough regions are located

at the top right and the bottom left in the parameter space. The opti-

mum value of the objective function (which is occurring in two points)

is approximately 0.8, and a slightly lower value of 0.7 was considered

as the threshold. Similar to the previous test problems, the sampling

process of the PRIM-PE method and the DREAMZS were used to gen-

erate samples with different sizes (1,000, 5,000, and 10,000) after

which the good-enough region was detected using the PRIM-PE. In this

problem, Equation 6 was used as the likelihood function, and all prior

PDFs were considered to be uniform distributions. Similar as in the

previous case studies, if informed prior PDFs and likelihood were imple-

mented, the DREAMZS would potentially produce more samples in the

good-enough regions. The bottom panel of Figure 8 shows the sample

and the box sequence generated using the PRIM-PE and the sample

generated by DREAMZS with size of 1,000. The details of the valida-

tion of all the experiments with different sample sizes are presented in

Table 1. As can be seen in the figures, the method successfully detected

both optimum (good-enough) regions. A notable point in this problem

is the fact that the optimum points are located exactly at the edge of

the parameter space ([
√

2,
√

2] and [
√
−2,

√
−2]). In this situation, the

resulting children in the sampling procedure could be generated out

of the boundaries. As is mentioned in the methodology section, three

main strategies can be adopted for this kind of situations: (a) to discard

those children and produce new ones, (b) to map the infeasible chil-

dren (points out of the parameter space) into the search space, and (c)

to artificially expand the domain and assign a low value as the objec-

tive function of those children. Using the first and second strategy leads

to a sample with higher density at the edge or the location that the

infeasible points are mapped into. Conversely, by expanding the param-

eter space, the uniformity of the sample is retained, but a number of

infeasible points emerge at the final sample. Because these infeasi-

ble points can be distinguished before simulation (just by checking the

boundaries), they do not impose a strong computational effort. For this

reason, in this problem, the expanding strategy was adopted to cope

with infeasible children.

3.4 HYMOD

The last test problem is the parameter estimation of a parsimonious

lumped rainfall–run-off model called HYDrological MODel (HYMOD;

Boyle, Gupta, & Sorooshian, 2000). The HYMOD model consists of two

series of reservoirs including a set of three reservoirs to model sur-

face run-off and a single reservoir to represent baseflow. This model

has five parameters including the maximum capacity in the catchment

(Cmax), the degree of spatial variability of soil moisture capacity within

the catchment (bexp), the coefficient that divides the flow into two parts

of slow and quick run-off (𝛼), and two parameters for routing system
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TABLE 2 HYMOD parameter boundaries and descriptions

Parameter Description Minimum Maximum Unit

Cmax Maximum storage in watershed 1 500 mm

bexp Spatial variability of soil

moisture storage 0.1 2.0 —

𝛼 Distribution factor between two

reservoirs 0.10 0.99 —

Rs Residence time slow flow

reservoir 0.001 0.100 days

Rq Residence time quick flow

reservoir 0.10 0.99 days

Note. Adapted from Vrugt et al. (2008). HYMOD = hydrological model.

that describe the residence times of the reservoirs (Rs and Rq). For more

details about this model, refer to previous papers (e.g., Boyle et al.,

2000; Vrugt et al., 2008).

Because of its simple structure, the limited number of parameters

and consequently the ease of analysing the results, HYMOD was used

as a part of the validation process for the PRIM-PE. Similar to the

previous test problems, the sampling procedure of the PRIM-PE and

DREAMzs was used to generate a number of samples and then the PRIM

employed to induct a sequence of boxes that covering the good-enough

region. In order to maintain consistency with other previous studies,

the publicly available DREAMzs package and the built-in HYMOD func-

tion with the data set for the Leaf River catchment (Vrugt, 2016) were

used. A 2-year time period from September 30, 1952 to September

30, 1954 was selected for this study. The parameter boundaries were

also selected similar to those defined in the previous application of the

DREAMZS algorithm (Table 2).

To quantify the model parameter uncertainty, a sample size of 50,000

parameter vectors was generated using the DREAMZS with N = 5

Markov chains using a Gaussian likelihood (consistent with previ-

ous studies, e.g., Vrugt 2016). The convergence of the algorithm was

checked using the R̂ convergence diagnostic (introduced by Gelman &

Rubin, 1992). The results showed that the R̂ values for all the param-

eters were less than the suggested threshold (1.2) after 20% of trials.

In the PRIM-PE algorithm application, a similar sample size was used,

in which 100 points were initially generated randomly. Then, the rest

of the population was generated in 2,495 generations. The root mean

square error was considered as the objective function. To show the

changes in shape of the good-enough region by changing the cut-off

threshold, the PRIM-PE was run using a set of different thresholds. As

the global optimum objective function was 16.03, thresholds of 16.10,

16.20, 16.50, and 17.00 were chosen. Although the objective of the

PRIM-PE was not finding the target distribution, a sample with a uni-

form distribution within the good-enough region was of interest. To

have a better understanding about the characteristics of the samples,

the marginal distributions of the resulting sample were investigated.

Figure 9 shows the histogram of the successful points in the resulting

samples generated by the proposed method (four upper panels) and the

marginal distribution of last 20% of parameters found by the DREAMZS

algorithm (the bottom panel). It should be noted that the ratio of 20%

was chosen to be consistent with the previous DREAM applications

(e.g., Vrugt et al., 2008). Higher ratios (up to 80%) resulted in practically

identical marginal distributions. To facilitate the analysis, the range of

the horizontal axis for each parameter was fixed.

As can be seen, the resulting histograms from the PRIM-PE using a

strict threshold (very near to the global optimum objective function,

16.1) were quite similar to the marginal distribution of the DREAMZS.

Both histogram sets show small dispersions around the global optimum

point. However, the characteristics of the resulting histograms of the

proposed method are affected by changing the threshold. Some of the

parameters including Cmax, bexp, and Rq simply widened, indicating that

by moving away from the optimal point, the objective function reduces

relatively monotonically. Conversely, the histograms of 𝛼 and Rs show

major changes in the general shapes. This shape changing suggests that

for a particular threshold around 16.5, a new region of good-enough

parameter vectors emerges. This fact is clearly observable in the his-

togram of 𝛼 that was estimated using a threshold of 16.5, where a new

peak was detected. Also, investigating the evolution of the Rs histogram,

it can be seen that for thresholds greater than 16.5 that the histogram

evolves to a relatively uniform distribution.

In order to make a better perception about the difference among

thresholds, two individual simulations were carried out (Figure 10).

One simulation using the optimum parameter vector (red) and another

using a parameter vector randomly selected within the 16.5 region but

out of the 16.1 (blue). The parameter values are shown as red and blue

in at Figure 9. Figure 10 shows that the difference between the sim-

ulations is small. So perhaps the blue cross can be considered as an

acceptable simulation. However, given the location of the points, it can

be seen that despite the presence of a distinct similarity between per-

formance of the blue (selected) and the red (optimum) point, it has

limited probability in the posterior probability density calculated by the

DREAMZS algorithm.

In the PRIM-PE, the next step after sample generation was to use

the PRIM to define the box sequence. Table 3 shows the boundaries

of the five largest boxes calculated by the PRIM for the thresholds of

16.1 and 16.5. These boxes can now be used for generating as many

good-enough parameter vectors as the modeller needs with a low com-

putational cost. Also, these boxes provide valuable information about

the shape of the good-enough region. For example, by comparing the

boundaries of Rs for the region with thresholds 16.1 and 16.5, it can be

seen in the latter case that most of the boxes boundaries are equal or

very near to their initial ranges, indicating that the model sensitivity to

Rs reduces significantly if the acceptable threshold is more than 16.5.

In order to test the proposed model in a more complex problem, 10

rainfall multipliers (ranging between 0.5 and 1.5) for the major events

were added to the model (similar to the previous studies from, e.g.,

Vrugt et al., 2008; Vrugt, Ter Braak, Diks, et al., 2009). These multipliers
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FIGURE 9 The first four upper panels show the histogram of the successful point in the resulting samples generated by the PRIM-PE and the last
panel is the marginal distribution of the parameters from the DREAMZS algorithm. Each column represents a particular parameter. The red crosses
on the second panel show the global optimum point position and the blue cross (in first two parameters are overlapped with the red ones) are the
location of a random parameter vector within the boundary of 16.5 but outside the 16.1 region

FIGURE 10 Simulations of the best parameter vector (red) and a selected parameter vector (blue)

were then treated as new model parameters to increase the number of

dimensions. Table 1 shows the performances of the resulting boxes.

One of the opportunities that is provided by the PRIM is the inter-

pretability of the results. Two measures of interpretability could be

defined for the box sequences, more specifically the number of boxes

and the number of dimensions that are used in definition of each box.

These measures can be controlled by setting the minimum acceptable

density (MAD). A lower MAD leads to a higher interpretability by pro-

ducing fewer boxes with higher volumes and perhaps a lower number

of dimensions. In this way, the boxes would be easier to interpret, but

they would also provide a more inaccurate estimate of the boundaries.

It means these boxes contain a part of the surrounding area of the

good-enough region.

To have a better understanding about the interpretable results, four

boxes of the HYMOD15 problem with MAD = 80% are shown in

Figure 11a (in order to improve readability, just five main parameters

were employed). In this figure, because the region is defined as a num-

ber of boxes, each box could be shown by a number of ranges. Using



SHOKRI ET AL. 13

TABLE 3 The boundaries of the five largest resulting boxes that are calculated
using thresholds 16.1 and 16.5

Cmax bexp 𝜶 Rs Rq

LB UB LB UB LB UB LB UB LB UB

Threshold = 16.1

420 432 0.164 0.180 0.947 0.976 0.000 0.003 0.459 0.469

418 427 0.164 0.181 0.942 0.964 0.000 0.004 0.458 0.469

421 430 0.163 0.182 0.954 0.971 0.000 0.004 0.457 0.470

420 429 0.161 0.185 0.944 0.968 0.000 0.002 0.456 0.471

422 431 0.162 0.176 0.949 0.976 0.000 0.006 0.460 0.467

Threshold = 16.5

426 500 0.150 0.205 0.959 0.990 0.000 0.100 0.449 0.479

417 500 0.143 0.214 0.942 0.990 0.000 0.100 0.457 0.468

417 450 0.148 0.195 0.903 0.990 0.006 0.083 0.453 0.480

423 500 0.141 0.209 0.969 0.990 0.014 0.100 0.450 0.473

403 435 0.154 0.205 0.941 0.990 0.000 0.100 0.444 0.468

Note. LB and UB indicate the lower bound and upper bound.

FIGURE 11 Examples of the estimated boxes and estimation cross-section of the good-enough region from the box sequence of HYMOD15
problem with MAD = 80%. (a) Four samples of boxes from the HYMOD15 problem; (b) four cross-section of the box sequence from the HYMOD15
problem

these boxes, a clearer understanding about the good-enough param-

eter region and consequently about the model can be achieved. For

example, it can be observed that most of the boxes had [0, 0.1] as

the boundaries of Parameter4 (e.g., the Box1), which was the entire

feasible domain. In these boxes, the boundaries of other parame-

ters were limited to a particular ranges (i.e., Parameter1, [300, 500];

Parameter2, [0.10, 0.22]; Parameter3, [0.90, 1.00]; Parameter5, [0.42,

0.48]). Conversely, there were a number of other boxes with a narrow

boundaries for Parameter4, [0, 0.001] (e.g., Box5148, Box1075, and

Box2457), which had a wider range of other parameters (i.e., Parame-

ter1, [200,500]; Parameter2, [0.10,0.30]; Parameter3, [0.55,1.00]; and

Parameter5, [0.42,0.48]). From this analysis, it can be concluded that

a low value of Parameter4 (Rs) provides an opportunity to have wider

ranges of other parameters, but for values more than 0.001, the model

did not show any considerable sensitivity.

These boxes also are useful to interpret the good-enough region

by providing an opportunity to make cross-sections. In other words,

for a specific value of one or more parameters, the possible range of

the other parameters can be determined. For example, the reaction

of the model to Parameter4 (which was discussed previously) can be

explained with the analysis of the cross-sections as well. Figure 11b

shows a number of cross-sections, which were determined by con-

sidering Parameter4 as constant. As can be seen, for low values of

Parameter4 (less than 0.001), a wider range of the other parameter

is observed, and by increasing the value of Parameter4, the ranges of

other parameters decrease until a particular range after which they

remain constant.

In summary, the results of these comparisons show the ability of the

PRIM-PE method in the detection of the good-enough region. Produc-

ing a sample with the posterior distribution was not the aim of this

study. Instead, the PRIM-PE method provides a broader understand-

ing about the sensitivity of the model to its parameters by providing an

opportunity to simplify the resulting good-enough region by automat-

ically reducing the dimension of the region. Furthermore, the MCMC

methods do not usually use a threshold in the sampling procedure, and

the density of the points in the sample is proportional to their target dis-

tribution. It means that the density on the border of the good-enough

region is often lower than in the central parts. By increasing the thresh-

old, this rapidly decreases. Therefore, although the resulting sample

from the MCMC methods can find the posterior distribution efficiently,
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they are probably not efficient at good-enough region border anal-

ysis. The border analysis can provide an area in which most of the

points there have at least a minimum performance, and if that region is

interpretable, it provides a good insight into the parameter space and

consequently the model.

4 SPATIALLY DISTRIBUTED
HYDROLOGICALLY DISTRIBUTED MODEL
DEMONSTRATION

4.1 Introduction

The spatially distributed hydrological model used in this study was

the Australian Water Resources Assessment-Land (AWRA-L), which is

a part of the AWRA system (Van Dijk, 2010). This model was jointly

developed by the Australian Commonwealth Scientific and Industrial

Research Organisation and the Bureau of Meteorology. AWRA-L (ver-

sion 0.5) is a grid-distributed model that simulates water flows in the

surface, shallow and deep soil, groundwater, and vegetation. AWRA-L

has relatively few parameters compared with fully process-based spa-

tial hydrological models (which can have dozens of parameters per grid

cell) and has been proven to work well in Australia (Renzullo et al., 2014;

van Dijk, Peñma-Arancibia, & Bruijnzeel, 2012; van Dijk, Renzullo, &

Rodell, 2011).

This model consists of a number of grids, with each grid including

two (adjustable to any integer number) hydrological response units

(HRUs), representing the deep- and shallow-rooted vegetation areas.

Soil and vegetation water and heat fluxes are simulated separately for

each HRU. The HRUs have the same ground water storage, but each

HRU has its own parameter vectors and state variables. Table 4 shows

the main parameter vectors and their proposed values. In this model,

the soil water content is partitioned into three stores: (a) the surface

TABLE 4 Simulation model parameters list, default, minimum, maximum value, and the sensitivity of the
parameters

Default Max Min Sensitivity

Name HRU1 HRU2 HRU1 HRU2 HRU1 HRU2 Mean score Rank

alb_dry 0.26 0.26 0.52 0.52 0.13 0.13 0 24

alb_wet 0.16 0.16 0.32 0.32 0.08 0.08 0 24

beta 4.5 4.5 8.4 8.4 0.7 0.7 3 1

cGsmax 0.03 0.03 0.06 0.06 0.015 0.015 0.29 17
ER_frac_ref 0.2 0.05 0.25 0.125 0.05 0.025 0.05 21

Fw_conn 1 1 1 1 1 1 0 24

FsoilEmax 0.2 0.5 0.9 0.9 0.2 0.2 0.67 12

fvegref_G 0.15 0.15 0.3 0.3 0.05 0.05 0 24

FwaterE 0.7 0.7 0.8 0.8 0.6 0.6 0 24

Gfrac_max 0.3 0.3 0.5 0.5 0.2 0.2 0 24

hveg 10 0.5 15 1 5 0.2 0 24

InitLoss 5 5 10 10 0 0 1.05 9

LAImax 8 8 10 10 7 7 0 24

LAIref 2.5 1.4 3 2 2 1 0 24

PrefR 150 150 2,000 2,000 100 100 1.29 7

S_sls 0.1 0.1 0.6 0.6 0.05 0.05 0.43 14

S0FC 30 30 60 60 15 15 0.05 21

SdFC 1,000 1,000 2,000 2,000 500 500 2.43 3

SsFC 200 200 400 400 100 100 0 24

SLA 3 10 9 30 1.5 5 2.86 17

Throw 1,000 150 2,000 30 500 7.5 1.43 19

Tsenc 60 10 120 20 30 5 0 24

Ud0 4 0 8 0 2 0 0.43 14

Us0 6 6 10 10 1 1 1.14 8

Vc 0.35 0.65 0.45 1 0.3 0.5 0.14 19

w0limE 0.85 0.85 0.9 0.9 0.6 0.6 0 24

w0ref_alb 0.3 0.3 0.35 0.35 0.19 0.19 0 24

wdlimU 0.3 0.3 0.5 0.5 0.15 0.15 1.81 6

wslimU 0.3 0.3 0.5 0.5 0.15 0.15 0.05 21

Sgref-scale 8.15 8.15 16.3 16.3 −1.63 −1.63 2.76 2

Sgref_shape 2.34 2.34 4.68 4.68 −0.468 −0.468 2.05 5

FdrainFC_scale 0.0685 0.0685 0.137 0.137 0.01 0.01 1.05 9

FdrainFC_shape 3.179 3.179 4 4 −7 −7 2.29 4
K_gw_scale 0.047 0.047 0.094 0.094 −0.047 −0.047 0.52 13

K_gw_shape −0.0508 −0.0508 −0.1016 −0.1016 0.01016 0.01016 0 24

K_rout_scale 0.141 0.141 0.282 0.282 0.01 0.01 0.76 11

K_rout_int 0.284 0.284 0.568 0.568 0.01 0.01 0.43 14

Three-parameter problem 23-parameter problem Insensitive parameters

Note. HRU = hydrological response unit.
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soil layer, (b) a shallow layer that both shallow-rooted and deep-rooted

vegetation have access to, and (c) a deep layer where just deep-rooted

vegetation extracts water. There is also a ground water storage, which

is modelled using a simple linear storage modelled without any lateral

flow. Table 4 shows the list of AWRA-L parameters with their default

values and the absolute ranges, selected based on recommended values

by Van Dijk (2010) and a trial and error process.

4.2 Test area and data set

The Murrumbidgee Basin covers 8% of the Murray–Darling Basin

(87,283 km2) and is located in southern New South Wales, Australia.

Because there are many gauged catchments in the eastern half of

the basin and the stream flow is considerably less regulated because of

irrigation requirements (unlike the western half), the eastern half (21

catchments) was studied, and the results of the calibration for a sample

catchment (Adjungbilly Dbalara) were presented here (Figure 12). The

yearly average rainfall is 530 mm with a fairly uniform temporal distri-

bution throughout the year, but a strong east–west gradient from 2,000

to less than 300 mm. This rainfall generates an average of 53 mm of

run-off per year over the basin. The water availability of the basin is

4,270 GL/year of which 10% is an inter-basin transfer from the Snowy

Mountains Hydro-electric Scheme (CSIRO, 2008).

The model input includes climate data (minimum and maximum

temperature, rainfall, and radiation) from the Terrestrial Ecosystem

Research Network ecosystem modelling and scaling infrastructure

from 2007 to 2011 at 0.01-degree resolution; a land cover map (Lym-

burner, Geoscience Australia, & Australian Bureau of Agricultural and

Resource Economics, 2011), which was originally at 250 m resolu-

tion and upscaled to a 0.01 degree resolution; and observed stream-

flow data for validation and calibration of the model and final results

(available online at http://realtimedata.water.nsw.gov.au/water.stm).

The data from 2007 to 2009 were used to initialize the model, whereas

data from 2009 and 2010 were used for parameter estimation and from

2010 to 2011 were used for validation. While comparatively short, the

validation results suggest that the length of the calibration period was

adequate.

5 RESULTS

5.1 Sensitivity analysis

A sensitivity analysis was conducted for each catchment (21 catch-

ments in the upper Murrumbidgee) and a total of 37 unknown parame-

ters. For each catchment, parameters were divided into four categories

on the basis of the objective function degradation that they caused;

after which, a score of 0 to 3 was assigned to each parameter. These

sensitivity scores were assigned on the basis of Table 5.

A sample of the sensitivity analysis for a single catchment (Adjung-

billy Dbalara) is presented in Figure 13. The average of the scores for

all catchments shows the overall sensitivity of each parameter with the

parameter sensitivity rank presented in Table 4.

After the sensitivity analysis, two calibration problem set-ups were

solved. First, a three-parameter calibration problem for one of the

TABLE 5 Sensitivity analysis score
assigning rules

Amount of degradation Corresponding

in objective function sensitivity score

0.00 to 0.05 0

0.05 to 0.10 1

0.10 to 0.15 2

More than 0.15 3

FIGURE 12 Murrumbidgee Basin location and its eastern catchments
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FIGURE 13 Sensitivity analysis of parameters for the Adjungbilly Dbalara catchment. NSE = Nash–Sutcliffe efficiency

FIGURE 14 The resulting sequence of boxes for the three-parameter problem (threshold = 0.82) and simulation of a randomly generated sample
in the boxes. (a) Boxes sequence (threshold = 0.82); (b) boxes sequence (threshold = 0.77); (c) simulation of random generated point inside boxes
(30 points)

catchments was solved to provide a visualization opportunity to show

different aspects of the results. Then, a 23-parameter problem with

the sensitive parameters (the parameters with average sensitivity score

more than zero) was undertaken.

5.2 Three-parameter calibration

According to Table 4, the three most sensitive parameters are beta,

SdFC and Sgref-scale (in this section, they are referred to as Parameters
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1 to 3, respectively). Results were obtained using a total of 600 sim-

ulations including 100 initial samples and 500 generated samples in

10 iterations. Two threshold values, 5% and 10% less than the best

obtained objective function, were used to solve the problem. The max-

imum value obtained from genetic algorithm optimization was 0.86,

so the thresholds of 0.82 (5% less than 0.86) and 0.77 (10% less than

0.86) were selected. As a first step, points were scattered uniformly

in the domain, and gradually, the density around the successful region

increased. In the first case (threshold = 0.82), due to the smaller suc-

cessful region, no successful point was generated in the initial step, and

even the best point failed to perform better than the threshold, and

successful points were produced in the next generations. Conversely, in

the second case (threshold = 0.77), a number of successful points were

detected in the first iteration, and their number increased during the

next generation. Figure 14a,b show the final populations of both cases.

By comparing them, it can be seen that the density of points in the first

case was higher than in the second case because the same amount of

points were scattered in a smaller region. So the stricter threshold led

to a denser successful region.

The best solution (the red circle) had a relatively better performance

at each step. The successful region can also be considered as a bound

that every point inside that is likely to be a behavioural parameter vec-

tor. Also, the size of this region can be used as a relative measure of

equifinality. This means that a bigger size of the successful region can

be used as an indicator of the relative degree of equifinality.

Tables 6 and 7 summarize the boundaries of the sequences of boxes

for a threshold equal to 0.82 (6 boxes) and 0.77 (8 boxes), respec-

tively. Figure 14a,b presents the boxes visually. These boxes cover all

successful points and no failure point (according to the defined crite-

ria of density = 100%). Figure 14c shows the envelope curves of the

TABLE 6 Sequence of boxes for the three-parameter
problem and threshold = 0.82

Box Parameter 1 Parameter 2 Parameter 3

Min Max Min Max Min Max

1 0.403 0.481 0.255 0.566 0.435 0.608

2 0.393 0.483 0.199 0.613 0.458 0.515

3 0.390 0.447 0.074 0.577 0.482 0.684

4 0.364 0.413 0.035 0.518 0.533 0.639

5 0.335 0.374 0.048 0.493 0.560 0.689

6 0.318 0.333 0.104 0.408 0.583 0.687

TABLE 7 Sequence of boxes for the three-parameter
problem and threshold = 0.77

Box Parameter 1 Parameter 2 Parameter 3

Min Max Min Max Min Max

1 0.446 0.525 0.198 0.985 0.367 0.630

2 0.484 0.544 0.481 0.985 0.318 0.556

3 0.379 0.499 0.019 0.703 0.357 0.683

4 0.368 0.444 0.018 0.985 0.445 0.758

5 0.318 0.366 0.018 0.864 0.445 0.790

6 0.272 0.316 0.018 0.884 0.514 0.757

7 0.250 0.281 0.072 0.801 0.611 0.790

8 0.213 0.245 0.129 0.714 0.587 0.769

run-off simulations for a number of samples (five samples in each box),

which were randomly generated. It can be seen that all simulations had

good-enough model performances. By comparing the results from the

first and second case, it can be seen that reducing the threshold caused

a wider simulation bound. It should be mentioned that, because the size

of the boxes was not equal and there were overlaps between the boxes,

the sampling can be done in a way that the probability of selecting each

point in the good-enough region becomes uniform.

5.3 Twenty-three-parameter calibration

A similar process to that conducted for the three-parameter problem

was carried out for the 23-parameter problem. A 10,000 sample size

was chosen for this problem on the basis of examination and prelim-

inary calibration results. The sample was generated using an initial

population of 5,000 points and 100 iterations, with 50 new points

being generated in each iteration. The threshold used for this problem

was 5% less than the optimum value (0.82). In this case, the crite-

ria for generating the boxes was a density equal to 100% (similar to

the three-parameter problem). The resulting sequence consisted of

107 boxes. Figure 15 shows an envelope curve of 214 simulations for

different parameter vectors randomly generated inside the boxes (2

points in each box).

After finding the good-enough region, the validity of sensitivity anal-

ysis result was tested using a parameter ensemble that was randomly

generated from that region. The results showed that the overall order

of the sensitive parameters was similar to the order calculated using an

optimal parameter vector as the centre point. Every sensitive param-

eter from the initial analysis remained sensitive and only a few insen-

sitive parameters (alb-wet, fvegref-G, Gfrac-max, hveg, LAImax, Tsenc,

and w0limE) showed limited sensitivity (average score less than 0.45).

6 DISCUSSION

The goal of this paper was to develop a methodology (PRIM-PE) to

provide an interpretable understanding of the model performance in

parameter space to help modellers understand its global sensitivity

and provide a broad understanding about the parameter vectors that

have an acceptable performance. The PRIM-PE methodology uses a

sequence of steps to find a good-enough region in the parameter space

to provide a better perspective about the parameter space. The first

step of the procedure is a sampling routine, which makes an estimate

about the response surface using a limited sample size that is focused

on the good-enough region. After the sampling, the resulting sample is

used as input to PRIM to evaluate the sequences of boxes as represen-

tative of the good-enough region.

There are different components in the sampling procedure designed

to improve its performance. Two of the most important are as follows:

(a) the sorting strategy, which forces the sampling method to generate

a sample uniformly within the good-enough region and a narrow buffer

to reveal the boundaries as clear as possible and provide the opportu-

nity for the PRIM to detect the good-enough region accurately and (b)

the failed parent search component, which helps the sampling method

to not be trapped in a local optimum, prevent premature convergences,

and provides the capability to capture multiple optima.
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FIGURE 15 Simulation of a randomly generated sample in the boxes for the 23-parameter problem

To test the capability of the PRIM-PE method, four test problems

were used. The first three problems were used to test the perfor-

mance of the PRIM-PE in different situations (e.g., curved and mul-

tiple optima good-enough regions), and the sampling procedure was

benchmarked against the DREAMZS. The results for all three problems

showed that the PRIM-PE method effectively generated samples with

a higher density in the good-enough regions and the surrounding area

to provide a good definition of the border of the good-enough region.

The achieved focus of points saves a considerable amount of compu-

tation effort that would be needed for simulating unnecessary points

far from the intended region. The PRIM results also demonstrate that

it can define the good-enough region using a set of boxes. Moreover,

benchmarking of the PRIM-PE against the DREAMZS algorithm using

the fourth test problem (HYMOD parameter estimation) showed that

with a threshold close to the optimum objective function, the gener-

ated samples were similar, but by increasing the value of the threshold,

the good-enough region (estimated by the PRIM-PE method) widened.

In all the DREAMZS runs, prior PDFs were considered to be uniform

distributions. Thus, it can be expected that informed prior PDFs would

improve the comparison. However, to define a proper prior and like-

lihood requires a good understanding of the system as well as rich

technical knowledge, which complicate the use of the MCMC methods.

After sampling, the PRIM was successfully used to define the box

sequence as a representative of the good-enough region. The benefit

of finding such a region instead of the conventional results demon-

strates that this region is a continuous area potentially containing just

every possible combination of good-enough points. This method does

require predefined parameter ranges in addition to a set of rules to sep-

arate the good-enough points from the other points normally defined

as measures of the objective function and their thresholds (similar to

the GLUE). By finding the entire good-enough region, if a particular set

of rules was used, adding a new rule is computationally much cheaper

than executing the entire process again, because the previously calcu-

lated good-enough region can be used as the new searching domain for

the new rule. Moreover, the collection of parameter vectors produced

by other methods could be refined using additional rules. In this case,

if the number of successful points within the collection is limited, an

additional procedure of generating samples is needed. However, given

the fact that this study has been performed using just a single rule,

future work could address the effects of different objective functions

and more rules.

The good-enough region can be considered as a confidence bound-

ary of the optimal parameter vector, with each point inside being a

possible effective solution. Moreover, the total size of the resulting

sequence of boxes from the PRIM-based method can be used as a mea-

sure of equifinality. As all parameter vectors located in the sequence

of boxes share a minimum performance, they can be useful for various

problems. One application of these boxes is for estimating the param-

eter vector in an ungauged catchment. If a parameter vector has been

categorized as acceptable in a number of surrounding catchments, it

can possibly be a good estimation of the parameter in the ungauged

catchment. Having every possible parameter vector for a number of

nearby catchments allows using a parameter from the intersection of

the other catchments' good-enough region as a better choice for the

ungauged catchment. In this way, the knowledge from a number of

catchments can be combined to estimate a more reliable parameter

vector for the ungauged catchment. Overlapping of the good-enough

regions is also useful in other problems, for example, when for a

specific location, two series of observations are available. This may

occur when a river has two gauging stations. For the upper catch-

ment, two sequences of boxes could be obtained. By overlapping the

sequences of boxes for the doubly gauged area, a smaller (less uncer-

tain) good-enough region would be found. Furthermore, these boxes

can be used as an input for data assimilation methods such as the

Ensemble Kalman Filter.

The PRIM-PE could also be used as a prior estimate of the search

region for other MCMC methods. Because the PRIM-PE can work with

a limited sample size, but with a commensurate decrease in accuracy, it

can roughly estimate the good-enough region boundaries. These rough

estimates can assist other MCMC methods to search the parameter

region more efficiently.

It should be acknowledged that the PRIM-PE has a number of limita-

tions. First, the process of finding a suitable cut-off threshold demands

a prior knowledge about the optimum objective function value. Sec-

ond, the PRIME-PE is not designed to work with unconstrained search

spaces. Third, the PRIM-PE is designed to solve hydrological parameter

estimation problems with a limited number of parameters (maximum

around 20–25 parameters). Therefore, its performance was tested for

this type of problems. The performance of the PRIM-PE in higher

dimensional problems will be the subject of future studies.

It should be emphasized that the main objective of the PRIM-PE is

not to find the target distribution. The PRIM provides an opportunity

to simplify the resulting good-enough region by defining a number of

boxes and automatically reducing the dimension of the region as much

as possible. Furthermore, it generates an area that one can be almost

certain that every point in that area has at least a minimum perfor-
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mance, and if that region is interpretable, it can provide a good insight

into the parameter area and consequently the model. Conversely, as

the MCMC methods do not usually use a threshold in the sampling

procedure, the density of the points in the sample is proportional to

their target distribution. This means that the density on the border is

often less than central parts and by increasing the threshold it rapidly

decreases. Therefore, even though the resulting sample can address

the posterior distribution efficiently, it is not expected to be efficient at

border analysis.

7 CONCLUSIONS

A new parameter estimation and uncertainty quantification method

based on the PRIM, called PRIM-PE, has been proposed. The aim of

this method is to find a range in parameter space that covers every

acceptable parameter vector. The PRIM-PE method consists of two

main parts. First, an elegant sampling procedure is used to explore

the parameter space efficiently to generate samples focused on the

good-enough region and the surrounding area. The proposed sam-

pling method starts with an initially completely random generation,

after which the new generations are produced mostly in the regions

with good-enough performances. Then, the PRIM is used to define

the good-enough region in the parameter space as a sequence of

boxes. The method was tested using four different test problems

and its sampling procedure compared with the DREAMZS. After that

a hydrological model (AWRA-L) was calibrated using two settings

(the three-parameter and 23-parameter calibration problems). The

results showed that the PRIM-PE method can efficiently capture the

good-enough region.
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