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SMOS and SMAP Brightness Temperature
Assimilation Over the Murrumbidgee Basin
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and Niko E. C. Verhoest

Abstract— With the launch of the Soil Moisture and Ocean
Salinity (SMOS) mission in 2009 and the Soil Moisture Active-
Passive (SMAP) mission in 2015, a wealth of L-band brightness
temperature (Tb) observations has become available. In this
letter, SMOS and SMAP Tbs are assimilated separately into the
Community Land Model over the Murrumbidgee basin in south-
east Australia from April 2015 to August 2017. To overcome
the seasonal Tb observation-minus-forecast biases, Tb anomalies
from the seasonal climatology are assimilated. The use of clima-
tologies derived from either SMOS or SMAP observations using
either 2 years or 7 years of data yields nearly identical results,
highlighting the limited sensitivity to the climatology computation
and their interchangeability. The temporal correlation between
soil moisture data assimilation results and in situ observations is
slightly improved for top-layer soil moisture (+0.04) and for root-
zone soil moisture (+0.05). The soil moisture anomaly correlation
improves moderately for the top-layer soil moisture (+0.15), with
a smaller positive impact on the root zone (+0.05).

Index Terms— Data assimilation, hydrology, remote sensing,
soil moisture.

I. INTRODUCTION

SURFACE soil moisture plays an important role in the
global energy and water cycle. It controls the extent to

which the incoming solar radiation contributes either to the
sensible heat flux, by absorption through the Earth’s surface in
dry conditions, or to the latent heat flux, by absorption through
the soil water [1]. Applications, such as drought and flood
monitoring, or studies related to land–atmosphere interactions,
can benefit from the availability of accurate soil moisture infor-
mation. From space, soil moisture can, for example, be derived
from the naturally emitted radiance in the microwave spectrum
[2]. Therefore, the Soil Moisture and Ocean Salinity (SMOS)
mission [3] was launched in November 2009 by the European
Space Agency, measuring L-band brightness temperatures (Tb)
at multiple angles and at a spatial resolution of 42 km and
with an expected accuracy of about 4 K. In January 2015,
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the Soil Moisture Active-Passive (SMAP) mission [4] was
also launched carrying a radiometer to measure the Tb at the
L-band with a similar spatial resolution, but with a conically
scanning antenna with a single incidence angle of 40◦ and
a higher expected accuracy of 1.3 K. Observations at longer
wavelengths, such as L-band, are considered to be optimal,
since vegetation has less of a masking effect when compared
with other frequencies [2]. Soil moisture retrievals from such
data are restricted to the satellite overpass time and the
observed soil depth, roughly the top 5 cm. Integrating these
retrievals into a land surface model through data assimilation,
therefore, has some distinctive advantages. First, the observed
soil layers can be updated with information from the soil
moisture retrieval, with the model being able to translate the
changes in the surface soil moisture to deeper unobserved
layers. Alternatively, the deeper layers can be updated directly
by making use of the covariance between the observed and
unobserved layers [5]. Second, the model can be run at the
desired temporal resolution, and thus propagate the observa-
tional information through time. The soil moisture retrieval
algorithm depends on static and dynamic ancillary data with
the latter often provided by a model. Retrieval errors are thus
directly linked to errors in these ancillary data. In a data assim-
ilation system that uses its own model and ancillary data, it can
therefore be advantageous to directly assimilate the Tb data,
allowing for a consistent use of information in the forward Tb
simulations and to avoid cross-correlated errors [6].

In this letter, either SMAP (v3.080 [7]) or SMOS (v620)
H-polarized Tb observations at a single 40◦ incidence angle are
assimilated into the Community Land Model (CLM) over the
Murrumbidgee basin in Australia. The study site was chosen
for the availability of a relatively dense in situ measurement
network and the lack of radio-frequency interference (RFI).
To overcome Tb observation-minus-forecast biases, differ-
ences between the observation and forecast climatologies
are removed as in [6], [8], and [9]. Updates to the model
are computed by contrasting unbiased (by design) fore-
cast TB anomalies and observation Tb anomalies, serving
the same purpose as assimilating the absolute TBs but
with the former being already bias-corrected. This letter
differs from earlier TB assimilation studies in the exact
calculation of: 1) the climatologies and 2) the anomaly
Tb observation-minus-forecasts in the assimilation system.
Two experiments assimilate these Tb anomalies from either
SMOS or SMAP, after the removal of a 7-year SMOS Tb
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climatology (as in [6] and [8]). Four other experiments
are carried out using Tb anomalies obtained after removing
2-year climatologies: one using SMOS and one using SMAP
data with their corresponding climatology, and two experi-
ments using the climatology of the other sensor. This letter
demonstrates the interchangeability of the Tb climatologies
obtained from different, but similar, L-band missions. The sim-
ilarity in soil moisture improvements for all data assimilation
experiments will highlight the synergy between the SMOS
and the SMAP mission and the general potential to use an
existing (long-term) climatology from established mission as
a substitute for a pending climatology of a very new mission.
In addition, it will be shown that a consistent improvement
in soil moisture can be obtained when calculating anomalies
from a climatology-based on a shorter time period. This is, for
example, relevant in the areas where a historical sensor failed
to collect data (e.g., SMOS data contamination due to RFI),
while newer sensors (e.g., SMAP) may facilitate measure-
ments that could be assimilated. The model and assimilation
system setup is based on [10] and only the most important
aspects are described below.

II. ASSIMILATION SYSTEM

A. Community Land Model

The CLM is the land surface component of the Commu-
nity Earth System Model [11] and simulates subsurface soil
water within 10 soil layers. For this study, plant functional
types (PFTs) are based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD12Q1, version 5 land cover
product, and reclassified to be compatible with the CLM.
Climatological monthly leaf area index for each PFT is com-
puted from the MODIS 8-daily MCD15A3H (version 6) LAI
product. The model is run at 0.25◦ spatial resolution.

B. ERA-Interim Atmospheric Forcing

CLM is run in the off-line mode using atmospheric forcings
derived from the ERA-Interim reanalysis [12], with the vari-
ables 2-m air temperature, 2-m pressure, short-wave incoming
radiation, and total precipitation directly available. Specific
humidity is computed from the 2-m dew point temperature
and 2-m air temperature, and 2-m wind speed is derived from
the wind speed components in the lateral and longitudinal
directions. The data were bilinearly interpolated to the model
resolution and then temporally interpolated from 3-h data to
the 30-min model time step at runtime.

C. Ensemble Member Generation

In order to account for the model uncertainty, CLM is
run with 32 ensemble members [10]. Spatially correlated
perturbations (correlation length = 1.25◦) are added to air
temperature, shortwave radiation, and precipitation. Shortwave
radiation is perturbed with multiplicative noise with a standard
deviation of 0.3, whereas for temperature additive noise with
a standard deviation of 2.5 K is applied. Precipitation is
perturbed with multiplicative log-normal noise with a standard
deviation of 0.5. Soil fractions are perturbed once at the model

startup with spatially correlated multiplicative noise with a
standard deviation of 10% for clay and sand for the top two
soil layers. With the increasing layer depth, the multiplicative
factor is reduced by using the inverse relationship between the
thickness of each layer and the summed soil layer thickness
of the two top layers. CLM derives hydraulic properties based
on soil texture, resulting in each ensemble member having
slightly modified model physics.

D. Forward Tb Simulations

Forward Tb simulations are computed with the Community
Microwave Emission Model (CMEM, v5.1 [13]) on the
basis of the open-loop (OL) ensemble member output.
SMOS and SMAP have an overpass time at approximately
6 A.M. and 6 P.M. local time. Forward simulations are thus
computed at 8:00 UTC on the same day and at 20:00 UTC
on the previous day, accounting for a time shift of −10 h for
the study area. The CMEM setup for this study is identical
to the one described in more detail in [10] with the exception
of here not computing the atmospheric contribution. The
vegetation-dependent parameters are taken from the European
Space Agency operational L2 parameter set. A calibration of
the parameters was not undertaken to preserve the original
sensitivity of the forward simulations toward soil moisture
[14]. The forecast Tb anomalies required together with
the observation anomalies for computing the soil moisture
updates are obtained by removing a seasonally varying Tb
forecast climatology. These anomalies are by design unbiased,
and mitigating a bias by calibrating the CMEM is therefore
not necessary. The forecast climatology is computed using
a 31-day moving window averaging all simulations across
the same years used for the computation of the observation
climatologies, as described below.

E. Tb Observations

For the SMOS Tb observations, contributions from galactic
noise as well as the atmosphere are removed to make both
the SMOS and SMAP Level 1 Tb observation data sets
comparable [15]. Since SMOS Tb observations are available
at multiple angles, observations within a 2.5◦ bin around 40◦
incidence angle are averaged, which should slightly reduce
the uncertainty. For SMAP, forward-looking and aft-looking
acquisitions are averaged. Both the data sets are provided on
the 36-km Equal-Area Scalable Earth Grid version 2. For the
computation of the SMOS and SMAP Tb observation anomaly
time series, various SMOS- and SMAP-based climatologies
are calculated, always using a 31-day moving window and
averaging all observations within that window across the
years, again for morning and afternoon overpasses separately.
SMOS and SMAP Tb anomalies are then obtained by remov-
ing the climatology from the observation time series. The
cumulative distribution functions (cdfs) of the observation and
forecast anomaly time series are matched at the corresponding
6 A.M. and 6 P.M. overpass times, mainly to reconcile the
differences in the variance (and possible higher moments)
between the forecast and the observation Tb anomalies
(the means of both the observation and model anomalies are
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nearly zero by design). In this process, special care is taken
to ensure that the SMOS ascending (resp. descending) node
corresponds to the SMAP descending (resp. ascending) node
and to the 6 A.M. (resp. 6 P.M.) forecasts. Three different Tb
observation climatologies were computed for each overpass
time: 1) a 7-year SMOS Tb climatology; 2) a 2-year SMOS Tb
climatology; and 3) a 2-year SMAP Tb climatology. The
Tb observation errors are rescaled at each time step using
the ratio between the temporal standard deviation of the
observation anomalies prior to and after the cdf-matching step.
The unscaled observation error variance was defined as 25 K2

for SMOS (16 K2 representativeness error + 9 K2 radiometric
error variance) and 17.64 K2 for SMAP (16 K2 + 1.69 K2).

F. Local Ensemble Transform Kalman Filter

The local ensemble transform Kalman filter [16] is an
implementation of the ensemble Kalman square-root filter.
To reconcile biases between the Tb forecasts and the obser-
vations, the respective Tb climatologies are removed from the
Tb innovation term, by first calculating anomalies as discussed
above. The top six CLM layers are updated corresponding to
a depth of 50 cm. Deeper layers are not updated to prevent
large root zone updates from having a cascading effect on all
the above layers, also due to the increasing layer thickness
with depth. It can also be argued that making use of surface
observations to update very deep layers is questionable, and
so, these are updated through model physics only. At a
given grid cell, besides using central observation, surrounding
observations are also considered. The observation variance of
these neighboring observations is thereby increased with their
distance from the grid cell to be updated. This is achieved
by multiplying the respective observation variances with a
distant-dependent factor computed with the Gaspari–Cohn
function [17]. The maximum distance at which observations
are considered at all is defined at 100 km. This to some
extent mimics the spatial footprint of the satellite observations,
which is larger than the spatial resolution at which the data
are provided. After each analysis step, a postinflation factor
is applied to force the ensemble spread of the 32 ensemble
members to approximately the same as before the analysis.
This, together with the soil texture perturbations, prevents
ensemble collapse especially during dry periods.

III. RESULTS AND VALIDATION

An ensemble OL simulation is performed as a refer-
ence without any data assimilation. The two assimilation
experiments using the long-term SMOS Tb climatology
(from July 2010 to June 2017) are referred to herein as
SMOSDA and SMAPDA, while the experiments using a
2-year Tb climatology (from July 2015 to June 2017) spe-
cific for the assimilated data are referred to as SMOSDA.s
and SMAPDA.s, when using their own respective cli-
matology, or SMOSDA.x, when assimilating SMOS Tb
using the 2-year SMAP-based climatology, and SMAPDA.x,
when assimilating SMAP Tb using the 2-year SMOS-
based climatology, i.e., x, for cross-climatologies. For
all the experiments, the assimilation period is from

Fig. 1. Impact on Ra for surface soil moisture anomalies for the experiments
(Top) SMAPDA, (Middle) SMAPDA.s, and (Bottom) SMAPDA.x.

April 2015 to August 2017. The validation of the 30-min
(incl. forecast and analysis) results is performed against in
situ soil moisture measurements from the OzNet network
[18] within the Murrumbidgee catchment, which is located
in south-eastern Australia. The catchment changes from low-
lying semiarid plains to humid conditions in the forest-covered
Australian Alps, resulting in strong climatic variations. Where
the topography allows, land use is mostly agricultural, rang-
ing from extensive pastoral use to high-intensity agriculture
applying irrigation along the mid and lower Murrumbidgee
River. The in situ probes measure soil moisture at a depth of
5, 0–30, 30–60, and 60–90 cm [18]. Validation metrics are
separately computed for the western and eastern clusters of
in situ stations (see Fig. 1) and then averaged. Accompanying
average confidence intervals for the correlations is computed
per cluster and rescaled by the square-root of the number of
clusters (here 2). As in [6], individual CI values are fully
corrected for the large temporal autocorrelation of the hourly
model output, and measurement errors at the individual in situ
sites are assumed to be fully correlated within one cluster. CI
values are thus considered to be very conservative estimates,
and an increased number of independent clusters, e.g., within a
global study, would result in smaller confidence intervals. The
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TABLE I

CORRELATION R AND ANOMALY CORRELATION RA FOR SURFACE AND
ROOT-ZONE (.RZ) SOIL MOISTURE AT THE OZNET SITES; 95%

CONFIDENCE INTERVALS ARE SHOWN WITHIN BRACKETS

summary of the assimilation impact on correlations is shown
in Table I with confidence intervals for the 95% confidence
level added in brackets. The results are discussed in more
detail in the following, including the mean impact on the root-
mean-square error (RMSE).

A. Surface Soil Moisture

The two top CLM soil layers reach to a depth of approxi-
mately 5 cm, which roughly corresponds to the depth where
the emitted L-band radiance is affected by soil moisture.
Making use of the layer thickness, the weighted average
of the modeled soil moisture is computed and compared
with the OzNetin situ measurements taken at 5-cm depth,
thereby excluding sites with less than 18 months of data.
The average Pearson correlation coefficient R for the OL
run is 0.70. Both the SMAPDA and SMOSDA experiments
show a slightly increased R of 0.73. Larger improvements are
visible when computing the correlation (Ra) between in situ
soil moisture anomalies and modeled soil moisture anomalies.
These anomalies are obtained by removing the respective soil
moisture climatologies from the in situ and modeled time
series. For the computation of the climatologies, a 31-day
moving average across data from 2 years (from July 2015 to
June 2017) is used, which corresponds to the method applied
to create the Tb climatologies for experiments SMOSDA.s
and SMAPDA.s as well as SMOSDA.x and SMAPDA.x.
This allows to better assess the impact of assimilation, since
the assimilation-induced changes in soil moisture otherwise
are potentially masked by the large seasonal soil moisture
gradient. Here, Ra increases from 0.50 for the OL run to
0.63 and 0.64 for SMAPDA and SMOSDA, respectively. For
the experiments SMAPDA.s and SMOSDA.s, R increases to
0.75 and 0.74. The corresponding anomaly correlation Ra
increases to 0.64 and 0.65. For the experiments using the
cross-climatology SMAPDA.x and SMOSDA.x, R increases to
0.74 in both the cases. The anomaly correlation Ra increases
to 0.65 and 0.64. The assimilation impacts on surface soil
moisture anomalies at all in situ sites are shown in Fig. 2.
It can be seen that especially the four experiments using a Tb
climatology closely matching the assimilation period perform
very similarly. For the RMSE between the simulated soil
moisture and the in situ measurements (bias incl.), no impact is
visible for any of the experiments and it remains at 0.05 m3/m3

(not shown). This is due to the fact that both the forecast and
analysis time steps are included in validation, which hides the
positive impact at the analysis time steps. Fig. 1 shows the
assimilation impact on surface soil moisture anomalies for the

Fig. 2. Spatial distribution (boxplots) of the changes in Ra (�Ra) between the
modeled and the observed surface soil moisture for the OzNet in situ stations.
�Ra equals Ra after assimilation minus Ra for the OL. The horizontal lines
correspond to the 75%, 50%, and 25% quantiles.

experiments using SMAP observations. Similar to the overall
statistics, also the spatial patterns are very similar between
the experiments with some small differences. Assimilation
has the largest impact on the in situ stations located in the
more eastern part of the catchment (+0.2 and above). In the
western cluster, improvements are lower (around +0.1) with a
negative assimilation impact on a limited number of stations.
For the experiment SMAPDA, the impact is slightly reduced
at the western sites when compared with the SMAPDA.s
and the SMAPDA.x. These findings closely match the exper-
iments using SMOS observations (not shown here), where
spatial patterns are equally similar to each other and to
the experiments using SMAP observations. No obvious rela-
tionship between the described assimilation impact and the
surrounding land cover of the in situ measurement sites could
be identified.

B. Root-Zone Soil Moisture

For the root-zone soil moisture (rz), in situ measurements
are available at multiple depths, namely 0–30, 30-60, and
60–90 cm. As for surface soil moisture, the weighted average
of the appropriate CLM layers is computed to allow for the
comparison between the modeled and the measured soil mois-
ture. OL performance R.rz is 0.47 and increases to 0.52 for
both SMAPDA and SMOSDA and to 0.51 and 0.52 for
SMAPDA.s and SMOSDA.s, respectively. Using the cross-
climatology yields similar improvements with R 0.52 and 0.51
for SMAPDA.x and SMOSDA.x, respectively. For the RMSE,
a slight reduction from 0.012 to 0.010 m3/m3 is achieved
for all the experiments. Anomaly correlations Ra.rz increase
from 0.52 for the OL to 0.56–0.57. It is to be noted that the
impact of the experiments, including surface soil moisture,
is not significant at the 95% CI level. This can be explained
through the conservative estimation of the CI, accounting for
the large temporal autocorrelation especially for the root zone,
as mentioned above.
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IV. CONCLUSION

The separate assimilation of SMOS and SMAP Tb anom-
alies has been carried out for April 2015–August 2017 across
the Murrumbidgee basin and validated against in situ mea-
surements from the OzNet network. For both the SMOS
and the SMAP, assimilation was performed by using: 1) the
long-term SMOS climatology using 7 years of data; 2) the
climatology of the same sensor as the assimilated observations
based on roughly the same time period as the observations,
i.e., 2 full years; and 3) the same experiment as 2) but using
the climatology of the other sensor. Assimilating the anom-
alies, in contrast to assimilating the original observations, was
chosen to resolve for the seasonally differing Tb observation-
minus-forecast bias. Together with the cdf-matching of the
observation anomalies to the forward simulation anomalies,
this avoided the need for calibrating the radiative transfer
model CMEM and the possibility of reducing the sensitivity
of the forward simulations to the changes in soil moisture.
Improvements in R for surface soil moisture simulations are
between 0.03 and 0.05 and when considering soil moisture
anomalies R that increase by 0.13–0.15. This might highlight
that the large seasonal gradient of soil moisture partly obscures
the effect of the mostly quite small soil moisture increments.
Improvements in R for the root zone are between 0.04 and 0.05
with similar differences in R when considering soil moisture
anomalies. A slight reduction in the RMSE was achieved for
the root zone. The main outcome of the study is that the
SMOS and SMAP Tb data sets perform very similarly in
estimating the soil moisture profile and that their respective
longer and shorter term climatologies serve equally well in
dealing with observation-minus-forecast biases. However, this
insight might vary with the study region and different assim-
ilation methods. Although it might have been expected that
the SMAP Tb anomaly data assimilation would outperform
the assimilation of SMOS Tb anomalies due to the higher
radiometric accuracy and the larger data coverage (in time
and space, due to the wider alias-free swath width, and
the improved RFI mitigation for SMAP), the results do not
support this. This is partly because all 30-min forecast and
analysis time steps are included in the validation and because
the assimilation design is not necessarily optimized for each
experiment, e.g., in terms of (normalized) innovation statistics.
Finally, RFI is not an issue within this specific study area. This
letter demonstrates the usefulness of the available L-band data
and its compatibility within a common assimilation system.
Optimizing the use of both the data sources together should
be the topic of future research.
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