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Chapter 1

Earth Observation for Flood 
Applications: Progress and 
Perspectives

Guy J-P. Schumann
Research and Education Department, RSS-Hydro, Dudelange, Luxembourg; Remote Sensing 
Solutions, Barnstable, MA, United States; School of Geographical Sciences, University of Bristol, 
Bristol, United Kingdom; INSTAAR, University of Colorado, Boulder, CO, United States

1 Motivation of this book

This edited book volume is a collection of chapters describing the latest prog-
ress and perspectives on the use of Earth Observation for flood applications.

It is well known that there is now a proliferation of remote sensing data, 
especially in the form of free imagery from Earth-observing satellites. This en-
ables many applications in research and industry, which opens up new oppor-
tunities for science and businesses alike. With recent floods around the world 
becoming ever more devastating and public awareness increasing, there is a 
need for better science, enabling more effective solutions at a fast pace. Yet, 
most flood-related applications using Earth Observation still only focus on flood 
mapping and oftentimes with relatively little attention to scientific rigor.

The proposed book will guide the reader through the latest scientific ad-
vances in Earth Observation for a variety of flood applications and provides 
in-depth perspectives. It also describes new approaches to flood risk estimation 
and damage assessment using Earth Observation data. The book includes three 
parts, each containing a separate but complementary topic area under floods, 
which will be described by separate chapters. Each chapter will be supported by 
case studies and illustrative graphics.

The general topic areas dealt with in this book include flood hydrology, re-
mote sensing of floods, and flood risk management and planning as well as 
flood disaster response.

The target readership for this compiled book volume includes university lec-
turers and teachers, and shall serve as learning and teaching material. For prac-
titioners, the book should inspire city planning officers, flood risk management 
officers, and flood response officers as well as, more generally, water resource 



4    SECTION | 1 Monitoring and Modeling Flood Processes and Hazards

managers. They can use the book as general guidance on the latest methods in 
Earth Observation for various flood applications.

More generally, in each chapter, readers will benefit from a clear, specific 
account on advances and perspective on Earth Observation for floods and will 
get an appreciation of the latest progress in methods and applications as well 
as expert perspectives as well as from illustrations of real-life application ex-
amples where methods described are demonstrated in practice.

2 Summary of content

Further sections will summarize the main messages of the chapters in this book.

2.1 Section 1: Monitoring and modeling flood processes and 
hazards

Monitoring and modeling flood processes and hazards using remote sensing 
methods and physically-based process models have been studied for almost half 
a century now, and, over the last 2 decades, advances have been considerable.

In terms of mapping and monitoring floods using Earth Observation (EO) 
data, Chapter 2 discusses progress in operational, near-real time mapping of 
flood duration and extent using multi-sensor satellite data, and illustrates dis-
semination of actionable crisis information via web-services, using Cyclone 
Idai in 2019 as a real-time case study. Chapter 3 highlights the value of pas-
sive microwave remote sensing (radiometry) to map flooding, and explains how 
competing factors reduce sensitivity to flooding or trigger false positives, and 
how current retrieval methods approach these challenges. The chapter also out-
lines recent algorithm development efforts and also discusses current downscal-
ing capabilities as well as new approaches to improve flood mapping accuracy 
and usability in a variety of applications.

With regard to modeling flood processes, Chapter 4 showcases and re-
views the use of remote sensing and river flood modeling in Brazil to foster 
our understanding of flooding regimes in large natural wetlands. The chapter 
shows examples suggesting the role of remote sensing in improving flood 
models across scales, using innovative methods, such as data assimilation 
and genetic algorithms. It also discusses perspectives on how current and 
future satellite missions, in combination with models, could help mitigate 
flood disasters.

In view of the upcoming Surface Water and Ocean Topography (SWOT) sat-
ellite mission, Chapter 5 outlines how satellite observations of floods have fun-
damentally changed the way we assess damage and coordinate first response, 
especially in data poor regions. In this context, the chapter gives an overview 
of the SWOT mission characteristics and measurement principle, describes its 
data products, and highlights advances in scientific methods developed to deal 
with this new source of data.
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2.2 Section 2: Estimating flood exposure, damage, and risk

Apart from mapping and monitoring floods or improving flood modeling, satel-
lite data are also used to estimate flood exposure, damage, and risk.

Using the 2017 floods in the Congo River basin as an example, Chapter 6 
demonstrates the potential of building satellite-based flood monitoring systems 
to estimate flood damage and alert stakeholders. Despite non-trivial limitations 
of EO data, such as frequent cloud cover, inaccurate rainfall estimates, and 
low-resolution population data, EO-based alerting and monitoring systems 
could ultimately better inform local decision making, particularly in data poor 
regions.

Using the DFO—Flood Observatory at the University of Colorado Boulder, 
Chapter 7 provides an overview of satellite-based water products, developed 
in collaboration with various agencies and initiatives. The DFO provides EO 
products and services semi-operationally for assisting humanitarian aid, and, 
more generally, to support and encourage operational uses of remote sensing-
based surface water hazard and risk information, with a vision to engage the 
larger hydrological community in an effort to reduce the impact of water-related 
natural disasters.

Taking a look at the re/insurance industry and the lack of necessary tools 
available with global coverage to quantify flood risk, Chapter 8 outlines how 
EO provides invaluable input for a number of applications, from validating and 
benchmarking flood solutions to estimating the exposed risks in vulnerable re-
gions, responding to catastrophe events in real time, and increasing resilience. 
The chapter also discusses the ongoing challenges related to the ever-growing 
proliferation of EO data, products, and services, the re/insurance industry are 
faced with, and how relevant partnerships and community activities may present 
a way forward.

Further discussing the many challenges still to be solved, Chapter 9 reviews 
some of the most relevant EO-based open-access methods, products, and servic-
es that many research and academic institutions currently provide for detecting 
and near real-time monitoring of extreme hydro-meteorological events.

2.3 Section 3: Emerging applications and challenges

The third and final section of this book discusses emerging methods and tech-
nologies in the field of EO for flood applications.

Chapter 10 reviews how recent technological advances have provided an 
opportunity to explore the use of remote sensing within the context of flood 
risk management. The chapter first discusses the application of remote sens-
ing in flood modeling, flood damage assessment, and vulnerability. It then re-
views how the development of remote sensing technologies have extended the 
range of their application in flood management, and concludes by outlining key 
considerations for the use of standardized remote sensing data collection ap-
proaches to inform flood risk management activities.
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Using four case studies, Chapter 11 discusses advances in the application 
of EO data for anticipatory action across a variety of hydro-meteorological 
hazards, identifying both challenges and opportunities to support anticipatory 
actions at scale. The chapter also provides a set of recommendations and priori-
ties, for ensuring future growth in EO applications, is coupled with improved 
anticipatory humanitarian action.

With a view of providing better flood forecasting to eventually minimize 
damage to life and property, Chapter 12 presents a review of the current capa-
bilities of EO data to improve flood predictions through data assimilation tech-
niques. The challenges and opportunities of using EO data for operational flood 
inundation forecasting are also discussed.

In recent years, artificial intelligence (AI) has started to fundamentally 
change our lives, benefiting from the Big Data revolution and the Internet of 
Things (IoT). Flood research and applications will progress with this emerging 
technology, as AI is creating new flood data sources, enhancing our capabil-
ity to analyze the data, even improving our accuracy of flood predictions. In 
this context, Chapter 13 introduces the basic concepts of AI and summarizes 
emerging AI applications in the field of flood hazards in terms of a number of 
data sources. The use of the AI-enabled Big Data is also discussed as well as 
opportunities and barriers of this new technology.

In a similar context, Chapter 14 discusses the many non-trivial challeng-
es and pitfalls that new, innovative technologies, such as IoT, Big Data, cloud 
computing, and advanced interoperability standards in the field of EO for flood 
applications, bring. However, the chapter also highlights opportunities, and dis-
cusses the need for scientists, product developers, and end-users alike to man-
age expectations and form partnerships in order to unlock the full potential of 
EO for flood applications.

It is clear that decision making and planning for better management of floods 
requires the use of adequate models and methods. Chapter 15 reviews how, in 
recent years, appropriate models and algorithms, such as machine learning and 
deep learning have been developed and used in a number of novel research 
studies dealing with flood mapping. It outlines the basic concepts of machine 
learning methods but also discusses important challenges that remain and need 
to be solved if machine learning methods are to be valuable for decision-making 
processes related to flood management.

Chapter 16, the final chapter of this book, describes how new scientific 
methods in satellite microwave radiometry are used to monitor river flow chang-
es with considerable accuracy at an appropriate temporal sampling interval for 
characterizing floods daily, regardless of cloud cover, over multiple decades and 
continuing into the future. Of course, such considerable progress demonstrates 
that EO has a very promising future in helping to address important flood risk 
issues.
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Chapter 2

An Automatic System for Near-
Real Time Flood Extent and 
Duration Mapping Based on 
Multi-Sensor Satellite Data

Sandro Martinis, Marc Wieland and Michaela Rättich
German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Weßling, 
Bavaria, Germany

1 Introduction

Floods are the most frequent and costliest natural disasters worldwide. Ac-
cording to figures from the United Nations Office for Disaster Risk Reduction 
(UNISDR), floods accounted for 43% of all 7255 disaster events recorded glob-
ally between 1998 and 2017 (CRED and UNISDR, 2018).

Numerous scientific studies as well as the work of various value adders in 
the frame of international emergency response mechanisms such as the Coper-
nicus Emergency Management Service of the European Commission (Coperni-
cus Emergency Management Service, 2019), the International Charter “Space 
and Major Disaster” (International Charter, 2019), or Sentinel Asia (Sentinel 
Asia, 2019) demonstrated the benefit of satellite-based remote sensing during 
rapid mapping activities in flood disaster situations. Earth Observation (EO) 
data have proven to provide essential large scale and detailed information on 
disaster situations to support adequate relief activities in near real-time (NRT).

However, single satellite missions are in general not suitable to fulfill the 
requirements of end users in the frame of emergency response with an eye on 
revisit time and coverage. The combination and the coordinated tasking of data 
of different satellite missions are necessary to receive a timely and complete 
overview about a disaster situation and to be able to monitor the evolution of 
inundations over time. For example, the International Charter “Space and Ma-
jor Disaster,” which is an association of space agencies and satellite operators, 
provides a unified system of currently 17 members for the coordinated rapid 
acquisition and delivery of satellite data in case of a disaster or crisis situation 
based on more than 50 operational satellite missions (Martinis et al., 2017).
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In addition, as response time is a key element, disaster management es-
pecially benefits from the automation of algorithms to reduce time-consum-
ing manual interactions of imaging experts in extracting crisis information 
from EO data. This is particularly important for global applications that use 
systematically acquiring satellite missions, which generate a massive daily 
flow of data, such as Sentinel-1 and Sentinel-2, operated by the Europe-
an Space Agency (ESA) in the frame of the European Union's Copernicus 
Programme.

Synthetic aperture radar (SAR) sensors provide a global, continuous sup-
ply of all-weather, day-and-night image data of the Earth's surface and are 
therefore well suited for flood mapping and monitoring applications. Several 
scientific studies presented automatic approaches for SAR-based flood detec-
tion (Li et al., 2018, 2019); Amitrano et al., 2018; Tsyganskaya et al., 2018; 
Giustarini et al., 2017; Schlaffer et al., 2015; Pulvirenti et al., 2011; Schumann 
et al., 2010; Martinis et al., 2009) as well as fully automatic flood process-
ing chains (Martinis et al., 2013, 2015b, 2018; Twele et al., 2016; Westerhoff 
et al., 2013). As their names imply, optical sensors make use of radiation from 
the optical part (i.e., visible and infrared) of the electromagnetic spectrum. 
As these sensors rely on solar reflectance from the Earth's surface, they are 
only useful for cloud-free conditions, which is a disadvantage in the context of 
mapping and monitoring flood events. However, during clear-sky conditions, 
these data are very helpful to increase the effective revisit period for flood 
monitoring.

Within this study, an automatic multi-sensor satellite system for NRT time 
flood extent and duration mapping based on multi-sensor satellite data is pre-
sented, developed by the German Aerospace Center (DLR). The system is based 
on four automatic processing chains for the derivation of the flood extent from 
Sentinel-1 and TerraSAR-X radar as well as from optical Sentinel-2 and Land-
sat satellite data. Due to the consistency in systematic data acquisition of Senti-
nel-1, the Sentinel-1 Flood Service (Twele et al., 2016; Martinis et al., 2018) has 
the key role in systematic flood monitoring. The two processing chains based 
on Landsat-8 and Sentinel-2 (Wieland and Martinis, 2019) complete the sys-
tematic monitoring capability of the system. In the frame of flood situations, a 
TerraSAR-X Flood Service (Martinis et al., 2013, 2015b) can be triggered on 
demand over a disaster affected area to increase the effective revisit period of 
the system or to extract the flood extent in higher detail than using the system-
atically acquiring sensors of up to a spatial resolution of 1 m.

Further, different flood duration layers, that is, a backward flood duration 
(BFD) and total flood duration (TFD) mask, are generated by using the crisis 
information derived from the multi-sensor system to indicate the temporal sta-
bility of an inundation over time.

The multi-sensor flood monitoring system is demonstrated based on a severe 
flood situation in Mozambique caused by the landfall of cyclone Idai in March 
2019.
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2 Satellite-based multi-sensor flood mapping system

The multi-sensor flood mapping system consists of four fully-automatic pro-
cessing chains which derive the flood extent from Sentinel-1 and TerraSAR-X 
radar as well as from optical Landsat and Sentinel-2 satellite data in NRT. Data 
from other satellite missions could be integrated into the system. An overview 
of the system's workflow is visualized in Fig. 2.1; general characteristics of the 
processing chains are listed in Table 2.1. All processing chains contain the fol-
lowing generic steps: automatic data ingestion, preprocessing of the EO data, 
computation and adaption of global auxiliary data (digital elevation models, 
topographic slope information, and topographic indices, as well as reference 
water masks), classification of the flood extent, and dissemination of the crisis 
information, for example, via a web-client.

Further, additional flood duration layers, that is, the BFD and TFD, which 
show the stability of an inundation for each image element in days, is generated 
in NRT together with a flood duration quality (FDQ) layer by combining the 
flood extent products derived from the different satellite sources.

As the methodologies of the respective thematic processors need to be glob-
ally applicable to account for flood situations all over the world, delivering reli-
able flood extent products independent of prevailing environmental conditions 
and system parameters of the used satellite system (e.g., beam mode, incident 
angle, and spectral channels), a major focus during the implementation of the 
algorithms was set on reaching a high level of robustness and transferability.

FIGURE 2.1 General workflow of DLR's satellite-based system for flood extent and dura-
tion mapping.



10    SECTION | 1 Monitoring and Modeling Flood Processes and Hazards

The respective NRT flood processing chains are explained in detail in Sec-
tion 2.1, the derivation of the combined flood duration products in Section 2.2.

2.1 NRT Flood extent mapping

2.1.1 Auxiliary datasets
Several ancillary datasets are used within the four automatic SAR- and optical 
data-based flood processing chains in different steps. Digital Elevation Models 
(DEMs) are required for terrain-correction of SAR-data, for the radiometric 
calibration of SAR data to sigma naught (dB), and for the calculation of terrain 
characteristics for post-classification improvement of the flood extent products 
(e.g., layover areas, slope, height above nearest drainage).

A global reference water mask is required for separating the detected open 
surface water extent into areas of reference water (i.e., normal water levels) and 
inundation areas. In order to achieve global coverage, the reference water mask 
is a combination of different data sources:

•	 Shuttle Radar Topography Mission (SRTM) Water Body Data (SWBD), 
which covers the Earth's surface between 56 degrees southern latitude and 
60 degrees northern latitude at a spatial resolution of approximately 30 m at 
the equator.

•	 The MODIS 250 m land-water mask (MOD44W), which is used for all 
northern and southern latitudes and not covered by SWBD data (Carroll 
et al., 2009).

TABLE 2.1 General characteristics of the flood processing chains.

Processing 
chain Satellite

Revisit  
time [d]

Resolution of 
products [m]

Data 
acquisition Data source

TerraSAR-X 
Flood Service 
(TFS)

TerraSAR-X, 
TanDEM-X

11 0.24–40 On-demand TerraSAR-X 
delivery server

Sentinel-1 
Flood Service 
(S-1FS)

Sentinel-1A, 
Sentinel-1B

6 20 Systematic Copernicus 
Open Access 
Hub, Direct 
Downlink @ 
DLR Neustrelitz 
(Europe)

Sentinel-2 
Flood Service 
(S-2FS)

Sentinel-2A, 
Sentinel-2B

5 10 Systematic Copernicus 
Open Access 
Hub

Landsat 
Flood Service 
(LFS)

Landsat-8 16 30 Systematic USGS
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•	 For some countries, seasonal reference water masks based on Sentinel-2 
and Landsat-8 time-series data have been computed offline based on DLR's 
Sentinel-2 and Landsat-8 Flood Services. If available, these masks are used 
instead of the SWBD and MODIS reference water masks as these are more 
up-to-date and consider effects related to seasonality of water occurrence.

All water masks are combined to a consistent global dataset, which is avail-
able as one by one degree lat/lon (WGS84) projected GeoTIFF-tiles.

The ASTER Global Digital Elevation Model Version 3 (GDEM V3) with 
a pixel size of 1 arc second (METI and NASA, 2019) is used for a refinement 
of the TerraSAR-X-based flood masks. The same terrain information is used 
for the optional computation of a Geocoded Incidence Angle Mask (GIM) in 
the preprocessing step of the TerraSAR-X Flood Service, while the SRTM 3 
arc second data is used for the range Doppler terrain correction of Sentinel-1 
data and the radiometric calibration to sigma naught (dB). Further, the height 
above nearest drainage (HAND) terrain descriptor (Rennó et al., 2008), which 
expresses the height difference between a DEM cell and the closest cell of the 
drainage network along the actual flow path, is used. As such, the index can be 
very well used to define flood-prone regions and consequently areas with a low 
probability of flood occurrence. Based on this index, areas above an empirical-
ly-derived threshold are excluded from classification of the flood extent, thereby 
reducing potential misclassifications in non-flood-prone regions. This helps to 
reduce water-lookalike areas in dependence of the hydrologic–topographic set-
ting. The HAND index has been calculated near-globally (Twele et al., 2016) 
based on elevation and drainage direction information provided by the Hydro-
sheds mapping product (Lehner et al., 2008). Based on this index, a binary 
exclusion mask (termed “HAND-EM” in the following) has been calculated 
by Twele et al. (2016) to differentiate between flood- and non-flood-prone ar-
eas. Both binary classes are determined using an appropriate threshold value. 
Choosing the threshold value too high may lead to misclassifications (i.e., the 
inclusion of flood-lookalikes in areas much higher than the actual flood surface 
and drainage network) while a threshold value set too low would eliminate parts 
of the real flood surface. The choice of an appropriate threshold is thus critical, 
but could be derived through a series of empirical tests with more than 400 
Sentinel-1 and TerraSAR-X scenes of different hydrological and topographical 
settings (Chow et al., 2016). Due to the global application scope of the flood 
processing chains, a rather conservative threshold of ≥15 m was selected to 
derive non-flood-prone areas.

2.1.2 TerraSAR-X Flood Service
The TerraSAR-X Flood Service (Martinis et al., 2013, 2015b) is based on data 
of the TerraSAR-X mission, which consist of the two satellites TerraSAR-X 
and TanDEM-X, operated since 2007 and 2010, respectively, in the frame of a 
public-private partnership (PPP) between DLR and Airbus Defense and Space. 
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The primary payload of TerraSAR-X and TanDEM-X is an X-band SAR sensor 
with a range of different acquisition modes of operation, allowing to acquire 
data with different swath widths, resolutions, and polarizations.

As both satellites are on-demand satellite systems, which do not follow a 
systematic predefined observation plan, each acquisition has to be tasked by 
programming the sensor over an area affected by inundations. This allows to be 
very flexible in adapting the acquisition parameters to the type and extent of the 
disaster and, therefore, to reach the highest value to support crisis management 
activities. In most flood situations, data are acquired in HH polarization which 
usually leads to the best contrast between water bodies and non-water surfaces 
(Martinis et al., 2015a). As also the highest contrast ratio between water and 
non-water surfaces appears at higher system frequencies, TerraSAR-X offers 
the best preconditions for a successful derivation of the flood extent.

The TerraSAR-X Flood Service (see workflow in Fig. 2.2) has been designed 
to process enhanced ellipsoid corrected (EEC) and ground ellipsoid corrected 
(GEC) TerraSAR-X amplitude imagery of all acquisition modes (Starring Spot-
light, High Resolution SpotLight, SpotLight, Stripmap, ScanSAR, Wide Scan-
SAR), which are commonly delivered via ftp server.

In order to ensure immediate processing, the data download is triggered au-
tomatically through a Python script once the satellite scenes are available. When 
the download to the local file system has been completed, the data are extracted 
and the corresponding file structure is browsed for all relevant files, that is, the 
SAR data, the metadata.xml file, and the GIM. The GIM can be ordered as an 
optional auxiliary layer together with the EEC product and provides informa-
tion on the local incidence angle for each pixel of the geocoded SAR scene and 
on the presence of layover and shadow regions (Infoterra, 2008). In case no 
GIM has been ordered jointly with the TerraSAR-X data, this layer is computed 
automatically during the subsequent preprocessing steps based on the ASTER 
GDEM. The downloaded TerraSAR-X data are reprojected to geographical co-
ordinates (lat/lon, WGS84). This target system is also used for all global auxil-
iary data layer which are used in this processing chain: DEM, reference water 
masks, and HAND-EM.

The preprocessing of the TerraSAR-X amplitude data includes a radiomet-
ric calibration of the data to normalized radar cross-section (NRCS) σ0 [dB] in 
order to take account of incidence angle-related variations of the backscatter in 
satellite range direction and to reduce topographic effects. The radiometrically 
calibrated data is rescaled to an integer value range of [0,400] in order to derive 
positive values during all subsequent processing steps. In order to reduce the 
typical speckle effect of SAR imagery, a median filter of kernel size 3 × 3 is 
finally applied on the rescaled pixels.

For the unsupervised initialization of the flood classification, a parametric 
tile-based thresholding procedure is applied (Martinis et al., 2009, 2015b) by la-
beling all pixels with a backscatter value lower than a threshold to the class “wa-
ter.” Thresholding algorithms only extract adequate threshold values if the scene 



 A
n A

utom
atic System

 for N
ear- R

eal Tim
e Flood Extent  C

h
ap

ter |
 2

    13FIGURE 2.2 Workflow of the TerraSAR-X flood processing chain.



14    SECTION | 1 Monitoring and Modeling Flood Processes and Hazards

histogram is not uni-modal. Therefore, the capability of approaches to detect an 
adequate threshold in the histogram of the data depends on the a priori probabil-
ity of the classes. If, for example, the spatial extent of water bodies in large SAR 
scenes is low, the class-distributions cannot be modeled reliably. Within this ap-
proach, the threshold value is automatically computed using a hierarchical tile-
based thresholding procedure proposed by Martinis et al. (2009, 2015b), which 
solves the flood detection problem in even large-size radar data with small a 
priori class probabilities. The thresholding approach consists of the following 
processing steps: image tiling, tile selection, and sub-histogram based thresh-
olding of a small number of tiles of the entire SAR image.

In the first step, a bi-level quadtree structure is generated based on the SAR 
imagery. The data are divided into N quadratic non-overlapping sub-scenes of 
defined size c2 on level S+. Each parent tile is represented by four quadratic child 
objects of size (c/2)2 on level S−. Variable c is empirically defined to 400 pixels. 
A limited number of tiles are selected out of N according to the probability of the 
tiles to contain a bi-modal mixture distribution of the classes “water” and “non-
water.” This selection step is based on statistical hierarchical relations between 
parent and child objects in a bi-level quadtree representation of the data. Local 
threshold values are computed based on the Kittler and Illingworth minimum 
error thresholding approach (Kittler and Illingworth, 1986) using a cost func-
tion, which is based on statistical parameterization of the sub-histograms of all 
selected subsets as bi-modal Gaussian mixture distributions. Finally, one global 
threshold τ g  is derived by computing the arithmetic mean of the individual local 
thresholds. This is used to initially distinct open water surfaces and non-water 
areas in the SAR data. The standard deviation στ  of the local thresholds can be 
used as an indicator for a successful thresholding. If στ  exceeds an empirically 
derived critical threshold τσ  (e.g., 5.0 dB) a (sub-) histogram merging strategy 
is applied. In this case, τ g is directly computed from a merged histogram which 
is a combination of the distributions of the selected tiles.

The initial classification result is optimized using a fuzzy logic-based post-
classification approach by combining different information sources (Martinis 
et al., 2015b). For this purpose, a fuzzy set of four elements is built consisting 
of the backscatter (σ 0), digital elevation (h) and slope (s) information as well 
as the extent (a) of the initially extracted water objects. The elements of the 
fuzzy set are defined by standard S and Z membership functions (Pal and Rosen-
feld, 1988), which express the degree of an element's membership m f  to the 
class water within the interval [0, 1], where 0 denotes minimum and 1 indicates 
maximum class membership. The membership degree is defined by the fuzzy 
thresholds x1  and x2  and the position of the crossover point xc  (i.e., the half 
width of the fuzzy curve).

The fuzzy threshold values for each element are either determined based on 
statistical computations or are set empirically. False positives are commonly 
caused by objects with a low surface roughness and therefore low backscatter 
similar to calm water surfaces, such as streets and bare ground or radar shadow 

τg

στ
στ 

τσ
τg

σ0

mf

x1x2 xc
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behind vertical objects. Elevation information is integrated into the fuzzy-logic 
based post-classification step to improve the classification accuracy through 
simple hydrological assumptions, that is, by reducing the membership degree of 
an image element in dependence of the height above the main water area of the 
initially derived water areas by applying the standard Z membership function.

The fuzzy thresholds of the elevation information are defined as:

µ=x h h water1[ ] ( ) 
(2.1)

and

µ σ= + σx f * ,h h water h water2[ ] ( ) ( ) 
(2.2)

where µ ( )h water  and σ ( )h water  are the mean and standard deviation of the eleva-
tion of all initially derived water pixels. Using this fuzzy set, the number of wa-
ter look-alikes in areas significantly higher in elevation than the mean elevation 
of the initially derived water objects is reduced. The factor σf is defined as:

σ= +σf 3.5.h water( ) 
(2.3)

This function was integrated to reduce the influence of the elevation in areas 
of low topography. The minimum value of σf  is defined by 0.5.

The standard Z function is used for describing the membership degree to 
open water areas according to the SAR backscatter. Full membership is as-
signed to image elements with a backscatter lower than the fuzzy threshold

µ=σ σ τx ,1[ ] ( )g0 0 
(2.4)

where µσ τ( )g0
 is the mean backscatter of the initial flood classification result by 

applying τ g to Y. No membership degree [0] is assigned to pixels greater than

τ=σ[ ]x .g2 0 
(2.5)

Slope information derived from the ASTER GDEM is integrated as a third 
element in the fuzzy system by applying the Z membership function with pa-
rameters =[ ]x 0 degreessl1 , =[ ]x 15 degreessl2  to reduce water look alikes in 
steep terrain.

The S membership function is applied on the extent α of the water bodies 
to reduce the number of dispersed small areas of low backscatter. No member-
ship degree is further assigned to regions with a size lower than =[ ]x 250a1 m2, 
maximum degree to areas with an extent greater than =[ ]x 1,000 ma2

2.
The average of the membership degrees is computed for each pixel in order 

to combine all fuzzy elements into one composite fuzzy set. Subsequently, the 
flood layer is calculated based on a threshold defuzzification step, which trans-
forms each image element with a membership degree > 0.6 into a crisp value, 
that is, a discrete semantic class.

x1[h]=µh(water)

x2[h]=µh(water)+fσ*σh(water),

µhwaterσhwater

fσ 

fσ=σh(water)+3.5.

fσ

 x1[σ0]=µσ0(τg),

µσ0τg
τg

x2σ0=τg.

x1sl=0 degreesx2sl=15  degrees

x1a=250
x2a=1,000 m²
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Region growing is performed in order to integrate pixel at the boundary of 
flood surfaces and non-flooded regions as well as to increase the spatial homo-
geneity of the detected flood plain. The initially detected water objects of the 
defuzzified classification result are used as seeds for dilating the water surface. 
The water regions are iteratively enlarged until a tolerance criterion is reached. 
Only image elements located in the neighborhood of the flooding are scanned to 
avoid the detection of water look-alikes distant from initially labeled water ar-
eas. The region growing tolerance criterion is defined by a relaxed fuzzy thresh-
old of >0.45. Therefore, the region growing step is controlled by both the SAR 
backscatter and auxiliary data (slope, elevation, and extent of water bodies).

The GIM is integrated into the processing chain to eliminate open water 
look-alikes in areas affected by radar shadow and layover. Further, HAND-EM 
is applied to mask out potential misclassifications in regions with a HAND-in-
dex of ≥15 m above the drainage network. Finally, in order to filter out isolated 
flood objects, a minimum mapping unit (MMU) of 30 pixels is applied. Small 
land objects which are fully enclosed by water are reclassified to water based 
on the same MMU value. The classification result is subsequently matched with 
the reference water mask described in Section 2.1.1 to separate normal water 
bodies and flooded areas.

For dissemination of the results, the flood mask, the water mask and the 
reference water mask, and satellite footprints are stored in a database and pub-
lished via a web-based user interface. The process chain is based on a frame-
work of Web Processing Services standard-compliant to the Open Geospatial 
Consortium (OGC).

2.1.3 Sentinel-1 Flood Service
The Sentinel-1 Flood Service (Twele et al., 2016; Martinis et al., 2018) is based 
on Ground Range Detected (GRD) data of the Sentinel-1 mission, operated by 
ESA in the frame of the European Union's Copernicus Programme. It consists 
of two systematically acquiring satellite sensors (Sentinel-1A and Sentinel-1B) 
with a repeat cycle of 6 days for the constellation. The satellites are equipped 
with a C-Band SAR payload (5.405 GHz). Over land masses, the Interferomet-
ric Wide Swath (IW) mode is used by default, acquiring dual-polarized radar 
data with VV or VV/VH polarization. In contrast to the on-demand satellite 
mission TerraSAR-X, the Sentinel-1 mission is based on a predefined conflict-
free observation scenario making optimum use of the SAR duty cycle with re-
spect to the technical constraints of the system (Torres et al., 2012). This is a 
major advantage for the implementation of fully automated processing chains as 
the time consuming step of tasking EO data can be omitted, which increases the 
possibility that the peak of the flood is captured. This enhances the value of the 
derived crisis information for flood emergency management activities. Howev-
er, in comparison to X-band SAR data like TerraSAR-X, the system parameters 
of Sentinel-1 are more challenging for extracting water surfaces: As the contrast 
between non-water and water areas decreases with increasing wavelength of the 
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SAR system (Drake and Shuchman, 1974), lower classification accuracies are 
usually achieved for C-band Sentinel-1 data. While the on-demand program-
ming capability of TerraSAR-X permits the acquisition of HH-polarized data, 
which are generally considered as superior to other polarizations in the context 
of flood mapping (Martinis et al., 2015a), the Sentinel-1 processing chain is de-
pendent on systematically acquired VV/VH-polarized IW-mode data. Further, 
most acquisition modes of X-band sensors have a higher spatial resolution than 
the Sentinel-1 IW mode (resolution ~20 m). This enables to extract the crisis 
information on the flood extent with greater detail.

The automatic Sentinel-1 processing chain is triggered through a Python-
script, which routinely polls the Copernicus Open Access Hub for new acquisi-
tions matching user-defined criteria. Using these criteria, for example, the time 
frame, geographical location, or orbit of suitable Sentinel-1 acquisitions can 
be specified. Once corresponding data are found, they are downloaded to the 
local file system and the thematic processor is executed. From experience, data 
are usually available on the Open Access Hub ~3–4 hours after data downlink. 
Shorter data latencies (time delays) can be achieved by receiving and prepro-
cessing Sentinel-1 data at local ground stations. To increase the delivery times 
of the flood extent products using the S-1FS, this processing chain has been also 
implemented at the satellite ground station at DLR Neustrelitz, which allows 
the automatic generation of flood maps within ~1 hour after data acquisition 
based on directly downlinked Sentinel-1 data over an acquisition cone covering 
most parts of Europe. This allows reducing the time delay between sensing and 
product delivery significantly.

After unzipping the downloaded data, the folder structure is searched for 
files relevant for the further processing, namely Sentinel-1 data in GeoTIFF-
format and Extensible Markup Language (XML) metadata used for radiometric 
calibration.

During the preprocessing step, a Range-Doppler terrain correction of Senti-
nel-1 data and radiometric calibration to sigma naught (dB) are performed us-
ing the Graph Processing Tool (GPT) of ESA's Sentinel Application Platform 
(SNAP). The GPT allows a consecutive execution of all individual preprocessing 
modules within a fully automated processing chain. Geometric distortions due 
to terrain effects are not considered in GRD imagery provided by ESA. There-
fore, the GRD data have to be terrain corrected to improve the geolocation accu-
racy of the data. SRTM DEM tiles corresponding to a given Sentinel-1 scene are 
automatically downloaded by SNAP. Based on the SRTM DEM, the Sentinel-1 
GRD imagery is terrain corrected and transformed to geographical coordinates 
(lat/lon, WGS84). After data preprocessing using SNAP, the calibrated data are 
filtered to reduce SAR inherent speckle noise and clipped in range and azimuth 
in order to remove image border noise. The result of the preprocessing is a re-
projected, radiometrically calibrated, and rescaled NRCS image.

The extraction of the flood extent in Sentinel-1 data is based on the 
same automatic hierarchical tile-based thresholding and fuzzy-logic based 
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post-classification approach as applied for flood mapping in TerraSAR-X imag-
ery described in Section 2.1.2. In addition, Sentinel-1 preevent time series data 
are used to compute a Sand Exclusion Layer (SEL), which is used to reduce 
overestimations of the flood extent related to permanent sand surfaces with a 
similar low backscatter as water bodies (Martinis et al., 2018). The SEL is sub-
tracted from an automatically computed flood mask to eliminate areas that fre-
quently have a low backscatter over time. This mainly improves the reliability 
of flood classification in arid regions. Due to computational reasons, the SEL is 
processed offline in order to be prepared in case of flood occurrence and, there-
fore, to be able to improve the NRT applicability of the Sentinel-1 flood service 
during flood rapid mapping activities.

The whole processing chain from the ingestion of Sentinel-1 data to the final 
classification result is implemented with an OGC compliant WPS framework 
(PyWPS). The processing results are stored as GeoTIFF raster files and are 
registered within a PostgreSQL/PostGIS database. Every output layer (“Water,” 
“Flood,” and “Reference Water”) is deployed via a Geoserver as a single web 
mapping service (WMS) layer set and visualized within a dedicated web client 
(Fig. 2.3).

2.1.4 Sentinel-2/Landsat-8 Flood Service
The Sentinel-2/Landsat-8 Flood Service (Wieland and Martinis, 2019; Wieland 
et al., 2019) is based on multi-spectral data of the Sentinel-2 and Landsat-8 sat-
ellites. The Sentinel-2 mission is operated by ESA in the frame of the European 
Union's Copernicus Programme and consists of two systematically acquiring 
satellites (Sentinel-2A and Sentinel-2B) with a repeat cycle of 5 days for the 
constellation. The Landsat-8 mission is operated by NASA and USGS and con-
sists of a single satellite with a repeat cycle of 16 days. Both satellite missions 
share a subset of spectral bands that are comparable in terms of their spectral 
bandwidth and spatial resolution. These are the Blue, Green, Red, Near Infrared 
(NIR), and Shortwave Infrared 1 and 2 (SWIR1 and SWIR2) bands. Therefore, 
these bands are used to create a generic flood service that handles both satellite 
sensors at once.

Fig. 2.4 shows an overview of the Sentinel-2/Landsat-8 flood service and 
its processing modules. Metadata and images are automatically harvested from 
the ESA Copernicus Open Access Hub and the USGS Earth Explorer and in-
gested into the flood service for preparation and analysis. The raw image bands 
are stacked and converted from Digital Numbers (DN) to Top of Atmosphere 
(TOA) reflectance. Further preparation steps, such as resampling, subsetting, 
pan-sharpening, or co-registration, are added depending on the particular task 
and study area at hand. The preprocessed image is fed into a convolutional neu-
ral network (CNN) for water segmentation that has been trained, tested, and 
validated on a global reference dataset of Landsat and Sentinel-2 data with six 
spectral bands. Clouds and cloud shadows are specifically handled by the net-
work to remove potential biases from downstream analysis.
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FIGURE 2.3 Workflow of the Sentinel-1 flood processing chain. (Modified from Martinis et al., 2018)
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The reference dataset is globally sampled to be representative for a variety 
of climatic, atmospheric, and land-cover conditions (Fig. 2.5). For each sample 
location, Landsat and Sentinel-2 images are acquired and manually delineated 
to create corresponding thematic masks. Masks cover classes “Water,” “Land,” 
“Snow/Ice,” “Cloud,” and “Cloud shadow”. Images are preprocessed and to-
gether with the corresponding thematic masks are split into non-overlapping 
tiles with 256 × 256 pixels size, shuffled and distributed into training (60%), 
validation (20%), and testing (20%) parts. The training dataset is augmented 
with random contrast, brightness, and rotation. The final dataset covers 94 loca-
tions, 136 images from Landsat and Sentinel-2 satellites, and is split into 1075 
tiles for training (5375 tiles with augmentation) and 358 tiles for validation and 
testing, respectively.

The CNN is based on the U-Net architecture, which consists of encoder 
and decoder parts for semantic segmentation (Ronneberger et al., 2015). The 
encoder takes input as a multi-band image of size 256 × 256 pixels and feeds 
it through five convolutional blocks. The basic convolutional block consists of 
two 3 × 3 convolutions with Rectified Linear Unit (ReLU) activation function, 
batch normalization, and 2 × 2 max pooling. In the decoder part, the feature 

FIGURE 2.4 Workflow of the Sentinel-2/Landsat flood processing chain.
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FIGURE 2.5 Sample locations of the reference dataset used for training, testing, and validation of the water segmentation method, superimposed on a 
global biome map that has been used as strata for sampling.
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map is up-sampled by a 2 × 2 transpose convolution followed by a concatena-
tion with the correspondingly cropped feature map from the decoder and two 
3 × 3 convolutions with ReLU activation and batch normalization. At the final 
layer, a 1 × 1 convolution with softmax activation function is used to map each 
feature vector to the number of classes. The categorical output is computed 
by maximizing the predicted probability vector. We use weighted categorical 
cross-entropy loss and optimize the weights during training using the adaptive 
moment estimation algorithm (Kingma and Ba, 2015).

By reclassification of the segmentation result, we derive binary masks for 
water and valid pixels. A binary reference water mask is derived from time-
series analysis of archive imagery and used to further distinguish permanent 
water bodies from temporarily flooded water. Hence, the final outputs of the 
flood mapping module are binary flood, valid pixel, and reference water masks.

Similar to the other flood services, the results are stored as GeoTIFF raster 
files and are registered within a PostgreSQL/PostGIS database. Outputs are de-
ployed via a Geoserver as WMS and visualized within a dedicated web client.

2.2 Flood duration mapping

In order to assess the damage related to flood events, the estimation of the flood 
duration is a very crucial parameter as it can influence crop yield, loss of in-
come, buildings, and infrastructure. Furthermore, it gives an indication about 
the temporal stability and the evolution of an inundation event and can be used 
to support disaster management activities in addition to single-date flood extent 
products by focusing relief activities to the most severely affected areas.

In order to estimate the flood duration on a regular basis and in NRT in 
case of disaster situations, a fully automated approach is developed (Rättich 
et al., 2020). Fig. 2.6 shows the workflow of the methodology.

As input automatically derived binary flood masks based on multi-sensorial 
EO data, the area of interest and user defined processing parameter are needed. 
The processor allows the user to choose the desired resolution of the output 
products. Furthermore, the user is able to choose the time period to be analyzed.

The first step in the preprocessing procedure is to reproject all flood masks 
to a uniform coordinate reference system (WGS84). The masks are clipped to 
the area of interest and merged if there are several observations from one satel-
lite sensor at the same day. The resampling to a common spatial resolution is 
done as default according to the flood mask with the highest spatial resolution 
or is based on an optionally user-defined parameter.

The preprocessed flood masks serve as input for the subsequent processing 
where a pixel-based examination of the time series is carried out in order to 
the detect the start and end date of all flood periods as well as all observation 
gaps. Based on this, the flood duration is computed using parallel processing to 
reduce the processing time. Two different kinds of flood duration products are 
generated: the Total Flood Duration (TFD) and the Backward Flood Duration 
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FIGURE 2.6 Workflow of flood duration estimation based on multi-sensor satellite data.
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(BFD). Further a quality layer is produced in order to indicate the uncertainty 
related to both flood duration products. The calculation of these products is 
explained in more detail in the following sections.

2.2.1 Backward Flood Duration
The BFD is computed for each pixel backwards in time from the latest satellite 
acquisition until the beginning of the inundation event. It is an indicator for 
the duration of an ongoing flood event in days and should be delivered to the 
user in NRT in order to provide an indication of the persistency of the flooding. 
Fig. 2.7 shows a schematic illustration of the computation of the BFD for one 
single pixel i over a time period of 20 days (D1–D20). Gray pixels mark dates 
where no flooding is detected (DN = 0) within the EO data while blue pixel are 
related to dates where flooding is derived (DN = 1). White pixels are days with-
out EO acquisitions. As soon as the latest EO acquisition is available on D20 the 
respective automatic flood processing chain is triggered in order to derive the 
most recent flood extent mask. The flood extent layer of D20 is then combined 
with previously derived flood extent masks in reverse order. For each pixel, the 
algorithm checks stepwise backwards in time if flooding is available (on D18, 
D17, D14, and D12) and stops when it is not covered by flooding any more on 
D11. Finally, the duration for each pixel is computed by subtracting the latest 
acquisition date (Dx) from the acquisition date that indicates the beginning of 
the flooding:

= −BFD D D .i x i y i, , 
(2.6)

This layer is updated as soon as more up-to-date EO data are available in the 
time after D20.

2.2.2 Total Flood Duration
TFD is computed for each pixel for a defined time period and might in contrast 
to the BDF cover more than one flood event. The duration of n (n≥1) flood 
events f is summed in order to calculate the duration of flood coverage over time 
in days:

∑= −
=

TFD D D ,i
f

n

d i c i
1

, ,

 

(2.7)

BFDi=Dx,i−Dy,i.

TFDi=∑f=1nDd,i−Dc,i ,

FIGURE 2.7 Schematic illustration for computing the backward flood duration of an ongo-
ing flood situation.
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where Dc,i is the first day with flooding (D2 in flood event 1 and D12 in flood 
event 2 in Fig. 2.8) and Dd,i is the last day with flooding (D12 in flood event 2 and 
D19 in flood event 2 in Fig. 2.8) within each single flood event.

2.2.3 Flood duration quality layer
The quality of the flood duration layers indirectly depends on the one hand 
on the quality of the single flood masks. The quality of the resulting open 
flood mask automatically derived by the respective flood processing chains 
has been validated within previous studies of the authors: flood masks derived 
by the TFS have been validated, for example, by Martinis et al. (2015b) and 
gained producer accuracies (PA) between 83.1% and 98.6% and user accura-
cies (UA) between 95.3% and 98.5%; flood masks derived by the S-1FS have 
been validated, for example, by Twele et al. (2016) and gained PAs between 
98.2% and 99.4% and UAs between 90.0% and 92.4%; flood masks derived by 
the S-2FS and LFS have been validated by Wieland and Martinis (2019) and 
gained values of Precision between 0.79 and 0.87 and values of Recall between 
0.93 and 0.99.

Furthermore the observation frequency and temporal coverage is also influ-
encing the quality of the flood duration. In the following, the calculation of the 
FDQ is described which indicates the uncertainty of each pixel i of the product 
by taking into account the acquisition frequency and distribution of acquisitions 
in the frame of a flood event. By computing the BFD, the uncertainty is ex-
pressed by the sum of a pre-event uncertainty (PreU) and co-event uncertainty 
(CoU). A third term, the post-event uncertainty (PostU), might be added by 
calculating the TFD:

∑( )= + +
=

FDQ PreU CoU PostU .i
f

n

1 

(2.8)

A number of flood n events f might be occurred within the defined period for 
calculating the FDQ. Therefore, the sum of PreU, CoU, and PostU hast to be 
summarized for each flood event.

The CoU is calculated by:

= −PreU D D ,i b i a i, , 
(2.9)

FDQi=∑f=1nPreU+CoU+PostU.

PreUi=Db,i−Da,i ,

FIGURE 2.8 Schematic illustration for computing the total flood duration.
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where Da,i is the first day without information (D2 in Fig. 2.9) after the first 
day where no flood is detected in the respective time period and Db,i is the last 
day without information (D4 in Fig. 2.9) before the first day where flood is 
detected.

CoU is computed based on the number m of gaps g resulting from days 
without observation between 2 days with flooding within a single inundation 
event:

∑( )( ) ( )= − + −
=

CoU D D D D m*0.5 / ,i
g

m

d i c i d i c i
1

, ,
2

, ,

 

(2.10)

where Dc,i is the first day without information (D6 in gap 1, D10 in gap 2, 
and D12 in gap 3 in Fig. 2.9) after a day with flooding in gap g and Dd,i is the 
first day with flooding after this gap (D9, D11, and D17 in Fig. 2.9). The influ-
ence of each gap on the uncertainty is weighted according to the temporal 
duration of the gap. Shorter gaps with low number of days without acquisi-
tion are related to a higher quality than longer gaps with more days without 
acquisition.

PoU is computed by:

= −PostU D D ,i f i e i, , 
(2.11)

where De,i is the first day without information (D18 in Fig. 2.9) after the last day 
with flood in the defined time period and Df,i is the last day without information 
(D19 in Fig. 2.9) before the first day without flooding.

3 Results

3.1 Study area and dataset

In this section, the results of the automatic system for flood extent and duration 
mapping based on multi-sensor satellite data are presented for the torrential in-
undation event related to tropical cyclone Idai, which hit the east coast of Africa 
in March 2019.

CoUi=∑g=1mDd,  i−Dc,  i²+Dd,  
i−Dc,  i*0.5/m ,

PostUi=Df,i−De,i ,

FIGURE 2.9 Schematic illustration for computing the flood duration quality layer.
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Cyclone Idai, which formed over the Northern Mozambique Channel on 
March 9, made landfall near Beira City (Sofala Province, Central Mozambique) 
on the night of March 14–15 and caused catastrophic damage in Mozambique, 
Zimbabwe, and Malawi. Idai brought very strong winds and caused severe 
flooding due to heavy rainfall. The Tropical Cyclone Idai is regarded as one of 
the worst tropical cyclones on record to affect Africa and the Southern Hemi-
sphere as a whole.

This study focuses on an area of interest (AOI) covering mainly the province 
of Sofala and minor parts of Manhica in Mozambique (Fig. 2.10). The AOI has 
a North to South expansion of ~139 km and an East to West expansion of ~ 
108 km (Fig. 2.10).

FIGURE 2.10 Study area in Mozambique. A hillshade computed based on SRTM-C band data 
serves as background. Map data from OpenStreetMap contributors. (Modified from Rättich et al. 
(2020).)
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For this study, in total 75 satellite datasets have been used which cover the 
AOI within the time frame 02/03/-07/04/2019 (Fig. 2.11):

•	 Sentinel-1: 33 Sentinel-1 GRD IW data acquired on 11 days with a spatial 
resolution of ~20 m

•	 TerraSAR-X: 4 data ScanSAR datasets with a spatial resolution of 18.5 m

•	 Sentinel-2: 12 L1C scenes of the Multi-Spectral Instrument (MSI) onboard 
Sentinel-2 with a spatial resolution of 10 m acquired on 12 days (36 tiles à 
100 × 100 km)

•	 Landsat-8: 2 scenes of the Operational Land Imager (OLI) onboard the 
Landsat-8 satellite with a spatial resolution of 30 m acquired on 1 day

3.2 Flood extent masks

Due to the predicted landfall of cyclone Idai, the International Charter “Space 
and Major Disasters” had been activated (Activation ID: 598) on March 
14, 2019, by the Brazilian Disaster and Risk Management National Centre 
(CENAD) on behalf of Mozambique's National Institute for Disaster Man-
agement (INGC) as well as by UNITAR/UNOSAT on behalf of the Interna-
tional Federation of Red Cross and Red Crescent Societies (IFRC) to support 
disaster management activities with satellite-based crisis information. In the 
frame of this activity, DLR applied its automatic flood processing chains to 
perform a monitoring of the extent and dynamic of the flood situation over 
time.

Flood extent products have been automatically derived from Sentinel-1, 
TerraSAR-X, Sentinel-2, and Landsat-8 datasets. In Fig. 2.12 examples of flood 
extent products are visualized for each of these satellites. Fig. 2.12A shows 
a Sentinel-1 scene (HH polarization) of 19/03/2019, Fig. 2.12B shows a Ter-
raSAR-X ScanSAR scene (HH polarization) of 23/03/2019, Fig. 2.12C shows 
a Sentinel-2 MSI scene of 25/03/2019, and Fig. 2.12D shows a Landsat-8 OLI 
scene of 30/03/2019. Fig. 2.12E–H show the derived flood extent separated 
from the reference water extent based on SWBD and on data of the Humanitar-
ian OpenStreetMap Team (HOT).

Fig. 2.12 shows the temporal coverage of the used satellite data. The 37-day 
period between 02/03/2019 and 07/04/2019 is covered in total on 25 days by the 
satellite missions Sentinel-1/-2, TerraSAR-X, and Landsat-8. Due to the day- 
and night-imaging capability, the radar missions Sentinel-1 and TerraSAR-X 

FIGURE 2.11 Temporal coverage of Sentinel-1, Sentinel-2, TerraSAR-X, and Landsat-8 
data.
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allow to derive systematically the flood extent and therefore the dynamic of the 
inundation event for the selected AOI.

Sentinel-2 data are highly cloud covered in the days during/after the landfall 
of the cyclone. However these Sentinel-2 data, together with Landsat-8, pro-
vide an added value to monitor the recession of the flooding over time after the 
movement of the cyclone from 17/03/2019 onwards.

Ten SAR satellite acquisitions (9 Sentinel-1 and 1 TerraSAR-X data) cover 
the whole AOI and are therefore used to compute the dynamic of the flood ex-
tent for the 37-days period for the study area (see Fig. 2.13). As no completely 
cloud-free optical dataset covering the whole AOI is available, no optical data 
was used for computing the dynamic of the flooded area. The classification 
results derived from Sentinel-1 data on 14/03/2019 (03:09 UTC) show that also 
before the landfall of the cyclone on the night of the 14th–15th, a significant part 
of the AOI is flooded (~682 km2). The flood peak is on 19/03/2019 where more 
than 1,800 km2 are flood-covered. These flooding occurred mainly in the catch-
ment area of River Búzi in the west of the study area where a lake of ~100 km 
length and ~25 km width was formed.

FIGURE 2.12 Exemplary results of the automatic multi-sensor flood mapping system over 
the study area in Mozambique. (A) Sentinel-1 of 19/03/2019 (© ESA); (B) TerraSAR-X of 
23/03/2019 (© DLR); (C) Sentinel-2 (RGB: Red, Green, Blue) of 25/03/2019 (© ESA); (D) Land-
sat-8 (RBG: SWIR-2, NIR, Blue) of 25/03/2019 (© USGS) and (E–H) derived single-temporal 
flood masks and reference water masks from SWBD and data of HOT. A mosaic of four Sentinel-2 
tiles (RGB: Red, Green, Blue) acquired on 02/12/2012 serves as background in E–H.
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Within a 5-day period between 20/03/2019 and 25/03/2019, the flood ex-
tent drastically reduced by more than 1,400 km2 to 400 km2. The reduction of 
the water extent occurred mainly in the central and southern parts of the AOI, 
whereas floods persisted in the northern part. In the subsequent time period 
until the 07/04/2019, the inundation reduced slowly by 300 km2 to an extent of 
~105 km2.

3.3 Flood duration products

Fig. 2.14 shows the BFD at the peak of the flood event on 19/03/2019. At this 
stage, especially the central and southern part of the study area is already flood-
ed since 7 days—regions which have been already flooded some days before the 
landfall of Idai on the night between the March 14th and 15th, 2019.

TFD in the study area in Mozambique for the observation period 02/03/2019–
07/04/2019 is depicted in Fig. 2.15. As it considers all flooded pixels during 
this time period, it shows a larger flood extent than the BFD in Fig. 2.14. The 
product shows extensive inundations of 14–20 days in the southern and northern 
part (along Pungwe river) of the study area. The area along Búzi river was also 
flooded for 1–10 days. An area of more than 2,500 km2 was flooded during 
the observation period. More than 1,000 km2 was flooded for a short duration 
(1–2 days) and more than 1,700 km2 area less than 1 week (1–7 days). Other 
regions were also inundated for longer time: in total more than 600 km2 for 
1–2 weeks and ~130 km2 for 2–3 weeks.

FIGURE 2.13 Evolution of the flood extent for the AOI in Mozambique derived from Senti-
nel-1 and TerraSAR-X data between 02/03/2019 and 07/04/2019.
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The quality layer for the TFD product is visualized in Fig. 2.16. It shows 
relative uncertainties reflecting the observation frequency and the distribution 
of acquisitions. Due to the high temporal coverage of satellite acquisitions for 
this flood event relative high certainty values between 1 and 19 are achieved 
for most regions. Higher uncertainties are mainly related to partial cloud cov-
erage on one or more acquisition dates of Sentinel-2 and Landsat-8, which 
cause a lower availability of valid observations and the prolongation of acqui-
sition gaps.

FIGURE 2.14 Backward Flood Duration over the AOI in Mozambique derived from Sen-
tinel-1, TerraSAR-X, and Sentinel-2 data in the period 02/03/2019–19/03/2019. The reference 
water extent is based on SWBD and data of HOT. (Modified from Rättich et al. (2020).)
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The results illustrate the usefulness of the flood duration products for a com-
prehensive flood monitoring at specific locations over time. The proposed ap-
proach is able to automatically generate the TFD and BFD product as well as 
a corresponding Flood Quality in NRT based on flood masks derived from the 
flood services described in Section 2. The BFD can be used as an indicator for 
the duration of an ongoing flood event in days and should be assessable to users 
involved in disaster management activities in NRT in order to provide informa-
tion about the persistency of a current flood event. The TFD can be useful for 
scientific questions, for example, a long-term comparison of annually recurring 

FIGURE 2.15 Total Flood Duration over the AOI in Mozambique derived from Sentinel-1, 
TerraSAR-X, Sentinel-2, and Landsat-8 data in the period 02/03/2019–07/04/2019. The refer-
ence water extent is based on SWBD and data of HOT. (Modified from Rättich et al. (2020).)
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hydrological phenomena or can be used damage indicator for insurance compa-
nies providing climate risk insurance products.

4 Conclusion

Flood extent maps derived from EO data are an important information source 
for effective flood disaster management. Due to the fact that flood masks based 
on only one satellite mission are in general not sufficient to monitor the evolu-
tion of large-scale inundation event over time due to revisit time and coverage 

FIGURE 2.16 Quality layer for the TFD based on Sentinel-1, TerraSAR-X, Sentinel-2, and 
Landsat-8 data. The reference water extent is based on SWBD and data of HOT. A mosaic of four 
Sentinel-2 tiles (RGB: Red, Green, Blue) acquired on 02/12/2018 and 02/12/2018 is used as back-
ground. (Modified from Rättich et al. (2020).)
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of polar orbiting EO missions. This study presents an automatic system for NRT 
flood extent and duration mapping based on multi-sensor satellite data. Flood 
masks are automatically derived using the four satellite missions Sentinel-1, 
Sentinel-2, TerraSAR-X, and Landsat-8. Two different kinds of flood duration 
layers are computed in order to provide on the one hand NRT information about 
the duration of an ongoing flood for each image element within a BFD layer 
and on the other hand, the total duration of flood coverage for each individual 
pixel for a predefined time period, which could potentially cover several flood 
events. A quality layer is computed in addition, which gives information about 
the reliability of the flood duration products by taking into account pre-event, 
co-event and, in computing the total flood duration, also post-event uncertain-
ties. In general, the quality of the flood duration products increases with increas-
ing temporal resolution of the used virtual satellite constellation by combining 
flood masks of different sensors.

In this study, the proposed multi-sensor flood monitoring system was dem-
onstrated over an AOI of ~15,000 km2 in Mozambique affected by severe flood 
event caused by cyclone Idai in March 2019. For this purpose, 75 satellite imag-
es have been automatically analyzed within the time frame 02/03/–07/04/2019. 
The analysis shows the evolution of the flooding over time, with a maximum 
observed flood extent of more than 1,800 km2 on 19/03/2019, at about 4 days 
after the landfall of the cyclone, and a fast recession of the inundation extent 
within the time period 20/03/–25/03/2019 by ~1,000 km2, followed by a much 
slower recession to nearly pre-event conditions until 07/03/2019.

Two flood duration products, the BFD and TFD, automatically derived from 
preprocessed multi-sensor flood masks are useful for different applications, for 
example, to support disaster management or relief activities of humanitarian aid 
organizations. The information about regional differences in flood duration over 
time helps to estimate the damage from flood events more precisely enabling a 
more efficient response to flood situations.

Future work will focus on the integration of further satellite mission within 
the proposed automatic multi-sensor flood monitoring system in order to in-
crease the temporal acquisition frequency and the quality of flood duration 
products. Due to the advantages of SAR in systematic flood monitoring appli-
cations, the integration of additional current (e.g., RADARSAT Constellation 
Mission, RCM) or future radar missions such as TanDEM-L or the High Reso-
lution Wide Swath (HRWS) mission is of major relevance.

List of acronyms

AOI Area of Interest
BFD Backward Flood Duration
CMES Copernicus Emergency Management Service
CNN Convolutional Neural Network
CoU Co-event Uncertainty
DEM Digital Elevation Model
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DLR German Aerospace Center
DN Digital Numbers
EEC Enhanced Ellipsoid Corrected
EO Earth Observation
ESA European Space Agency
FDQ Flood Duration Quality
GEC Ground Ellipsoid Corrected
GIM Geocoded Incidence Angle Mask
GPT Graph Processing Tool
GRD Ground Range Detected
HAND Height Above Nearest Drainage
HAND-EM Height Above Nearest Drainage Exclusion Mask
HOT Humanitarian Open Streetmap Team
HRWS High Resolution Wide Swath
IW Interferometric Wide Swath
LFS Landsat Flood Service
NRCS Normalized Radar Cross Section
NRT Near real-time
OGC Open Geospatial Consortium
PostU Post-event Uncertainty
PPP Public–private partnership
PreU Pre-event Uncertainty
RCM RADARSAT Constellation Mission
ReLU Rectified Linear Unit
S-1FS Sentinel-1 Flood Service
S-2FS Sentinel-2 Flood Service
SAR Synthetic Aperture Radar
SEL Sand Exclusion Layer
SNAP Sentinel Application Platform
SRTM Shuttle Radar Topgraphy Mission
SWBD SRTM Water Body Data
TOA Top of Atmosphere
TFD Total Flood Duration
TFS TerraSAR-X Flood Service
WPS Web Mapping Service
WPS Web Processing Service
XML Extensible Markup Language
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Chapter 3

Flood Mapping with Passive 
Microwave Remote Sensing: 
Current Capabilities and 
Directions for Future 
Development

John F. Galantowicz and Jeff Picton
Atmospheric and Environmental Research, Inc., Lexington, MA, United States

1 Introduction

Passive microwave remote sensing—also known as microwave radiometry—is 
an unexpectedly effective way to map floods from space. Unlike other remote 
sensing technologies, microwave sensor data are course-resolution, producing 
unfocused imagery that must be heavily processed to make flood maps. Few 
flood mapping systems use microwave data and relatively few researchers are 
familiar with methods for analyzing it. Yet microwave remote sensing has unique 
features that make it a valuable tool for detecting floods across the globe, moni-
toring floods in near real–time (NRT), and analyzing historical floods to assess 
flood risk and prepare for future events. For example, microwave radiation pene-
trates clouds, which means that microwave sensors are often the first to observe a 
flood after rains have ceased; microwave sensors make observations day or night, 
which makes them more likely to observe peak flood extents; and a series of 
spaceborne microwave sensors have left a consistent data record extending back 
to 1998, allowing for historical flood reconstruction and creation of baseline 
flood frequency statistics against which future flood severities can be evaluated.

In this chapter, we describe the theoretical underpinnings for flood mapping 
from microwave radiometry and their practical application in the FloodScan 
flood mapping system (Galantowicz et al., 2018a,b). FloodScan is a mature, 
well-tested system that maps flooding in NRT. The system was originally de-
signed for use in parametric insurance applications that prioritize automated 
data processing with consistency, objectivity, and reliability at continental 
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scales. FloodScan achieves these goals with its standard flood extent depiction 
(SFED) algorithm product. SFED processing relies entirely on coarse resolu-
tion passive microwave data because of its frequent coverage over more than 
20 years and its ongoing availability. FloodScan’s downscaling algorithm over-
comes microwave resolution limitations to make flood maps at scales around 90 
m, which is sufficiently high-resolution to assess the flood impacts on human 
welfare and across economic sectors on national scales.

1.1 Microwave flood mapping for sovereign risk transfer

FloodScan’s SFED algorithm was originally developed for the African Risk 
Capacity’s (ARC) sovereign-level natural disaster-risk transfer program. 
ARC’s use case for SFED provides a case study in flood mapping system de-
sign for an end-user’s application. ARC is a specialized agency of the African 
Union (AU) established to help African governments improve their capacities 
to better plan, prepare, and respond to extreme weather events and natural di-
sasters. ARC’s innovation in this regard is to structure insurance-like sovereign 
risk transfer programs with funds to be automatically paid out to participating 
states based on an algorithmic trigger. ARC has coordinated disaster insurance 
policies for African governments since 2014 based on this parametric index 
approach underpinned by remote sensing data. ARC’s drought index incorpo-
rates satellite-based rainfall data and SFED was designed to support a flood 
index. ARC ties these indices to disaster response costs through vulnerability 
factors like household resilience and exposure to losses, working with member 
states to calibrate the indices to in-country records where possible. Once cali-
brated, ARC’s program is designed to automatically trigger insurance payouts 
when an index crosses thresholds agreed upon in advance with the countries 
involved.

ARC’s concept for a flood index put requirements on the SFED product that 
shaped how it would be derived and delivered. First, there had to be at least  
20 years of historical data for index calibration against past disaster response 
costs. Second, historical SFED had to be produced using the same algorithm 
as the NRT processing system to guarantee consistency with payout triggering 
levels calibrated with historical data. Third, the algorithm had to be consistent 
across AU countries, transparently produced, and algorithmically objective to 
build trust with participating states and investors. And lastly, SFED produc-
tion had to be reliable in NRT with a daily cadence and less than 24-hour la-
tency to support rapid payouts while a disaster takes shape. A key SFED design 
trade-off was to emphasize false positive reduction at the expense of small flood 
detection. This approach was viewed as acceptable because the disasters of in-
terest were expected to be large-scale events with national impacts. Neverthe-
less, SFED’s low sensitivity to urban flooding and high noise levels near coasts 
(discussed later) leave a gap in flood disaster coverage that may need to be 
addressed by other means.
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1.2 Managing flood map ambiguities in applications

Interest in rapid flood mapping for disaster response has motivated the devel-
opment of additional FloodScan algorithm modes to complement the conser-
vatively designed SFED product. These modes do away with FloodScan steps 
designed to filter out false positives and smooth over noise, providing time-
lier updates with a better chance of depicting maximum flood extents. At the 
same time, they expose more of the algorithm trade space between flood map 
performance consistency—embodied in SFED—and increased false positive 
risk. Users of rapidly generated flood mapping products must be aware of these 
trades-offs so they can make appropriate use of the data in their applications. To 
this end, we demonstrate three additional algorithm products designed to facili-
tate end-user flood map interpretation: a dual flood classification that includes 
flooding mapped from marginal signals; a flood occurrence probability that 
quantifies flood occurrence likelihood everywhere; and a flood depth estimate 
that shows where flood impacts may be highest. A secondary objective of these 
demonstration products is to encourage other flood map producers to consider 
the uncertainties in their products and develop similar ways to present uncertain 
data to end-users.

2 Methods for passive microwave remote sensing for flood 
mapping

Passive microwave remote sensing involves the measurement of earth-emitted 
thermal radiation at frequencies from 1 to 100 GHz. Microwave signals across 
this spectrum have varying sensitivities to a number of geophysical parameters 
important for environmental monitoring including land surface temperature, 
soil moisture, and snow cover; sea ice, temperature, and winds; and atmospheric 
temperature, water vapor, and clouds. Although microwave sensitivity to flood-
ing is a natural complement to these other sensitivities, their presence requires 
that flood mapping methods account for them explicitly to minimize errors.

Land surface passive microwave remote sensing techniques are rooted in ex-
perimental and theoretical research that accelerated with the launch of the first 
satellites dedicated to environmental remote sensing in the early 1970s (Ulaby 
et al., 1981). By the mid 1980s much of the foundational science of micro-
wave radiometry had been established from field and laboratory studies and the 
limited amount of overhead sensor data available to that point from satellites 
or aircrafts. More routine satellite operations began with the Scanning Multi-
channel Microwave Radiometer (SMMR) in 1978 followed by the Special Sen-
sor Microwave Imager (SSM/I) series in 1987. SSM/I was the first sensor with 
measurement characteristics suitable for frequent flood mapping, although its 
resolution meant that it was only sensitive to the largest floods. Microwave sens-
ing at resolutions more practical for flood mapping started in 1998 with TMI, 
which only covered the tropics, followed in 2002 by AMSR-E, which provided 
global coverage (Table 3.1). By leveraging passive microwave satellite data  
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TABLE 3.1 Microwave sensors and satellite platforms carrying them.

Sensor Platform Operational period

Footprint resolution

Notes19 GHz 37 GHz

SSM/Ib DMSP F11 12/1991–5/2000 69 × 43 km 37 × 28 km Coarsest resolution; useful for 
largest floodsDMSP F13 5/1995–11/2009

DMSP F14 5/1997–8/2008

DMSP F15 12/1999–present

TMIc TRMM 12/1997–9/2014 30 × 18 km/35 × 21 kma 16 × 9 km/18 × 10 kma Tropical orbit covers 38° S–38° N 
latitude

AMSR-Ed NASA Aqua 6/2002–10/2011 27 × 17 km 14 × 10 km Key mission for global flood  
mapping algorithm development

AMSR2e JAXA GCOM-W1 7/2012–present 22 × 14 km 12 × 7 km AMSR-E successor

GMIf GPM 3/2014–present 18 × 11 km 16 × 9 km Non-Sun-synchronous orbit  
covers 65° S–65° N latitude

Planned future missions

AMSR3 JAXA GOSAT-3 Launch ≥2023 — — AMSR2 successor

MWIg DoD WSF-M Launch ≥2022 — —

aTMI resolution increased in August 2001 when the TRMM satellite orbital altitude was boosted from 350 to 400 km.
bDefense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (http://www.ncdc.noaa.gov/oa/rsad/ssmi/swath/index.html).
cTropical Rainfall Measuring Mission (TRMM) Microwave Imager (http://trmm.gsfc.nasa.gov/).
dNational Aeronautics and Space Administration (NASA) Advanced Microwave Scanning Radiometer-EOS (http://nsidc.org/data/amsre).
eJapan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2, Global Change Observation Mission 1st-Water (http://www.jaxa.jp/projects/sat/
gcom_w/index_e.html).
fNASA Global Precipitation Measurement (GPM) Microwave Imager (http://pmm.nasa.gov/).
gUS Department of Defense (DoD) Weather Satellite Follow-on – Microwave (WSF-M) Microwave Imager.

http://www.ncdc.noaa.gov/oa/rsad/ssmi/swath/index.html
http://trmm.gsfc.nasa.gov/
http://nsidc.org/data/amsre
http://www.jaxa.jp/projects/sat/gcom_w/index_e.html
http://www.jaxa.jp/projects/sat/gcom_w/index_e.html
http://pmm.nasa.gov/
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extending back to 1998, modern algorithms can perform retrospective process-
ing to build a uniquely consistent historical record of flooding.

Although microwave sensors like those in Table 3.1 were originally de-
signed for other purposes, they share a number of features that make them suit-
able for flood mapping. First, they use a conical scanning geometry that results 
in an observation beam that intersects the earth’s surface at a near-constant 
incidence angle. From this geometry, they can separately measure changes in 
vertically and horizontally polarized radiation related to flooding. They also 
carry channels in the 19- and 37-GHz microwave bands where flooding has a 
large signal relative to other land surface processes and atmospheric effects are 
largely correctable. With the exception of SSM/I, they all make 37-GHz band 
measurements at better than 22-km resolution, which is a key metric for sensi-
tivity to flood extent. And with the exception of TMI, whose tropical orbit limits 
its ability to reach higher latitudes, all are in orbits that provide global cover-
age more than once per day on average. Finally, they all measure radiation in 
channels useful for detecting rain, which interferes with earth-leaving signals, 
and snow and frozen ground, which make dry land emission hard to predict; 
flood mapping algorithms are unlikely to produce consistent results under these 
conditions.

The long passive microwave data record means that there are ample data 
for calibrating and training flood detection and mapping algorithms and us-
ing them to reconstruct historical flooding. For example, the Global Inundation 
Extent from Multi-Satellites (GIEMS), which provides monthly mean surface 
water extent globally, 1993–2007, on a 0.25° × 0.25° grid, calibrates passive 
microwave remote sensing with scatterometer and visible/near-infrared data 
(Prigent et al., 2007). The River Watch algorithm correlates passive microwave 
data and river stage to estimate daily river discharge at a limited set of satellite 
gauging stations (Brakenridge et al., 2016). The Global Flood Detection System 
(GFDS) expands upon the River Watch approach to make a true global product 
by forgoing calibration to a runoff model and instead chooses neighboring pix-
els as dry land calibration points in real time (Kugler and De Groeve, 2007; De 
Groeve, 2010). GFDS continues to use long time series to set flood detection 
thresholds. The remainder of this section uses the FloodScan algorithm to illus-
trate passive microwave retrieval techniques. Although the methods described 
are specific to FloodScan, the physical principles behind the methods and many 
of the processing steps are shared with these other algorithms.

2.1 Estimating flooded fraction

The starting point for microwave flood detection and mapping is the contrasting 
ways that microwave radiation interacts with the surface-atmosphere boundary 
in flooded versus unflooded (dry land) areas. This surface interaction is quan-
tified as the emissivity, the ratio between the emitted brightness temperature, 
TB, and physical surface temperature, Ts (Table 3.2). Because conical-scanning  
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TABLE 3.2 Definition of microwave remote sensing terminology used in this 
chapter.

Term Definition

Brightness tempera-
ture (herein TB or TB)

A passive microwave sensor measurement of radiation 
intensity calibrated to temperature units in kelvin, K.

Polarization The orientation of the measured microwave radiation  
wave relative to the Earth’s surface at the point of incidence.  
Microwave sensors use filters to make radiation  
measurements representing specific polarizations.

•	 TB	with	vertical	
polarization  
(V-pol.)

A TB measurement representing radiation intensity isolated 
to wave oscillations in a plane perpendicular to the Earth 
surface at the point of incidence.

•	 TB	with	horizontal	
polarization  
(H-pol.)

A TB measurement representing radiation intensity isolated 
to wave oscillations tangent (horizontal) to the Earth surface 
at the point of incidence.

Emissivity, ev or eh The ratio of V-pol. or H-pol. TB to surface temperature.  
Varies from 0 to 1.

Point of incidence The central geographic location at which the sensor points 
during a measurement.

Earth incidence angle The angle at which a sensor’s line of sight intersects with 
the Earth surface.

Footprint The relative weighting pattern in which geographic areas 
contribute to a microwave measurement; the peak contribu-
tion weight is typically at or near the point of incidence.

Field of view (FOV) The pattern on the Earth surface at which the footprint  
contribution pattern is equal to 1/2 the peak contribution at 
the point of incidence. Sensor footprint FOVs are approxi-
mately elliptical. FloodScan’s footprint matching process 
creates approximately circular composite footprint FOVs.

Footprint size or FOV 
size

The geographic size of the FOV, expressed either as the 
average FOV diameter or as the distances across the FOV 
major and minor axes.

Resolution A relative term referring to the size of the geographic area 
represented by a sensor measurement or other quantity; FOV 
size is one measure of resolution and is used as such here.

Frequency or band Central microwave frequency at which a sensor channel 
operates, for example, 19 GHz, 37 GHz, etc.

Channel The combined frequency and polarization at which a  
sensor operates and defining a brightness temperature 
measurement, for example, 19 GHz vertical polarization 
abbreviated as 19 GHz V-pol. or 19 V.

Flooded fraction The flooded area of a footprint as a footprint-weighed  
fraction of the total footprint area.

Downscaling The conversion of lower resolution flooded fraction  
estimates to a flood extent depiction at a finer resolution.
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sensors view the earth at near-constant oblique incidence angles, we expect 
some earth surface emissivity behaviors to be consistent: V-pol. emissivities are 
greater than H-pol.; water emissivities are less than dry land; and water lowers 
H-pol. emissivity more than V-pol. The goal of a microwave flood mapping al-
gorithm is to apply these general rules to infer flooding effect’s on TB measure-
ments at a specific place and time.

A mixing model approximates the way that flooded area fraction within a 
microwave footprint proportionately affects a TB measurement. With the as-
sumption that flooded and unflooded land and persistent open water areas are 
otherwise homogeneous, a simple mixing model can be written as:

( )= + + − −T f T f T f f T1B f B f pow B w pow f B dry, , , (3.1)

where ff is flooded fraction, fpow is persistent open water fraction, and dry land 
is the remaining fraction, ( )− −f f1 pow f . (We use the term persistent instead 
of permanent to characterize the open water amount judged to be just be-
low that of flooding.) The mixing model associates each surface type with 
a brightness temperature, TB,x, emissivity, ex, and surface temperature, Tx, 
which are related by:

τ τ ( )= + − +T e T e T T1 ,B x atm x x atm x dn up, (3.2)

where τatm, Tdn, and Tup are atmospheric transmittance and downwelling and up-
welling brightness temperature contributions, respectively. An algorithm could 
easily invert these equations for ff if all the other terms were known. In fact, the 
fpow and atmospheric terms can be well estimated from global static databases 
and numerical weather models, respectively, leaving emissivities and surface 
temperatures as the most significant unknowns.

A convenient way to minimize surface temperature effects is to use a polar-
ization ratio index, PRI:

( )
( )=

−
+

PRI
T T

T T
,Bv Bh

Bv Bh

 (3.3)

where TBv and TBh are V-pol. and H-pol. data at the same microwave frequency 
with estimates of τatm and Tup effects removed. PRI carries the flooded fraction 
signal with a slight nonlinearity that the FloodScan algorithm adjusts for with 
a simple transform

= + +Q sqrt PRI a bPRI( ) , (3.4)

where a and b are empirical constants. When computed from microwave sensor 
data, Q varies linearly with water fraction from about 0.34 for dry land to 0.46 
for 100% open water (Fig. 3.1).

TB=ffTB,f+fpowTB,w+1−fpow−f
fTB,dry

1−fpow−ff

TB,x=τatmexTx+τatm1−exTdn+Tup,

PRI=TBv−TBhTBv+TBh,

Q=sqrt(PRI+a)+bPRI,
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FIGURE 3.1 Empirical estimation of Qw. (A) 37 GHz Q measured around Lake Victoria on January 1, 2003–10 with best fit line and Qw estimate where water 
fraction is 1; (B) 37 GHz Qw and Qdry derived for each day of year showing Qw seasonal variation and relative Qdry stability. Note that Qw is systematically different 
between ascending (daytime) and descending passes of sun-synchronous satellites. (Credit: Original)
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If we assume that Q linearity with persistent water fraction also applies to 
flooded fraction, we can reformulate the mixing model Eq. (3.1) as

( )= + + − −Q f Q f Q f f Q1obs f f pow w pow f dry (3.5)

where Qobs is computed from observations. Solving for flooded fraction yields

( )
=

− − −
−

f
Q f Q f Q

Q Q

1
.f

obs pow w pow dry

f dry

 (3.6)

Of the terms in Eq. (3.6), Qdry is the most difficult to estimate in real-time. 
We can define fpow from a high-resolution reference static open water database 
(e.g., Hansen et al., 2013; Pekel et al., 2016); we can empirically derive Qw 
(Fig. 3.1); and we can assume Qf is equal to Qw. This last assumption is not 
strictly valid because some flooding will be partially obscured by vegetation. 
However, given vegetation height heterogeneity and flood water depth uncer-
tainty, an alternative model for Qf is unlikely to be more accurate.

FloodScan’s Qdry model is designed to provide a conservative Qdry value 
(i.e., leading to lower flooded fraction estimates) where conditions are most 
uncertain and a more liberal value where conditions are stable. The largest Qdry 
uncertainty drivers include vegetation, soil moisture, and residual surface tem-
perature effects. (Snow and frozen ground are detected and avoided for flood 
mapping.) All three are in part predictable at a place and time from their his-
torical averages, year-to-year variability, recent history, and nearby conditions. 
FloodScan predicts Qdry using metrics computed from historical Q time series 
with 31- and 61-day median filters applied to weed out most transient flooding. 
For each grid point and day of year, year-over-year average Q and variance sta-
tistics indicate typical Qdry seasonality, rate of change, and predictability. Where 
Q is most predictable (e.g., evergreen forests), Qdry tends to the historical av-
erage Q. Where Qdry is less predictable (e.g., arid region rainy seasons), Qdry 
tends to recent conditions propagated to the current day using historical average 
seasonality. Where flooding may have contaminated recent Q values, Qdry tends 
toward a prediction based on neighboring, unflooded grid points. And finally, 
where regular flooding contaminates historical Q (e.g., seasonal wetlands), Qdry 
falls back to a separate predictor based on satellite vegetation cover indices.

With Qdry estimated and Eq. (3.6) executed for each Q observation, the 
FloodScan algorithm checks for false positives, filters noise, and produces a 
final daily flooded fraction estimate (Fig. 3.2). False positive flagging detects 
and eliminates large jumps in single observation flooded fraction (flashes) that 
are too fast and occur over scales too large to be flooding (e.g., affecting flooded 
fraction over more than 10,000 km2). Flashes are likely the effects of soil mois-
ture immediately following large scale rainstorms. After eliminating flashes, 
rain, and frozen conditions, the algorithm filters noise by computing a 2–3-
day weighted average over all available flooded fraction values, with averaging  

Qobs=ffQf+fpowQw+1−fpow−ffQdry

ff=Qobs−fpowQw−1−fpowQdry
Qf−Qdry.
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period length dependent on historical noisiness. Finally, to filter out residual 
noise, the algorithm applies a minimum detectable flooded fraction (MDFF) 
threshold. MDFF varies globally and by day of year with a typical value of 
about 5%, meaning that about 5% flooding over a 22-km microwave footprint 
is typically required to confidently detect and map flooding. Although filter-
ing by MDFF is necessary to weed out false positives in automated processing 
(Fig. 3.3A), it can be seen as too strict during extreme weather events when 
there is less uncertainty about whether or not flooding is occurring.

FIGURE 3.2 Time series of Q, Qdry, and FloodScan flooded fraction on the Niger River, 
Onitsha, Nigeria, 2007. (A) Relationship between observed Q data and algorithm Qdry for 2007, 
with Q data from other years showing year to year variance. There is minimal Q variance in the dry 
season (prior to day 200) relative to the wet season, whose start is marked by more frequent rain-
flagged data. Rain decreases Q, causing flood false negatives if undetected. (B) Flooded fraction 
single pass data retrieval (Eq. (3.6)) and final algorithm estimate. Flooded fraction dry land noise 
falls below MDFF except at one point around day 60, which is likely to be a flood false positive. 
(Credit: Original)
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FIGURE 3.3 FloodScan flooded fraction before and after Hurricane Harvey landfall on August 25, 2017 showing the effects of MDFF. (A) August 19, 2017, 
when areas with flooded fraction below MDFF would likely be flood false positives if not suppressed; (B) September 1, 2017, when many areas with flooded fraction 
below MDFF are likely to be flooded given the amount of rainfall caused by Hurricane Harvey, notably in the Houston metro area (red box). Note that MDFF is larger 
at the coastline by design. (Credit: Original)
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2.2 Downscaling flooded fraction to map flooding

The idea behind downscaling is that of relative floodability: that there are inher-
ent characteristics that make some areas more likely to be flooded than others. 
Relative floodability in the FloodScan context is somewhat different than that 
of, say, flood risk zone mapping. Whereas flood risk zones take into account the 
climatological probability of flooding, relative floodability is concerned specifi-
cally with the likely flood water distribution given FloodScan’s flooded fraction 
estimates. The downscaling process effectively maps flooding pixel-by-pixel 
from high to low relative floodability areas until the total flood extent matches 
the retrieved flooded fraction.

Inputs to FloodScan’s relative floodability (RF) database include a hydro-
logically corrected Digital Elevation Model (DEM) and historical water occur-
rence data. The map scale is typically 90-m for continent-wide flood mapping 
but can be tailored to finer scales. RF begins as the height of each point relative 
to a downslope streamline or other sink, an index similar to height above near-
est drainage, or HAND (Nobre et al., 2011). Weighting and spatial smoothing 
is applied to increase RF for points nearest larger streams and to minimize dis-
continuities at drainage basin boundaries. Finally, RF is overridden where the 
annual water recurrence rate (Pekel et al., 2016) is non-zero or there is persistent 
open water.

FloodScan simplifies flooded fraction downscaling by first converting rela-
tive floodability to a flooded fraction threshold, ff0. The flooded fraction thresh-
old database relates each flood map point (e.g., 90-m scale) to flooded fraction 
(e.g., 22-km scale). With this transform, FloodScan interpolates flooded fraction 
to the flood map scale and evaluates f ff f 0>  to indicate flooding. The algo-
rithm then iteratively upscales the flood map back to flooded fractions at the 
microwave data scale, checks how closely the two flooded fractions match, and 
repeats the downscaling with adjustments until the two converge.

3 Current capabilities

The current FloodScan system includes historical datasets and an NRT process-
ing system designed to generate SFED products that are statistically consistent 
with prior data. The NRT system processes incoming satellite data continuously 
for daily flood product updates covering North and South America and Africa. 
Daily historical records extend back to 1998 in most of the Americas and Africa. 
As currently configured, the system produces the conservative SFED product 
with less than 24-hours delay from the end of the nominal product day. Ad-
ditional algorithm products discussed later are produced simultaneously or on 
demand from the same software suite.

The best way to evaluate SFED performance is through comparisons to 
flood maps derived from other remote sensing technologies. Direct compari-
sons to 20 flood maps made from 250-m resolution visible/infrared sensor 

ff>ff0
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data in Africa resulted in a mean mapping accuracy of 82% (i.e., percentage 
of pixels in agreement; Galantowicz et al., 2018b). Additional case studies 
show that performance is situationally dependent. For example, coastal areas 
are more susceptible to false positives and false negatives, and semi-arid ar-
eas like the Sahel are likely to have false positives during the rainy season. 
The remainder of this section provides two SFED performance verification 
examples and breaks down the different sources of uncertainty in the algo-
rithm.

3.1 Microwave flood mapping verification examples

One of FloodScan’s strengths is its ability to map large scale river flooding. 
This capability is demonstrated by comparing the automatically generated 
SFED product to a Landsat false color image captured on a clear day during 
major river flooding in the Central United States in Spring 2018 (Fig. 3.4). 
The main river floodplains appear to be full, which means that FloodScan’s 
relative floodability is a good indicator of flood likelihood. SFED misses 
apparent flooding in some relatively narrow floodplain sections but picks 
it up in others—a good demonstration of the how flood map accuracy is 
not strictly predicable based on flood extent alone. SFED also appears to 
be accurate in many areas where flood water pools while slowly draining 
through choke points in the hydrological system (e.g., the southeast corner 
of Fig. 3.4). Nevertheless, a pixel by pixel comparison is likely to show that 
SFED accuracy is about 80%–90% over this scene. Although an excellent 
score by algorithm verification standards, for end users with interests in an 
inaccurately mapped area the ambiguities can have serious consequences 
for decision making if they are not clearly presented as a part of flood map 
product dissemination.

The ability to update flood maps daily from microwave remote sensing 
make it ideal for capturing the extent of extreme floods quickly and for moni-
toring their evolution over time. These features are demonstrated using a days 
flooded metric computed from a series of daily SFED maps made in the after-
math of Cyclone Idai (Fig. 3.5). Idai was a massive slow-moving rainstorm 
that hit southeastern Africa in March 2019. After causing flooding in Malawi 
and moving back out to sea, Idai made landfall at Beira, Mozambique on 
March 14 and 15, and moved inland leaving disastrous inland flooding. By 
March 18, the SFED algorithm had mapped the “inland ocean” forming north-
west of Beira. The SFED days flooded metric shows that flooding stayed in 
some areas for weeks. A flood map derived from Sentinel-1 synthetic aperture 
radar (SAR) data collected on March 19 and 20 shows that SFED captured 
most flood features. In some areas SFED flooding extends beyond the SAR-
derived flood extent, which may indicate additional flooding present only dur-
ing early microwave satellite passes.
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FIGURE 3.4 FloodScan-Landsat comparison, March 3, 2018, Wabash and Ohio Rivers, Indiana, Illinois, and Kentucky. (A) 90-m SFED algorithm product; 
(B) 30-m Landsat false color image. (Credit: Original)
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3.2 Microwave flood mapping uncertainties and limitations

Understanding the uncertainties and limitations of any flood depiction method is 
the first step toward making practical use of the data. In many cases, flood map-
ping method limitations may be complemented by its strengths. For example, 
optical/infrared remote sensing methods make high-resolution, photo-realistic 
imagery whose interpretation for flood mapping is complicated by a variety of 
phenomenon—land cover, clouds, shadows, etc.—many of which might other-
wise be measurement subjects. Similarly, hydrological models can provide near 
ubiquitous coverage and forecasting capabilities but are limited by the accuracy 
of rainfall amount, location, and timing, among other things. Selecting a flood 
data source for a particular application requires a user to weigh the strengths 
and weaknesses of each source relative to the application’s needs for timeliness, 
accuracy, consistency, coverage, and temporal/spatial resolution.

The FloodScan method includes steps to mitigate known sources of uncer-
tainty in its passive microwave and downscaling processing steps. As a result, 
the uncertainties that propagate through to FloodScan’s products can be counter-
intuitive given what we know about microwave emission and sensing processes. 
Here, we list some of the major underlying uncertainty types in passive remote 
sensing of floods, explain how they may be expected to affect flood detection 
accuracy in practice, and describe alternative algorithm modes available to us-
ers to prioritize rapid updates or more sensitive flood detection over automated  

FIGURE 3.5 FloodScan-Sentinel-1 comparison, Cyclone Idai, Mozambique, March 2019. 
(A) SFED days flooded, March 6–April 8, 2019. (B) Flood map derived from Sentinel-1 SAR data, 
March 19–20, 2019. (Credit: Original)
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processing accuracy. Although this list is drawn from FloodScan processing 
system features, it provides examples of the general types of algorithm and 
flood map product design trade-offs that would generally apply across many 
flood remote sensing and modeling methods.

3.2.1 Flooded fraction noise and minimum detectability 
threshold
Any flooded fraction algorithm component (Eq. (3.6)) can contribute noise to 
the flooded fraction estimate. In a well calibrated algorithm, noise is just as 
likely to increase or decrease flooded fraction estimates relative to the true val-
ues (e.g., Fig. 3.2). As a result, the impact of noise on flood map usage depends 
to a large degree on whether flooding is occurring or not: when flooding is not 
present, flooded fraction noise can cause false positives; when flooding is pres-
ent, noise mostly affects the uncertainties on the flood map’s flooded/unflooded 
margins.

Because flooding is rare, it is important that flooded fraction algorithms sup-
press false positives due to noise in flood-free, or dry land, situations to avoid 
false alarm fatigue. FloodScan does this by applying the MDFF threshold to 
flooded fraction. While this conservative approach to dry land noise is most 
appropriate for automatic extreme flood detection and impact assessment, it is 
often too conservative for emergency managers, aid providers, and others who 
need NRT data when a recognized flood event is already developing. To address 
this use case, FloodScan includes a dual flood classification mode that ignores 
the MDFF threshold to map flooding based on unfiltered flooded fraction data. 
If used with caution, the unfiltered mode flood products can provide guidance 
regarding more isolated areas with potential flooding.

3.2.2 Urban areas
Urban areas present a challenging environment for flood remote sensing. Build-
ings and artificial surfaces create a naturally high baseline Qdry, reducing the 
contrast between flooded and unflooded areas. Buildings also limit the total 
flooded area and obscure some flooding when it occurs, further reducing the 
flood signal. Furthermore, rapid runoff and drainage may reduce flood duration 
in urban areas and therefore the chance that satellite sensors will make observa-
tions while flooding is underway. Since little can be done to correct for these 
limitations, it is important that flood map users be aware that flooding will gen-
erally be underestimated in urban areas and take steps to infer the true extent of 
at-risk areas from whatever flood extent data is available.

3.2.3 Flash false positives
By removing flooded fraction flashes, the FloodScan algorithm reduces flood 
false positive rates at the cost of missing or delaying some true flood detections. 
For example, while Hurricane Harvey dropped more than 1000 mm of rain over 



Flood Mapping with Passive Microwave Remote Sensing  Chapter | 3    55

southeastern Texas in August 2017, microwave sensors were unable to view the 
surface for several days. When microwave sensors made their first rain-free ob-
servations, the flooding was so extensive that it triggered FloodScan’s flash de-
tection. As a result, the FloodScan algorithm now includes a mode that ignores 
flash detections. This mode is ideal for gaining situational awareness as quickly 
as possible as large-scale flood events unfold. However, the mode will do poorly 
in automated or historical analyses where independent contextual information 
that confirms the likelihood of major flooding may be lacking.

3.2.4 Flood duration
Remote sensing method accuracy depends on whether satellite sensors observe 
a flood at its peak and this in turn depends on flood duration and satellite over-
pass timing. The types of satellites used for microwave remote sensing (Ta-
ble 3.1) have irregular overpass intervals. For example, with combined AMSR2 
and GMI sensor data, an area in the mid-latitudes is observed about 3-times 
per day on average, with 5% of days having just one observation and about 
1% of days have no observations. Furthermore, observations cannot be made 
through rain and ideally multi-observation averaging is needed for good noise 
mitigation. As a result, at least 2-day flood duration is desirable for reliable 
flood detection with current satellites. Clearly, the launch of more sensors suit-
able for flood mapping would help fill data gaps, but this seems unlikely for 
the foreseeable future without radical advances in microwave remote sensing 
technology that reduce sensor size without compromising capabilities. An al-
ternative FloodScan processing approach handles each satellite pass separately 
and skips averaging. This approach produces more rapid flood maps with more 
frequent updating. However, as with flash false positive detection suppression, 
flood maps made in this mode should be treated as more preliminary until con-
firmed independently or by subsequent observations.

3.2.5 Microwave footprint and persistent water uncertainty
Several factors affect a passive microwave flood mapping algorithm’s ability to 
know the exact area represented by each observation footprint: sensor pointing, 
footprint matching, and interpolation to an Earth grid, to name a few. Uncer-
tainty in footprint location mainly leads to errors in footprint-average persis-
tent open water fraction knowledge (Eq. (3.6)) and, if flooding is present, flood 
location. Persistent water fraction errors are largest within 5–10 km of coast-
lines because this is where even small footprint location errors can make large 
differences in flooded fraction retrievals. Multi-day flooded fraction averaging 
helps reduce footprint uncertainty noise to a degree but MDFF thresholds near 
coastlines must be larger than in inland areas to avoid frequent false positives 
(Fig. 3.3). As a result, even relatively large coastal floods may go undetected 
and unmapped. When coastal areas are a high priority for emergency manage-
ment, users have the option to use the FloodScan processing mode that skips 
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multiday averaging and handles each satellite pass separately. However, this 
mode’s products are useful near coastlines only in context with inland flooding 
or when flooding can be confirmed by other sources.

3.2.6 Downscaling: Topography and control structure uncertainty
Flooded fraction downscaling methods have inherent ambiguities arising from 
their underlying assumptions about the processes that control relative floodabil-
ity and drive flooding over large areas. However, uncertainties in two factors—
topography and control structures—affect flood map confidence in marginal 
areas. DEM vertical accuracies range from less than a meter for some national 
models to 6–9 m for global models (e.g., Yamazaki et al., 2017). Downscaling 
depends on relative elevation accuracy so DEM errors can affect flood maps 
on a point-by-point basis or over aggregate areas with hydrological connectiv-
ity. Control structures present two problems for downscaling: they may not be 
represented in elevation models at all and their integrity during flooding may 
be unknown. Approaches for managing these uncertainties include using flood 
depth in flooded areas and proximity to flooding in unflooded areas as confi-
dence indices.

3.2.7 Downscaling: Pluvial versus fluvial flooding
FloodScan’s downscaling method implicitly assumes that fluvial (river) flood-
ing conditions prevail—that water flowing down topographic gradients gener-
ally has time to reach equilibrium relative to streamlines. This means that large 
river flooding is better depicted than small stream and pluvial flooding. The 
exception is when pluvial flooding occurs far from major rivers. In this case, 
subtle variations in topography dictate how downscaling determines the likely 
location of flood water instead of the larger contrasts between floodplains and 
uplands. The greatest uncertainties arise when pluvial flooding occurs near flu-
vial flooding or in flat areas where terrain features too small to be represented in 
DEMs control the distribution of surface water. For these cases, a probabilistic 
approach to flood mapping is needed to indicate that flooding is present in the 
area but cannot be definitively located.

4 Directions for future development

The uncertainties and limitations of the standard FloodScan product have led 
to new algorithmic approaches for exposing more of the underlying data’s 
information content. Most of these approaches are geared toward times when 
flood events are known to be underway and therefore conservative false posi-
tive filters are largely unnecessary. For example, the flash detection and time-
averaging aspects of the algorithm may be disabled to provide daily or more 
frequent estimates of the latest observed flood extent. Other approaches are in-
tended to quantify in real-time how much confidence should be placed in each 
flooded/unflooded indication. The products demonstrated here complement  
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SFED, whose role would remain for automated, low noise flood detection 
and depiction.

4.1 Dual flood classification

A dual flood map classification (Fig. 3.6A) allows possible but less likely flood-
ed areas to be mapped in addition to those represented in the more conserva-
tive SFED product. In this example, the marginal flooding class is based on 
downscaling of flooded fraction even where it is below MDFF. In comparison 
to the Landsat false color image, the marginal flood areas are a mix of (1) areas 
within floodplains where the flooding is apparent in the Landsat image and (2) 
areas that may have saturated soils but that do not appear flooded in the Land-
sat image. The dual flood method is most valuable when large scale flooding 
has already been identified (as in this case) and there is interest in identifying 
marginal areas that may have been temporarily or partial affected. The method 
may be effective in urban areas where flood signals are generally weaker (e.g., 
Houston in Fig. 3.3B).

4.2 Flood occurrence probability

FloodScan’s flooded fraction and downscaling steps are formulated in a way 
that facilitates probabilistic flood mapping (e.g., Fig. 3.6B). Remember that 
the Boolean SFED downscaling step maps flooding everywhere >f ff f 0 (or 

− >f f 0f f 0 ). Assuming ff and ff0 are independent normally distributed ran-
dom variables with variances σFF

2 and σFF0
2, respectively, then the variance of 

∆ = −f f ff f f 0 is given by:

σ σ σ= +∆FF
2

FF0
2

FF
2 (3.7)

With σFF and σFF0 estimates on the map grid (x,y), error function evaluations 
provide a model for flood probability, Pr[∆ff (x,y) ≥ 0]. In practice, flooded frac-
tion variance may be estimated from dry land statistics and flood map validation 
testing; ff0 variance may be computed by simulating the effective DEM uncer-
tainty on relative floodability. With this formulation, many of the flood map 
uncertainties discussed earlier can be quantified in one number. For example, 
areas where pluvial flooding is less likely but still possible may be identified in 
situations where the standard product would otherwise depict flooding mainly 
in the floodplains.

4.3 Flood depth

Flood depth (Fig. 3.6C) is a natural extension of FloodScan’s downscaling pro-
cess, which already incorporates topographic information. Although the depth 
derivation method is generalizable to any flood extent map, it works best where 
flooding is not inconsistent with DEM contours (Cohen et al., 2019). In brief, 

ff>ff0
ff−ff0>0

∆ff=ff−ff0

σ∆FF2=σFF02+σFF2
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FIGURE 3.6 Advanced microwave flood mapping product examples for the same scene in 
Fig. 3.4. (A) Dual flood classification with the addition of a marginal flood category based on 
downscaling flooded fraction values less than MDFF; (B) flood occurrence probability; (C) flood 
depth derived for a flood map based on daily maximum flooded fraction; (D) Landsat false color 
image for comparison. (Credit: Original)
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the method estimates flood depth by first deriving flood water height where 
flood edges intersect the topography and then interpolating that height over the 
flooded area. In this implementation, woody wetlands—which are otherwise 
excluded from FloodScan’s downscaling process—are included in the depth in-
terpolation step, providing a more complete flood map than SFED. Flood depth 
is an important index for property damage and can also serve as an index for 
flood likelihood—that is, the greater the flood depth the more likely that flood-
ing in fact occurred. Flood water height itself is also valuable in its own right; 
it can be used at the property scale to infer the likelihood of flood impacts at 
various elevations.

4.4 Multi-source flood data integration

Probabilistic flood maps are the most flexible way to build up a best estimate 
of flooding over time from multiple data sources. A Bayesian framework, for 
example, allows new information like that from microwave remote sensing to 
update prior information like that from hydrological model forecasts. Similarly, 
composite flood maps can be formed from asynchronously collected remote 
sensing data from a variety of technologies with differing strengths and weak-
nesses. To build an optimal flood estimator from disparate sources, all the input 
data products would need to have probabilistic attributes. If feasible, the advan-
tages for the user would be clear: a one-stop flood mapping source providing the 
timeliest flood maps incorporating the best available information.

5 Conclusions

Microwave remote sensing offers an alternative flood mapping perspective from 
other Earth observation or hydrological modeling approaches. The method’s 
uniqueness stems from its ability to penetrate cloud cover and map flooding at 
night and the regularity with which microwave satellites have operated over the 
last two decades. Recently developed flooded fraction and downscaling algo-
rithms have addressed many of the challenges for reliably and consistently pro-
ducing accurate high-resolution flood maps from coarse resolution microwave 
data. A key remaining challenge is that of flood map ambiguity—how it may be 
reduced and represented but also how it can be communicated to end users for 
optimal benefit to their applications.

The set of four microwave flood mapping products described in this chapter 
demonstrate how a diversity of metrics can be created from a single observation 
type to provide users with a more complete picture of flood conditions than a 
Boolean flood map alone can do. Starting from a baseline high-confidence flood 
map (SFED), the marginal flood indicator provides flood maps useful in areas 
where, for example, there may also be insurance claims that independently con-
firm flood occurrence; flood depth provides a key index for damage assessment; 
and flood occurrence probability provides a mechanism by which users can  
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select their own tolerances for false negatives and false positives. The associa-
tion of these or similar metrics with other flood mapping products would pro-
mote a more nuanced view of flood depiction for applications and may facilitate 
flood data integration across technologies.

Acknowledgments

This work was supported by the African Risk Capacity/World Food Programme (con-
tracts QRSA-I01B-13 and QRSA-040-16) and the NASA Terrestrial Ecology Program 
(NNH10CC61C) and Terrestrial Hydrology Program (NNH13CH27C).

References

Brakenridge, G.R., Kettner, A., Syvitski, J., Overeem, I., De Groeve, T., Cohen, S., Nghiem, S.V., 
2016. River and reservoir watch version 3.5, Experimental Satellite-Based River Discharge and 
Reservoir Area Measurements: Technical Summary. Available from: http://floodobservatory.
colorado.edu/technical.html.

Cohen, S., Raney, A., Munasinghe, D., Loftis, J.D., Molthan, A., Bell, J., Rogers, L., Galantowicz, 
J., Brakenridge, G.R., Kettner, A.J., Huang, Y.-F., Tsang, Y.-P., 2019. The Floodwater Depth 
Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding. Nat. 
Hazards Earth Syst. Sci. 19, 2053–2065, https://doi.org/10.5194/nhess-19-2053-2019. 

De Groeve, T., 2010. Flood monitoring and mapping using passive microwave remote sensing in Na-
mibia. Geomatics Nat. Hazards Risk 1, 19–35, https://doi.org/10.1080/19475701003648085. 

Galantowicz, J.F., Picton, J., Root, B., 2018a. ARC Flood Extent Depiction Algorithm Description 
Document: AFED Version V05R00, AER document P2181-AFM-ADD-V05R00-R00, AER. 
Lexington, MA, USA.

Galantowicz, J.F., Picton, J., Root, B., 2018b. ARC Flood Extent Depiction Algorithm Performance 
Document: AFED Version V05R00, AER document P1908-AFM-APD-V05R00-R00. AER, 
Lexington, MA, USA.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., 
Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, 
C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover 
change. Science 342, 850–853, https://doi.org/10.1126/science.1244693. 

Kugler, Z., and De Groeve, T., 2007. The Global Flood Detection System. Office of Official Publi-
cations of the European Communities, Luxembourg.

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, M., 
Saleska, S., 2011. Height above the nearest drainage—a hydrologically relevant new terrain 
model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051.

Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global 
surface water and its long-term changes. Nature 540, 418–422, https://doi.org/10.1038/na-
ture20584. 

Prigent, C., Papa, F., Aires, F., Rossow, W.B., Matthews, E., 2007. Global inundation dynamics in-
ferred from multiple satellite observations, 1993-2000. J. Geophys. Res. 112, D12107, https://
doi.org/10.1029/2006JD007847. 

Ulaby, F.T., Moore, R.K., Fung, A.K., Ulaby, F.T., 1981. Microwave Remote Sensing Fundamentals 
and Radiometry, vol. 1. In: Microwave Remote Sensing. Addison-Wesley [u.a.], Reading, Mass.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson, C.C., 
Kanae, S., Bates, P.D., 2017. A high-accuracy map of global terrain elevations: Accurate Global Ter-

rain Elevation map. Geophys. Res. Lett. 44, 5844–5853, https://doi.org/10.1002/2017GL072874. 

http://floodobservatory.colorado.edu/technical.html
http://floodobservatory.colorado.edu/technical.html
https://doi.org/10.5194/nhess-19-2053-2019
https://doi.org/10.1080/19475701003648085
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0015
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0015
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0015
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0020
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0020
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0020
https://doi.org/10.1126/science.1244693
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0025
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0025
https://doi.org/10.1016/j.jhydrol.2011.03.051
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
https://doi.org/10.1029/2006JD007847
https://doi.org/10.1029/2006JD007847
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0035
http://refhub.elsevier.com/B978-0-12-819412-6.00003-1/or0035
https://doi.org/10.1002/2017GL072874
http://floodobservatory.colorado.edu/technical.html
https://doi.org/10.5194/nhess-19-2053-2019
https://doi.org/10.5194/nhess-19-2053-2019
https://doi.org/10.5194/nhess-19-2053-2019
https://doi.org/10.1080/19475701003648085
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.jhydrol.2011.03.051
https://doi.org/10.1016/j.jhydrol.2011.03.051
https://doi.org/10.1038/nature20584
https://doi.org/10.1029/2006JD007847
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1002/2017GL072874


61
Earth Observation for Flood Applications. http://dx.doi.org/10.1016/B978-0-12-819412-6.00004-3
Copyright © 2021 Elsevier Ltd. All rights reserved.

Chapter 4

River Flood Modeling and 
Remote Sensing Across Scales: 
Lessons from Brazil

Ayan Santos Fleischmanna, João Paulo Fialho Brêdaa, Conrado Rudorffb, 
Rodrigo Cauduro Dias de Paivaa, Walter Collischonna, Fabrice Papac,d 
and Mariane Moreira Ravanelloe

aFederal University of Rio Grande do Sul, Institute of Hydraulic Research (IPH), Porto Alegre, Rio 
Grande do Sul, Brazil; bNational Center for Monitoring and Early Warning of Natural Disasters 
(Cemaden), São José dos Campos, São Paulo, Brazil; cUniversity of Toulouse, LEGOS (IRD, CNRS, 
CNES, UPS), Toulouse, France; dUniversity of Brasília (UnB), IRD, Institute of Geoscience, Brasília, 
Federal District, Brazil; eAgência Nacional de Águas e Saneamento Básico, Brasília, Brazil

Highlights

•	 A systematic literature review of river flood model applications in Brazil in 
the context of remote sensing is performed;

•	 Recent advances on validation and adjustment of models using remote sens-
ing data are presented;

•	 Perspectives on the use of flood models and remote sensing data for flood 
risk management in Brazil are discussed.

1 Introduction

River overbank inundation is a key phenomenon of the terrestrial water cycle 
that regulates important biogeochemical processes and provides crucial eco-
system services in natural wetlands. In South America, major wetlands as the 
Pantanal and those in the Amazon Basin (Fig. 4.1) have drawn research atten-
tion of the scientific community for decades. Due to its large river systems, it 
has been called the “fluvial continent” (Kandus et al., 2018; Neiff et al., 1994), 
and many of the associated natural wetlands have been inventoried (Junk 
et al., 2015; Kandus et al., 2017; Ricaurte et al., 2019). Riverine flooding is also 
often related to major natural hazards due to human settlements on floodplains 
(Bates et al., 2014). Around 11 million people were affected by floods between 
1970 and 2019 in Brazil (CRED, 2019) and, in general, flood risk has been 
increasing over the continent (Vörösmarty et al., 2013) besides other growing 
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FIGURE 4.1 (A) Floodable areas in South America according to GIEMS-D15 database (Fluet-Chouinard et al., 2015), and the location of some large natural 
wetland systems. (B) Qualitative flood vulnerability in Brazilian rivers according to ANA (2014), and the location of some vulnerable cities: Brasiléia (Acre River), 
Linhares (Doce river), Rio do Sul (Itajaí-Açu river), and Quaraí (Quaraí river). (All figures created by the authors except for those related to: Negro River (Montero 
and Latrubesse, 2013), Pantanal (Bergier et al., 2019), Brasileia (Sérgio Vale/Secom; available at <https://fotospublicas.com/enchente-historica-atinge-mais-de-
800-familias-na-regiao-de-fronteira-com-bolivia//>; License CC BY-NC 2.0), Linhares (Corpo de Bombeiros/ES; available at <https://fotospublicas.com/corpo-de-
bombeiros-espirito-santo-realiza-resgates-e-transporte-de-alimentos-para-desabrigados-das-enchentes/>; License CC BY-NC 2.0), Rio do Sul (Homero Buzzi/SDR 
Rio do Sul; available at <https://fotospublicas.com/chuvas-castigam-cidades-de-santa-catarina/>; License CC BY-NC 2.0) and Quaraí (courtesy by Vitor Mirailh 
Pereira).)

https://fotospublicas.com/enchente-historica-atinge-mais-de-800-familias-na-regiao-de-fronteira-com-bolivia//
https://fotospublicas.com/enchente-historica-atinge-mais-de-800-familias-na-regiao-de-fronteira-com-bolivia//
https://fotospublicas.com/corpo-de-bombeiros-espirito-santo-realiza-resgates-e-transporte-de-alimentos-para-desabrigados-das-enchentes/
https://fotospublicas.com/corpo-de-bombeiros-espirito-santo-realiza-resgates-e-transporte-de-alimentos-para-desabrigados-das-enchentes/
https://fotospublicas.com/chuvas-castigam-cidades-de-santa-catarina/
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water management issues. South America also has highly managed river sys-
tems with many large dams, such as the Magdalena and the La Plata basins—in 
the latter, most of the Brazilian population lives and the largest world reservoir 
in terms of energy production, the Itaipu Dam, is located (Angarita et al., 2017; 
Tucci and Clarke, 1998). In the coming decades, many new dams are planned 
to be built in the continent, as is the case of the Amazon River Basin (Anderson 
et al., 2018; Latrubesse et al., 2017).

River flood models have become fundamental tools for the management and 
comprehension of floods in complex river-wetland-reservoir systems. Recent 
developments have led to hydraulic simulation methods that are able to accu-
rately represent the hydrodynamics of the river-floodplain-reservoir continuum 
that exists in many large basins (Fleischmann et al., 2019a; Shin et al., 2019), 
at both 1D and 2D dimensions (Mateo et al., 2014; Sampson et al., 2015; 
Schumann et al., 2016). Flood risk information at different scales may have 
distinct requirements of output variables, accuracy, and spatial and temporal 
resolutions, and discharge estimates are often not enough to describe flood dy-
namics and mitigate floods impacts. Variables other than discharge can be nec-
essary, as water level (at-a-station or longitudinal profiles), flood extent and 
storage, and river velocities, or measures that translate discharges into impact 
estimates (e.g., expected damage associated to a given flood frequency). Under-
standing the uncertainty of information produced by flood models before usage 
is important (Hoch and Trigg, 2018; Trigg et al., 2016). Flood hazard mapping 
with high accuracy and resolution is required for flood mitigation projects at lo-
cal scales, however, it is generally sparsely available over the globe. Regional to 
global scale flood models are not intended to replace more detailed local map-
ping, but to provide quick information on whether a location is in or out of a 
potential flood zone, and may be particularly helpful in areas of the world where 
other flood maps or resources are not readily available. The continuous spatial 
coverage offered by large scale models is useful for other purposes, such as 
flood mitigation planning by national governments, world agencies, and NGO's; 
integrated assessment of the effects of reservoir on downstream floodplains; and 
assessments of climate change impact on regional flood risk.

Flood models require hydrometric, land cover, and topographical data, 
which are obtained through different techniques, from ground measurements 
to remote sensing and hydraulic model calibration. Topographical data define 
the geometry of rivers and floodplains, and hydrometric observations are used 
as model inputs (boundary conditions) and for calibration/validation (e.g., with 
observations of water surface elevation, high flood marks, or flood extent maps). 
Remote sensing is playing an important role in improving databases for regions 
such as Brazil, characterized by the low density of suitable data for inundation 
modeling. Over the past 2 decades, the Brazilian National Hydro-meteorologi-
cal Network (http://www.snirh.gov.br/) operated by agencies as ANA (National 
Water and Sanitation Agency) and CPRM (Brazilian Geological Survey) has 
expanded in climatological and real-time monitoring of river stage and dis-
charge, river cross-section profiles, and altimetry referencing of stream gauges. 

http://www.snirh.gov.br/
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This was an important milestone that fostered positive feedbacks of improve-
ments in both remote sensing and hydrological modeling products. Indeed, Bra-
zilian river systems (and Amazon in special) were the focus of many develop-
ments in the field of remote sensing of wetlands (Uereyen and Kuenzer, 2019), 
mainly due to the size of some rivers and their particular environments (Kandus 
et al., 2018), leading to new methods for the estimation of flood extent based 
on active and passive microwave and radar data (Aires et al., 2013; Arnesen 
et al., 2013; Hamilton et al., 2002; Hess et al., 2003, 2015; Sippel et al., 1994), 
water levels from radar altimeters (Calmant et al., 2008; Paris et al., 2016; San-
tos da Silva et al., 2010), and water storage variation from GRACE (Gravity 
Recovery And Climate Experiment), InSAR (interferometric synthetic aperture 
radar), and other techniques (Alsdorf et al., 2000, 2007, 2010; Cao et al., 2018; 
Frappart et al., 2008; Lee et al., 2020; Papa et al., 2013).

Recently, the increase in production of high resolution and accurate DEM's 
from stereophotogrammetry, SAR interferometry, or LiDAR (light detection 
and ranging) has been the main driver of progress for inundation modeling at 
the local scale, while global bare earth DEM's with processing for vegetation re-
moval set up new opportunities for flood modeling at larger scales (O’Loughlin 
et al., 2016; Yamazaki et al., 2017). Estimation of river geometry is also improv-
ing considerably (Allen and Pavelsky, 2018; Frasson et al., 2019). For large 
scales, machine learning and cloud processing enabled the creation of global 
width databases from remote sensing data (Allen and Pavelsky, 2018; Yamazaki 
et al., 2019).

Capabilities for water level monitoring of rivers and wetlands are also in-
creasing (Calmant et al., 2008). For instance, while current radar altimetry mis-
sions as Sentinel-3 and Jason-3 are mainly used on large water bodies and have 
temporal resolution of 30 and 10 days, respectively, ICESat-2 (LiDAR altimeter 
technology) has a lower intertrack distance and smaller footprints which per-
mits accurate observation over narrower rivers (Fig. 4.2B). However, ICESat-2 
repeats its orbit every 91 days and LiDAR data are susceptible to weather condi-
tions (i.e., clouds). The future Surface Water and Ocean Topography (SWOT) 
satellite mission will be different from these nadir altimetry sensors due to its 
swath mapping radar interferometer, and will provide not only surface water 
level but also surface water extent measurements. It is expected to observe most 
river reaches over 100 m width and 10 km long with a level precision of 10 cm, 
at least once every 21 days (Biancamaria et al., 2016; Prigent et al., 2016), pro-
viding time and spatial continuous observations of rivers and their respective 
floodplains across scales (Fig. 4.2C).

Finally, the number of high-resolution flood extent products is also increas-
ing. Dynamic databases at regional to global scales are now available, based 
on downscaling of original coarse resolution products from multisatellite mis-
sions (Aires et al., 2017) or passive microwave data (Parrens et al., 2019), 
or classification of optical imagery as Landsat (Pekel et al., 2016). Although 
high-resolution flood extent extraction from SAR data requires adjustment 
for each application, it has been improved considerably through missions as 
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FIGURE 4.2 Examples of available remote sensing products for flood monitoring and model-
ing. (A) River network in South America from the GRWL database (blue lines); (B) a sample of 10-
days interval groundtracks of the nadir altimetry missions ICESat-2 (green), Sentinel-3 (black), and 
Jason-3 (red); (C) a sample of 10-days interval swath (purple) and nadir (light green) groundtracks 
of SWOT mission. (D) Comparison between the GRWL (red) and the 500 m resolution based Hy-
droSheds (blue) drainage networks. (E) RapidEye (6.5 m spatial resolution) image of the 2015 flood 
in the Jacuí River, Southern Brazil (available at <https://www.planet.com/explorer/>; license CC 
BY-SA 4.0). Location of figures B, C, D and E are presented in Figure A.

https://www.planet.com/explorer/
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JERS-1 and its successor ALOS-PALSAR (Arnesen et al., 2013; Ferreira-Fer-
reira et al., 2015; Hess et al., 2015). New optical data as those from RapidEye 
and CubeSat also promise a revolution in terms of spatial and temporal resolu-
tion for monitoring floods extent dynamics (Santilli et al., 2018) (Fig. 4.2E).

In this chapter, we address the complementarity between flood models and 
remote sensing at different scales in the Brazilian context, considering some recent 
scientific developments carried out in Brazilian rivers. The chapter is structured as 
follows. First, a systematic literature review of flood model applications in Brazil 
in the context of remote sensing is presented (Section 2). Some recent experi-
ences on the use of remote sensing for flood modeling in Brazil are then presented 
(Section 3). Finally, a discussion is provided on the current status of flood hazard 
mapping and real-time monitoring and forecasting in Brazil at different scales, fol-
lowed by some perspectives on the use of remote sensing to improve it (Section 4).

2 Literature review on river flood modeling in Brazil

In order to understand how river flood models have been applied to Brazil-
ian river systems in terms of model type, study area, and use of remote sens-
ing data, a systematic literature review was performed with a Scopus search 
(Elsevier, 2019) for articles published since 2000. Considering that the defini-
tion of a river flood model is not straightforward, only those studies involving 
an explicit analysis of flood extent simulated by process-based hydrological or 
river hydraulic models were considered. This means that articles addressing 
only variables as water level or discharge were not included. In the context of 
this chapter, we define by river flood model: (1) a process-based hydrological 
model that has any kind of flood routing able to represent inundation processes 
(i.e., from a simple kinematic wave model coupled to an inundation method to 
more complex flow routing methods); or (2) a hydraulic model that considers 
the shallow water equations (or its simplifications) at any dimension (1D, 2D, 
or 3D). Some studies with lake (both natural and manmade systems) and estuary 
hydrodynamic simulation that did not focus on flood dynamics were not consid-
ered here, since they did not analyze flood extent estimation, and the modeled 
flooded area domain was usually predefined.

The non-exhaustive search was performed by looking for research articles 
containing words in their abstract/title/keywords related to: (1) flood modeling 
(hydrodynamic model, hydrodynamic simulation, hydraulic model, hydraulic 
simulation, inundation, flow routing, flood, wetland, and their variants); and (2) 
Brazilian regions (Brazil, South America, main hydrological regions according 
to Brazil's National Water and Sanitation Agency—ANA, the Amazon major 
basins, and their variants). Articles from subject areas with small relevance for 
floods in the context of this chapter were not considered (e.g., medicine), and 
a few articles of notable relevance that were not obtained with the proposed 
search framework were manually included. Besides, all articles in the Brazilian 
Journal of Water Resources (RBRH; “Revista Brasileira de Recursos Hídri-
cos”) archive, that involved flood models, were assessed.
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Initially, around 2700 research articles were obtained, which were then man-
ually filtered to consider only those with flood extent analysis, yielding 55 stud-
ies (the complete list is provided as Supplementary Material S1). This analysis 
does not include consultancy reports and other non-research articles and activi-
ties, which may alter to some extent the conclusions on how river flood models 
have been applied in Brazil. To address it, in Section 4 we describe some current 
operational and practical engineering uses of flood models and remote sensing 
in Brazil.

There has been a clear temporal increase in publications related to flood 
model applications in Brazil (Fig. 4.3A), with 40% of the studies being pub-
lished since 2016. Only 33% of the papers focused at local scales (i.e., city or 
reach scale), while global and regional applications were more common. This 
figure may be biased since global models papers that do not explicitly mention a 

FIGURE 4.3 Summary of publications since 2000 that analyzed flood extent estimated by 
river flood models in Brazil. (A) Number of articles published per year. (B) Main models used. 
(C) Validation with remote sensing datasets (water level or flood extent) for applications at different 
scales (local; regional; and global (Reg/Glob)). (D) Dimensionality (1D or 2D) of applications at 
different scales (local; regional; and global (Reg/Glo)).
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Brazilian region was not considered in the analysis. In the same way, there may 
have been international research articles with case studies in Brazil that did not 
mention it in the abstract/title/keywords.

The most commonly used models in Brazil are HEC-RAS (20%), MGB 
(18%), and LISFLOOD-FP (11%) (Fig. 4.3B). HEC-RAS has been the main 
model for applications at local scale (56% of the local applications). Regard-
ing model dimensionality, most of the papers (68%) involved 1D modeling, 
and only 24% of the local scale applications used 2D modeling (Fig. 4.3C). 
This is interesting since many recent models have been developed worldwide 
to allow a relatively easy setup of 2D models, especially for urban areas (e.g., 
LISFLOOD-FP and HEC-RAS 2D) (Brunner et al., 2015; Sosa et al., 2020).

By far, the Amazon region is the most studied area in Brazil (40%), and 
many of these articles focused on understanding flooding processes in very 
large wetlands and their impacts on biogeochemical cycles (53% of all articles 
used this justification). Some of these studies have considered the Amazon as a 
proof-of-concept test case for large scale hydraulic modeling and remote sens-
ing data assimilation (Brêda et al., 2019; Wilson et al., 2007), especially be-
cause of the overall pristine regions that are still existent, the global relevance 
of the Amazon system, and the large dimensions of its rivers that allow a good 
satellite data use. For instance, Wilson et al. (2007) were the first to set up a hy-
draulic model to a very large domain, and applied it to a 240 × 125 km area of 
the Central Amazon. On the other hand, there are many other large wetlands in 
Brazil (Fig. 4.1) that still require a better comprehension of their flood dynam-
ics and provide equally challenging modeling difficulties, for example, the huge 
Pantanal wetlands, which have been addressed by a few flood models only (e.g., 
Bravo et al., 2012; Paz et al., 2010).

Remote sensing has been widely used in flood models, especially for es-
timation of floodplain topography with DEM's. Regarding validation of sim-
ulated flood extent with remote sensing, it depends on the scale. Within the 
analyzed articles, only three did it at local scale (Alcoforado and Cirilo, 2001; 
Pinel et al., 2019; Rudorff et al., 2014a). More must be done in this sense for 
tackling flood hazard at the scale of cities. On the other hand, regional scale 
validation has been intensively carried out (Luo et al., 2017; Paiva et al., 2013a; 
da Paz et al., 2011; Wilson et al., 2007; Yamazaki et al., 2011), especially for 
the Amazon region and with the products by Prigent et al., 2007 (GIEMS) and 
Hess et al. (2003). It was found that 35% of all studies involved quantitative 
model assessment with metrics as the Critical Success Index (CSI, also called 
Fit metric; Bates and De Roo, 2000), while 9% adopted a qualitative assessment 
(e.g., visual comparison without quantitative comparison between observed and 
simulated estimates). Other remote sensing data have also been used, as water 
levels derived from satellite altimetry. Fig. 4.3C shows that 47% of the stud-
ies involved validation of either flood extent or water level. It was also shown 
that 41% of the studies used one of the two types of observations for valida-
tion of regional/global scale models. Interestingly, only a few combined both 
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information (17% of the papers), and this sets the necessity of better validat-
ing flood models with multiple variables. The main data source of altimetry 
used is Hidroweb-Theia (available at http://hydroweb.theia-land.fr/?lang=en&), 
which contains hundreds of water level time series obtained at virtual stations 
worldwide. Looking for other studies applying satellite altimetry to flood mod-
els in Brazil that do not analyze simulated flood extent maps (which were not 
included in this review), there are just a few additional cases, with applications 
on the Amazon Basin (Garambois et al., 2017) and the whole South American 
continent (Emery et al., 2018; Siqueira et al., 2018).

A large part of the studies (47%) justified their research for better under-
standing flood hazard, especially in the case of local scale studies. However, 
more must be done in this context, and the country needs its own studies regard-
ing flood risk at different scales, given its particularities related to being located 
in a tropical region with complex river systems, the remoteness of some urban 
centers, and the ungauged character of many rivers. Flood risk studies that are 
locally relevant for the Brazilian context are missing, especially considering 
the great opportunities with remote sensing data. Consultancy projects on flood 
hazard usually does not use remote sensing data except for DEM's, possibly 
given the difficulties of obtaining it at very detailed, reach scales: many images 
are not free, or are not available for quick floods that recede within a few days. 
Furthermore, many water resources engineers are still not trained for the use of 
advanced remote sensing observations.

In the past, hydrological models (i.e., simple rainfall-runoff models) were 
mainly used to predict river discharges, but now their current capabilities allow 
users to assess other variables as water levels, flood extent, and water velocity at 
the basin or larger scales (Fleischmann et al., 2019b; Schumann et al., 2013, 2016; 
Yamazaki et al., 2012). However, our analysis suggested that a few studies ad-
dressed flood extent, and to a much lesser extent variables as flood storage and wa-
ter velocity (few exceptions do exist, as Dias et al. (2011) and Pinel et al. (2019)), 
and we should move forward to better estimate them (Chávarri et al., 2013; 
Schumann et al., 2016). Finally, we highlight that here we only considered flood 
models in the sense of process-based hydrological/hydraulic models, but there are 
many alternative flood mapping methods being applied and developed in Brazil 
(Nobre et al., 2016; Speckhann et al., 2018). Regional to national scale assess-
ment on floods have also been developed, for example, related to flood trends and 
non-stationarity, and regionalization techniques (Bartiko et al., 2019; Cassalho 
et al., 2019; Lima et al., 2015, 2017; Steffen and Gomes, 2018).

3 Improving river flood models with remote sensing data 
across scales: some lessons from Brazil

The following sections summarize some recent studies on the application of 
river flood models in Brazil in the context of the satellite era, from model valida-
tion (Section 3.1) to parameter estimation (Section 3.2), and data assimilation 

http://hydroweb.theia-land.fr/?lang=en&
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and model calibration (Section 3.3). Section 3.4 then provides cross-scale com-
parison studies between flood models, which provide valuable information on 
the needs of improvements for large scale models.

3.1 Model validation

Most efforts of river flood model validation with remote sensing have been per-
formed with water levels (especially nadir satellite altimetry) and flood extent 
data (usually based on optical, passive microwave, and SAR sensors), and some 
experiences in Brazil are presented here. Most studies using satellite altimetry 
were performed at regional scale for natural wetlands in the Amazon Basin. 
These wetlands can be classified as river floodplains and interfluvial wetlands 
(less connected to rivers and associated to local runoff). Each wetland type 
requires different processing techniques (Seyler et al., 2009), and although 
most studies focused on main river floodplains (Paiva et al., 2013a; Siqueira 
et al., 2018; Trigg et al., 2009; Yamazaki et al., 2012), recent cases have per-
formed the validation of interfluvial wetlands dynamics (Fleischmann et al., 
2020a) (left panel in Fig. 4.4A). The latter study compared 1D and 2D versions 
of the MGB hydrological-hydrodynamic model (Collischonn et al., 2007) to 
simulate complex wetland systems, and showed the overall satisfactory capacity 
of 1D models to represent river floodplains as the Branco (validation with altim-
etry from Envisat), and their difficulties in simulating interfluvial wetlands that 
are more dependent on local runoff and have a lower level amplitude (validation 
with Sentinel3-A SRAL mission). On the other hand, at the continental scale, 
a total of 880 virtual stations along rivers from THEIA/Hydroweb website was 
used for validation of the 1D MGB model application in South America, show-
ing the potentiality of these data, in addition to in situ gauges, for the Amazon, 
Orinoco, and La Plata basins (Fig. 4.4A) (Siqueira et al., 2018). These results 
confirm what was shown from the review in Section 2, in the sense that just a 
few local scale models used satellite altimetry data for model validation. Many 
river reaches under flood risk are associated to fast hydrographs, with rising 
limbs occurring within a few hours, which hampers the use of many altimetry 
data because of the too long repeat cycle. Small rivers are also difficult to be 
monitored, and new products as ICESat (Ice, Cloud and land Elevation Satel-
lite) may be interesting given their higher accuracy (in detriment of low tem-
poral resolution), for example, for estimating water surface slope. ICESat was 
used for validating the simulated river-floodplain-reservoir continuum along 
Itaipu Dam in Paraná River (Fleischmann et al., 2021), what is very promising 
given recent developments in large scale hydrodynamic modeling of reservoirs 
(Fleischmann et al., 2019a).

Remotely sensed flood extent data have also been used mainly for regional 
to continental scale applications. One exception is the case study by Rudorff 
et al. (2014a), who validated the local inundation extent predictions using re-
motely sensed flood maps produced by Arnesen et al. (2013) for the Curuai 
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FIGURE 4.4 Validation of MGB model water levels for (A) South America (Siqueira et al., 2018), 
where squares refer to satellite altimetry and circles to in situ data, and (B) Negro River Basin 
(Amazon), where two locations are presented (interfluvial wetland and Branco river floodplain) 
(Fleischmann et al., 2020a). (C) Longitudinal water level profile simulated with the MGB model 
along Itaipu dam with validation from ICESat data (Fleischmann et al., 2021). (D) Simulated flood 
extent with MGB model in the Bananal Island, Purus River Basin, and Patos Lagoon regions. The 
regions are located in Figure A. (Figures created by the authors.)
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floodplain in Central Amazon. More attempts should be done by the Brazilian 
community to validate flood hazard models with remote sensing data (e.g., Sen-
tinel-1 SAR data). At the regional scale, examples include validation of flood 
extent in the natural wetlands of Pantanal (da Paz et al., 2011), Bananal Island 
(Pontes et al., 2017), Patos Lagoon (Lopes et al., 2018), and Amazon (Paiva 
et al., 2013a), with estimates from different satellites (Fig. 4.4B). These vali-
dation experiments showed the complementarity of both remote sensing and 
modeling approaches in estimating flood extents—even if there are still high 
uncertainties related to both approaches.

3.2 Direct parameter estimation

Remote sensing is capable to provide direct estimation of parameters as river 
length, river width, and floodplain topography. For large rivers, water masks 
based on optical imagery (e.g., 30 m Landsat images) have been developed 
(e.g., Global Surface Water/GSWE database; Pekel et al., 2016) and used to 
infer river widths (e.g., GRWL database; Allen and Pavelsky, 2018). For small 
rivers, however (e.g., < 30 m), other methods are required, and hydraulic geom-
etry theory (i.e., geomorphic relationships) has been used to fulfill it (Beighley 
et al., 2009; Neal et al., 2012; Paiva et al., 2013a; Yamazaki et al., 2012). Fig. 4.5 
presents an example of geomorphic relations derived for different sub-basins 
of the Upper Paraná River Basin in Brazil, based on the relationship between 
drainage area and width, which in turn was computed by dividing, for each 
unit-catchment that comprises the basin, its surface water (GWSE, Fig. 4.5B) 
by its river length. For large rivers, GRWL widths are available and an example 
is provided in Fig. 4.5C.

In current hydrodynamic models, channel length is usually directly estimat-
ed through the river network formed by a flow direction map. In some cases, 
upscaling (Yamazaki et al., 2009) and meandering factors (Oki and Sud, 1998) 
were used to adjust these estimates. However, accurate estimation of river length 
is important to better predict water surface slopes and other fluvial parameters 
(Frasson et al., 2019), and the inclusion of better estimates as those provided by 
GRWL and MERIT-Hydro has the potential to improve flood models. Fig. 4.2D 
shows a comparison for an area in the complex Pantanal wetlands in Central 
Brazil between the recent GRWL drainage in comparison to a version of Hydro-
sheds (Lehner et al., 2013) based on a 500 m flow direction map, highlighting 
the capabilities of the new high-resolution databases.

Floodplain topography can also be directly estimated with DEM's. Rudorff 
et al. (2014a) studied a 120 × 60 km section of the lower Amazon River with a 
thorough application of ground-survey and remote sensing data to run hydrau-
lic simulations and assess uncertainties in predictions of water level, inunda-
tion extent, and river-floodplain exchanges. They identified that a bias in SRTM 
(−4.4 m for the lower Amazon floodplain near Óbidos) due to the residual mo-
tion error of the interferometric baseline was an important source of error in 
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hydraulic simulations. They used satellite altimetry data (ICESat GLA14 land 
product) as an independent ground elevation reference for SRTM error assess-
ment over the floodplain. These findings became important motivations for ef-
forts of further corrections in SRTM at a global scale (Yamazaki et al., 2017). 

FIGURE 4.5 (A) Geomorphic relationships between river width and drainage area for different 
sub-basins of the Upper Paraná River Basin based on the GSWE (Global Surface Water Extent) 
water mask. (B) Detail of the GSWE mask and (C) the GRWL width database for the region of the 
confluence between Paranapanema and Paraná mainstem rivers. (D) Location of the study areas in 
the Upper Paraná River Basin. (Figures created by the authors.)
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In turn, floodplain roughness coefficients were spatially assigned through a land 
cover map produced based on time series of Radarsat-1 S2 and complementary 
Landsat TM data (Silva et al., 2010). After careful corrections to SRTM and 
merge with data from an extensive bathymetry survey, Rudorff et al. (2014b) 
achieved accurate representation of the inundation dynamics in terms of inunda-
tion extent, water surface elevation, overbank, and channelized river-floodplain 
exchange flows. The simulations were then applied in studies of floodplain hy-
drology (Rudorff et al., 2014b), sediment fluxes (Rudorff et al., 2018), and lake 
hydrodynamics (Augusto-Silva et al., 2019).

Another study (Fassoni-Andrade et al., 2020) proposed a new methodology 
to estimate floodplain topography from a combination of flood extent frequency 
and water level duration curves, assuming that a given pixel will have a bottom 
height equal to the water level whose probability of exceedance (from the dura-
tion curve) is equivalent to the flood frequency of that pixel. The authors tested 
it by using the GSWE and water level data (in situ and satellite altimetry) for 
two natural lakes and 12 hydropower reservoirs in Brazil. On the natural lakes, 
the root mean squared deviation (RMSD) of bed elevation was 0.18 m in lake 
Poopó (Bolivia) and 1.4 m in lake Curuai (Amazon basin), while for reservoirs, 
the relative RMSD was about 6%. The floodplain topography obtained with this 
new methodology is now being applied to improve river flood modeling.

3.3 Data assimilation and model calibration

Depth and roughness parameters are not directly observed through remote sens-
ing. Thus, methods have been developed to indirectly estimate channel effective 
depth using satellite altimetry, by, for example, inverting hydraulic equations 
(Garambois and Monnier, 2015; Tourian et al., 2017) and assimilating altimetry 
data into hydrodynamic models using ensemble approaches (Yoon et al., 2012). 
Brêda et al. (2019) recently showed how altimetry data can be assimilated to ad-
just parameters as bed elevation and roughness, in a large scale hydraulic model 
of a 1100 km flat reach of the Madeira River in the Amazon (slope ~3 cm/km; 
Fig. 4.6A). The authors proposed a method to explicitly estimate errors covari-
ance (thus avoiding an ensemble approach) for the Kalman Filter step, using 
hydraulic traditional concepts as backwater effects and the Manning's equation. 
The Kalman Filter with explicit covariance performed similarly to a global op-
timization algorithm used for model calibration, which is more computationally 
expensive. The method was able to reduce water surface elevation errors from 5 
to 1.5 m, which is crucial for regional/global flooding simulations. The authors 
tested different satellite altimetry missions (Envisat, ICESat-1, and Jason-2) and 
inter-track distances proved relevant to the assimilation performance. Jason-2 
maximum inter-track distance is about 315 km and its performance was far 
worse than for Envisat and ICESat (80 and 30 km, respectively). Thus, current 
satellite altimetry missions demonstrated potential to be a valuable resource 
to be explored in regional flood modeling, especially to reduce errors of water 
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FIGURE 4.6 (A) Correction of channel bathymetry with satellite altimetry data assimilation (DA), 
with the display (left column) of the studied reach (green), GRWL water mask (blue), Jason-2 (red), 
and Envisat groundtracks (yellow). The longitudinal profile adopted on the hydrodynamic model of 
the Madeira River from Porto Velho to the river mouth is presented on the right panel, showing prior 
(green) and posterior (black) adjusted riverbeds, and satellite virtual stations (Brêda et al., 2019). 
(B) DA in the Amazon Basin (Paiva et al., 2013b), displaying in the left panel the altimetry (circle—
assimilation) and in situ (square—validation) water level stations with performance of simulated 
water level (variation of RMSE). In the right panel, a water level time series is presented for the 
Japurá River with Envisat observations (blue), and simulation with (red) and without DA (black). 
(C) Multi-variable calibration of the MGB model in the Purus River Basin with five remotely sensed 
variables, summarized as boxplots of KGE metrics for all optimal solutions, which are compared to 
the first generation (initial guess); colors and performance metric values refer to a skill score index 
(Oliveira et al., 2020).
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surface elevation. Synthetic data of other planned/recent missions (ICESat-2 
and SWOT) were also tested and showed equivalent results.

Remote sensing data assimilation can also be performed to correct model 
state variables as water levels, discharge, and soil/vegetation variables as soil 
water storage. Paiva et al. (2013b) used the Ensemble Kalman Filter on the MGB 
for the whole Amazon Basin for improving streamflow forecast (Fig. 4.6B) 
through assimilation of Envisat altimetry and in situ discharge data. Altime-
try assimilation led to 44% (15%) reduction in water levels (discharge) errors, 
presenting better results closer to assimilation sites. This model version with 
data assimilation was then used by Paris et al. (2016) to estimate rating curves 
by linking modeled discharges to satellite altimetry virtual stations, allowing 
a near real-time monitoring of more than 100 tributaries on the Amazon River 
Basin, given the latency of newly available altimetry data. This methodology 
is now being applied to the Congo and Niger river basins (Paris et al., 2018). 
On streams that were not observed through satellite altimetry, results by Paiva 
et al. (2013b) showed that water levels barely improved or even deteriorated in 
some cases. This suggests that a denser network of satellite altimetry data could 
produce even more accurate outputs, which could be achieved with the com-
bination of several altimetry missions or probably the SWOT mission alone. 
Wongchuig et al. (2020) assimilated SWOT-like data, that is, surface water level 
and extent and discharge, on an MGB model application in the Purus River 
Basin (Amazon). The authors corrupted the model parameters with typical un-
certainties of global models and used the Ensemble Kalman Filter to retrieve 
outputs from the “original model.” Results indicate that assimilating SWOT 
observations will significantly reduce global/continental hydrological model er-
rors, and that SWOT observations have potential to support flood studies across 
different scales.

Other remote sensing observations than satellite altimetry can be also used 
to improve hydrological-hydrodynamic models. In special, there is a need to de-
velop models that are “right for the right answers” (Kirchner, 2006), in the sense 
that many variables should be simultaneously evaluated to assess the model 
capability to representing different processes. Oliveira et al., 2020 tested the im-
pact of different types of remote sensing observations on the calibration and val-
idation of the MGB hydrological-hydrodynamic model in the Purus River Basin 
(Amazon). The authors applied the MOCOM-UA automatic calibration scheme 
to adjust river hydraulic, soil, and vegetation parameters with observations of 
terrestrial water storage (TWS; GRACE), soil moisture (SMOS), evapotranspi-
ration (ET; MOD16), water level (Jason-2), and inundated area extent (ALOS-
PALSAR). One-at-a-time calibration runs were performed considering each of 
these observations in order to understand the capacity of the calibration with 
individual observations to improve the performance of other variables. Results 
indicated that, by calibrating the model with in situ discharges, it was possible 
to improve the performance for river-floodplain (water levels and flood extent) 
and TWS variables, but it was less effective for soil moisture and even degraded 
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ET estimates (Fig. 4.6C; second column). In turn, by calibrating the model with 
water levels or flood extent (Fig. 4.6C; third and fourth columns), which are 
highly correlated variables, the model was able to satisfactorily represent these 
two variables and TWS and ET, but degraded discharge. This may have oc-
curred because discharge is an integrating variable, while water level and flood 
extent are more related to local (at-a-station) measurements. Studies like this 
highlight the necessity of understanding deficiencies in model structure, for ex-
ample, a poor soil-vegetation dynamics representation leading to difficulties in 
representing ET when calibrating with discharge, as well as uncertainties in 
observations. Additional tests investigated the benefits of calibrating the model 
with all variables together (right column in Fig. 4.6C), and showed that it was 
able to improve most of the water cycle variables (although to a lesser extent 
than when calibrating with individual variables). However, the range of the ob-
tained calibrated parameters (e.g., river width and depth and vegetation surface 
resistance) was large, and highlighted the issue of parameter equifinality on 
model predictions.

3.4 Cross-scale comparisons between flood models

Flood models are required at different scales, and this sets up the necessity of 
cross-scale comparisons to understand the capability of different model con-
figurations to predict variables of interest (Fleischmann et al., 2019b; Hoch and 
Trigg, 2018; Trigg et al., 2016). For example, what is the accuracy require-
ment for each scale? Fleischmann et al. (2019b) proposed three criteria to define 
whether a hydraulic model is locally relevant. A large scale model should have 
errors close or smaller than (1) the accuracy requirement for a particular ap-
plication, (2) typical errors obtained from reach scale models (i.e., large scale 
models will seldom have higher accuracy than these models), and (3) observa-
tions uncertainties.

Recent studies have performed cross-scale comparisons for Brazilian rivers. 
Siqueira et al., (2018) presented a comparison between global models and a 
more regionally based, continental hydrological-hydrodynamic model for South 
America (MGB-SA model). Results indicated substantial biases in streamflow 
predictions from current global hydrological models. The capability of MGB-
SA to simulate extreme flood discharges was further assessed by (Fleischmann 
et al., 2020b) for the great 1983 floods that occurred in the continent. The model 
was able to adequately represent peak discharges (mean absolute percentage 
error for hundreds of analyzed gauges yielded 34%). While discharge is an ag-
gregating variable from the whole upstream basin, accurate representation of 
water levels is more local-dependent and more challenging.

To further understand the accuracy of current regional to global models, 
Fleischmann et al., (2019b) compared three different versions (continental, re-
gional, and local approaches) of the 1D MGB model at the Itajaí-Açu River 
Basin (see Rio do Sul city in Fig. 4.1) using different information of floodplain 
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topography (from global to locally derived DEM), cross-section (from global 
to locally surveyed data), and reach length (from 15 to 1 km). Model predic-
tions were compared to a benchmark, detailed HEC-RAS model (Fig. 4.7). The 
study showed that current regional to global models are capable of estimating 
locally relevant discharges if forced with runoff from a calibrated rainfall-runoff 
model. In turn, they have difficulties to estimate water levels and flood extents 
with high accuracies. The use of a locally derived DEM at 30 m did not lead to 
major impacts on the 1D model simulations in comparison to SRTM. On the 
other hand, the factor that improved the large scale models the most was the 
adoption of more detailed and distributed cross section information (i.e., not 
using simple geomorphic relationships for the whole basin), what highlights 
the relevance of new methods of incorporating distributed remote sensing data 

FIGURE 4.7 (A) Cross-scale comparison between hydraulic models at global, regional and local 
scales. (B) A detailed hydraulic model was set up as a benchmark. (C) Cross-section bankfull depth 
parameter as estimated for different scales based on rectangular cross sections. (D) Model predic-
tions of maximum water levels for different scales. (Adapted from Fleischmann et al. (2019b).)
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into flood models. Satellite data are even more important given constraints in 
using cross-section estimates from in situ gauge stations, since the best loca-
tion for placing monitoring gauges is not necessarily representative of the reach 
hydraulics. This was shown by Meyer et al. (2018) for different Brazilian rivers 
by comparing celerity-discharge curves at reach scales with those obtained from  
in situ cross-sections located in the gauge stations.

4 Hydrological monitoring and modeling tools for flood risk 
management in Brazil

Many Brazilian riverside cities are under high flood risk (Fig. 4.1) and in need 
of information to improve management practices. Deriving adequate flood risk 
information requires accurate hazard mapping for the impact analysis. A flood 
early warning system is one possible strategy of risk mitigation, as communi-
cating forecasts enables actions to prevent the loss of life and property. Another 
important benefit of an early warning system is that its development fosters 
production of risk maps and forecasting tools. In Brazil, the National Water 
and Sanitation Agency (ANA) has launched the National Water Security Plan 
(PNSH—http://pnsh.ana.gov.br) that focuses on flood control with a national 
view but linked to a basin level. The PNSH presented two main initiatives re-
garding flood management: the diagnosis of the problem, based on the Flood 
Vulnerability Atlas, and a broad inventory of infrastructure interventions as well 
as analyses of required strategic interventions. The inventory reveals an indi-
rect measure of flood impacted basins, since some solutions have already been 
designed for some regions. Within PNSH, the country-wide vulnerability map 
(Fig. 4.1; ANA, 2014) was created at the state level and involved a qualitative 
analysis (with interviews with local water authorities, civil defense, and other 
stakeholders) of reaches with frequent flood problems associated to high dam-
ages and losses, yielding three categories of vulnerability (high, moderate, and 
low). However, the methodology is rather simplistic in comparison to the en-
gineering methods for regional flood risk assessment that employs river flood 
models and remote sensing data. The focus of this final section is to summarize 
the currently available systems for flood hazard mapping (Section 4.1) and real-
time monitoring and forecasting (Section 4.2) across scales for the Brazilian 
context (Table 4.1), and to provide some perspectives on the use of remote sens-
ing and hydrological modeling tools for flood risk management.

4.1 Flood hazard mapping

Recent advances in global flood frequency analysis and inundation modeling 
paved the way for flood hazard mapping at large scales (Alfieri et al., 2014, 2015; 
Dottori et al., 2016; Sampson et al., 2015). A few global flood hazard maps were 
completed and made available online (Table 4.1). A Global Flood Partnership 
(GFP) study compared global flood models in Africa (Trigg et al., 2016), and 

http://pnsh.ana.gov.br
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TABLE 4.1 Examples of available flood hazard maps and flood monitoring (M) and forecasting systems (F) for Brazil at different 
scales. M/F types are presented in parentheses to describe the systems.

Scale Flood hazard assessment Real-time flood monitoring (M) and forecasting systems (F)

Availability Applicability Availability Applicability

Global JRC (10–500 year floods)a

Fathom (5–1000 year 
floods)b

FL-GLOBAL-GLOFRIS 
(5–1000 year floods)c

FM Global (100 and 500 
year)x

Low accuracy 
and resolution

Copernicus Emergency Management Service 
(includes services of: Mappingf and Global Flood 
Awareness System/GloFASg) (M/F)
GLOFFISh (M/F)
Global Flood Monitoring Systemi (M/F)
Disasters Charterj (M)
Global Flood Partnershipk (M)
Global Flood Observatoryl (M)
Global Flood Detection System w (M)
Global Flood Monitorm (M)
FloodScann (M)
FloodList (Reports on major floods around the 
world)o (M)

Country-wide flood mitiga-
tion and planning
Global to continental flood 
strategies by world agen-
cies, NGO's
Forecasting lead time: short 
to medium to long term 
ranges
Low accuracy and resolu-
tion

Regional Santa Catarina State
Paraíba do Sul River Basind

Doce River Basin

Moderate to 
high accuracy 
and resolution

National Center for Monitoring and Early Warning 
of Natural Disasters (Cemaden) (M/F)p

SACE (CPRM) for 16 basins in Brazile (M/F)
ANA Situation rooms (“Sala de Situação”)q (M/F)
Santa Catarina State Systemr (M/F)
Rio Grande do Sul State Systems (M/F)
Amazon State Systemt (M/F)

State- and country-based 
flood mitigation and plan-
ning
Forecasting lead time: short 
to medium to long term 
ranges
Moderate accuracy and 
resolution
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Scale Flood hazard assessment Real-time flood monitoring (M) and forecasting systems (F)

Local Specific sites where river 
engineering projects have 
required field surveys (e.g., 
lower Madeira River);
SACE (CPRM) for seven 
flood vulnerable Brazilian 
citiese

High accuracy 
and resolution

Real-time monitoring in the Itajaí River basinu 
(M/F)
Flood forecasting at Paraíba do Sul River Basind 
(M/F)
Real-time monitoring and forecasting in the Igua-
çu River Basin and União da Vitória cityv (M/F)

Flood mitigation at city/
reach/basin level
Forecasting lead time: very 
short to medium ranges
High accuracy and resolu-
tion

a(Dottori et al., 2016); available at <https://data.jrc.ec.europa.eu/collection/id-0054>)
b(Sampson et al., 2015); available at <https://www.fathom.global/fathom-global>
c(Ward et al., 2013; Winsemius et al., 2013); Available at <https://www.geonode-gfdrrlab.org/people/profile/GLOFRIS/?limit=20&offset=0>
dAvailable at <http://gripbsul.ana.gov.br/SisprecR05.html>
eAvailable at <https://www.cprm.gov.br/sace/index_bacias_monitoradas.php>
fAvailable at <https://emergency.copernicus.eu/mapping/ems/emergency-management-service-mapping>
gAvailable at <https://www.globalfloods.eu/>
hAvailable at <http://globalfloodforecast.com/glossis/index.htm>
i(Wu et al., 2014); Available at <http://flood.umd.edu/>
jAvailable at <https://disasterscharter.org/>
k(De Groeve et al., 2015); Available at <https://gfp.jrc.ec.europa.eu/support-service>.
l(Brakenridge et al., 2005; Brakenridge, 2020); Available at <https://floodobservatory.colorado.edu>
m(de Bruijn et al., 2019); Available at <https://www.globalfloodmonitor.org/about>
nAvailable at <http://product.aer.com/index.php/floodscan/>
oAvailable at <http://floodlist.com/>
pAvailable at <https://www.cemaden.gov.br/>
qAvailable at <https://www.ana.gov.br/sala-de-situacao>
rForecasting system for most vulnerable sites, available at <http://ciram.epagri.sc.gov.br/index.php?option=com_content&view=article&id=2224&Itemid=250>)
s(Fan et al., 2019; Nectoux et al., 2019); Available at <http://www.saladesituacao.rs.gov.br/>
tAvailable at <http://hidro.sipam.gov.br/>
uAvailable at <https://defesacivil.itajai.sc.gov.br/telemetria>
vAvailable at <https://www.copel.com/mhbweb/paginas/bacia-iguacu.jsf>
w(Brakenridge et al., 2005); Available at <https://www.gdacs.org/flooddetection/>
xAvailable at <https://www.fmglobal.com/research-and-resources/nathaz-toolkit/flood-map>

https://data.jrc.ec.europa.eu/collection/id-0054
https://www.fathom.global/fathom-global
https://www.geonode-gfdrrlab.org/people/profile/GLOFRIS/?limit=20&offset=0
http://gripbsul.ana.gov.br/SisprecR05.html
https://www.cprm.gov.br/sace/index_bacias_monitoradas.php
https://emergency.copernicus.eu/mapping/ems/emergency-management-service-mapping
https://www.globalfloods.eu/
http://globalfloodforecast.com/glossis/index.htm
http://flood.umd.edu/
https://disasterscharter.org/
https://gfp.jrc.ec.europa.eu/support-service
https://floodobservatory.colorado.edu
https://www.globalfloodmonitor.org/about
http://product.aer.com/index.php/floodscan/
http://floodlist.com/
https://www.cemaden.gov.br/
https://www.ana.gov.br/sala-de-situacao
http://ciram.epagri.sc.gov.br/index.php?option=com_content&view=article&id=2224&Itemid=250
http://www.saladesituacao.rs.gov.br/
http://hidro.sipam.gov.br/
https://defesacivil.itajai.sc.gov.br/telemetria
https://www.copel.com/mhbweb/paginas/bacia-iguacu.jsf
https://www.gdacs.org/flooddetection/
https://www.fmglobal.com/research-and-resources/nathaz-toolkit/flood-map
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showed that there are still many disagreements among them, and that improve-
ments in resolution and accuracy are needed for predictions of extreme stream-
flow, and the respective flood extent and water elevation. We exemplify here a 
case study in the Porto Velho city in the Madeira River (Amazon) where four 
floods have occurred over the last six years (2014–2019) (Fig. 4.8). In 2014, 
when two run-of-the-river mega dams (Jirau and Santo Antônio) were in the 
final phase of construction, Porto Velho was hit with the largest flood on record 
of the Madeira River (Germano et al., 2014; Santos et al., 2017). The river dis-
charge peaked at 58,560 m3s−1 with a return period of about 300 years (aver-
age annual peak discharge at Porto Velho is 17,980 m3 s−1). The water level 

FIGURE 4.8 (A) Global flood hazard map (Dottori et al., 2016) for the return period of 50 year 
(light blue) over the Amazon Basin. The region of the Madeira River watershed upstream from Por-
to Velho is highlighted. (B) Overview of the Lower Madeira River encompassing the city of Porto 
Velho, two run-of-the-river dams and the BR-364 highway. Comparisons between global (Dottori 
et al., 2016) and local (HEC-RAS model based on high precision DEM) inundation models at 
streamflow conditions of about 60,000 m3 s−1 for river reaches in (C) the urban area of Porto Velho 
and (D) the section of the highway with the highest exposure to flooding. Photographs of the 2014 
historical flooding: (E) the federal highway submerged; (F) the Santo Antônio Dam; and (G) flood-
ing around the municipal marketplace. (Photo in panel E is from Secom/Acre; available at <https://
fotospublicas.com/cheia-rio-madeira-bloqueia-br-364-e-isola-acre/>; License CC BY-NC 2.0. 
Photos in panels F and G from Adalberto Marques / Integração Nacional; available at <https://
fotospublicas.com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/>; License CC BY-
NC 2.0.)

https://fotospublicas.com/cheia-rio-madeira-bloqueia-br-364-e-isola-acre/
https://fotospublicas.com/cheia-rio-madeira-bloqueia-br-364-e-isola-acre/
https://fotospublicas.com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/
https://fotospublicas.com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/
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remained above flood stage for about three months displacing 2230 people, 
closing a main federal highway (BR-364), and causing over R$ 455 million in 
damage. Dottori et al. (2016) produced global flood hazard maps based on the 
flood frequency analysis of GloFAS streamflow climatology. The differences 
in flood extent among the results for different streamflow return periods from 
GloFAS and a local scale HEC-RAS model are within expected ranges for Porto 
Velho. However, higher resolution and accuracy in water level and flood extent 
predictions are needed for decision making at the local scale.

At local scales, the Brazilian Geological Survey (CPRM) has carried out 
flood hazard mapping (2–100 year) (http://www.cprm.gov.br/sace/index_man-
chas_inundacao.php) for seven flood vulnerable cities in Brazil: Ponte Nova, 
Governador Valadares and Colatina (Doce River), Porto Velho (Madeira River), 
São Sebastião do Caí and Montenegro (Caí River), and Teresina (Parnaíba Riv-
er). The methodology ranged from simplified projections of in situ water levels 
for different return periods into locally derived DEM's (Caí river) to HEC-RAS 
model applications (calibrated with locally estimated extreme flood extents) 
with a locally derived DEM and in situ surveyed cross-sections (Doce and Par-
naíba rivers). Locally derived DEM's involved multiple sources, as aerophoto-
grammetry and local topographical surveys. Another regional scale example is 
the flood hazard mapping of Paraíba do Sul River Basin. In this case, the HEC-
HMS hydrological model was coupled to HEC-RAS to generate hazard maps, 
and a flood forecasting system was also developed (http://gripbsul.ana.gov.br/
Sisprec.html).

Regarding improved datasets in Brazil for flood hazard modeling, some 
states have invested in the acquisition of high resolution DEM's (1–5 m), such 
as Santa Catarina (1 m resolution based on aerophotogrammetry; available 
in (http://sigsc.sds.sc.gov.br/); see studies by Fleischmann et al. (2019b) and 
Speckhann et al. (2018)) and Pernambuco states (ongoing World Bank funded 
1 m LiDAR survey; data for around one fourth of the state are already available; 
http://www.pe3d.pe.gov.br/). This latter survey was prompted to assist flood 
mitigation efforts after major floods occurred in the Una River in 2010–11.

Flood hazard information is currently underused in Brazil for local and re-
gional planning, even where accurate local scale studies are available. There 
are great opportunities for improving and applying regional models, and there 
are just a few cases of flood hazard assessment that use remote sensing in the 
country. Furthermore, flood hazard mapping requires hydrological and hydrau-
lic modeling of floodplains and the consideration of a cascade of uncertainties 
through several components of the model, and systematic uncertainty assess-
ments are needed along with new approaches to constrain uncertainty and com-
municate it to the broader community.

4.2 Real-time flood monitoring and forecasting systems

Regarding current real-time flood monitoring and forecasting systems in Bra-
zil, ANA has created in 2009 a situation room (Sala de situação) to monitor 

http://www.cprm.gov.br/sace/index_manchas_inundacao.php
http://www.cprm.gov.br/sace/index_manchas_inundacao.php
http://gripbsul.ana.gov.br/Sisprec.html
http://gripbsul.ana.gov.br/Sisprec.html
http://sigsc.sds.sc.gov.br/
http://www.pe3d.pe.gov.br/
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major hydrological related disasters in Brazil (floods and droughts). ANA is 
also assisting Brazilian states to develop their own situation rooms through 
capacity building and financial support. There are currently 20 states (out of 
27 federative units) with their own systems, at different levels of develop-
ment. One case of success has been developed since November 2018 in the 
Rio Grande do Sul state (available at <http://www.saladesituacao.rs.gov.br/>; 
Fan et al., 2019; Nectoux et al., 2019), with operational forecasts for 25 large 
basins in the state. The MGB hydrological model runs with hourly observed 
precipitation (forcing) and discharges (for data assimilation) up to the fore-
cast initial time, and is then fed with numerical rainfall prediction from WRF 
(5 km), Eta (40 km), and GEFS (100 km) models. Daily reports are sent to 
the State Civil Defense. Fig. 4.9A presents an example of the system applica-
tion for the 2019 January floods, which displaced thousands of people in the 
state. The system has been very helpful for local and regional Civil Defense 
operations.

To date, most forecasting (or early-warning) systems in Brazil were devel-
oped for predicting reservoir inflows and enhancing dam operation (Araujo 
et al., 2014; Fan et al., 2016; Schwanenberg et al., 2015), but recent efforts have 
improved systems for flood forecasts at flood vulnerable reaches (Casagrande 
et al., 2017; Fan et al., 2016). In the Upper Iguaçu River, where Foz do Areia 
dam backwater effects may increase floods in the upstream União da Vitória 
city, an operational system led by COPEL company provides forecasts for the 
city location with a 5-days lead time (Araujo et al., 2014; available at <https://
www.copel.com/mhbweb/paginas/bacia-iguacu.jsf>).

The Alert System for Critical Events by CPRM (“Sistema de Alerta de 
Eventos Críticos” (SACE); available at <https://www.cprm.gov.br/sace/in-
dex_bacias_monitoradas.php>) currently monitors 16 basins (Amazonas, 
Paraguay, Doce, Caí, Muriaé, Acre, Madeira, Parnaíba, Taquari, Branco, 
Xingu, Mundaú, Uruguai, Velhas, Itapecuru, and Pomba) with automatic col-
lection of sub-hourly precipitation and discharge data (most gauges in Brazil 
monitoring network are still non-automatic with local observers performing 
observations twice a day), and provides forecasts for most of them, mainly 
with empirical (data-driven) models and lead times varying with basin size 
(e.g., 3 months for the Amazon river at Manaus and 5 h for the Mundaú river 
at União dos Palmares). Fig. 4.9B shows an example of the Madeira River 
Basin SACE system.

Another important advance for real-time flood monitoring in Brazil relates 
to the establishment of the National Center for Monitoring and Early Warning 
of Natural Disasters (Cemaden) in 2011 with the mission of fostering scien-
tific, technological, and innovative capacity to improve early warning systems 
of natural disasters. In addition to ANA, CPRM, and other agencies, Cemaden 
continuously monitors hydrometeorological conditions across the nation with 
assessment of risk of natural disasters and issuance of early warnings to the 

http://www.saladesituacao.rs.gov.br/
https://www.copel.com/mhbweb/paginas/bacia-iguacu.jsf
https://www.copel.com/mhbweb/paginas/bacia-iguacu.jsf
https://www.cprm.gov.br/sace/index_bacias_monitoradas.php
https://www.cprm.gov.br/sace/index_bacias_monitoradas.php
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Disaster and Risk Management National Center (Cenad). Cemaden expanded 
Brazil's hydrometeorological monitoring network with additional 9 weather ra-
dars, over 4750 rain gauges, and 300 river gauges.

At the global scale, the Copernicus Emergency Management Service (EMS), 
which has been in operation since April 1st 2012, includes multiple platforms 
and uses satellite imagery and other geospatial data to provide mapping service 
in cases of natural disasters, human-made emergency situations, and humanitar-
ian crises throughout the world. The Global Flood Awareness System (GloFAS) 
provides information for alert and preparedness, while the Mapping Services 
provide post-event assessments for emergency response and recovery phases 
of a disaster upon request from authorized users. In the latter case, data pro-
cessing of SAR imagery, digital elevation models, and other available datasets 
are used. Operationally, Cemaden uses GloFAS for streamflow forecasts, while 
higher resolution hydrological forecasting systems remain under development. 
The EMS Mapping service has not been activated for any past flood in Brazil, 
and in the case of a large flood disaster an activation as “associated user” would 
be beneficial, since currently the nation lacks an operational flood mapping 
service.

Another relevant global initiative is the International Charter “Space and 
Major Disasters” through which satellite data are made available for the benefit 

FIGURE 4.9 Real-time flood monitoring and forecasting systems for (A) the Rio Grande do Sul 
state and (B) the Madeira River Basin, which is 1 of the 16 currently available systems from the 
Geological Survey of Brazil (SACE/CPRM). (Photos in Figure A from Iraí city from Fernando 
Sucolotti/ AI/ Prefeitura Iraí; available at <https://fotospublicas.com/retrospectiva-2014-cotidia-
no//>; License CC BY-NC 2.0; and from Lajeado city (courtesy by Amanda Wajnberg Fadel). Pho-
tos in Figure B from Adalberto Marques/Integração Nacional; available at <https://fotospublicas.
com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/>; License CC BY-NC 2.0.)

https://fotospublicas.com/retrospectiva-2014-cotidiano//
https://fotospublicas.com/retrospectiva-2014-cotidiano//
https://fotospublicas.com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/
https://fotospublicas.com/rio-madeira-causa-enchente-em-porto-velho-devido-chuvas/
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of disaster management. By combining Earth Observation assets from different 
space agencies, the Charter allows resources and expertise to be coordinated 
for rapid response to major disaster situations; thereby helping civil protec-
tion authorities and the international humanitarian community. In Brazil, it was 
activated 9 times for flood disasters in the period of January 2000 to January 
2020. The first activation was in November 2008 when heavy rainfall caused 
severe flooding and landslides in the Southern Brazilian state of Santa Catarina, 
leaving more than 20,000 people homeless. Flood mapping for emergency re-
sponse was produced with ENVISAT1-ASAR radar data at spatial resolution 
of 14.8 m.

The GFP is another initiative that aims to gather worldwide stakeholders 
(scientists, users, private, and public organizations) to deal with operational 
flood risk management (Alfieri et al., 2018; De Groeve et al., 2015). Some cases 
of success activation of the network were reported by Alfieri et al. (2018), in-
cluding the 2017 South Asia and the 2017 Hurricane Harvey (USA) floods. In 
addition to these tools, other real-time flood monitoring at global scales include 
the Global Flood Detection System, first based on AMSR-E microwave radi-
ometer data (https://www.gdacs.org/flooddetection/), the Global Flood Monitor, 
based on social media (de Bruijn et al., 2019) (https://www.globalfloodmonitor.
org/about), and the Global Flood Monitoring System, based on hydrological 
modeling (http://flood.umd.edu/) (Table 4.1).

The use of remote sensing based monitoring can largely improve flood man-
agement in Brazil, especially if used in combination with river flood models. This 
includes the provision of water surface extent climatology (Aires et al., 2017; 
Pekel et al., 2016) and operational mapping products for emergency response. 
For instance, satellite altimetry water levels have been used in Brazil for op-
erational gap filling and series updating, as well as monitoring of ungauged 
reaches in transboundary basins (Da Silva et al., 2014). One example is the 
Madeira River in the Amazon (Fig. 4.9B) (Seyler et al., 2009), which receives 
water from Bolivia and Peru, so that the current alert system misses important 
data monitoring. Near real-time discharge monitoring using altimetry-modeled 
discharge rating curves as proposed by Paris et al. (2016) is very promising 
in such cases (Section 3.3). Furthermore, satellite based real-time monitoring 
of meteorological conditions is already performed by some flood monitoring 
systems in Brazil, as GOES16 in the Amazon State system (available at <http://
hidro.sipam.gov.br/>), and other products as those from GPM and MERGE are 
operationally used.

5 Conclusion

Brazil presents large natural wetlands which provide important ecosystem ser-
vices, but its territory is also associated to major riverine flood risk along many 
cities. Remote sensing data are very promising to be used in combination with 

https://www.gdacs.org/flooddetection/
https://www.globalfloodmonitor.org/about
https://www.globalfloodmonitor.org/about
http://flood.umd.edu/
http://hidro.sipam.gov.br/
http://hidro.sipam.gov.br/
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river flood models in order to improve our understanding and predictability of 
floods. This topic is addressed in this chapter by discussing the current Brazilian 
context on flood monitoring and forecasting, as well as hazard estimation, and 
considering the country's particularities due to its location in a tropical region 
with complex river systems, the remoteness of many urban centers, and the un-
gauged character of many of its rivers.

A systematic literature review was performed, and provided some interest-
ing views on the need for future research in Brazil regarding river flood model 
applications, and especially on the use of satellite based flood extent and water 
level data. For instance, more efforts are required to foster model calibration 
and validation with remote sensing on Brazilian urban areas under flood risk, 
in special when dealing with 2D hydraulic models—to date, most studies in 
this sense were performed for regional scales and in the Amazon Basin. On 
the other hand, there has been an increase in the use of remote sensing data in 
recent years.

Recent experiences in Brazilian rivers on the integration of river flood mod-
els and remote sensing were presented, and highlighted the different opportu-
nities now available. These include the estimation of river cross-section depth 
and roughness parameters with data assimilation and genetic calibration algo-
rithms, and floodplain topography direct estimation from detailed in situ survey 
as well as from a new method that combines water mask and surface water level 
time series. Cross-scale model comparisons (from global to local scales) are 
also very important to better understand the capabilities of large scale models. 
Comparison exercises in Brazil (Itajaí-Açu and Madeira river basins as well 
as a South America scale study) provided valuable insights on the capabilities 
of current models, showing that although current global models are capable of 
simulating river discharges (given a prior rainfall-runoff parameter calibration), 
there is still a need to use more distributed information of cross-sections (bank-
full width and depth, roughness) to achieve better predictions of water levels 
and flood extent.

Finally, we discussed some of the current efforts by national and internation-
al organizations to monitor and forecast floods in real-time and to estimate flood 
hazard in Brazil, and provided perspectives on how current and future satellite 
missions, in combination with hydrological models, could help to mitigate flood 
related disasters. We conclude by calling Brazilian agencies and organizations 
to work closer to international initiatives on disaster management (e.g., GFP, 
Disasters Charter), and that more efforts be invested on training operational us-
ers on the use of newly available datasets and modeling techniques.

Supplementary material S1

Table 4.2 lists the 55 studies identified with Scopus search that were published 
since 2000 and included analysis of flood extent simulated by flood models in 
Brazil.
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TABLE 4.2 List of the 55 studies identified with Scopus search that were published since 2000 and included analysis of flood 
extent simulated by flood models in Brazil.
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2001 10.21168/rbrh.v6n4.p133-153

2 Mascarenhas, F.C.B., Miguez, M.G. Urban flood control through a mathematical cell 
model

2002 10.1080/02508060208686994

3 Mascarenhas, F.C.B., Miguez, M.G., 
Magalhes, L.P.C.

MODCEL: An integrated cell model for river basin 
simulation

2007 10.2495/RM070081

4 Meller, A., Paiva, E. Simulação Hidrodinâmica 1D de Inundações em 
Sistema de Drenagem Urbana

2007 10.21168/rbrh.v12n2.p81-92

5 Miguez, M.G., Mascarenhas, F.C.B., 
Prodanoff, J.H.A., Magalhes, L.P.C.
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Hydrodynamic modeling of macro, micro-
drainage and flows over streets

2007 10.2495/WRM070601

6 Wilson, M.D., Bates, P., Alsdorf, D., 
Forsberg, B., Horritt, M., Melack, J., 
Frappart, F., Famiglietti, J.

Modeling large-scale inundation of Amazonian 
seasonally flooded wetlands

2007 10.1029/2007GL030156

7 Bonnet, M.P., Barroux, G., Martinez, 
J.M., Seyler, F., Moreira-Turcq, P., 
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Boaventura, G., Maurice-Bourgoin, 
L., León, J.G., Roux, E., Calmant, S., 
Kosuth, P., Guyot, J.L., Seyler, P.

Floodplain hydrology in an Amazon floodplain 
lake (Lago Grande de Curuaí)

2008 10.1016/j.jhydrol.2007.10.055

8 Coe, M.T., Costa, M.H., Howard, E.A. Simulating the surface waters of the Amazon 
River basin: Impacts of new river geomorphic and 
flow parameterizations

2008 10.1002/hyp.6850
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9 Decharme B., Douville H., Prigent 
C., Papa F., Aires F.

A new river flooding scheme for global climate 
applications : Off-line evaluation over South 
America

2008 10.1029/2007JD009376

10 Paz, A., Collischonn, W., Tucci, C Simulação Hidrológica de Rios com Grandes 
Planícies de Inundação

2010 10.21168/rbrh.v15n4.p31-43

11 Paiva, R.C.D., Collischonn, W., 
Tucci, C.E.M.

Large scale hydrologic and hydrodynamic 
modeling using limited data and a GIS based 
approach

2011 10.1016/j.jhydrol.2011.06.007

12 Paz, A.R.D., Collischonn, W., Tucci, 
C.E.M., Padovani, C.R.

Large-scale modeling of channel flow and 
floodplain inundation dynamics and its 
application to the Pantanal (Brazil)

2011 10.1002/hyp.7926

13 Yamazaki, D., Kanae, S., Kim, H., 
Oki, T.

A physically based description of floodplain 
inundation dynamics in a global river routing 
model

2011 10.1029/2010WR009726

14 Getirana, A.C.V., Boone, A., 
Yamazaki, D., Decharme, B., Papa, 
F., Mognard, N.

The hydrological modeling and analysis platform 
(HyMAP): Evaluation in the Amazon basin

2012 10.1175/JHM-D-12-021.1

15 Miguez-Macho, G., Fan, Y. The role of groundwater in the Amazon water 
cycle: 1. Influence on seasonal streamflow,  
flooding and wetlands

2012 10.1029/2012JD017539

16 Paiva, R.C.D., Collischonn, W., 
Bonnet, M.P., De Gonçalves, L.G.G.

On the sources of hydrological prediction 
uncertainty in the Amazon

2012 10.5194/hess-16-3127-2012

17 Stacke, T., Hagemann, S. Development and evaluation of a global 
dynamical wetlands extent scheme

2012 10.5194/hess-16-2915-2012

18 Yamazaki, D., Baugh, C.A., Bates, 
P.D., Kanae, S., Alsdorf, D.E., Oki, T.

Adjustment of a spaceborne DEM for use in 
floodplain hydrodynamic modeling

2012 10.1016/j.jhydrol.2012.02.045
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19 Yamazaki, D., Lee, H., Alsdorf, D.E., 
Dutra, E., Kim, H., Kanae, S., Oki, T.

Analysis of the water level dynamics simulated by 
a global river model: A case study in the Amazon 
River

2012 10.1029/2012WR011869

20 Ringeval B., Decharme B., 
Piao S.L., Ciais P., Papa F., De 
Noblet-Ducoudré N., Prigent C., 
Friedlingstein P., Gouttevin I., Koven 
C., Ducharne A.

Modeling sub-grid wetland in the ORCHIDEE 
global land surface model: Evaluation against 
river discharges and remotely sensed data

2012 10.5194/gmd-5-941-2012

21 Baugh, C.A., Bates, P.D., Schumann, 
G., Trigg, M.A.

SRTM vegetation removal and hydrodynamic 
modeling accuracy

2013 10.1002/wrcr.20412

22 Beck, V., Gerbig, C., Koch, T., 
Bela, M.M., Longo, K.M., Freitas, 
S.R., Kaplan, J.O., Prigent, C., 
Bergamaschi, P., Heimann, M.

WRF-Chem simulations in the Amazon region 
during wet and dry season transitions: Evaluation 
of methane models and wetland inundation maps

2013 10.5194/acp-13-7961-2013

23 De Paiva, R.C.D., Buarque, D.C., 
Collischonn, W., Bonnet, M.-P., 
Frappart, F., Calmant, S., Bulhões 
Mendes, C.A.

Large-scale hydrologic and hydrodynamic 
modeling of the Amazon River basin

2013 10.1002/wrcr.20067

24 Langerwisch, F., Rost, S., Gerten, D., 
Poulter, B., Rammig, A., Cramer, W.

Potential effects of climate change on inundation 
patterns in the Amazon Basin

2013 10.5194/hess-17-2247-2013

25 Paiva, R.C.D., Collischonn, W., 
Buarque, D.C.

Validation of a full hydrodynamic model for 
large-scale hydrologic modeling in the Amazon

2013 10.1002/hyp.8425

26 Veról, A., Miguez, M., Mascarenhas, F Propagação da Onda de Ruptura de Barragem 
Através de um Modelo Quasi-2D
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TABLE 4.2 List of the 55 studies identified with Scopus search that were published since 2000 and included analysis of flood 
extent simulated by flood models in Brazil. (Cont.)
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Rodell, M.

Rivers and Floodplains as Key Components of 
Global Terrestrial Water Storage Variability

2017 10.1002/2017GL074684

41 Hoch, J.M., Haag, A.V., Van Dam, A., 
Winsemius, H.C., Van Beek, L.P.H., 
Bierkens, M.F.P.

Assessing the impact of hydrodynamics on 
large-scale flood wave propagation &amp;ndash; 
A case study for the Amazon Basin

2017 10.5194/hess-21-117-2017

42 Hoch, J.M., Neal, J.C., Baart, F., Van 
Beek, R., Winsemius, H.C., Bates, 
P.D., Bierkens, M.F.P.

GLOFRIM v1.0-A globally applicable 
computational framework for integrated 
hydrological-hydrodynamic modelling

2017 10.5194/gmd-10-3913-2017
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43 Lauerwald, R., Regnier, P., 
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Polcher, J., Ciais, P.

ORCHILEAK (revision 3875): A new model 
branch to simulate carbon transfers along the 
terrestrial-aquatic continuum of the Amazon 
basin

2017 10.5194/gmd-10-3821-2017

44 Luo, X., Li, H.-Y., Ruby Leung, L., 
Tesfa, T.K., Getirana, A., Papa, F., 
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Modeling surface water dynamics in the Amazon 
Basin using MOSART-Inundation v1.0: Impacts 
of geomorphological parameters and river flow 
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2017 10.5194/gmd-10-1233-2017

45 Pontes, P.R.M., Fan, F.M., 
Fleischmann, A.S., de Paiva, R.C.D., 
Buarque, D.C., Siqueira, V.A., Jardim, 
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46 de OLIVEIRA, G.G., Flores, T., 
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47 Fadel, A.W., Marques, G.F., 
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2018 NA

48 Fadel, A.W., Marques, G.F., 
Goldenfum, J.A., Medellín-Azuara, J., 
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Full Flood Cost: Insights from a Risk Analysis 
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7870.0001414

49 Lopes, V.A.R., Fan, F.M., Pontes, 
P.R.M., Siqueira, V.A., Collischonn, 
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A first integrated modeling of a river-lagoon large-
scale hydrological system for forecasting purposes
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Paiva, R., Tucci, C.E.

Modeling the role of reservoirs versus floodplains 
on large-scale river hydrodynamics
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51 Fleischmann, A., Paiva, R., 
Collischonn, W.

Can regional to continental river hydrodynamic 
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2019 10.1016/j.hydroa.2019.100027

52 Hoch, J.M., Eilander, D., Ikeuchi, H., 
Baart, F., Winsemius, H.C.

Evaluating the impact of model complexity on 
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framework

2019 10.5194/nhess-19-1723-2019

53 Pinheiro V.B., Naghettini M., Palmier 
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Uncertainty estimation in hydrodynamic 
modeling using Bayesian techniques [Estimação 
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meio de técnicas Bayesianas]

2019 10.1590/2318-
0331.241920180110

54 Vieira L.M.D.S., Fontes A.S., Simões 
A.L.A.

Analysis of physical mechanisms of human body 
instability for the definition of hazard zones 
present in emergency action plans of dams. 
Case study: Santa helena dam, bahia [Análise de 
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2019 10.1590/2318-
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55 Pinel, S., Bonnet, M., Silva, J., 
Sampaio, T., Garnier, J., Catry, T., 
Calmant, S., Freagoso, C., Moreira, 
D., Marques, D., Seyler, F

Flooding dynamics within an Amazonian 
floodplain: water circulation patterns and 
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2019 10.1029/2019WR026081
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1 Introduction

Quantifying water fluxes is the key to understand the global hydrologi-
cal cycle and to perform accurate assessments of water availability (Oki and 
Kanae, 2006). Nevertheless, the uncertainty associated with estimation of key 
fluxes, such as the river discharge toward the oceans is high, as one can infer 
from the divergence in estimates found in the literature, for example, 37103 
km3/year (Dai et al., 2009) or 45103 km3/year (Oki and Kanae, 2006). Despite 
the importance of the characterization of hydrological regimes and hydraulic 
properties of rivers, the global network of stream gages is in decline (Pavel-
sky et al., 2014). In addition to their thinning numbers, reluctance in sharing 
information across borders (Gleason and Hamdan, 2015; Hossain et al., 2014; 
Sneddon and Fox, 2006; Sneddon and Fox, 2012; Wolf et al., 1999) combined 
with the highly heterogeneous stream gage density among countries (Alsdorf 
et al., 2007) prevents us from resolving the propagation of hydrological events 
through channels, floodplains, and lakes in global scale (Alsdorf and Letten-
maier, 2003).

Alsdorf and Lettenmaier (2003) recognized the need to accurately measure 
world-wide discharge and highlighted the measurement accuracy needed by 
a satellite mission to fulfill such objective. Alsdorf et al. (2007) proposed an 
early design of a satellite carrying a Ka-band Radar Interferometer (KaRIn) that 
could address the needs of hydrologic community as well as allow the track-
ing of mesoscale ocean currents in line with the requirements presented by 
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Fu and Rodriguez (2004), which led to the development of the Surface Water 
and Ocean Topography mission (SWOT).

The SWOT mission is scheduled to launch in 2022 and has an anticipated 
duration of 36 months. The first 3 months are dedicated to launch and payload 
check, followed by 3 months of calibration during which SWOT will fly on 
a fast-sampling-limited spatial-coverage orbit, before transitioning to the final 
orbit, where it will remain for at least 30 months as described in the SWOT sci-
ence requirements document (Desai, 2018). During its operation, the satellite 
will measure water surface elevation, slope, and inundation area of rivers wider 
than 100 m and possibly as narrow as 50 m as well as measure inundation area 
and water surface elevation of lakes with area larger than or equal to 62,500 m2, 
often reported as (250 m)2, as shape can play a role on measurement accuracy 
and detectability of lakes and reservoirs (Solander et al., 2016).

This chapter introduces the measurement principles of the SWOT satellite 
and its anticipated sources of uncertainty in Section 2 and provides a concise 
description of the SWOT data products for rivers in Section 3. Section 4 dem-
onstrates how the observed changes in water surface elevation and river width 
can be used to estimate cross-sectional area changes and anomalies. Section 5 
describes methods that can estimate unobservable hydraulic properties of rivers 
and allow the calculation of river discharge. We end the chapter in Section 6, 
which provides insights on active areas of research and development pertaining 
the estimation of hydraulic properties of river reaches and discharge.

2 Surface water and ocean topography mission 
characteristics and measurement principle

The main instrument onboard the SWOT satellite is the Ka-band Radar Inter-
ferometer (KaRIn), which operates at a frequency of 35.75 GHz, with an as-
sociated wavelength of 8.6 mm (Biancamaria et al., 2016; Fjørtoft et al., 2014). 
KaRIn will illuminate the surface of the earth at near nadir angles extending 
from 0.6 to 3.9 degrees on both right and left sides of the spacecraft as illus-
trated by Fig. 5.1. Given SWOT’s altitude of 890.5 km and assuming flat terrain 
below the satellite, the swath would be 50 km wide, with a swath gap of 20 km 
centered immediately below the flight path.

SWOT’s temporal sampling will depend on the latitude of interest. During 
a 20.86-day cycle, a location can be observed by more than 1 pass, which is 
defined as the path the satellite takes as it travels from its most southern posi-
tion to its most northern position (ascending pass) and from its most northern 
position toward its most southern position (descending pass). At lower latitudes, 
that is, between 20 degrees South and 20 degrees North, locations will be typi-
cally observed by 1 or 2 passes, with the number of passes increasing as latitude 
increases (Biancamaria et al., 2016). Areas sampled by more than 1 pass will 
experience uneven time sampling, an issue discussed by Frasson et al. (2019d) 
and exemplified in Fig. 5.2.
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Land, water, buildings, or other surfaces within SWOT’s swaths will reflect 
a fraction of the incident beam toward SWOT’s two antennas. Because the an-
tennas are separated by 10 m, the echo from a target on the surface will travel 
slightly different distances to each antenna, giving rise to a difference in phase 
between the signals received by the left and the right antennas. Provided that the 
targets are bright enough, the phase difference (φ) can be estimated.

Considering a total phase difference of φ + n 2π, where n is an integer value 
and |φ|< 2π, SWOT will only be able to retrieve φ. Therefore, φ combined with 
the position of the spacecraft during image acquisition, and the range to the 
target does not contain sufficient information to determine a unique solution 
for the latitude, longitude, and elevation of a target as illustrated in Fig. 5.3. 
Using a reference Digital Elevation Model (DEM) allows the identification of 
the correct value of n (phase unwrapping) and the geolocation of targets, that 
is, the identification of latitude, longitude, and elevation, provided that the 
elevation difference between two neighboring targets is less than half of an 
ambiguity height, which varies from 8 m at the near range to 52 m at the far 
range according to equation 5 in Fjørtoft et al. (2014). Steeper scenes require 
more complex phase unwrapping algorithms such as Statistical-cost, Network-
flow PHase-Unwrapping algorithm (SNAPHU) by Chen and Zebker (2001).

Incorrect phase unwrapping will lead to both vertical and horizontal shifts 
as one can see in Fig. 5.3. The presence of the horizontal shift may allow for 

FIGURE 5.1 SWOT’s viewing geometry showing the right and left swaths, the inner swath 
gap, and illustrating the sensor resolution, shown as black rectangles in the right swath that 
become progressively narrower toward the far range. (Modified from Frasson et al. (2019d).)
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four gages, marked by the red triangles numbered from 1 to 4. Panels 1–4 show how the stage at each gage varies over 2 months (blue line), with the vertical lines 
showing the time of passes assuming a mission start day of January 1, 2019. Each vertical line color and pattern represent a different pass overlooking the location. 
Vertical lines with the same color and pattern are separated by 20.86 days.
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correction of the phase unwrapping error if the correct waterbody can still be 
identified. More information on the formation of interferograms, phase unwrap-
ping, and geolocation can be found in chapter 15 of Ulaby et al. (2014) as well 
as Fjørtoft et al. (2014).

The intensity of the signal reflected by different surfaces toward the sat-
ellite depends on the incidence angle, surface type, and roughness. Using an 
airplane-mounted Ka-Band interferometer, Fjørtoft et al. (2014) demonstrated 
that at a frequency similar to SWOT (35 GHz as opposed to 35.75 GHz) and at 
SWOT-like incidence angles, water will appear much brighter than land in the 
radar images. The expected difference in backscattering coefficient will allow 
the distinction between water and land targets.

In a perfect world, in the absence of measurement noise and signal attenua-
tion, it would be possible to geolocate any target, regardless of the strength of the 
echo returning from a surface target. In reality, returns from land will generally 
lack the power to allow accurate determination of the phase difference perceived 

FIGURE 5.3 Illustration of two possible solutions for target position due to phase ambiguity. 
Both locations are possible solutions to the position of the target, the identification of the correct 
location is done with the help of a reference DEM. The selection of the wrong solution leads to 
vertical errors of a multiple of the ambiguity height as well as a horizontal shift.
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by the two antennas, which will make land targets exceedingly noisy. Fig. 5.4 
shows an example of geolocated returns colored by surface type. Land targets 
appear scattered around the river banks as opposed to more regularly located 
water targets, which include two classes: water near land and interior water.

On occasion, water may appear dark, a situation that the SWOT commu-
nity calls dark water, which could lead to two issues: the target may be incor-
rectly classified as land, which can cause underestimation of river width and 
inundation area; or, if the target is classified as water despite appearing dark, 
its latitude, longitude, and height will have unusually high errors. Dark water 
occurs due to specular reflection over the water surface preventing the signal 
to be reflected to the satellite, which can happen if the water surface is smooth 
in comparison to the signal wavelength. Under usual circumstances, wind and 
turbulence will provide the surface roughness needed to prevent specular re-
flection over water features. However, dark water is possible during days with 
particularly calm winds and low flow velocities.

SWOT illuminates surfaces at the right and left sides of its groundtrack 
using different polarizations, allowing the satellite to identify if echoes are 
coming from the right or left swaths. However, if two or more targets located 
in the same swath have the same range to the satellite, they will be undistin-
guishable. Fig. 5.5 shows an example where one of the river banks is at the 
same range as a water target, in which case, returns from terrain will contami-

FIGURE 5.4 Example of a simulated SWOT pixel cloud showing a scene over the Po River 
in Italy. The green to brown color ramp represents the terrain DEM, whereas the light blue to dark 
blue color represent the water depth. Blue and yellow circles represent simulated SWOT returns 
from water and red circles show simulated returns from land in the vicinity of the river. Land returns 
display much larger latitude, longitude, and elevation uncertainty, evident here by the spread of the 
points, at times far from the river banks. (Courtesy of Rui Wei.)
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nate returns from water, a situation called terrain layover. The end result is 
generally a positive bias in water surface heights, with magnitude that depends 
on the ratio between the land and water brightness, the orientation of the river 
with respect to the swath, the position on the swath, and the complexity of 
the terrain. Using simulated SWOT data, Frasson et al. (2017) shows layover 
induced biases could amount to as much as 14 cm in the Sacramento River in 
sections with widths varying between 80 and 150 m, with levees running par-
allel to the SWOT groundtrack, a narrow river for SWOT, running in the worst 
direction with respect to the groundtrack when it comes to layover. Fjørtoft 
et al. (2014) describes the conditions that lead to terrain layover and suggests 
ways to remove biased pixels, however exclusion of biased pixels may lead to 
increased random errors due to the reduction of the number of retained pixels 
and may ultimately be detrimental to the measurement of narrow rivers.

Additionally, changes in media quality, that is, atmospheric properties, such 
as moisture content, refractive index, and others, can add propagation delays 
to the radar signal, leading to increased geolocation errors. Lastly, errors in the 
orientation of the spacecraft affect the precision the SWOT measurements. A 
comprehensive breakout of the height and slope errors for hydrologic applica-
tions can be found in Esteban-Fernandez (2013). Fig. 5.6 shows the overall 

FIGURE 5.5 Illustration of a waterbody prone to layover errors. Distinct targets located at the 
same range to the radar cannot be distinguished by SWOT. When water and land targets (section 
highlighted in red) have the same range, the resulting estimated elevation will be biased.
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FIGURE 5.6 (A) Expected median height root mean square error versus river width, (B) Expected median slope root mean square error versus river width. Values 
computed over 10 km reaches assuming errors caused by thermal noise, terrain layover, media delays, and spacecraft attitude.
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estimated height and slope errors at the 10 km reach scale as a function of river 
width, which includes thermal noise, estimated layover errors, and accounting 
for the budgeted amount for media and attitude errors.

3 SWOT data products

SWOT main river data products will be the pixel cloud, river nodes, reaches, 
and the raster product. The products vary in resolution, level of uncertainty, and 
in content. Fig. 5.7 illustrates the interplay between spatial resolution and mea-
surement uncertainty. This section provides more details on the products that 
are relevant for discharge estimation, that is, the pixel cloud, nodes, and reaches.

The pixel cloud is the highest resolution product. It is the closest product 
to the raw SWOT measurements, with each pixel containing information on 
the latitude and longitude, surface type, fraction of the pixel covered by water, 
elevation above the geoid and ellipsoid, geophysical corrections, and quality 
flags. Due to uncertainties in the process of geolocation, the pixels no longer 
lay on a regular grid, but instead resemble a cloud of points, giving rise to the 
name of the product.

Surface types are classified as interior water, water near land, land near wa-
ter, land, and potentially dark water. Interior water pixels are surrounded by 
other water pixels; therefore, they are more likely to cover an area that contains 
only water. Water near land are water pixels that contain at least one neigh-
boring pixel classified as land. Such pixels can be mixed pixels, with a water 
fraction less than 100%. Land near water cover predominantly land, but have 
at least one neighbor classified as water, they are likely to have a water fraction 
greater than 0. Land pixels have all neighboring pixels classified as land or land 
near water, they are unlikely to contain a water fraction greater than 0 and tend 
to have high geolocation errors (Fig. 5.4). Finally, dark water pixels are pixels 
believed to be water, but appeared dark.

Most current estimates of the water surface elevation uncertainties con-
ducted with synthetic data over the Po River (in Italy) generated by the SWOT 
hydrology simulator indicate that pixel height errors expressed in terms of mean 
absolute errors could vary from 1.5 to 1.6 m for interior water pixels and 2.26 
to 2.42 m for water near land (Domeneghetti et al., 2018). Although the Po 
River runs predominantly from west to east, an orientation that is largely per-
pendicular to the SWOT ground track, minimizing the potential for layover, 
Domeneghetti et al. (2018) show that layover biases are still present in river 
bends. Moreover, layover biases can potentially be higher for narrower rivers 
and for rivers running in parallel to the ground track.

The next step in terms of resolution is the node product. Nodes are points lo-
cated every 200 m along river centerlines and because they represent an aggre-
gation of pixels, they are expected to show smaller levels of height uncertainty 
(Frasson et al., 2017). The pixel to node assignment is executed by searching 
for the nearest node to each pixel, accounting for continuity of water bodies. 
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FIGURE 5.7 Schematic tradeoff between resolution and measurement uncertainty followed by illustrations of river reaches and nodes over the Sacra-
mento River, in California.
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Node heights are computed as the median elevation computed over all water 
pixels associated to a node while node widths are computed as the sum of the 
water surface area from all pixels associated to the node, divided by the distance 
between nodes.

Height uncertainty in nodes still prevents the accurate calculation of node to 
node water surface slope in most rivers. In order to further reduce height uncer-
tainty, nodes are grouped into reaches that are approximately 10 km long. Reach 
slopes are computed with linear regression applied to nodes located within a 
reach and the reach averaged elevation is computed by evaluating the fitted line 
at the center of the reach. Similarly to the computation of node widths, reach 
averaged widths are computed by adding the inundated area that belongs to a 
reach, divided by the reach length.

4 Measuring channel cross-sectional geometry

The estimation of discharge requires knowledge of reach cross-sectional area, 
which is not directly measured by SWOT. Durand et al. (2014) proposed the 
decomposition of the reach cross-sectional area (At) into the cross-sectional area 
at the lowest stage (A0) and the cross-sectional area change from time 0 to time 
t (δAt):

δ= +A A At t0 (5.1)

where A0 is not directly observed by SWOT and δAt calculated by, for example, 
using trapezoidal integrals over a time series of observed heights and widths. 
The unobservable area would then be estimated using a Mass-Conserved Flow 
Law Inversion (MCFLI) method described by Gleason et al. (2017) and here, in 
Section 5.1. Alternatively, it could be estimated by fitting theoretical profiles to 
height and width measurements, for example, Mersel et al. (2013) and Schap-
erow et al. (2019).

In the interest of allowing better prior estimates of the reference cross-
sectional area, Hagemann et al. (2017) proposed a similar decomposition to  
Eq. (5.1), however, instead of using the lowest flow as the reference cross-sec-
tional area, Hagemann, Gleason, and Durand proposed the use of the cross-
sectional area at median flow instead (Ā) so that the cross-sectional area would 
be estimated as:

= + ∆A A At t (5.2)

where ∆At represents the cross-sectional area change between Ā and the time t, 
referred to as cross-sectional area anomaly at time t.

Both δAt and ∆At can be estimated by accruing the changes in top width and 
water surface elevation using the trapezoidal area calculation scheme as sug-
gested by Durand et al. (2014), or be estimated by fitting relationships between 
observed reach averaged stage and width. Since height and width errors are not 

At=A0+δAt

At=A¯+∆At
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expected to be highly correlated, cross-sectional area changes calculated from 
height-width relationships are likely to carry smaller uncertainties, provided 
that the fitting method is appropriate for a situation when both variables carry 
uncertainties. An example of such method is the error in variables approach 
(Fuller, 1987), which was implemented to SWOT data by Durand et al. (2018).

Fig. 5.8A shows an example of a continuous piecewise linear function fitted 
to width height pairs generated with 10 cycles of simulated SWOT data assum-
ing 2 passes per cycle over a reach of the Ohio River in the United States. The 
points were divided into three subdomains intended to represent changes in the 
channel geometry as illustrated in Fig. 5.8B, that is, subdomain 1 represent-
ing flow in the main channel, and subdomains 2 and 3 representing inundation 
of the flood plain. The three fitted lines are constrained to meet at subdomain 
boundaries, thus allowing the identification of a slope and intercept for subdo-
main 2, despite the lack of points.

Due to the reduced number of points in subdomains 2 and 3, the width-
height relationships at these domains are less reliable and more prone to change 

FIGURE 5.8 (A) Piecewise linear curves constrained to meet at subdomain boundaries fitted to 
20 pairs of height-width measurements, (B) example of a theoretical cross-section that would yield 
H-W curves similar to those in (A), (C) resulting cross-sectional area as a function of height, (D) 
time series of ∆A for an example reach over the Ohio River compared to cross-sectional areas de-
rived from a hydraulic model with no synthetic SWOT data added to it.
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when new data is acquired, especially if high flow events are sampled. Con-
sidering three domains with boundaries transitioning from subdomain 1 to 2 
and 2 to 3 at H1 and H2, respectively, and a linear fit between width and height 
described by:
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where p1,i is a fit parameter that describes the change in width with respect to 
the change in height for subdomain i = 1 to 3, and p2,i is the fitted intercept for 
subdomains i = 1 to 3; the curve relating the cross-sectional area anomaly at 
time t (∆At) and stage can be derived by:
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The resulting curve is shown in Fig. 5.8C, which yields the time series cross-
sectional area change as shown in Fig. 5.8D. The estimated ∆At are compared to 
cross-sectional area anomalies computed by hydraulic model of the Ohio River 
(Adams et al., 2010) used to generate the simulated noisy SWOT data, and 
therefore are assumed as the truth.

5 Estimating cross-sectional area, roughness, and discharge

5.1 Mass-Conserved Flow Law Inversion methods

Discharge algorithms created to support the SWOT mission employ simple 
hydraulic laws to estimate discharge. For example, the Metropolis Manning 
(MetroMan), developed by Durand et al. (2014), Garambois-Monnier (GaMo) 
discharge algorithm developed by Garambois and Monnier (2015), and the 
Bayesian At-many-stations-hydraulic geometry-Manning (BAM) method 
developed by Hagemann et al. (2017) use modified forms of Manning’s equation 

WH=p1,1⋅H+p2,1  for  H≤H1WH=
p1,2⋅H+p2,2  for  H1<H≤H2WH=p

1,3⋅H+p2,3  for  H>H2

∆At=∫H¯HtWHdH,

H¯≤H1

∆At=p1,1⋅Ht2−H¯22+p2,1⋅Ht−H
¯ for Ht≤H1∆At=p1,1⋅H12−H¯22
+p2,1⋅H1−H¯+p1,2⋅Ht2−H122+
p2,2⋅Ht−H1 for H1<Ht≤H2∆At=
p1,1⋅H12−H¯22+p2,1⋅H1−H¯+p
1,2⋅H22−H122+p2,2⋅H2−H1++
p1,3⋅Ht2−H222+p2,3⋅Ht−H2+f

or Ht>H2.
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for discharge estimation. Common among MetroMan, GaMo, and BAM are the 
assumption that the river reaches are wide, that is, width >> depth, therefore 
the wetted perimeter is essentially equal to the river width. Giving this assump-
tion, the Manning-Strickler equation can be written as:

= ⋅ ⋅ ⋅−Q
n

A W S
1

f
5/3 2/3

 
(5.6)

where n stands for the friction coefficient, A represents the wetted cross-section-
al area, W stands for the top width, and Sf for the friction slope.

The second assumption is that the friction slope is equal to the water surface 
slope. Although this simplification is only true for uniform flow, it can be as-
sumed for reaches with low Froude numbers, typically less than 0.3 as shown 
by Garambois and Monnier (2015). Under such assumptions, the Manning-
Strickler equation reduces to:

= ⋅ ⋅ ⋅−Q
n

A W S
1 5/3 2/3

 
(5.7)

where S represents the water surface slope.
The cross-sectional area can be rewritten with Eq. (5.2), which gives us the 

form:

( )= ⋅ + ∆ ⋅ ⋅−Q
n

A A W S
1 5/3 2/3 (5.8)

used by the early versions of MetroMan and BAM. The initial iteration of dis-
charge algorithms was benchmarked by Durand et al. (2016), who found that at 
least one of the five tested algorithms could retrieve discharge with relative root 
mean square errors of 35% or better for 14 out of the 16 test cases containing 
non-braided rivers. Additionally, Durand et al. (2016) suggested that allowing 
the friction coefficient to vary as a function of flow conditions, such as dis-
charge or depth, can lead to improvements in discharge retrieval, particularly 
at low flows.

The initial findings of Durand et al. (2016) were based on river models and 
synthetic data. Later, Tuozzolo et al. (2019a) demonstrated with field observa-
tions that the Manning-Strickler equation can better describe the discharge in river 
reaches when the roughness coefficient is allowed to vary with either stage or 
discharge. As a response to those findings, new SWOT discharge algorithms that 
use the Manning Strickler equation adopted a roughness parameterization such as:

= + ∆



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n n
A A

W
t

t

b

0

 
(5.9)

where n is essentially a time-varying effective roughness that depends on three 
static parameters: n0, b, and A  and two time-varying quantities that can be  

Q=1n⋅A5/3⋅W−2/3⋅Sf,

Q=1n⋅A5/3⋅W−2/3⋅S,

Q=1n⋅A¯+∆A5/3⋅W−2/3⋅S,

n=n0A¯+∆AtWtb,

A¯
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directly observed by SWOT: the cross-sectional area anomaly at time t (∆At) 
and top width at time t (Wt).

Combining Eqs. (5.8) and (5.9) applied to a river reach r at a point in time 
t, gives:

( )=
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
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where the subscript r identifies the reach and t the point in time. Variables with 
only one subscript, that is n0,r, br, and Ar  are constant in time, but variable in 
space, those with two subscripts vary in both time and space. Discharge estima-
tion with Eq. (5.10) requires knowledge of ∆Ar,t, Wr,t, and Sr,t, which are observ-
able by SWOT, and parameters n0,r, br, and Ar , which need to be estimated. Dis-
charge algorithms based on the MCFLI approach estimate the non-observable 
parameters by applying the continuity equation between a set of contiguous 
reaches, typically 4–6 reaches, and across time, with a minimum of 6 observa-
tions in time.

MCFLI algorithms differ in how they simplify and discretize the continuity 
equation. Starting from the one-dimensional continuity equation:

∂
∂

+
∂

∂
=

Q

x

A

t
qr t r t

r t
, ,

, (5.11)

where x represents the flow distance and qr,t represents contributions from lat-
eral flows, the first approximation is to assume the contribution of lateral flows 
to be negligible, that is, qr,t = 0. This approximation is justified by applying the 
MCFLI method on sets of reaches that do not contain tributaries. In practice, 
overland flow, groundwater gains and losses, evaporation, and the presence of 
unavoidable tributaries joining the set of reaches can degrade the quality of 
the estimated parameters. Methods to address mass imbalance are discussed in 
Section 6.

Additionally, the algorithms make one of the following assumptions before 
discretizing Eq. (5.11): either they neglect the rate of change of the cross-sec-
tional area with respect to time, or they attempt to resolve the cross-sectional 
area. The first approach yields the simplest discretization scheme, that is, in a 
point in time, the set of connected reaches have equal values of discharge. This 
approach is used by BAM, which makes the algorithm more applicable to loca-
tions with sparser time sampling.

The second approach retains the time derivative of the cross-sectional area, 
in which case the discretized version of Eq. (5.11) for an internal reach using the 
finite differences approach becomes:
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Qr,t=1n0,rA¯r+∆Ar,tWr,tbr⋅A¯r+∆
Ar,t5/3⋅Wr,t−2/3⋅Sr,t,

A¯r

A¯r

∂Qr,t∂x+∂Ar,t∂t=qr,t,

Qdn−Qup∆x+Ar,t+1−Ar,t∆t=0,
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where Qdn represents the downstream discharge interpolated to the boundary 
between reaches r − 1 and r, averaged between time steps t and t + 1, Qup rep-
resents the upstream discharge interpolated to the boundary between reaches 
r + 1 and r, averaged between time steps t and t + 1, ∆x represents the reach 
length, Ar,t+1 and Ar,t stand for the cross-sectional area for reach r at time steps 
t + 1 and t, respectively, and ∆t represents the time interval between time steps 
t + 1 and t. This approach is currently adopted by MetroMan. Given the need to 
average discharges between time steps and the consideration of cross-sectional 
area change between time steps, this form requires reaches to be simultaneously 
observed and may experience performance degradation at exceedingly sparse 
time sampling.

The optimum selection of sets of reaches used for the application of MCFLI 
methods requires a balance of four needs. First, the set must avoid the inclusion 
of tributaries; second, the set must contain at least 2 reaches and preferably 4–6 
for the application of the method, third, the uncertainty in the observations must 
be low enough to allow the observation of flow dynamics, which is achieved 
by increasing reach length until uncertainties are acceptable; the fourth need is 
for reaches in a set to be simultaneously observed, or for at least subsets of 2 or 
more reaches to be simultaneously observed, which when combined include all 
reaches in a set.

The avoidance of tributaries is illustrated in Fig. 5.9. The figure shows the 
confluence between the Cedar and the Iowa rivers, which later join the upper 
Mississippi River with the alternating colors identifying river reaches. Panel A 
shows an example of mass-conserved set of reaches located between the con-
fluences of the Cedar and Iowa rivers and Iowa and Mississippi rivers, which 
were picked to avoid tributaries joining within the set. Similarly, panel B shows 
a set on the upper Mississippi river, which does not include visible tributaries. 
The centerlines shown in Fig. 5.9 represent a new iteration of the Global River 
Width from Landsat (GRWL) database (Allen and Pavelsky, 2018), includ-
ing manual processing and corrections to improve river topology executed by  
Altenau et al. (2018).

The last piece of information needed before the MCFLI methods can be 
applied is an initial estimate of discharge for the set of reaches. Since the ini-
tial MCFLI methods were based on Bayesian methods, this initial estimate is 
often called prior information. For MetroMan and BAM, this prior estimate of 
discharge is used to define prior distributions for the A  and roughness param-
eters. Although the algorithms are designed to produce improved estimates of 
discharge as well as to produce flow law parameters that allow the reproduction 
of discharge dynamics, a fraction of the initial discharge biases may remain un-
mitigated, especially if the inversion window does not contain enough variation 
in flow conditions. This is well demonstrated by Tuozzolo et al. (2019b) who 
ran three different discharge algorithms using AirSWOT observations of stage, 
width, and slope over four reaches in the Willamette River in Oregon, United 
States. Despite successfully retrieving discharge in the study area, Tuozzolo 

A¯
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and collaborators identified a dependence of biases in the final estimates of 
discharge on biases in the prior estimate of discharge.

As SWOT is intended to produce global estimates of river discharge, pri-
or discharge estimates are needed globally. Two sources are currently avail-
able for running world-wide MCFLI inversions: the first is mean annual flow 
based on 50 years of discharge estimates made by the model WBMSed (Cohen 
et al., 2014) mapped on river centerlines by Frasson et al. (2019c), which were 
organized into a publicly available dataset that can be obtained from Frasson 
et al. (2019b). A second possible source is the database compiled by Lin et al. 
(2019), which extends beyond the areas observed by the Shuttle Radar Topog-
raphy mission, which is described in detail by Farr, 2007. The next section de-
scribes an application of MetroMan to two sets of reaches in the Seine River 
using SWOT-like data produced with a hydraulic model.

5.2 Illustration of the application of MetroMan for discharge 
estimation in the Seine River

We demonstrate the implementation of MetroMan using the Seine River in 
France as an example. We constructed two synthetic mass conserved cases 
shown in Fig. 5.10 based on a 1-year long hydrodynamic simulation of the Seine 

FIGURE 5.9 Solid lines representing the centerlines of the upper Mississippi River and tribu-
taries near the border of Iowa and Illinois in the United States showing two confluences: Iowa 
and Cedar rivers and Iowa and Mississippi rivers. Background shows the Global 30 Arc-second 
elevation model. The solid lines are drawn in alternating colors, representing how the rivers are seg-
mented into reaches. Panel A shows a set of mass conserved reaches in the Iowa River, which begins 
at the Cedar-Iowa River confluence and ends where the Iowa River joins the upper Mississippi. Panel 
B shows a similar set of mass conserved reaches that begins at the confluence between the Missis-
sippi and the Rock rivers and ends at the confluence between the Mississippi and the Iowa rivers.
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built by Even et al. (1998). We extracted cross-sectional top widths and water 
surface elevations from the hydrodynamic model output and used these cross-
sectional values as proxies for node widths and elevations. By aggregating the 
synthetic nodes, we built reaches, over which we computed time series of reach 
averaged water surface elevation, slope, river width, and cross-sectional area 
anomaly. Additionally, we extracted the discharge from the hydraulic model, 
which we treated as the true discharge used in the evaluation of our estimations. 
This synthetic dataset as well as others are available from Frasson et al. (2019a).

An important step in the estimation of flow law parameters by MetroMan is 
the definition of the inversion window. Measurements inside the inversion win-
dow are used for the estimation of n0,r, br, and Ar shown in Eqs. (5.9) and (5.10), 
which are later used to estimate discharge for all times when measurements of 
height, width, and slope are available. When selecting the inversion window, the 
user should attempt to maximize the observed flow conditions as that allows for 
better constraining the flow parameters br and Ar , while avoiding out-of-bank 
flow, where atypical values of the effective roughness coefficient caused by, for 
example, vegetation and debris as well as important deviations from one dimen-
sional flow can affect the inversion process.

MetroMan and other algorithms have been successfully deployed with as lit-
tle as 6 days of measurements obtained with an airplane mounted Ka-band Ra-
dar interferometer called AirSWOT (Tuozzolo et al., 2019b). However, a larger 
number of measurements is desirable, with 20–30 days of measurements being 
commonly used in previous trial runs (Durand et al., 2016). Given inversion 
windows including 20–30 measurements over 4–5 reaches, run times are on the 

A¯r

A¯r

FIGURE 5.10 Location of two sets of mass conserved reaches on the Seine River (France) 
where the MCFLI method can be applied.
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order of minutes. Increasing the number of measurements inside the inversion 
window above 50 can lead to inversion times on the order tens of minutes, while 
inclusion of 150 and more measurements can lead to run times in excess of 6 h 
using a typical desktop machine.

We initialized MetroMan using an estimate of the mean annual flow equal to 
205 m3/s based on 50 years of discharge estimates made by the model WBMSed 
(Cohen et al., 2014) and no ancillary information, in a situation that aimed to 
reproduce an ungaged basin scenario. The algorithm was set to run a Markov 
chain of 10,000 iterations with the first 2,000 iterations being discarded as burn-
in. We used the inversion windows shown in Fig. 5.11, from day 195 to 335, 
assuming one synthetic SWOT pass every 7 days, leading to 20 days of mea-
surements inside the inversion window. Both upstream and downstream models 
were segmented into 4 reaches defined based on inspection of the water surface 
profiles, with the intent of having homogeneous water surface slopes within 
each reach.

Using the resulting estimates of n0,r, br, and Ar, we calculated discharge 
for all days for which we had synthetic measurements of water surface height, 
width, and slope. The resulting hydrograph showing the average discharge 

A¯r

FIGURE 5.11 Selection of the days used for estimation of flow law parameters. Time series of 
water surface elevation and river width generated from a hydraulic model of the river Seine.
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among the 4 reaches for each time step is in Fig. 5.12. The blue solid line rep-
resents the discharge calculated with the flow parameters estimated by Metro-
Man, the dashed black line shows the modeled discharge, which we treat as true 
discharge in the domain, the horizontal solid line shows the estimate of mean 
annual flow used to initialize MetroMan.

The quality of the inversions shown in Fig. 5.12 can be assessed with several 
metrics. Here we present estimates of the root mean square error normalized by 
the true mean annual flow (NRMSE), the Nash-Sutcliffe Efficiency (NSE), the 
remaining bias normalized by the true mean annual flow (nbias), the normal-
ized residual standard deviation (nσe), and the coefficient of determination (r2). 
Each metric shows a different angle of the error characteristics, while NRMSE 
tends to give an overall sense of the errors with respect to usual flow conditions, 

FIGURE 5.12 Hydrograph of spatially averaged discharge for the two synthetic cases con-
structed over the river Seine. The horizontal solid line shows the initial estimate of discharge 
generated by a hydrologic model used to initialize MetroMan. The blue solid line represents the 
average discharge for each case calculated with the flow law parameters estimated by MetroMan, 
the dashed black line represents the true discharge used to force the hydrodynamic model from 
where we created the synthetic SWOT observations. The inversion window highlights the days used 
for the estimation of the flow law parameters.
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it bundles biases and random fluctuations, which are better captured by nbias 
and nσe, respectively. The error metrics for the two cases is shown in Table 5.1. 
It is worth noticing that this example contains no complications such as viola-
tions of mass conservation, complex planforms such as anastomosing or braided 
reaches, and no observation uncertainty.

6 Perspectives and future directions

Realistically, it is not always possible to define sets of mass conserved reaches, 
either because tributaries could be too narrow to be seen by SWOT or because 
consecutive confluences prevent the construction of sets of reaches. Addition-
ally, if storm events happen to be present inside the inversion window, overland 
flow could be non-negligible and ground water fluxes, either adding to the river 
discharge or leading to losses are of difficult observation and estimation. In such 
cases, lateral flows need to be accounted for, so that mass conservation is not 
violated. Nickles et al., 2020 present a study case that uses globally available 
estimates of runoff to calculate lateral inflows. The study demonstrates that even 
if poor estimates of the lateral inflows are accounted for, MetroMan can suc-
cessfully estimate discharge in reaches in the Muskingum River.

Other promising methods for the estimation of discharge using SWOT ob-
servations include variational data assimilation (Brisset et al., 2018; Oubanas 
et al., 2018a,b). Such methods have the potential to produce more accurate dis-
charge measurements as well as depth and cross-sectional area estimates than 
MCFLI methods, however, they have considerably higher computational costs, 
which prevents them from delivering global near real-time estimates of dis-
charge. Although considerable effort is being spent in operationalizing such 
methods, their application remains restricted to basin level estimates of dis-
charge, where the computational domain is limited and the need for accuracy 
is greater. Hybrid methods that perform one-time parameter estimation via data 
assimilation into more complex flow laws and estimate discharge operationally 
using simpler flow laws with static parameters offer a compromise between the 

TABLE 5.1 Error metrics for discharge inversions executed with MetroMan 
over two cases shown in Figs. 5.11 and 5.12. NRMSE stands for the 
normalized root mean square error, NSE for the Nash-Sutcliffe Efficiency, 
nbias for the normalized bias, and r2 for the coefficient of determination.

Case NRMSE NSE nbias nσe r2

Upstream 5.6% 0.993 −4.6% 3.2% 0.999

Down-
stream

3.4% 0.997 1.6% 3.1% 0.999
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high computational costs of performing assimilation at each time step and the 
simplicity of the MCFLI methods. One example of such methods is the Hier-
archical Variational Discharge Inversion (HiVDI) method proposed by Larnier  
et al., 2020 and Garambois et al. (2020).

Considerable efforts to generate better initial estimates of discharge are un-
derway. Two avenues are being explored: decreasing the biases in mean annual 
flow estimates as well as producing estimates of different flow quantiles. Lin 
et al. (2019) built a dataset of world rivers containing such estimates of discharge. 
The dataset was built using machine learning leveraging tens of thousands of 
stream gages distributed over the world. Meanwhile, the MCFLI methods are 
being adapted to make use of multiple flow quantiles for better estimation of 
prior distributions for flow law parameters. Furthermore, while estimates of flow 
quantiles with as little biases as possible are needed, the dataset produced by 
Lin and others also contains robust estimates of uncertainty, which is of utmost 
importance when using Bayesian methods such as BAM and MetroMan.
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1 Introduction

A community’s ability to absorb a shock and prevent a flood from becoming a 
disaster is a key to its long-term resilience. However, governments, communi-
ties, and other government actors can only reliably reduce the number of deaths 
and protect their economies if they know where vulnerable people and assets are 
at key moments to make risk mitigation decisions. For flood preparedness, the 
identification of people and assets most exposed to flooding would enable the 
government and World Food Program (WFP) to prepare aid and plan response, 
as well as rezone assets and design protective infrastructure. For emergency re-
sponse, reliable flood information would enable the government to better locate 
people for immediate rescue and aid and would enable WFP to provide faster 
food relief. This would reduce the number of deaths, injuries, illnesses associ-
ated with the flood, and more precisely allocate scarce resources. Such a solu-
tion would have several co-benefits, which include increased transparency and 
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accountability of aid, and improved communication between decision-makers 
and the public.

Much of the loss of life and suffering from catastrophic flooding comes 
in the days and weeks following an initial event. During this time, com-
munities are stranded, receiving little to no aid, and lack access to the capi-
tal needed to recover. In November of 2017, the city of Impfondo in the 
Republic of the Congo (a.k.a. the Congo) experienced a serious flood event, 
leaving 5000 people in need of food assistance (Bauer, 2018). However, the 
WFP did not learn of the flood for an entire month after it occurred, and 
once they did receive some information of it, there continued to be unclear 
information about the size of the flood and the need for food which delayed 
the response. Alerts about the flood initially came from word of mouth, and 
later from field staff deployed from the capital.

WFP in collaboration with Cloud to Street developed a pilot for the 
2018/2019 rainy season to assess if a flood information service based on 
satellite imagery could provide valuable information for monitoring floods. 
Cloud to Street sought to assess whether satellite imagery could deliver use-
able and impactful data on flooding to UN, WFP, and to the Congolese gov-
ernment ministries. For WFP, this would mean reducing response times by 
rapidly assessing if, where, and how much food relief was required. For the 
Congolese government, this would mean providing information on flooding 
located in remote parts of the country where there is little regular contact. 
The goal of both stakeholders was to improve on the benchmark set by the 
November 2017 Impfondo flood event of detecting a flood in several days 
instead of several weeks (Fig. 6.1).

FIGURE 6.1 Sentinel-2 images showing visual differences during a flood event in Impfondo 
(left) and also when no flood is occurring (right). Sentinel-2 images are visualized using Short-
wave-Infrared, Near-Infrared, and Red bands instead of true color Red, Green, and Blue bands 
to highlight that flooding is discernible in such imagery. Red arrow in flood image points to blue 
corresponding to areas confirmed as flooding, leading to the pilot to test an operationalized satellite-
based flood monitoring system. Flood image captured on November 14, 2017 and processed in 
Google Earth Engine.
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2 Congo-Brazzaville local decision-making context

2.1 User design exercise for local stakeholders

Through this pilot, Cloud to Street implemented user design methods for assess-
ing the true needs and capacities of its users. Starting this pilot (and all of Cloud 
to Street’s other projects thereafter) with these “user design” methods—not pre-
scribed technological solutions—helped ensure that we built products based on 
the end users’ needs and that they could unlock the value of what they received, 
leading to solutions inspiring long term use of the tool.

The exercises included:

1. Stakeholder mapping
a. Participants were asked to identify all groups and individuals involved 

when a serious flood event occurs.
b. By placing Post-it notes on a large piece of paper, users then mapped 

the lines of communication between the stakeholders and the order of 
information and actions flows in this system by asking: Who first reports 
the flood? Who declares officially whether a flood occurs?

c. This is done in small groups—in most cases participants are divided by 
agency or department—and afterward the groups come back together as 
a larger group to compare their maps.

d. The differences in the maps created revealed some inadeqaute coordina-
tion and accountability in emergency response.

2. Timeline analysis
a. Participants were asked to describe a specific flood event and the steps 

taken, by first drawing a line in the wall with a tick mark in the middle. 
This line represents the timeline of the flood and the tick mark is the first 
day of the event.

b. The users then walked through the major events in the timeline, record-
ing who performed what action at what time.

c. The 2017 Impfondo flood was used as the example here.
3. Counterfactual example and scenario discussion

a. Next, we showed the prototype of the Cloud to Street flood information 
tool monitoring the country, as well as the flood maps created for the 
last major disaster (sometimes these maps must be made on the fly). 
We asked what they would have done had they seen these maps and the 
analytics right after the flood started.

b. Then we drew a second timeline on the wall under the first and discussed 
hypothetical steps that could be taken with the information currently in 
the prototype, including what information users would have wanted that 
they did not see in the prototype at present.

The user design exercise conducted in this pilot was unknown to WFP previ-
ously, and was suggested as a standard checklist WFP officers could use by WFP 
staff. Overall the process proved essential for identifying key local stakeholder 
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groups, clarifying the chain of command, identifying where information could 
improve the flood response process, and profiling the flood capacity in general. 
See Fig. 6.2 for outputs of the exercises.

2.2 Local stakeholders

Within the Congolese government, three main stakeholder groups were in-
volved. These were the Ministry of Social Affairs, the Meteorology Office, and 
the HydroMet Office. Users from up to 12 or more government agencies were 
additionally involved, including the Ministry of the Interior, the police, and the 
weather service.

Lack of clear coordination between various stakeholder groups made it dif-
ficult to clearly assign responsibility to specific ministries during a serious flood 
event. During a fact-finding session initiated by Cloud to Street prior to service 
implementation (see Section 2.1), this was confirmed when each group drew 
a stakeholder map to communicate their understanding of which ministry was 
responsible during a flood emergency: there was no consensus on chain of com-
mand or process. For example, multiple ministries pointed to the Ministry of 
Social Affairs as ultimately responsible, but representatives from Social Affairs 
were not aware of that understanding (Fig. 6.2A).

Communication between field agents in more remote areas of the Congo 
and the country government staff located in Brazzaville was also limited. Most 

FIGURE 6.2 Communication capacity for flood emergencies in Republic of the Congo.  
(A) A prototypical stakeholder map drawn by a government ministry user communicating the chain 
of command for responding to floods. Blue circle shows the Ministry of Social Affairs at the center 
of other actors, something disputed by that particular ministry. These maps were the result of a 
Cloud to Street exercise with the local government (B,C). (Sam Weber)
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communication must happen via radio and cannot happen via phone due to lack 
of a reliable cellular network. Updates from field agents in different parts of the 
country did not appear to come at regular intervals, as indicated by the 2017 
Impfondo event. Moreover, each agency had a different network of field agents, 
and some ministries do not have personnel on the ground in certain areas that 
who would be able to respond during an emergency.

2.3 Limited existing data availability

Compounding the coordination problems among users were the limited tools 
which could be brought to bear on flood issues (Fig. 6.3). As the Republic of 
the Congo is a country which has experienced conflict over the past several 
decades, only approximately 13 out of the more than 80 historical hydrological 
gauges are currently operational (Fig. 6.3B). Rainfall data is also limited, with 
information recorded manually and reported once a month via phone to Braz-
zaville from over 15 points around the country (Fig. 6.3C).

2.4 Technical capacity for using satellite-derived information

Beyond the limited tools available, there was also limited capacity for under-
standing and using publicly available tools, which could improve existing pro-
cesses. Few government ministry officers have staff with appropriate science 
and engineering training to understand how to use data from satellites. Only the 
HydroMet office has the technical capacity to process or use satellite informa-

FIGURE 6.3 Existing flood information limitations for Republic of the Congo. (A) Govern-
ment official from the HydroMet office comparing the rainfall gauge data used locally to satellite 
derived gridded rainfall data. (B,C) Current tools for flood monitoring in Congo showing (B) the 
reduced number of gauges due to past conflict (top, historical gauge locations; bottom current gauge 
locations) and (C) the manual data collection process for collecting rainfall data. (Photo A by Sam 
Weber, map by Jeff. C. Ho, and photo C by Bessie Schwarz.)
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tion, and only two employees in this office had this capacity. Moreover, slow 
internet speeds and low bandwidth further limit the ability to ingest and process 
such data.

3 Methodology of Cloud to Street’s flood monitoring system

Cloud to Street designed and implemented an automated, online flood and rain-
fall monitoring tool for local stakeholders, provided as a service within an inter-
active dashboard for government and WFP users (Fig. 6.4). The system locally 
optimizes global flood detection algorithms and satellite rainfall data to gener-
ate flood analysis and reports (Fig. 6.5) that can be verified from the ground and 
shared through WhatsApp alerts daily.

FIGURE 6.4 The main pages of Cloud to Street’s Near Real-Time flood monitoring dash-
board. (A) “Recent data” page showing map of precipitation alerts by district, with locations of 
observed flooding situations throughout the country. Collapsible groups of layers on left allow for 
displaying of different precipitation, flood, and contextual information. “Report a flood” button 
in blue allows users to manually report a flood to Cloud to Street. (B) “Current situation” page 
summarizing the latest information on each flooding situation using satellite imagery, flood model 
results, and rainfall levels. (C) “Meteorological bulletin” page providing monthly and 10-day sum-
maries of rainfall throughout the country compared to historical averages. (D) “Daily rainfall for 
the HydroMet office” page providing automatic daily precipitation data for two weeks before and 
after the current date, allowing power users to download tabular data for use in their own reports and 
analyses. (Photos by Sam Weber.)
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This service had three main features:

1. A user-centered dashboard and offline tools customized for the most im-
portant local flood needs based on the required information to reduce flood 
vulnerability.

2. Flood information leveraging the best available science, satellites, and com-
munity intelligence.

3. Day-to-day support and local capacity building to make sure users under-
stand the data and can use the information to make decisions.

The flood maps in the system were derived from NASA’s MODIS (Aqua and 
Terra), Landsat 7 and 8, and ESA’s Sentinel 1 and Sentinel 2. MODIS maps use 
2 images daily at 250-m resolution while the Landsat maps use at least 1 image 
about every 2 weeks at 30-m resolution. Sentinel 1 and 2 maps use at least 1 
image at 10-m resolution every 3 days. For specific flood events, commercial 
satellite imagery from Planet (PlanetScope, 3-m resolution; RapidEye, 5-m 
resolution; SkySat, 0.72-m resolution) and DigitalGlobe (WorldView-3, 1.24-m 
resolution; WorldView-4, 1.24-m resolution; Ikonos, 3.2-m resolution; GeoEye, 
1.65-m resolution; QuickBird, 2.16-m resolution) were used when available. 
Algorithms used are described in greater detail in Tellman et al. (in press).

Past precipitation rates (millimeter/day—mm/day) were retrieved from 
GSMaP (JAXA Earth Observation Research Center) and provided as maps 
for the past 12, 24, 48, 72, and 96 h on GSMaP’s native 0.1 degree (~10 km) 
resolution.

FIGURE 6.5 Cloud to Street’s approach. Starting with optical, radar, and precipitation satellite 
data, and leveraging automated cloud computing and groundtruth data from field agents, news re-
ports, or social media, we perform locally-optimized flood detection. The results are then presented 
in an interactive dashboard combining flood analysis and reports (Fig. 6.4). (Bessie Schwarz.)
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4 Results of the pilot

4.1 Overall system performance

During the pilot, Cloud to Street reported on eight flood events and assessed the 
flood risk of four additional desired sites with asylum seekers. Five of the eight 
events were identified using public satellite tools and three were reported by lo-
cal stakeholders in urban areas. Cloud to Street identified that flooding impacted 
33 homes in Makotipoko, 26 homes in Mossaka (Fig. 6.6), at least 11 homes in 
Nkayi, and also identified flooded roads and the risk of larger potential flooding 
in Ouesso and Sembe.

4.2 Flood risk for asylum seeker sites: a rapid response success

On December 28, 2018, Cloud to Street was made aware of a situation where 
around 16,000 asylum seekers from the neighboring countries of Democratic 
Republic of Congo crossed the border and sought refuge in several sites along 
the Congo River on the Republic of the Congo side (Fig. 6.7). The UN Refugee 
agency (UNHCR) was concerned about the flood risk of these sites, and sought 
information from external sources. Cloud to Street mobilized quickly, providing 
an initial briefing on the flood risk based on historical flood patterns by Decem-
ber 29. By January 3, we added additional information from six flood mod-
els (Trigg et al., 2016) to provide a more comprehensive assessment of flood 

FIGURE 6.6 Satellite-based flood analytics report in French presented to local stakeholders 
showing 26 homes impacted by flooding in Mossaka, Republic of the Congo. This is one ex-
ample of a flood detected by Cloud to Street’s flood monitoring system and provided to government 
stakeholders in the local language. The title of the report can be translated in English to “Floods in 
Mossaka affected 26 homes in last clear image on December 29” and the caption items, in order, as 
“Flooded area,” “Permanent water,” “Clouds/No data,” and “Buildings closest to the flooded area.”
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risk, and emailed recommendations to UNHCR (Fig. 6.8). At that point, daily 
checks of the four main asylum seeker sites were added to the Cloud to Street 
monitoring system in case flooding occurred, which also included providing 
daily information on our “Current Situation” cards for local decision makers. 

FIGURE 6.7 Asylum seekers situation report, 28 December 2018, showing the location and 
population of 4 settlements and an estimated over 11,000 people. (World Food Programme.)

FIGURE 6.8 (A) Cloud to Street’s received news of asylum seeker sites that were potentially at 
risk of flooding. WFP was dispatching food aid to these sites and needed to know whether some 
sites should be relocated. (B) Historical flood frequency map for one site (Makotipoko) showing 
number of years with flooding detected historically (1984–2018) in areas where buildings exist 
(green outline). (C) Location of the 25 year flood plain based on six flood models from Trigg et al. 
(2016) showing high model agreement in some areas of Makotipoko. The data in (B) and (C) were 
used to make recommendations to relocate refugees from Makotipoko. (Analysis and maps by Jeff 
C. Ho, Sam Weber, and Beth Tellman.)
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On January 16, formal recommendations were presented to UNHCR and then 
the information was conveyed to local government actors on the ground.

On February 8, UNHCR reported that the government agreed to provide a 
recommendation for refugees to move from the highest risk site (Makotipoko) 
to one of the sites with lower risk (Bouemba). Makotipoko was the site with 
the largest number of refugees, with 5,378 in Makotipoko center alone, and 
2,000 more in the surrounding areas. While exact numbers of refugees moved 
is unavailable, the estimated flood risk of over 7,000 refugees was reduced 
based on the provided information. This therefore represented an important 
success for the usefulness of satellite information on flood risk in decision 
making.

In November 2019, during the following rainy season, the Republic of 
the Congo experienced severe flooding due to overflowing dams upstream 
in the Central African Republic. As a follow-up to the original pilot, Cloud 
to Street detected flooding in Makotipoko using PlanetScope imagery 
(Fig. 6.9), validating the decision to reccomend moving refugees from the 
high-risk site.

FIGURE 6.9 Flooding detected in Makotipoko combining flood maps from commercial 
PlanetScope imagery captured on November 23, 2019 and from all public satellite imagery 
(Landsat-8, Sentinel-2, Sentinel-1) captured between October 24 and December 10, 2019. This 
flood event occurred after the decision to recommend moving at-risk refugee camps. This informa-
tion thus reduced the impact of that flooding on the refugees who ultimately decided to move. (Map 
and analysis by Tyler Anderson.)
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4.3 Communication and technical capacity building

The system was designed to provide useable flood information for government 
users to incorporate into their decision-making process. The initial assumption 
had been that government users would check the pages of the dashboard regu-
larly or would check the dashboard when alerted. However, as the pilot proceed-
ed, it was found that more direct communication through WhatsApp allowed 
for greater uptake of flood alert information based on monitoring web visits to 
the dashboard from Congo-Brazzaville using Google Analytics. Therefore, we 
created a local WhatsApp group with representatives from different government 
ministries and other local stakeholders and subsequently sent out daily summa-
ries of the “Current Situation” page to that group (Fig. 6.10A). This allowed for 
confirmation from users on the ground about situations observed with Cloud to 
Street’s system (Fig. 6.10B).

The WhatsApp group served as a focal point of coordination among min-
istries who had previously lacked a common source of information around 
flooding. For example, on January 7, 2019, from M. Dinga from the HydroMet 
Office, “Je propose que nous travaillons ensemble à chaque intervention” (I pro-
pose that we work together for each intervention). In addition, a representative 
from the Ministry of the Interior reported in the January monthly conference 
call that photos shared in the group, in addition to reports from other ministries 
where flooding was occurring throughout the city, alerted them to flooding, they 
otherwise would not have identified.

FIGURE 6.10 Screenshots from Cloud to Street’s local WhatsApp group with representa-
tives from government ministries and other local stakeholders (names and phone numbers 
redacted for privacy). (A) An example flood summary from January 21 sent with PDF summaries 
of situations on the “Current Situation” page as well as questions for local stakeholders. (B,C) A 
longer list of questions plus responses from multiple users from January 16. (Jeff C. Ho)
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Cloud to Street added to local capacity of the government ministries through 
training at the pilot’s onset in October, monthly updates starting in December, 
and shared coordination around flooding through the WhatsApp group. On 
November 2, 2018, 18 officials from 7 government ministries attended a train-
ing session on the Cloud to Street System and each received a training cer-
tificate (Fig. 6.11). During subsequent monthly conference calls attended by 
stakeholders, they received new information from the system.

A final meeting was held with local stakeholders to review the service pro-
vided. Representatives from the government gave the following testimonials of 
the system (translated from the original French):

•	 “Cloud to Street’s service provides the evidence and models that scientifi-
cally can help us make better decisions in our work, especially in work on 
refugee or asylum seeker situations. This was evident with their analysis and 
recommendation for the DRC asylum seekers in Makotipoko.”—Chief of 
Staff, Ministry of Social Affairs

•	 “Cloud to Street would have helped us to react in a number of days to major 
flood situations, like the one in Impfondo in 2017, instead of a number of 
weeks.”—Chief of Staff, Ministry of Social Affairs

•	 “If Cloud to Street’s system existed in 2017, we would have been able to 
evacuate and potentially relocate those vulnerable to the major flooding in 
Impfondo.”—Government attendee

•	 “The Cloud to Street dashboard and WhatsApp group provided the infra-
structure to detect and respond more quickly to floods that previously did 
not exist.” Victor Batekouaou—Director of Prevention and Risk Reduction 
to Catastrophe, Ministry of Social Affairs

FIGURE 6.11 Photos of (A) initial training on Cloud to Street’s system on November 2 and 
(B) the final monthly conference call attended by stakeholders on February 25, 2019. (Photos by 
William Vu)
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4.4 Technical challenges

Flash flooding also occurred in three urban areas in the Southern part of the 
country (Brazzaville, Pointe Noire, and Dolisie), but the system was not de-
signed for detecting flooding in such areas. Cloud to Street obtained commercial 
imagery from optical (DigitalGlobe) and experimental radar (ICEYE) sensors 
for these situations, but these images either did not provide useful information 
(ICEYE) or did not provide information in a timely manner (DigitalGlobe). 
Cloud to Street provided support for these situations through the WhatsApp 
group coordinating local efforts from different ministries, and also by providing 
rainfall information. Although such floods are arguably the most dangerous and 
costly for the country, unfortunately the feasibility of near real-time urban flood 
detection from satellites remains an ongoing scientific challenge: thus far, urban 
flood mapping has only been demonstrated on large scale flooding in isolated 
cases (e.g., Chini et al., 2019), and not been demonstrated operationally in flood 
monitoring services.

Cloud to Street also discovered that precipitation and flood detection algo-
rithms were relatively noisy, and even when hindcasted historically for the 
Impfondo 2017 event would not be able to provide a dispositive alert. Therefore, 
early on in the pilot, Cloud to Street explored proxies and other contextual infor-
mation that would aid in triangulating the detection of flood events for Republic 
of the Congo. For example, river levels were a useful proxy for the risk of flood-
ing in Impfondo—that is, Impfondo occurred when normally-seasonal rivers 
became full of water. However, there were few documented historical events 
which were used to locally calibrate the satellite detection algorithms (primarily 
just Impfondo in 2017), and the global satellite algorithms that have been suc-
cessfully implemented elsewhere were particularly noisy in Congo due to the 
high proportion of forested land cover in the country. Floods cannot be detected 
under regions under dense canopy cover using optical or radar sensors, save for 
L-band SAR sensors, but the moderate resolution existing sensors (e.g. ALOS-
2) has a revisit time of 14 days. Coarse resolution (25 km) daily inundation 
fraction can be obtained through fusion of passive/microwave sensors through 
SWAMPS (Jensen & Mcdonald, 2019).

Using commercial imagery was also slower and more limited than ini-
tially expected. We engaged three commercial imagery providers for this pilot: 
DigitalGlobe (~1 m optical), Planet (3 m optical), and ICEYE (1 m radar), and 
each had distinct issues that prevented their use in providing high quality flood 
maps for decision making. Cloud to Street tasked DigitalGlobe satellites to col-
lect imagery over Brazzaville during urban flooding there; however, cloud-free 
imagery was not able to be collected until 1 month later, after flooding had 
already ended. Planet Imagery was available daily or every few days over many 
sites in Congo; however, imagery could only be visualized with the visible 
light spectrum (i.e., red, green, blue) in their proprietary viewer, so that other 
visualizations required to detect flooding (i.e., using the near-infrared signal) 
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were not accessible for daily flood monitoring. Cloud to Street further engaged 
ICEYE to collect two very high-resolution radar images over Pointe Noire dur-
ing urban flooding there; however, the images were still experimental and the 
images were not well-calibrated, leading to vastly different signals and limited 
use for flood detection. Later experiments as of November 2019 revealed that 
ICEYE data had improved in calibration. Of the three commercial providers 
explored, Planet provided the most value as their imagery could be purchased 
and downloaded once floods had been detected via the public satellite sensors 
and used for confirmation.

5 Conclusions and recommendations

Given the scientific and technical limitations of the system as implemented, this 
case study reveals three clear directions for future research and flood services.

1. More work is necessary for urban flood detection from satellite remote sens-
ing. Advances need to be made both on the algorithm-development side with 
publicly available satellite sensors (e.g., Sentinel-1) and also on the opera-
tionalizing side, evaluating how algorithms perform “in the field” on real 
events that may be typical for a tropical country like the Republic of the 
Congo. Due to dense canopy cover, active sensors, especially L-band SAR 
that can detect water through canopies available at coarse resolution (25 
km, via SWAMPS, see Jensen and McDonald 2019) or moderate resolution 
(100 m, currently revisits every 14 days with ALOS-2 but soon every 8 days 
with the 2020 SAOCOM mission), are important to capture the full extent of 
floods in many areas.

2. The development of a globally consistent library of events for local cali-
bration of satellite flood-detection algorithms and other flood alert triggers 
is necessary to operationalize satellite-based flood monitoring systems in 
countries like the Republic of the Congo. Although some databases cur-
rently exist (e.g., the Dartmouth Flood Observatory (http://floodobservatory.
colorado.edu/), or from Tellman et al., inpress), these typically contain only 
the largest events. For smaller events such as Impfondo 2017, such a library 
of flood events will be critical for developing an operational flood monitor-
ing system.

3. The importance of fusion of flood information from multiple sensors is clear 
from this case study. No one sensor performed best for operational flood 
monitoring. The combination of public and commercial satellites, with pre-
cipitation information and information from flood models, was necessary 
for providing actionable recommendations to decision makers.

The primary lessons from this case study are not scientific. This case study 
has demonstrated that operationalizing scientific algorithms for flood monitor-
ing is extremely difficult, and at least part of the difficulty owes to the chal-
lenging decision-making context in under-resourced countries. The example of 

http://floodobservatory.colorado.edu/
http://floodobservatory.colorado.edu/
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the flood risk analysis of the asylum seeker sites provides evidence to suggest 
that existing information from satellite-based flood analytics can indeed inform 
local decision making and provides optimism for operationalizing flood moni-
toring from satellites in the future.
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DFO—Flood Observatory
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1 Introduction

Freshwater is a vital and indispensable resource for humankind. However, the 
availability and spatial distribution of freshwater at any time is not even around 
the world. This unequal distribution leads frequently to severe drought or flood 
disasters, significantly impacting humanity. Over the last decade, 83% of all 
disasters triggered by natural hazards were caused by extreme weather- and 
climate-related events and this has been increasing by 35% since the 1990s 
(IFRC, 2020). Gauge-based hydrological monitoring systems help society to 
better understand freshwater availability throughout the year and monitor hy-
drological disasters. For rivers, they typically continuously measure stage height 
(water level with respect to a fixed datum) which is then converted to discharge 
with the use of in-situ measurements with a current meter, which provides ve-
locity and flow width and depth. Thus, a “rating curve” is produced, and the 
stage information can be converted to discharge units. So far, when it comes to 
flooding, ground-based gauging station observations have limitations: (1) politi-
cal boundaries, as rivers frequently cross borders but hydrological data is often 
not shared. This leaves nations downstream often unaware of, for example, the 
timing and or magnitude of an extreme event heading their way; or (2) the in-
ability to capture the severity of an event due to overtopping or destruction of 
a gauging station while a flood disaster is unfolding (Klemas, 2015). This hap-
pens often, whereas satellite sensors are unaffected. Also, even if stage heights 
of such devastating events are monitored and made available, conventional 
streamflow monitoring systems do not capture the often-associated extensive 
inundation extent, in which much water is entering into temporary floodplain 
storage. Airborne missions and satellites have the capacity to track the extent 
of vast inundated areas and how they evolve over time; they can complement 
hydrological records obtained on the ground. Also, satellite information is not 



148    SECTION | 2 Estimating Flood Exposure, Damage and Risk

restricted by political boundaries. Applying satellite data to track and map flood 
extents has been intermittently performed since the mid 1970s (McGinnis and 
Rango, 1975). However, usage of satellite data greatly advanced during the last 
2 decades, during which the number of satellite missions carrying instruments 
that can be utilized to map flooding has increased considerably (Schumann 
et al., 2018). Various first-response agencies such as the UN World Food Pro-
gramme now routinely incorporate satellite-based flood products into their re-
sponse efforts.

The need for timely and accurate flood information is more urgent than ever 
as flooding remains the most common natural hazard worldwide, impacting 
people of all continents in both developed and less developed countries. Over 
the last decade of the 20th century alone, 46% of the natural hazards were floods 
(EM_DAT, 2020) that directly impacted 1.4 billion people, claiming 100,000 
fatalities worldwide (Jonkman, 2005), causing alone more fatalities than any 
other natural hazard in the USA (Klemas, 2015). That more and more people are 
affected by flooding can partly be explained by expanding human population. 
Since the 1950s, population increased from 2.5 to 6.5 billion in 2005 (United 
Nations 1962, 1973, 2007) and is expected to be approximately 10 billion by the 
2070s (Bongaarts, 2009). Additionally, Najibi and Devineni (2018) concluded 
from a 30-year (1985–2015) global assessment that flood frequency increased 
at the global scale, particularly in the tropics, southern subtropics, and mid-
latitudes. This was especially the case for moderate- and long-duration floods; 
frequency remained unchanged for short-duration floods. However, objective 
data on this topic is not easily obtained: floods as a global geophysical phenom-
enon are, as noted, not easily measured.

By 2050, Jongmans et al. (2012) estimated a 31% increase of people ex-
posed to the 1 in a 100-year river flood compared to current estimates. By then 
the total exposed assets by river flooding alone is expected to be increased 
to $126 trillion, up by 250% from 2010. Desai et al. (2015) indicated that all 
types of flooding are contributing currently to a global average annual loss of 
$104 billion. And the annual loss will almost certainly become worse in the 
coming decades given some evidence of increases in flood frequency over the 
last 30-years (Najibi and Devineni, 2018). The increase in exposed assets in 
flood-prone zones and additional changes in baseline conditions such as climate 
change (Kettner et al., 2018), drainage basin properties, river modifications, sea 
level rise, all will likely amplify this trend.

Unlike, for example, precipitation measurements organized through the 
World Meteorological Organization (WMO), the hydrological community has 
not been very successful in establishing a global hydrological network of ob-
servations through which measurements and novel measurement technologies 
could be exploited (Vereecken et al. 2015). Efforts that come closest have re-
sulted in the Global Runoff Data Centre (GRDC), which is operating under the 
auspices of the WMO (GRDC, 2008). However, not all countries contribute 
their hydrological data and for those that do, often only data of a subset of 
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the available gauging stations is provided, sometimes with a multiyear time 
lag between the actual measurement and the data being publicly available. The 
GRDC archives relevant information of just one type of flooding, fluvial flood 
disasters. Outside of our work, there is no global effort to archive data of other 
common types of flood disasters, for example, flooding due to pluvial or storm 
surge events.

The DFO—Flood Observatory (DFO) is a not-for profit entity, now hosted 
at the Institute of Arctic and Alpine Research (INSTAAR) at the University of 
Colorado, Boulder, and has been operating since 1995. DFO’s mission is to:

(1) Acquire and preserve for public use a digital map record of the Earth’s chang-
ing surface water, including but not limited to changes related to floods, droughts, 
wetlands, shorelines, lakes, and reservoirs; (2) Conduct remote sensing-based wa-
ter measurement and mapping in “near real time” for humanitarian purposes; (3) 
Support and encourage operational uses of remote sensing-based surface water in-
formation; and (4) Conduct scientific research making use of these data products.

DFO is actively testing and further developing remote sensing and modeling 
capabilities, assembling a global hydrological record, and establishing online 
automated data services to further enable easy access to daily-updated surface 
water products. These records serve first responders during a natural disaster 
and can also improve flood risk assessments. Or they can be used in tandem 
with hydrological modeling to facilitate weather-based flow and inundation 
predictions. DFO collaborates with relief agencies and emergency managers 
during and after major flood events, and with operational water organizations 
worldwide for data sharing and further development of technical capabilities. 
It collaborates with NASA—Goddard Space Flight Center; with the Joint Re-
search Centre of the European Commission, Italy; with a research group at 
the University of Maryland; with the Department of Civil & Environmental 
Engineering at the University of Connecticut; and with the Surface Dynamics 
Modeling Laboratory, University of Alabama. As hosted at the University of 
Colorado, DFO is funded over 10 years on a per-project basis by NASA, the 
US Geological Survey, the World Bank, the Development Bank of Latin Amer-
ica, the United Nations Office for Disaster Risk Reduction UNDRR (formerly 
known as UNISDR), and the European Commission’s Global Disaster Alert and 
Coordination System (GDACS) at the Joint Research Centre.

Here we present an overview of what flood observatory hydrological data 
products and some case studies on how products can be applied and end with 
some future perspectives.

2 Hydrological data products

Multiple hydrological datasets have been developed by DFO. Some are auto-
matically updated over time, others require additional manual input (e.g. per-
flood event maps). Of the products described later, “flood extent maps” derived 
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from MODIS are automated as well as “estimated water discharge” from mi-
crowave radiometer satellite data. All other products require a certain amount of 
personnel labor. The most-used datasets are discussed below.

2.1 Flood extent maps

Near-real time satellite-derived flood inundation maps are valuable to agencies 
for disaster monitoring, relief efforts, evaluating flood control measures, and 
to settle damage claims (Smith, 1997; Follum et al., 2020). DFO uses ample 
sources of freely available optical satellite data to map flood extent: data from 
the Moderate Resolution Imaging Spectroradiometer MODIS sensor onboard 
Aqua and Terra, from LandSat missions, from Sentinel-2 imagery, and from 
the Visible and Infrared Imager/Radiometer Suite VIIRS onboard the NASA/
NOAA satellite Suomi. These data sources have varying revisiting time and 
spatial resolutions (Table 7.1). Depending on the application, one or more 
data sources can be utilized for deriving flood extents. NASA Goddard Space 
Flight Center has implemented DFO-developed algorithms (Brakenridge and  
Anderson, 2006) to detect flooding from MODIS data. The derived flood extent 
maps have a global coverage and are made available on a daily basis since 2013 

TABLE 7.1 Satellite data used by DFO to map flood extent at a global scale.

Sensor Satellite
Horizontal resolution flood 
extent maps at nadir (m)a Repeat interval

Optical:

Multispectral 
Instrument

Sentinel-2 ~10–20 5 days at the equa-
tor, with 2–3 days 
at mid-latitudes

Multispectral 
Scanner (MSS) & 
Thematic Mapper 
(TM) & Enhanced 
Thematic Mapper 
Plus (ETM + )

LandSat 1–8 ~30 16 days

MODIS Terra and 
Aqua

~250 1 day for each 
satellite

VIIRS Suomi ~375 1 day

Radar:

C-band Synthetic 
Aperture Radar 
(SAR)

Sentinel 1 ~10–30 Location variable, 
~2–6 days (Torres 
et al., 2012; Potin 
et al., 2018)

aThe horizontal resolution of the DFO end products is provided.
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within a few hours of the satellite overpass. For the other optical data sources 
(Table 7.1), data is typically processed upon request. Flood extent can be mea-
sured from these optical products when clouds or vegetation are not in the line 
of sight of the water surface. Where needed, commercial optical imagery pro-
vide significantly higher spatial resolution.

The following products are developed from the global daily MODIS-based 
flood inundation maps: (1) Current daily water extent data: a 3-day compo-
sition of imaged surface water. The 3 days of data are included to overcome 
missing values due to clouds and at the same time give an almost near-real 
time representation of the surface water extent; (2) The 2-week flooded area: a 
14-day composition of surface water to provide even greater spatial coverage 
despite changing cloud cover, and thus image the severity of major flooding; 
(3) January till current flood area: water extent of the current year from January 
onward, which is updated monthly. This product highlights the extent of flood 
events, which happened earlier during a calendar year; (4) Annual flood inunda-
tion area: showing from 2013 onward annual flood extents. When processing 
the entire MODIS data archive, this may eventually be extended to 2000; (5) 
Flood hazard maps (or occurrence maps): a multiyear water extent which indi-
cates how often an area was flooded in the time series of years. (6) Persistent 
water layer: this shows where water is detected most of the time: lakes and 
reservoirs, shorelines, and the larger rivers.

Radar products such as synthetic aperture radar (SAR) data can also be used 
to map flood extents and have the advantage of not being hindered by clouds 
or nightly overpasses. SAR data availability and temporal and spatial resolu-
tions improved in recent years with the launch of the non-commercial satellites 
Sentinel-1(a & b) and the commercial satellites TerraSAR-X, Radarsat-2, and 
COSMO-SkyMed (Wagner et al., 2009; Schumann et al., 2018). The volume 
of high-resolution data challenge processing times (Shen et al., 2019) and data 
storage requirements are very large if global mapping of surface water change is 
the goal. DFO presently produces flood extent maps from SAR on an event base, 
only, for locations where flooding is occurring. Initiatives such as the “RAPID,” 
Radar-Produced Inundation Diary, led by Shen et al. (2019) or future initiatives 
by other organizations may overcome these challenges (Fig. 7.1).

2.2 Water discharge

Historical and current information regarding river discharge is essential, not 
only from a water management, energy, or global change perspective but also to 
better control and forecast flooding (Van Dijk et al., 2016). However, the num-
ber of ground-based gauging stations is declining (Shiklomanov et al., 2002; 
Alsdorf et al., 2003), and data that are measured by gauging stations is often 
not shared. Although freshwater is considered an indispensable resource for 
humankind, there is still no adequate ground-based global network of river dis-
charge stations. Efforts from the 1990s onward have shown that this gap can be 
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FIGURE 7.1 (A) Track of Hurricane Eta that made landfall as a category 4 hurricane south of Puerto Cabezas, Nicaragua, on November 4, 2020. As a result, eight 
countries of Central America (Nicaragua, Honduras, Guatemala, El Salvador, Costa Rica, Panama, Belize, and Mexico) were impacted by severe flooding due to 
heavy rainfall and or storm surge, resulting in at least 160 fatalities. (B) Severe flooding of parts of southern Mexico as observed by Sentinel 1 SAR data (processed 
at the University of Connecticut; X. Shen). (C) Flood frequency for the same area of southern Mexico for the period 2013–17 as observed by MODIS data from satel-
lites Terra and Aqua, showing how frequently in the five years times series the area was flooded.
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overcome by utilizing various satellite sensors (Smith, 1997; Smith et al., 1995, 
1996; Van Dijk et al., 2016).

To capture flooding and peak discharge, satellite sensors with a relatively 
high temporal resolution are needed. With a near-daily repeat intervals, the mi-
crowave band at 36.5 GHz (e.g., TRMM, AMSR-E, AMSR2, GMP) has been 
successfully applied to measure water discharge at a global scale (Brakenridge 
et al., 2007, 2012). This band is responsive to physical temperature and emis-
sivity and is very sensitive to water/land proportion within an image pixel. 
By applying a ratio between a river pixel and a nearby dry cell, the physical 
temperature-driven changes can be cancelled out, resulting in a ratio that indi-
cates changes in within-river-pixel water area. And surface water area changes 
reflect changes in water discharge. As at a ground-based gauging station of a 
given river cross profile where discharge can be referred by measured stage 
height (depth) or flow velocity, a regression can be applied to estimation the re-
lationship between intermittent observed (or modeled) water discharges and the 
satellite-observed ratio (water discharge signal). Where no observed discharge 
is available, DFO uses the Water Balance Model, WBM (Wisser et al., 2008) 
to develop independent discharge estimates at a discharge measurement site, 
and for comparison to the coeval and co-located satellite-observed water area 
estaimate. The microwave ratio signal used by the DFO is first processed (daily) 
by the Global Flood Detection System at the Joint Research Centre, JRC, of the 
European Commission (De Groeve, 2010), and this signal is averaged using a 
4-day running mean to overcome intermittent missing days and to reduce signal 
noise. Water discharges are estimated from January 1998 onward by applying 
the regression equation to the microwave signal ratio.

DFO is providing discharge data on a daily basis of several hundred satel-
lite-based gauging stations, using the earlier-described method. For each sta-
tion, using the complete discharge record from January 1998 onward, a low flow 
threshold, flood frequency analysis, monthly runoff, and the regression analysis 
are provided together with an uncertainty analysis, using the Nash–Sutcliffe sta-
tistical method (Nash and Sutcliffe, 1970). Displayed on a world map, the cur-
rent discharge status of each station is provided as either: low flow, normal flow, 
moderate flooding, or major flooding (Fig. 7.2). DFO also applies the earlier-
described method, to reservoirs to proxy water storage from extent status. DFO 
intends to expand the array of rivers and reservoirs being monitored.

2.3 Active archive of large flood events

Since 1985, collected information on large flood events that occurred around 
the world has been recorded in a database. Both news reports and orbital remote 
sensing to detect floods are used and have been used in the past. Each flood 
event is assigned a unique DFO ID and a natural hazard Glide-Number when 
available (Guha-Sapir et al., 2011). These IDs are coupled with information on 
flood duration, cause, location, start and end dates, and socioeconomic impacts 
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(number of fatalities and people displaced), together with the news source and 
an index to characterize a flood event—based on flood severity (Kundzewicz 
et al., 2013). Flood severity is divided into three classes. Class 1: large flood 
events: significant damage to structures or agriculture; fatalities; and/or 1–2 
decades-long reported interval since the last similar event. Class 1.5: very large 

FIGURE 7.2 (A) Satellite-based river discharge and reservoir area measurements for several 
hundred sites and their status indicated by color for November 15, 2020. These measurements 
are updated daily. (B) Example of satellite-based daily water discharges for a period of ~22 years 
for the Grijalva River, Mexico (DFO site ID: 1052; http://floodobservatory.colorado.edu/SiteDis-
plays/1052.htm). Notice that Hurricane Eta caused severe flooding in Mexico (blue circle figure 
2B), resulting in a 10-year flood event for the Grijalva River (mean discharge ~285 m3/s; peak 
discharge as of November 9, 2020: 1,270 m3/s). As of November 15, 2020, Hurricane Eta resulted 
in at least 160 fatalities across Central America of which 27 in Mexico. (C) Example of reservoir 
area measurements of the Merowe Reservoir, Sudan (DFO site ID: 11808; http://floodobservatory.
colorado.edu/SiteDisplays/11808.htm).

http://floodobservatory.colorado.edu/SiteDisplays/1052.htm
http://floodobservatory.colorado.edu/SiteDisplays/1052.htm
http://floodobservatory.colorado.edu/SiteDisplays/11808.htm
http://floodobservatory.colorado.edu/SiteDisplays/11808.htm
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events: with a greater than 2 decades but less than 100 year estimated recur-
rence interval, and/or a local recurrence interval of at 1–2 decades and affect-
ing a large geographic region (> 5000 km2). Class 2: Extreme events: with an 
estimated recurrence interval greater than 100 years. With over 4900 entries, 
this is the only flood event archive that holds over 35 years of such unique data 
on large floods (Fig. 7.3).

Data of the archive has been supporting science studies to, for example, 
estimate the percentage of floods that the upcoming Surface Water and Ocean 

FIGURE 7.3 (A) Flood centroids of 4982 large flood events recorded since 1985 from news, 
governmental, instrumental, and remote sensing sources. Colors indicate the flood magnitude on 
a logarithmic scale as defined as the flood duration times the inundated area times the flood sever-
ity. (B) Flood frequency per year for the 4 magnitude classes, colored following the legend of Fig. 
7.3A. Notice that large flood events (magnitude 4–6) and extreme flood events (magnitude 6–8) 
have increasing trends.
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Topography (SWOT) satellite mission would have captured if it were launched 
and actively obtaining data from 1985 onward (Frasson et al., 2019). Other stud-
ies have used this active data archive to describe the spatial-temporal variability 
of large floods in Europe (Kundzewicz et al., 2013), or the global spatial distri-
bution of flooding events (Adhikari et al., 2010).

2.4 Flood hazard maps

Risk defines the impact of a hazard to humans and resources. So, for flood-
ing, where there are no people or human assets that can be affected by a flood 
hazard, there is no risk (Kron, 2005). To determine flood risk, the probability of 
occurrence of flooding is required (Spachinger et al., 2008). Flood hazard maps 
spatially display flood events of different probability, identifying flood-prone 
areas that may threaten life and property. Such maps are essential for build-
ing awareness, informing local government on hazard situations, for insurance 
purposes, and for authorities to establish areal zoning that indicate levels of 
restrictions (e.g., building restrictions in flood prone areas) (Hagemeier-Klose 
and Wagner, 2009). Many of the developed countries have established a stan-
dardized method to produce hazard maps. These often involve long time series 
of observed discharge records in conjunction with hydrodynamic model simu-
lations to establish spatial flood extent for a given peak discharge with a cer-
tain return period. These methods are computationally expensive and therefore 
costly as model accuracy depends on high resolution digital elevation models 
(DEMs) and also the knowledge of channel bathymetry; both of which have 
commonly obtained through field-ground or airborne campaigns.

For most less-developed nations, there is limited availability of long-term 
time series of discharge records, and if available, these are only for a very few 
gauging stations. So, it is impossible to establish return periods of peak discharg-
es with acceptable certainty. Additionally, less developed countries often do not 
have sufficient resources to develop the high resolution DEMs that are required 
for hydrodynamic modeling. Consequently, for regions with no hazard maps, 
planning cannot limit exposure and mitigate flood risk in a consistent and repli-
cable manner. This is often true for the rapidly developing nations that are most 
in need of these hazard products (Brakenridge et al., 2017; Johnson et al., 2020).

Brakenridge (2018) describes an alternative, more practical approach to map 
flood hazards, where either ground or satellite-obtained discharges (discussed in 
Section 2.2) are used in conjunction with satellite-derived flood extent maps for 
actual floods. For the satellite-based obtained discharges, daily discharges can 
be back-processed till 1998 for any new location of interest, providing a more 
than 20-year discharge record to establish a Log Pearson III (for example) prob-
ability analysis of discharge return periods. Given the time length of this dis-
charge record, frequency analysis can then provide a reasonable estimate of the 
50-year recurrence interval flood. The dates associated with a particular flood 
frequency at a particular location can then be used to retrieve the associated 
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flood extent maps, for example, from the automated daily flood product of  
MODIS. But other archived satellite data could be processed as well (for ex-
ample, if higher spatial resolution is needed). Accomplishing this for different 
discharge recurrence intervals for a specific location provides floodplain man-
agers and planners valuable information of the inundation extent for a given 
discharge and recurrence interval (Fig. 7.4).

2.5 Flood data dissemination

Communicating risk is an important element in making people aware of the po-
tential of flooding and provide better protection against harm (Hagemeier-Klose 
and Wagner, 2009). Access to long-term records of historical hydrological data 
is crucial to determine the scale and severity of potential risk. During or after a 
flood, when preparation is no longer a viable option, near-real time flood infor-
mation can support relief and recovery efforts. As a result, different hydrologi-
cal data needs exist depending on when information is required, before, during, 
or after a flood. Additionally, stakeholders can have varying hydrological infor-
mation needs, and often their work method or operational framework requires 
data to be of a certain type, format, and/or scale.

DFO holds a variety of unique global hydrological datasets and strives to 
have all datasets online, freely available under the Creative Commons CC-BY-
NC-SA 4.0 License (https://creativecommons.org/licenses/by-nc-sa/4.0). The 
DFO flood portal (https://floodobservatory.colorado.edu/) provides access to 
the aforementioned datasets. Flood information of currently unfolding or recent 
events that were impactful or for which DFO received a data request, are promi-
nently displayed on the front page. Depending on availability, these DFO datas-
ets are often associated with data derived from other initiatives, including flood 
forecast data from the Global Flood Monitoring System (GFMS), University 
of Maryland (Wu et al., 2012). In general, most water extent displays are made 
available as downloadable shapefiles and or georeferenced tiff (GEOTIFFs) 
composites, holding multiple layers (e.g., historical flood extent, current day 
flooding, and last 2-weeks flooding). Many of these individual flood layers are 
also provided as Web Map Service (WMS), a standard protocol developed by 
the Open Geospatial Consortium (OGC) for serving images of georeferenced 
maps over the internet. As such, each WMS layer can be included as a layer 
in, for example, the user’s GIS system, such that the user has instant access to 
the latest flood information when the server site data gets updates. Daily and 
historical discharge observations of satellite-based gauging stations, together 
with its metadata that includes a quality assessment, and derived hydrological 
information can be obtained directly through the portal or as WMS. Addition-
ally, the flood portal includes an interactive page where people can zoom in/out 
to the area of interest and display the various hydrological layers of interest.

A freely-downloadable phone app available through the Android and Ap-
ple app stores has been developed in close collaboration with Remote Sensing 

https://creativecommons.org/licenses/by-nc-sa/4.0
https://floodobservatory.colorado.edu/
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FIGURE 7.4 (A) Satellite-based daily water discharges for a period of ~22 years for the Rio Paraguay, Brazil (DFO site ID: 861; http://floodobservatory.colorado.
edu/SiteDisplays/861.htm). (B) The flood extent based on three events were analyzed using MODIS imagery. Combining the flood extent with discharge peak events 
makes it possible to investigating the flood extent for a given discharge return period. During the month of August 2015 (event 1), discharges were just exceeding 
bank full (discharge = 5,395 m3/s and has a return period of ~1 year) and the inundated area is illustrated in light blue. The June–July 2018 event had a return period 
of 10 years (4A; discharge = 14,800 m3/s) and Fig. 7.2B shows the associated flood extent in dark blue. The 20-year flood (event nr. 3; 2A; discharge = 17,530 m3/s) 
had a significant larger flood extent (2B, area in red).

http://floodobservatory.colorado.edu/SiteDisplays/861.htm
http://floodobservatory.colorado.edu/SiteDisplays/861.htm
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Solutions, Inc. (RSS). Mobile apps increase data accessibility, especially when 
the users’ need is outdoor, on location. First-response relief agencies such as 
the World Food Programme (WFP) or the Red Cross are often dispatched in 
the field during or immediately after a flood disaster. Having accurate, up to 
date flood information is essential during the decision-making process: which 
areas need to be evacuated first, deploy what level of resources, how to get these 
resources to the people in need, and where best to establish one or more emer-
gency shelters? Where there is cell phone coverage, the DFO Floods mobile app 
lets a responder view current flood conditions and provides access to historical 
flood data. Additionally, the app has a “save layers” mode where current infor-
mation can be stored on the phone such that it can be viewed in areas without 
Internet or cell coverage.

The DFO is developing hydrological related flood data either due to proj-
ect support from external funding agencies or in response to a request that is 
directly received or is forwarded through the Global Flood Partnership (GFP; 
https://gfp.jrc.ec.europa.eu) Support Service. The GFP is an international group 
of volunteers of academics, research institutes, practitioners, public, and private 
organizations active in the field of flood risk and emergency management (Alf-
ieri et al., 2018). The aim of GFP is to help reduce the impacts of flood disasters 
by fostering a community between scientists, who develop and operate flood 
management tools and data, and practitioners. As co-founder of GFP, DFO is 
actively responding to these data requests, and, to maximize access, hosts data 
from other providers on the DFO flood event web pages.

3 Future perspectives

The DFO—Flood Observatory is a research-driven entity, almost solely funded 
through a variety of grants and contracts. As part of a research institute at the 
University of Colorado, its goal is to continue to develop innovative methods 
to better understand flooding as a part of the terrestrial hydrological cycle and 
to make these insights available to the general public through research publi-
cations, even while gathering each day new information. Most of the work of 
DFO builds upon Earth Observation (EO) remote sensing data. Satellites have 
a limited life span and new satellites replace old ones with a possibly different 
set of sensors, which require the development of new algorithms to detect, mea-
sure, and map surface water. It is thus difficult to predict when and what new 
challenges will be investigated and made available in the future. However, some 
general perspectives are provided further.

Hazard products. In an ideal world, flooding (which does have many ben-
eficial aspects for floodplain ecosystems and wetlands) would occur without 
significant damage to human societies and economies. In reality, increasing 
flood-induced fatalities and financial losses are occurring over time. To slow or 
even reverse these trends strategies are being developed for natural disaster pre-
vention, preparedness, and mitigation. Over the last few decades, several have 

https://gfp.jrc.ec.europa.eu/
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been suggested and implemented with varying success: the Yokohama Strategy 
and Plan of Action for a Safer World (United Nations, 1994), the Hyogo Frame-
work for Action (HFA) 2005–15 (United Nations, 2005), and more recently, 
the Sendai Framework for Disaster Risk Reduction (SFDRR) 2015–30 (United 
Nations, 2015). The SFDRR was adopted at the Third United Nations World 
Conference on Disaster Risk Reduction and built upon previous strategies. The 
aim of SFDRR is to “substantially reduce disaster risk and losses in lives, live-
lihoods and health and in the economic, physical, social, cultural and envi-
ronmental assets of persons, businesses, communities and countries” (United  
Nations, 2015). It is composed of four priorities for action, one of which is 
directly related to the efforts of DFO: understanding disaster risk. With better 
knowledge of risk for a potential disaster in a certain area, a more appropri-
ate level of preparedness or effective response can be performed. In relation 
to flooding, in order to better understand disaster risk, both local and global 
knowledge is needed on where and how frequently floods of a certain magni-
tude are likely to occur. Numerical model simulations have attempted to address 
this. However, there is skepticism about the accuracy of global flood models, 
partly fed by the discrepency of different models in the same events (Hoch and 
Trigg, 2019). A different approach would be to use long-time series of flood 
extents, for example, derived from satellite imagery, to identify previous flood 
areas. Although this does not provide information regarding the extent of flood-
ing of a certain magnitude of a flood event, it would provide an indication of 
where it has been flooded in the past, and how frequently. Satellite data, al-
though with different resolutions and revisit frequencies, is available from as 
early as the 1980s, and can be used to determine areas that are flooded often, 
versus only once in several decades. An even more useful, informative approach 
is described earlier, where gauging station data, either from ground-based sta-
tions or from satellite-based stations, are used in conjunction with flood extent 
maps to develop flood hazard maps. Currently, DFO has produced these flood 
hazard maps for certain regions of interest, but much further work by various 
organizations could very usefully address this Sendai objective.

Flood data warehouse. Whether it comes to first responders, flood risk as-
sessments, planners or scientists, the availability of accurate, reliable flood data 
is of crucial importance. The DFO—Flood Observatory produces, like many 
other entities, hydrological data (see Section 2) that is freely available for non-
commercial users. Over the last decade, more entities have started to produce 
similar geospatical flood data products, to the extent that there is now an in-
creasing abundance of such from different sources. As such, end-users are now 
challenged by which data source to use. In the case of flood monitoring and 
response, this “firehose” of information can make it especially difficult for first 
responders within limited time: to investigate what data are available and de-
termine which source(s) to use. This is a challenge during a single flood event, 
and it increaes as multiple simultaneous events or successive large events are 
responded to. Although each of those datasets offers unique capability, there 
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is to date no global decision support system for flood disasters that ingests all 
available data from existing systems and provides real-time critical informa-
tion that can guide operational reactions on the ground. Gomes et al. (2015), 
Schumann and Domeneghetti (2016), and Schumann et al. (2018) argue that a 
step in the right direction would be to build a “one-stop-shop” (i.e., data portal), 
either primarily dedicated to remote sensing products of flood events or, more 
general to all flood related products (so from precipitation forecasts and inunda-
tion simulations to historical flood information). This one-stop-shop would not 
only organize and structure data availability better, thereby clarifying existing 
confusion over data and products; it would also add further value to the various 
products and services. At the same time, the end-user community would have 
the opportunity to provide feedback on data and products, which should be used 
to improve the different types of information disseminated. This one-stop-shop 
might be developed in collaboration with, for example, the Global Flood Part-
nership (GFP): where already flood-related data is loosely shared through group 
email. In any case, the new technologies do offer global society the opportunity 
to address in creative, effective, and useful ways its increasing vulnerability to 
this natural hazard.
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1 Introduction

Approximately 500 million people are affected by flood events worldwide an-
nually, far more than any other category of natural catastrophe (Jha et al., 2012).

Floods are an expensive natural hazard yet, inevitably, limited historical 
experience alone is not enough to help quantify the risk from such catastro-
phes. Over the course of the last 38 years, almost 6000 events were recorded 
by Munich Re’s NatCatService catastrophic flood/flash flood events database 
(Figs. 8.1 and 8.2).

It is clear from the figures that floods impact the majority of the world’s pop-
ulation. Yet, within the re/insurance industry, flood has largely been regarded 
as a “secondary peril,” partly due to the more visually striking spatial and tem-
poral concentrations of damage from earthquakes and windstorms, and partly 
from difficulties involved in detailed flood risk modeling. Recent catastrophic 
events such as hurricanes Harvey, Irma, and Maria (2017), together with Super 
Typhoon Hagibis (2019), are forcing the industry to adjust its view, as it is also 
on wildfire.

Quantification of flood risk is still challenging. There are a limited number 
of probabilistic flood catastrophe models available; one of the widely used con-
ventional tools to quantify flood risk in the re/insurance industry. To overcome 
this challenge, Earth Observation (EO) or remotely sensed data has become 
an essential part of tackling risk from flood, including facilitating the develop-
ment of models to quantify the risk for re/insurance purposes, to enhance the 
exposure information available in an insurance portfolio of underwritten flood 
risks, and to respond to catastrophe flood events from forecasting to providing 
assessment during and in the immediate aftermath of an event.
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Whilst satellites are becoming increasingly smaller, cheaper to build and 
easier to deploy, with better resolution and revisit times, the accessibility and 
adoption of the latest satellite technology in the re/insurance market has been 
slow, due to lack of expertise, and inhibiting costs and license terms. However, 
long records since the 1970s, albeit at varying levels of resolution, have proven 
useful in the integration of modeling flood risk with the likes of Landsat and 
MODIS. These aspects are illustrated, as the chapter discusses how catastrophe 
modeling has evolved, for flood specifically, in the re/insurance sector, and how 
EO combined with technological advancements has enabled the sophisticated 
modeling solutions we see today.

FIGURE 8.2 Earth night lights. (Pixabay)

FIGURE 8.1 Geographical overview of worldwide flood/flash flood events between 1980–
2018. (Munich Re, NatCatSERVICE (2020))
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The model development process is explained in more detail, with examples 
of how particular EO datasets and derivative products are essential in the pro-
duction of hazard maps and stochastic catalogs of simulated extreme events, 
as well as for model validation. Realistic disaster scenarios (RDS), which can 
either be based on an extreme historical event or plausible catastrophic flood 
events that could occur in the area of interest, are discussed together with their 
application in disaster risk management, such as event response.

The chapter looks at how the industry has evolved around technical modeling 
advances, in the context of insurance sector issues such as adverse selection and 
ensuring insurance affordability in the public eye. As such, risk management 
schemes and availability of open data, including EO, and associated limitations 
are discussed. Finally, the chapter moves onto the protection gap, highlighting 
the benefits EO can bring in developing regions, combined with alternative risk 
transfer mechanisms that complement standard reinsurance placement.

2 History of catastrophe modeling

Catastrophe modeling has played a significant role in the re/insurance market 
over the last 30 years, when insurance companies faced the unquantified threat 
of insolvency from the impact of property losses from natural catastrophic 
events in the late 1980s and early 1990s, notably including Hurricane Andrew 
in 1992. It was clear that the infrequent nature of these types of perils, which 
are challenging to capture through actuarial techniques alone, due to lack of 
sufficient historical claims data, meant that insurers tended to underestimate 
the cost of losses. Andrew caused record losses, costing the industry $15.5 bil-
lion at that time (O’Conner, 2017) and sending eight insurers out of business  
(McChristian, 2012).

Subject matter experts from disciplines such as hydrology, atmospheric 
physics, seismology, geographical information science (GIS), and engineering 
entered the industry to develop numerical estimates of frequency and severity of 
loss from natural hazards. Earthquake and windstorm models dominated early 
methodological developments, with flood models following later for a variety 
of reasons. Because of the challenging nature of flood risk assessment, require-
ments for modeling include:

•	 high level of geographical resolution related to underlying digital elevation 
model (DEM);

•	 sophisticated hydro-dynamic and hydraulic modeling of inundation extents 
(moving away from a simplistic bath-tub approach);

•	 computational capabilities to cope with nationwide exposures;

•	 capturing varying sources of flood risk from fluvial, pluvial, ground water, 
dam break, and storm surge; and finally

•	 allowing the incorporation of flood mitigation measures, notably flood de-
fenses.
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EO has been playing an important role in improving these elements, which 
include better DEM resolution, more detailed built environment representa-
tions, and greater clarity on flood defense locations and height.

Natural catastrophe (nat cat) models became the tool of choice of the indus-
try in the early 1990s, since they provided the means to analyze and measure 
risk more accurately (ABI, 2011; LMA, 2013). Emerging spatial data handling 
technologies of the time based upon GIS, remote sensing, and photogrammetry 
allowed the fundamental aspect of diversification in insurance to be incorpo-
rated in the analyses of different perils. For example, accumulations of insured 
exposure at risk could be rapidly identified and proximally related to potential 
sources of natural hazard, be it a flood plain or fault line. Diversification means 
that an insurance portfolio will consist of different risk exposed elements, geo-
graphically at international scale, by line of business (such as residential, com-
mercial, industrial property, or life), and peril, which ensures that losses balance 
out over time and space. The likelihood of a simultaneous California earthquake 
and Tokyo earthquake, or European flood, is highly unlikely, and therefore all 
insured “eggs are not in one basket.”

Over time natural catastrophe models have become ever more sophisticated, 
by incorporating sets of artificial events simulated over tens of thousands of 
years to represent the full spectrum of possible events beyond those observed 
in history. Aided by increased computational power and highly detailed DEMs 
derived from EO data, it is now possible to model flood at national or even 
international scale, so capturing correlations across catchments (Dodov and 
Weiner, 2013).

Whilst stochastic flood model development methodologies can range from 
precipitation-based run-off models to extrapolating the hydrology of gauge sta-
tion data, the interplay of geographical information with DEMs is fundamental 
in this process and drives the accuracy of hazard assessment.

Combined with the simulated event set and an intensity-damage ratio re-
lationship, which defines the susceptibility of different property types to the 
inundation depth or any hazard intensity, a nat cat model outputs portfolio to 
location-level losses in the form of key metrics that express the probability of a 
loss exceeding a given return period. For example, a 1-in-100-year event loss is 
equal to the loss exceeding with a 1% chance in any given year. These metrics 
are used in understanding and quantifying the risk in terms of losses and the 
amount of premiums required to statistically break even on an average year, that 
is, the average annual loss.

As model vendors focus on developing better and high-resolution models, 
accompanied by higher resolution data and improved computational power, the 
current advancements reflect ever more sophisticated and accurate location-level  
flood loss estimates. They also incorporate the interplay of correlated perils 
such as tropical cyclone induced rainfall and flooding, the impact of changing 
climate signals, the cyclicity of the weather systems and, with that, the potential 
impact of climate change.
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Nat cat models aid integration with existing underwriting and pricing work-
flows, hence the “technical price” view, which these models provide, has be-
come an important metric in the annual insurance cycle and decision-making 
process. The accurate interpretation of such results therefore relies on under-
standing how these models operate, their methodologies and assumptions, and 
strengths and weaknesses. Guided by an increasing desire to develop a view 
of risk that reflects an insurance carrier’s book of business, initiatives like the 
Oasis Loss Modelling Framework (Geneva Association, 2018b), which promote 
open-source platforms and plug-and-play models, are gaining momentum.

The intermediary and advisory role of reinsurance brokers has further pro-
moted the transparency, insight and own view of risk in the vendor-re/insurance 
relationship. The ability to evaluate and adjust models using the latest scien-
tific research, as facilitated through networks that are extensions of re/insurance 
markets, such as the Willis Research Network (WRN) or Lighthill Research 
Network (LRN), continues to push the boundaries of catastrophe modeling and 
the required EO data.

3 Methodological development of catastrophic flood risk 
assessment

Catastrophe models quantify risk by combining hazard information and vulner-
ability functions, which describe the relationship between hazard intensity and 
damageability of different property types. This is captured by exposures that 
define the risk locations and insured conditions of policies, for which a finan-
cial module then calculates the associated losses from the simulated events and 
hazard intensities (Fig. 8.3). Such probabilistic models allow the estimation of 
the distribution of the flood cost. The result can be used by the (re)insurance 
sector for underwriting and pricing, and also for capital reserving based on the 
estimation of the 200-year cost of flood as regulated by the European Solvency 
II directive (Dreksler et al., 2013). Due to such regulatory requirements, devel-
opment of stochastic flood models becomes a priority in some European coun-
tries. Vendor companies started to develop models in data-rich territories such 
as Western Europe. EO data plays a significant role in overcoming limitations 

FIGURE 8.3 Catastrophe model components. (Willis Re)
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in the development of catastrophe models, especially in the hazard and the ex-
posure components (Fig. 8.3), but also in validating the results.

Fundamentally, the hazard component includes event generation and inten-
sity calculation, elements which try to simulate the physical characteristics of 
the water (hydrological) cycle (Fig. 8.4). There are different ways to simulate 
each stage of a water cycle. The most common starting point is simulating the 
precipitation field over the area of interest and identifying independent, flood-
causing storms, in other words “events.” After many simulations, an “event set” 
is built. Typically, 10,000 years or 50,000 years of simulations are needed to 
build a stochastic catalog to produce realistic numbers of events per year. Using 
a rainfall-runoff model, these simulated events are routed through the terrain 
and the river network. Hydraulic modeling takes the calculated remaining sur-
face runoff and river flows (accounting for infiltration and evapotranspiration) 
and determines the flood depths and inundation extent. This completes the haz-
ard component.

Instead of simulating the complexities of the precipitation field, another 
starting point can be using ground measurements of rainfall directly or river 
flow from gauges. Whilst using gauge data reduce the model development ef-
forts, it is limited by the availability and the quality of the station data.

FIGURE 8.4 Water (hydrological) cycle. (Kansas Geological Survey)
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Examples of EO data that play a crucial part in the model development pro-
cess include:

•	 for precipitation modeling, EO data such as Realtime TRMM (Tropical 
Rainfall Measuring Mission) Multi-satellite Precipitation Analysis dataset;

•	 for rainfall-runoff modeling, soil data such as MODIS (Moderate Resolution 
Imaging Spectroradiometer); and

•	 for hydraulic modeling, terrain data such as SRTM (Shuttle Radar Topogra-
phy Mission).

The exposure component provides characteristics of properties such as loca-
tion, occupancy type, and total insured value. One of the key challenges here is 
the requirement of location level information. Most of the time, exposure data 
is provided in aggregate terms, that is, total value is assigned to an administra-
tive boundary such as postcode rather than distributed to each property location. 
Hence, the users of these models rely on exposure disaggregation methods, for 
which EO data (e.g., CORINE land use land cover data, population density, 
nightlight imagery, etc.) can be used as a proxy (Smith et al., 2019).

In addition, EO data also play a significant role in the evaluation process 
of catastrophe flood models, to ensure models generate realistic loss estimates. 
Model performance might be evaluated by comparing simulated losses with 
experienced losses for a client portfolio using historical events as benchmark. 
Given the limited data points of experienced losses, one can only judge the per-
formance of a model for frequent return periods.

Alternatively, one can evaluate each model component independently to en-
sure that the model captures the physical characteristics well. One must identify 
strengths and weaknesses of each component. This requires a good understand-
ing of model methodology and input data limitations in each component. Most 
of the time, users do not have full access to hazard, vulnerability, and financial 
modules, hence model evaluation/sensitivity tests need to be created.

There are several tests one can do to evaluate the hazard component of flood 
models. One of the tests is the comparison of modeled event frequency distribu-
tion with observed events distribution in the area of interest.

Due to the lack of long historical time series for flood events, most of the 
probabilistic flood models rely heavily on the physically based model approach 
to capture the fundamental characteristics of the peril. For instance, the occur-
rence date of simulated events is expected to follow observed seasonality of the 
modeled region. Getting the seasonality right will create realistic antecedent 
soil conditions for flood events, such as ground saturation and infiltration char-
acteristics; hence a realistic flood extent is simulated.

Both spatial and temporal distribution of stochastic events is expected to 
match with observations. For example, a good model is expected to capture the 
spatial and temporal distribution of the monsoon seasons in India (Fig. 8.5). 
One can expect to see more events in the catalog from June to September time 
frame, and/or more events impacting the south-east coast of the country during 
the winter monsoon months.
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Historical event analysis can be a good way to justify the selection of proba-
bilistic vendor models to quantify flood risk for a specific insurance company 
portfolio. If modeled losses mirror the losses experienced by the insurance com-
pany for the same historical event, then the flood model can be used to identify 
capital requirements.

FIGURE 8.5 The image shows both spatial and temporal distributions of average monthly 
rainfall data. (Central Water Commission of India)
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Some vendor models have historical catalogs, that is, compilations of sig-
nificant events simulated using the model’s framework. The historical catalog 
can be used to run the simulation of an event and compare it with the experi-
enced loss to evaluate the performance of the model. However, it is not common 
to have a historical catalog in flood models. Alternatively, a “similar stochastic 
event” can be selected as a proxy to a historical event to achieve this type of 
comparison. Event similarities can be defined based on simulated event return 
period, area impacted, etc. One can compare the similar stochastic catalog event 
loss as a proxy to the simulated historical event loss and compare it with the 
experienced loss to evaluate the performance of the model.

If there is no historical catalog and if a similar stochastic event cannot be 
selected then EO data can be used. For example, inundation extent from satel-
lite imagery and event flow and depth information from river gauge records can 
be compared with the model’s hazard outputs. This approach does not have any 
loss estimation and it is not for the entire event footprint, but it still provides a 
validation to the model’s hazard component.

For example, Central Europe experienced major flooding in May and June 
2010 affecting Poland, Germany, Hungary, Austria, Czech Republic, Ukraine, 
Slovakia, and Serbia. In Poland, on the Vistula River, levee failures caused sig-
nificant flooding (Fig. 8.6). Several cities, such as Sandomierz, were inundated 
for couple of weeks. The observed flood extent from satellite imagery shows a 
relatively good agreement with the modeled hazard footprint. Overall insurance 
market losses for Poland due to this event were more than $3 billion (Source: 
MunichRe).

In addition to the use cases in model development/evaluation processes dis-
cussed earlier, EO data provide valuable insight for designing realistic disaster 
scenarios (RDSs). The majority of probabilistic flood models are only available 
for data-rich territories, such as Europe, United States, and Japan. If one needs 
to build a view of risk on flood, RDSs can be used to stress test client portfolios.

A recent example was the extensive flooding caused by several days of 
heavy rain in France in late May and early June 2016. The Loing River burst 
its banks causing very significant damage in numerous towns such as Nemours, 
Longjumeau, and Montargis. Some areas reported the worst flooding seen since 
1910. The flood resulted in 4 deaths, 24 people injured, and €1.3 billion worth 
of damage, and is considered the worst nat cat event since 1982.

While the event was unfolding, the Copernicus Emergency Service pub-
lished impacted area maps using satellite data. This is a typical product Coper-
nicus produces during significant flood events that require emergency response. 
In September 2016, the Copernicus Emergency Management Service Risk and 
Recovery produced a detailed study of the same event using imagery from the 
AIRBUS SPOT6 and SPOT7 satellites. This study contained maximum flood 
delineation, flood water depth estimation, and flood damage assessments along 
the Seine River located upstream to Paris and its tributary of the Loing river, 
from Fontainebleau to Montargis.
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FIGURE 8.6 Observed vs, modeled flood extents from the Central Europe floods in May and June 2010, which affected the Vistula River in Poland. (Willis 
Re, NASA, The Global Runoff Database (GRDC) (Source: Poland - Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB) 
Provided by: Global Runoff Data Centre, GRDC, Koblenz, Germany: Federal Institute of Hydrology (BfG)))
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Maximum flood extent is a key input to calculate probable maximum loss 
(PML) due to an event. Since the intensity metric for flood is the floodwater 
depth, calculating accurate depths within the inundation extent will dictate the 
accuracy of the PML. There are different ways to estimate flood water depths 
from satellite imagery by combining the flood extents with DEMs. Cohen 
et al., 2017 developed a Floodwater Depth Estimation Tool (FwDET). As il-
lustrated in Fig. 8.7, water depths can be estimated in the flooded area from 
Copernicus flood extent combined with the European Digital Elevation Model 
(EU-DEM 25 m).

The FwDET method allows for an automated spatially continuous flood-
water depth estimation. It is based on identifying the flooded domain boundary 
cells on a DEM. The elevation values of the boundary cells are then assigned to 
cells within the flooded domain. Water depth is calculated by assigning a cell 
within the flooded domain to the elevation of its nearest boundary cell, which 
is then used to calculate the local water depth by subtracting this value from a 
cell’s surface elevation (derived from a DEM).

The water depths calculated using the FwDET algorithm are compared to 
depths published by Copernicus. The results from the two methods are close 
despite the use of a relatively coarse resolution (30 m) DEM (Table 8.1).

When flood extent and depth information of a historical event is available, 
they can be used as an RDS to stress test an insurer’s portfolio. Calculated haz-
ard information of a historical event, together with observed claims information 

FIGURE 8.7 Methodology for generating riverine flood event hazard file using satellite images. 
(Willis Re, Copernicus (with funding by the European Union), EUDEM/HYDRO -MEDDE / DE, 
Cohen et al., 2017)
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as a proxy for event loss, plays a significant role in catastrophe flood model 
calibration.

4 Event response

Another application of satellite images, and more generally EO technology, is to 
improve and update event response tools with recent data on the most impacted 
areas. For example, Willis Re uses satellite imagery to assess the most exposed 
policies after a big flood event and identify the riskiest areas with a high damage 
concentration. The Willis Re Event response module (eVENT Response) allows 
insurers to monitor claims development in near real-time during an event and 
to operate as quickly as possible. Re/insurers use EO data-based tools, such as 
Willis Re’s eVENT Response, to monitor critical events and to rapidly estimate 
losses related to these events.

TABLE 8.1 The flood hazard raster generated using the 30 m DEM and 
FwDET tool closely matches the observations provided by the French 
hydrological service (http://www.hydro.eaufrance.fr) for 8 out of the 11 
stations.

Station 
Number Station Name

Observed 
Water  
Depth (m)

Estimated 
Water Depth 
(m) using 
EUDEM 30m 
data

Estimated  
Water Depth 
(m) by  
Copernicus

1 Saint-Mammes 6.8 3.44 6.68

2 Saint-Fargeau-
Ponthierry

4 7.83 6.12

3 Melun 5.4 3.33 3.3

4 Corbeil-
Essonnes

4.8 12.05 4.533

5 Chalette- 
sur-Loing

3.4 15.87 5.13

6 Montargis 3.4 0.43 1.403

7 Nemours 4.6 4.08 9.1

8 Episy 1.48 2.55 0.853

9 Episy 4.9 0.258 4.13

10 Ferrieres 1.9 2.75 3.94

11 Pannes 1.2 1.09 2.29

Willis Re, Copernicus (with funding by the European Union), EUDEM/HYDRO -MEDDE / DE, Cohen 
et al., 2017.

http://www.hydro.eaufrance.fr/
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There are a variety of applications for event response, which include:

•	 Claims/adjusters to improve allocation of reserves, triage loss adjustment, 
and accelerate and validate claims payments;

•	 Exposure reporting to improve and coordinate business management infor-
mation with more localized information, pro-active event monitoring, and 
more efficient allocation of resources and internal processing of data;

•	 Policy-holder support and preparedness to improve client experience 
through tailored support prior and during an event; and

•	 Mitigation by linking with risk engineering tools to educate clients and sup-
port them with pre-emptive plans and procedures, potentially mitigating the 
risk and claims costs.

For example, during hurricane Harvey affecting Texas in 2017, very high 
resolution (~ 0.5 m) satellite imagery was used by McKenzie Intelligent Ser-
vices (MIS) to delineate the flooded area in Houston. This imagery highlighted 
limitations of the US nationwide Federal Emergency Management Agency’s 
(FEMA) hazard maps, which didn’t capture the flood extents associated from 
hurricane-induced rainfall and consequent flooding. Harvey highlighted signifi-
cant modeling limitations, which did not account for a stalling hurricane over 
the low-lying Texan coastline and the warm waters of the Gulf of Mexico for 
6 days, which intensified the hurricane and thus resulted in significant flash 
flooding within the major conurbation of Houston. Purportedly, the volume and 
weight of the flood waters permanently “sank” the city area by 0.05 m.

Event response typically evolves in accuracy over time, and in the example 
of MIS, a variety of methods were used to provide updates at:

•	 Landfall 0–24 hours: due to lack of coherent information, geospatial analy-
sis and contextual reporting was provided;

•	 6–48 hours: the Houston flood profiled at zip code level using social media 
and press video imagery feeds;

•	 24–72 hours: National Oceanic and Atmospheric Administration (NOAA) and 
National Weather Service (NWS) river flow data from high water gauges were 
used for near real-time ground truthing, which enables the plotting and corre-
lation of river flow data combined with the social media information streams;

•	 72+ hours: low resolution (20 m) synthetic aperture radar (SAR) was used 
to map large scale areas of standing flood water, contrasted with pre-event 
SAR data to separate flooded areas into a single vector layer; and finally

•	 7–10 days: very high resolution (less than 0.5 m) imagery swathes were 
imaged from low altitude to provide a complete view from all-source and 
non-traditional imagery information.

MIS was a success story and the first of its kind to operate collectively, on a 
shared access basis across multiple insurance syndicates of Lloyds of London. 
This is an essential step to enable improved access to real-time event informa-
tion due to the expense otherwise being a limiting factor in the uptake of such 
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approaches by individual insurers. It’s not only the cost and potential license 
issues in accessing high resolution and real-time satellite data, but also the ex-
pertise in processing the data into usable and value-add derivatives that can 
be readily consumed by the insurance industry. In addition, MIS has in part 
overcome limitations of individual sensors, such as coverage and repeat times, 
by combining multiple sources of information, including crowd sourcing and 
volunteered geographic information. On their own, these sources can be dif-
ficult to implement due to reliability of data, barriers in public perceptions, data 
availability, and homogeneity, which can vary greatly by country even across 
Europe. Nonetheless, the challenges in forecasting, irrespective of responding 
to flood events, are significant due to the granularity and temporal nature of this 
peril.

Whilst alternative for-profit solutions exist, like JBA’s Flood Foresight or 
Weathernet, the aforementioned challenges remain an issue in the uptake of 
these solutions. Other open, public solutions are designed for governments and 
emergency responders, and can be limited in their commercial application, such 
as the European and Global Flood Awareness Systems (EFAS/GLOFAS). There 
is always an opportunity for better collaboration among public services and the 
insurance industry considering the greater public good and social responsibility 
in providing immediate aid and restoration after events, as well as promoting 
building resilience and other preventive measures to reduce the risk. Combined 
with improved access to open data, with initiatives such as open data cubes and 
CommonSensing, these challenges may diminish over time.

5 Relationship between private and public sector for flood 
risk

As exemplified in the role of event response, insurance as an institution and a 
product has a significant role to play in society, providing peace of mind and 
reducing the financial risks that individuals and businesses face. Economic 
growth is promoted by supporting investment decisions with the confidence of a 
safety net for potentially overwhelming losses as well as from the funds gener-
ated by premium collection that are invested in government securities and stock. 
Typically, the state becomes a default “insurer of last resort” when the limits of 
insurability are reached (Hoppe, 2012; Swiss Re, 2012).

A side effect of increasingly sophisticated flood model development has 
been an increasing opportunity for adverse risk selection in the insurance in-
dustry. This describes where insurers can potentially “cherry pick” or “red line” 
coverage and charge significantly higher premiums on high risk flood proper-
ties and/or provide coverage only for low flood risks, so undercutting notions 
of social solidarity.

Several government initiatives exist to support the public and insurance 
companies by further mitigating the risk from flood and other perils through 
government-linked compensation schemes. A survey of the approaches taken by 
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countries with various levels of flood risk and economic development to manage 
the financial impacts of floods is provided by the Organization for Economic 
Co-operation and Development (OECD, 2016). UK, US, and French public-
private schemes for flood insurance are briefly described here, as they differ in 
both risk profile and cultural context.

In the United Kingdom, Flood Re is a government initiative established to 
overcome issues of adverse selection and unaffordable premiums by providing 
standardized fees for homeowners based on council tax bands (www.floodre.
co.uk). This affordability is achieved by introducing a levy, charged according 
to insurance companies’ gross written premium, which in turn allows these in-
surance companies to write high risk properties and cede them to the Flood Re 
reinsurance pool, which compensates insurers for any claims.

In the United States, the FEMA, established in 1978 to coordinate the nation-
al response to disasters when a state of emergency is declared, provides public 
protection against flood risk with the National Flood Insurance Program (NFIP) 
and governmental flood hazard maps (https://msc.fema.gov/portal/home). The 
US market is now moving to privatize flood insurance to overcome the current 
debts and financial constraints of the government. Such privatization can only 
be facilitated by the introduction of nationwide, sophisticated catastrophe flood 
models. This has been a challenge for many years considering the geographical 
scope and computational requirements to run such high-resolution models but 
several competing models are now available. This challenge is exacerbated by 
the increasing resolution of DEMs.

In France, a natural catastrophe compensation scheme covers losses against 
natural perils from windstorm and flood (https://www.ccr-re.com/en/home). 
The scheme has also adopted a private-public solution between government and 
insurers, covered by the state-backed reinsurer CCR. The scheme relies on local 
governments declaring a state of natural disaster, and subject to the scope, type 
of peril, and intensity of the disaster, any properties covered by an insurance 
policy will be entitled to full compensation.

Having a view of the high-risk properties is thus essential for these types 
of natural catastrophe schemes and requires accompanying high-resolution 
geographical information. This has led to more openness and availability of 
data, especially as a public good. Initiatives such as the Oasis open-source loss 
modeling framework and the Oasis hub (https://oasishub.co/) provide not just 
an open-source platform for plug-and-play vendor models but also provide a 
marketplace for relevant datasets, both free and licensed.

EO data have a role to play but is still limited by prohibitive costs, data 
processing capabilities, and ultimately, accessibility. There are some initiatives 
starting to promote the availability of DEMs, such as SRTM, with a general 
call for improving data resolution to support the public good. Other examples 
include the Dartmouth Flood Observatory (DFO), which provides an open-
source, global historical event footprint data base (https://www.dartmouth.
edu/~floods/), using space-based measurement, mapping, and modeling of  

http://www.floodre.co.uk/
http://www.floodre.co.uk/
https://msc.fema.gov/portal/home
https://www.ccr-re.com/en/home
https://oasishub.co/
https://www.dartmouth.edu/~floods/
https://www.dartmouth.edu/~floods/
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surface water. It mostly relies on the 250 m spatial resolution MODIS as well 
as high resolution imagery where available. Such data sources are vital not just 
for the development and benchmarking of models, but provide the input data to 
recreate events, stress and sensitivity test models, and verify loss outputs.

Consequently, the progression of flood models, aided by the ever-increasing 
resolution of remotely sensed terrain data, has led not just to changes in the 
insurance market in terms of how flood risk is treated, but also to new ways of 
mitigating against this peril.

6 Role of regulation

As part of the financial service industry, insurance is governed by stringent reg-
ulatory and risk management frameworks. Over time, this has led to the wider 
incorporation of catastrophe analytics into the regulatory structures known to-
day, such as Solvency II in Europe (EIOPA, 2014). The requirements designed 
to ensure sufficient capital is assigned to pay for any potential claims demand 
a process, which is well understood, auditable, consistent, and standardized 
across geographies and perils.

From a governance perspective, the role of financial regulation in focusing 
senior management on risk has sometimes been viewed somewhat enviously by 
other corporate sectors (such as retail and manufacturing), where enterprise risk 
management can garner less attention and resources. Many advocates of tack-
ling climate change risk, within as well as outside of business, thus welcome 
emerging regulation as a driver for societal engagement.

Regulatory impacts on technological and methodological advances in risk 
assessment can however have a stifling effect on innovation, as the requirement 
for standardized process-driven procedures inhibits evolution of new thinking 
and techniques. For example, while advancements in catastrophe models have 
addressed regulatory needs, challenges have arisen around model changes im-
pacting the requirements for capital reserves over time, as well as disrupting 
financial instruments optimized around specific model results. For example, in 
2011, vendor catastrophe modeling company RMS released a version 11 up-
date (RMS 2012) to its US Hurricane software, taking into account the lessons 
learned from several recent major loss-making wind events, such as Hurricane 
Ike. Insured loss results from significant model changes increased from 20% 
to 100% (Marsh and Mclennan 2012), notably in inland areas. The Florida 
Commission on Hurricane Loss Projection Methodology, a unique state-based 
technical regulator, approved the version update but controversy ensued. Many 
insurance companies were hesitant to adopt the new model version impacts, un-
dertaking individual evaluation as a form of “own view of risk.” The impact on 
less technical audiences was more profound: rating agencies such as Standard 
& Poor’s placed 17 catastrophe bonds, where expected loss and pricing are es-
tablished by catastrophe models, on negative watch (Insurance Journal, 2011). 
Subsequently, third-party modeling agents AIR Worldwide came to dominance 
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in catastrophe bond deal issuance (Artemis, 2019), although RMS will remodel 
bonds as a service to their clients so that differing risk views are available to 
influence pricing.

It is clear from the above example that there are far-reaching consequences 
for many stakeholders on how natural hazard risk assessment is regulated, par-
ticularly for flood risk, which is so geographically widespread and proximate to 
populations. Technological developments have had and will continue to exert an 
impact on the relationship between private and public sector in this regard, as 
influenced by regulatory regime.

7 Protection gap

In insurance terms, the increasingly used phrase “protection gap” simply de-
notes the difference between what is paid out by insurance as financial com-
pensation after a disaster and the total cost to an economy and its people of a 
catastrophic event. It’s also known as underinsurance (Swiss Re, 2018).

Such a protection gap can exist in both high and low income economies for dif-
fering reasons. For example, in California, a high-risk seismic region, earthquake 
insurance is available, yet only around 10% of homeowners purchase such cover. 
For US flood coverage, the protection gap is significantly lower than for Cali-
fornia earthquake, mainly due to activities of the government’s heavily indebted 
National Flood Insurance Program (NFIP). For flooding damage from Hurricane 
Harvey in 2017, insurance compensated around 30% of residential losses.

Low income economies face differing challenges for underinsurance. On 
the demand-side, affordability is a significant obstacle, as is policy-holder trust 
in financial institutions and governments in countries characterized by weak 
legal and regulatory systems for enforcing payment of valid claims. Cultural 
and social factors around risk aversion can also play a role. In relation to Gross 
Domestic Product, the protection gap for property coverage in mature markets 
is around 59%, whereas in emerging markets it is as high as 94% (Holzheu and 
Turner, 2018). Fig. 8.8 illustrates this protection gap by hazard group, where 
hydrological events worldwide between 1980 and 2018 have the smallest pro-
portion of economic loss that was insured.

The challenge remains to cover such global economic flood losses by in-
surance. This is particularly evident in less developed regions. The protection 
gap between economic and insured losses can be tackled through disaster risk 
financing (DRF) initiatives supported by national government, development 
banks, humanitarian agencies, non-governmental organizations (NGOs), and 
the private sector. DRF covers the system of budgetary and financial mecha-
nisms to credibly pay for a specific risk, arranged before a potential shock. This 
can include paying to prevent and reduce disaster risk, as well as preparing for 
and responding to disasters.

While catastrophe models form an important part of the solution to quantify 
risks (they are necessary but by no means sufficient), there is limited model 
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coverage in the developing regions where data is often lacking or of low quality. 
Crucially, a broader range of issues must be considered if DRF approaches are 
to prove beneficial for development outcomes and become scalable (Clarke and 
Dercon, 2016). Such issues include ensuring participation and empowerment 
of potentially affected communities (thereby conferring legitimacy), adequate 
monitoring and evaluation of schemes, and taking a holistic risk perspective 
across disaster risk management strategies, contingency plans, climate change 
adaptation plans, and governmental sectoral plans. All too often, DRF instru-
ments can be seen as supply led, supported by technologies from distant coun-
tries that are making poorly informed assumptions and are not led by develop-
ment needs.

EO is nevertheless an extremely useful resource to develop models in data-
scarce regions, in particular to identify river networks and to derive DEM for 
hydraulic modeling. EO can support the estimation of exposure information 
where detailed information of the built environment is not readily available.

Exposure requirements, such as location information, structural type, occu-
pancy, era of construction, building height, and size and cost to replace a build-
ing are required to adequately estimate losses after a damaging event. There are 
initiatives to build such comprehensive exposure databases using remote sens-
ing data. This is an important process to establish a credible statistical break-
down of structural and occupancy types for a given region so that consistent 
disaggregation of insurance portfolios can also be achieved.

The Global Earthquake Model (GEM) initiative, for example, has been 
working toward the development of a first comprehensive, publicly available 
Global Exposure Database (GED) through a consortium of leading institu-
tions that are engaging with domain-experts from multiple countries. The aim 
is to better evaluate global earthquake risk and loss estimation through GEM’s 
OpenQuake platform. While the focus is on earthquake risks, the GED4GEM 
project is a good example of employing multiple scales, sources, inferences 

FIGURE 8.8 The protection gap. (From 2020 Münchener Rückversicherungs-Gesellschaft, Nat-
CatSERVICE.)
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schemes, and flexibility to create taxonomy that adequately describes the build 
environment across the globe. Datasets include country level statistical infor-
mation, urban extent grids (GRUMP), population data, and satellite land use 
classifications. These are combined with higher level housing inventory data-
sets and actual building stock accounts up to building-by-building vector da-
tabases. Satellite data includes Global Land Cover 2000 based on daily data 
from SPOT4, which is processed using supervised classification methods, as 
well as GlobCover from Envisat derived from MERIS. These datasets are vital 
to disaggregate and link the coarser statistical data on building counts into finer 
resolutions for modeling purposes.

8 Index-based parametric insurance

Index-based insurance, increasingly known as parametric insurance, has been 
in existence for many years originating with Chakravati, 1920, who envisaged 
a rainfall insurance product in India where payment would be triggered if to-
tal rainfall during a season was less than a given threshold. The limitations of 
data availability in this example are now obvious because short dry spells at a 
particular moment of crop growth can trigger large crop losses, even if a season 
has average aggregate rainfall—thus demonstrating a form of “basis risk”. Basis 
risk refers to the potential for mismatch between the measures and models that 
determine payouts, and the losses experienced on the ground. A risk holder may 
receive a payout that is greater or less than expected. Agricultural insurance has 
seen much index insurance application due to the high cost of assessing loss-
es with traditional indemnity losses; this is especially the case for subsistence 
farmers and smallholders in developing countries. Drought examples include 
the Weather Based Crop Insurance Scheme (WBCIS) in India, where rainfall 
amount is measured by weather stations, and Index-Based Livestock Insurance 
(IBLI) in Ethiopia, where rangeland conditions as identified by satellite (nor-
malized difference vegetation index, NDVI).

The two fundamental components of parametric insurance are:

1. the pay-out trigger, which is typically based on observable physical char-
acteristics (reported by an independent “calculation agent”) directly related 
to the risk that the protection buyer seeks to cover, such as hurricane wind 
speed or minimum central pressure, temperature, rainfall total, etc. Such 
parametric triggers can also be used for catastrophe bond pay-out, such as 
New York Metropolitan Transit Authority’s 2013 (post-hurricane Sandy) 
bond with a trigger based on storm surge height for a named storm; and

2. the pre-agreed pay-out amount, which should be policy-triggered.

The key advantages of parametric insurance are speed of payout, predict-
ability of pay-out, clear claims processes to buyer and seller, the absence of loss 
adjuster fees, lower chance of disputes as parameters are predefined, and also 
reduced data requirements for modeling risk frequency and severity.
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Parametric insurance is increasingly attracting attention for applications be-
yond weather-related disasters and also as a complement to traditional insurance 
because of its potential to speed up initial recovery time and to cover both specific 
catastrophic losses and frequency attritional losses. For example, gauges of water 
levels of the River Rhine have been used to trigger pay-outs not only for physi-
cal damage from flood but for business interruption losses to marine transporta-
tion due to heatwave-induced low levels in 2018. Historical data from the river 
gauges allowed pricing of the product and assessment of the payout amount. EO 
could clearly broaden the range of applications by line of business and geography 
thanks to the increasing density of micro-satellite constellations, for example.

Like flood risk assessment in catastrophe modeling, however, significant 
challenges persist for development of saleable parametric flood insurance. As 
stated in a 2016 OECD report: “From the perspective of the issuer, the complex-
ity in understanding flood risk means that simple parametric triggers are unlike-
ly to correlate well with actual losses, creating ‘basis risk’ for the issuer.” For 
example, an individual weather station rainfall measurement might not capture 
the magnitude of inundation further away from the same event. Such a measure-
ment might also not capture the network-aggregating nature of riverine flood.

While basis risk is the biggest challenge for parametric products, several 
mechanisms exist to mitigate such basis risk. Also, it should not be forgotten 
that basis risk exists in indemnity contracts in terms of “the small print” of 
policy conditions and wording leading to uncertainty in the mind of the pol-
icy-holder about what exactly they are covered for. Multiple parametric trig-
gers can be applied to a single product, or hybrid products designed, mixing 
both a predefined event parameter and indemnity proof of loss. Structures may 
also be staggered, as with forms of forecast-based finance (Coughlan de Perez 
et al., 2015), allowing for progressively higher payouts for stronger storms, for 
example. Such features do detract though from the most appealing features of 
parametric products regarding speed and transparency.

For flood-specific products, basis risk is a particular problem as measures 
such as rainfall or river flow are more remote to likelihood and magnitude of 
loss than ground shaking or gust speed. Such risk can be reduced by establish-
ing flood footprints which delineate specific areas that are affected. EO could 
greatly assist in near-real-time flood footprint collation. Such work has addi-
tional benefits for other audiences, such as applications in risk model validation 
and scenario analysis as mentioned earlier. One problem with visible spectrum 
sensing is the difficulty of discerning flooding in urban areas, which include 
concentrations of people and property risk, during stormy conditions. Success-
ful deployment of parametric flood insurance would assist in allowing sovereign 
regional pools such as CCRIF (formerly Caribbean Catastrophe Risk Insurance 
Facility, where excess rainfall cover is available), ARC (Africa Risk Capacity), 
and PCRIC (Pacific Catastrophe Risk Insurance Company) to further diversify 
less correlated risks from differing perils. Environment-monitoring satellite ser-
vices are an obvious choice for regional or global third-party reporting agencies.
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9 Climate change and the finance sector beyond insurance

The insurance sector has been actively involved in considering climate change 
impacts for many years (Swiss Re, 1994; Dlugolecki, 2000; Geneva Associa-
tion, 2018a), but this has increasingly become of more comprehensive concern 
for the finance sector. Regarding extreme events, which are the most familiar 
component of physical climate risk for the industry, even the impacts of an ap-
parently increasingly optimistic future climate scenario, where COP21 2015 
Paris Agreement carbon emissions targets lead to a temperature increase of less 
than 2°C by 2100, are alarming.

The Intergovernmental Panel on Climate Change SR15 report (IPCC, 2018) 
noted that extreme rainfall and fluvial flooding may increase in many areas, 
with significant increase in precipitation extremes already observed in mid-
latitudes of the northern hemisphere. Heavy rainfall associated with tropical 
cyclones is expected to increase by 10%–15% (as seen with Hurricane Harvey 
in 2017, flooding Houston). Coastal flooding is likely to cost between 0.3% and 
5.0% of global GDP annually by 2100 with today’s level of coastal protection. 
More severe climate scenarios dramatically exacerbate these patterns of impact. 
It should be noted however that there is much more uncertainty in assessing 
changes in frequency and severity of extreme events, such as storm and flood, 
due to climate change than chronic events such as temperature change and sea 
level rise.

Insurance companies have to respond to a range of push and pull factors 
across both asset and liability sides of the balance sheet (CRO, 2019), which 
include severe event loss estimation, underwriting activities and reputational 
risk (as seen with the Unfriend Coal campaign which targeted specific insurers; 
ClientEarth, 2018), investor sentiment (including consideration of environmen-
tal, social, and governance (ESG) factors), and also potential emerging business 
opportunities.

Many stakeholders look to the insurance sector as a repository of knowledge 
on physical climate risk, both in terms of long datasets of hydrometeorologi-
cal claims and risk quantification from 30 years of natural hazard modeling. A 
limitation of existing approaches is that the focus is on the likelihood of losses 
occurring over the next 12 months of the usual insurance policy period.

However, many modeling practices adapt relatively easily to the consider-
ation of differing (business-relevant) time horizons and also differing future 
emissions pathways (Climatewise, 2019; Geneva Association, 2018b).

Several proto-regulatory initiatives are worthy to mention here in light of 
their needs, to lesser and greater extent, for some form of risk metric implemen-
tation around physical climate impacts.

1. The Task-force for Climate-related Financial Disclosures (TCFD), led by 
former Bank of England governor Mark Carney and chaired by Michael 
Bloomberg, came into being in December 2015 after a G20 request to provide 
voluntary recommendations. These recommendations are aimed at helping 
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companies disclose decision-useful information to enable financial markets 
to better understand climate-related financial risks and opportunities. TCFD 
focuses on the key areas of governance, strategy, risk management, and tar-
gets and metrics (TCFD, 2017). Published response to TCFD can already 
be seen by early mover reporting, such as by Aviva’s Climate Value at Risk 
(Aviva, 2019). New Zealand recently announced that listed companies could 
soon be required by law to make any climate change-related risks to their 
businesses known to their shareholders (New Zealand, 2019).

2. National financial regulators are starting to define and impose climate 
change-related stress test scenarios to drive the insurance industry to start 
thinking about climate change impact on solvency requirements, capital 
management, and internal risk appetite setting. The UK’s Prudential Regu-
lator Authority (PRA), via Supplementary Statement 3/19 (PRA, 2019), was 
the first to set precedence in asking UK insurers to assess their solvency 
impacts against varying severities of climate change scenarios, based on UK 
climate change projections. Other countries will inevitably follow The Bank 
of England’s lead in climate risk, leading candidates being other European 
countries, Australia, and Japan. The Network for Greening the Financial 
System (NGFS), formed in 2017 and now with 42 members, will also drive 
the TCFD agenda, with its mandate to support the goals of the Paris agree-
ment by enhancing the role of the financial system to manage risks and mo-
bilize capital for low-carbon investments.

Jarzabkowski et al. (2019) have reported on the role of insurance for climate 
adaptation and some conclusions provide potential opportunities for EO prod-
ucts and services:

•	 Recommendation 1: Invest in open-source models that provide a long-term 
view of climate risk and link to insurance solutions.

•	 Recommendation 2: Joined-up policy-making to put climate risk models at 
the heart of national adaptation strategies.

•	 Recommendation 6: Converge insurance, humanitarian, and development 
agendas.

Uncertainty around estimating low frequency, high severity “tail risk” 
combined with uncertainty around future emissions pathways, and the po-
tential impact of increased greenhouse gas concentrations on extreme events 
(Weitzman, 2011) promote the use of scenario analyses for simplicity of cal-
culation and clarity of communication. Ideally, all underlying hazard data will 
reside in the public domain to support transparency of analysis and corrobo-
ration of robustness, as well as to allow challenges around expert judgment 
and necessary assumptions. In extending the risk assessment methodologies to 
developing economies and the humanitarian agenda, inevitably less ground sur-
veyed data will be available, and solutions will rely more heavily upon remotely 
sensed data.
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For example, to estimate the impact of increased flood risk under the UK 
climate projections, as outlined in the PRA climate change stress test, hydro-
logical data are used from gauge station data and increased by the scenario’s 
percentage change to reflect the increase in surface run-off resulting from in-
creased precipitation (e.g., 5%, 10%, and 40%, respectively). This is done to 
estimate a new frequency-severity relationship from a hazard point of view, 
such that a 1-in-100-year event may become a 1-in-70-year event under the 
increased precipitation run-off generated flow, which is then assumed to reflect 
the loss change on an exceedance probability curve to estimate the financial im-
pact. These simplistic techniques could be elaborated by using full inundation 
models to estimate the changes in flood extents, to then estimate impacts on a 
portfolio bottom up by overlaying the extents with risk locations and associated 
vulnerability curves.

Risk modeling for national adaptation strategies effectively requires “indus-
try exposure databases” (IEDs, see AIR, 2016)—inventories of built environ-
ment at risk. An IED represents 100% (insurable) market share rather than the 
partial coverage of insured datasets. A good example is the UK Environment 
Agency’s “National Receptor Database” (NRD), used as part of its NaFRA (Na-
tional Flood Risk Assessment) to estimate weighted annual average damages 
(WAAD), equivalent to average annual loss (AAL) in insurance terminology. In 
the short to medium term, changes in exposure have a much greater impact on 
losses than changes in hazard, induced by climate change (Woetzel et al., 2020).

The requirement for “asset level data” as input to risk models are also being 
sought beyond the insurance industry. As part of activities by the UK’s Green 
Finance Institute, inaugurated in 2018 with joint funding from government and 
the City of London, a Spatial Finance Initiative (2018) has been established, 
involving the Alan Turing Institute, University of Oxford, and Satellite Applica-
tions Catapult. Mainstreaming geospatial capabilities enabled by space tech-
nology and data science into financial decision making globally is a key aim. 
Whereas insurance companies have access to policy level information on loca-
tion and type of property or commercial enterprise that is covered, which can 
be collated in “exposure databases” that are input data to catastrophe models, 
other financial institutions such as asset managers or banks have much more 
limited data availability. Crucially, such exposure data needs to be tied to com-
pany ownership information. To this end, the “Climate risk analysis from space” 
report (Spatial Finance Initiative, 2018) boldly states:

•	 We expect that the development of a global catalog of every physical asset 
in the world to be already within the reach of technical feasibility.

•	 It is possible to train learning algorithms to recognize an asset and its fea-
tures in remote imagery and then scan global imagery corpuses to identify 
all assets of that type.

•	 The launch of the CarbonSat satellite in 2020, as well as some already 
scheduled sun-synchronous sensors, offer the potential for more precise ob-
servation of GHG concentrations and emissions at the asset level.
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•	 Through future research projects undertaken over multiple phases, we plan 
to make asset-level data and GHG emissions monitoring for each asset avail-
able for every physical asset in every sector globally, beginning with the 
most GHG intensive assets.

Such innovative goals clearly sit squarely with the EO community, but as 
much connected with climate risk analytics, a mature market to pay for such 
products does not yet exist. To what extent could a finance sector precom-
petitive space be created to assist in defraying development (and maintenance 
and support) costs for such asset level datasets? How could industry initia-
tives such as Oasis or IceBreaker One (2019) (bridging the data gaps between 
finance, assets, policy, and science to deliver a zero-carbon future) support 
such approaches with standards and frameworks? Is there a role for govern-
ment-funded research councils (Hillier et al., 2019), such as UKRI (2019) 
(Pre-Announcement—Climate and Environmental Risk Analytics for Resil-
ient Finance)? Or perhaps as with GoogleMaps, or even the Human Genome 
Project and the Celera Corporation, could a private company with large enough 
resources complete such an ambitious task as a global asset level database, 
at fractional cost and enviable speed? The field is very much open for such 
competition. Keenan (2019) describes the climate intelligence arms race in 
financial markets well, noting that, similar to catastrophe model development: 
“lack of transparent scientific validation and public oversight over rapidly ad-
vancing, and often proprietary, ‘black box’ technologies are causes of concern, 
both for the integrity of science and for the potential impacts on consumer 
behavior and public policy.”

Finally, regarding the sibling catastrophe of climate change, biodiversity 
loss, efforts have been made to explore how financial mechanisms might sup-
port conservation of natural capital and ecosystem services. A fledgling ex-
ample is The Nature Conservancy (2019) “world’s first insurance policy on 
a coral reef” for parts of the Mesoamerican Reef in Mexico. A parametric 
policy has a trigger of 100 knot wind speed which, if exceeded in a predefined 
area, leads to a rapid insurance payout to a trust fund, allowing swift dam-
age assessments, debris removal, and initial repairs to be carried out. Earth 
Observation data may not be required for parametric trigger design but infor-
mation on location (and ideally type and quality) of reefs, as well as onshore 
exposure, or DEMs for storm surge risk may be useful in contextual event 
modeling, perhaps by historical scenario, that provides evidence for product 
pricing.

The Global Environment Facility (GEF) Trust Fund was established at the 
1992 Rio Earth Summit to help tackle the world’s most pressing environmental 
problems. In December 2019 GEF (GEF, 2019) announced 9 winners from 400 
applicants for its Challenge Program for Adaptation Innovation. As much of the 
funding is directed at developing countries, opportunities exist here for EO sup-
port in project monitoring for blue as well as green economies.
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10 Conclusions

This chapter outlines the roles of EO data in re/insurance sector applications 
and highlights market trends and specific use cases across that support risk as-
sessment in both established and emerging markets, model development, and 
event response. Flood risk may have been seen as a “secondary” peril to wind-
storm and earthquake; however, it has attracted greater attention due to ever-
increasing losses in terms of both frequency and severity, as well as how it 
may change under the influence of climate change and exposure/vulnerability 
change, such as increasing urbanization. We have learned how catastrophe mod-
eling has evolved, for flood specifically, in the re/insurance sector, and how EO 
combined with technological advancements has enabled components of sophis-
ticated modeling solutions we see today to estimate financial losses and societal 
impacts.

While existing solutions have been aided by increased computational power 
and higher resolution and better quality DEMs derived from EO data, making it 
possible to model flood hazard at national and global scale, it is clear that more 
needs to be done to translate research advances, data, and technology into ap-
plications that can be more easily accessed by viable business models.

We have seen successes in multi-source approaches of combining satellite, 
UAV video, social media, and post-event ground survey in the case of event 
response; hydrodynamic modeling solutions supported by increased computer 
processing technology; and integrating, organizing, and better understanding 
data through geographic information systems. Yet, more needs to be done to 
better harness new solutions aided by investments in training, systems, and data, 
as well as further fostering the private public relationship to drive the openness 
and transparency agenda around data. This chapter, therefore, concludes with 
the following recommendations:

1. The provision of higher quality, global datasets and input files, as provided 
by EO for model development, such as a better quality DTM and global de-
tailed exposure data set, working in collaboration with governments, NGOs, 
and industry to make the data available publicly to increase the base level of 
flood risk understanding globally.

2. To broadly serve commercial and societal needs in risk and resilience, the 
ideal partnership will incorporate EO into public-private-academic collabo-
rations that support reliable information, strong communication, joint plan-
ning, and clear ideas on roles and limitations.

3. Regulators must strive to send market signals that encourage both a level 
playing field and risk management discipline for market participants yet also 
provides space for iteration of innovative technological solutions without 
being overly proscriptive on methodologies.

4. The global coverage of EO technologies must be fully exploited by creative 
design of accompanying business models and intellectual property applica-
tion to enable risk assessment tools to be developed for low income countries.
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5. “Technologies of humility” should be considered to control the impulse to-
ward creating products with even more modeled complexity, where sim-
pler products with more transparent assumptions and documented limita-
tions may provide a better service, by allowing risk holders to calibrate their 
experience against fewer variables. Additionally, simplified algorithms are 
required for flood simulation to enable real-time hydrodynamic modeling 
solutions.

6. EO providers must be prepared to listen closely and respond to a variety of 
user needs from an increasing range of often non-technical stakeholders, 
thereby avoiding being supply-led.

Whilst many positive efforts are underway from creating better quality 
SRTM data for public consumption, improved disaggregation methods, and in-
dustry collaborations to tackle the protection gap—for all of which EO plays a 
central role—challenges remain. A changing climate adds urgency to answering 
how the latest science can be incorporated into modeling, combined with tech-
nological and data advancements, their maintenance (often a crucially under-
estimated aspect), and how this can be adapted within the re/insurance industry 
and more broadly across finance.

From an EO perspective, machine learning, on-the-cloud imagery and paral-
lel processing, and better awareness through digitalization, means we are cer-
tainly in an age of space technology (as well as political) disruption. Sensors 
ranging across the entire electromagnetic spectrum, both passive and active, 
geostationary (“fixed” position), sun-synchronous and polar orbiting satellite 
are offering new capabilities and insights that can help further advance the mod-
eling capabilities with different views of risk reflecting potential future scenari-
os. However, productive assimilation of this disruption by re/insurance industry 
proceeds at a much slower pace. This is due in part to longstanding inertial 
relationships between commercial risk modeling suppliers and their clients, as 
well as potentially legacy methodological approaches, supported by regulatory 
environments that have the potential to inhibit the flexibility, efficiency, and 
fitness-for-purpose of the financial system.
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1 Introduction

According to several disaster databases like the Emergency Events Database 
(EM-DAT; www.emdat.be) and Munich Re’s NatCatSERVICE, an increasing 
trend in terms of frequency and severity of flood events emerges by analyz-
ing the data related to the most recent years. Now more than ever, precise near 
real-time information on ongoing flood events can reduce the socioeconomic 
impact of flooding. In this context, remote sensing represents a highly valuable 
source of observational data that could provide valuable information, which 
alleviate the decline of in-field surveys and gauging stations at the global level 
(Domeneghetti et al., 2019), especially in remote areas and developing coun-
tries (Collischonn et al., 2008; Xue et al., 2013). The wide spatial extent of 
these products has provided benefits to regions that might not have otherwise 
been able to set up local models and observation programs (Alfieri et al., 2018).

Global (or quasi-global) early warning systems are key instruments for both 
early forecasting (for better preparedness) and early detection, as well as for an 
effective response and crisis management (Revilla-Romero et al., 2014) of hy-
drological extreme events. A correct estimation of both flooded and potentially 
flooded areas has a direct impact on the reliability of flood risk assessment, 
especially considering that for large parts of the Earth’s surface, the time series 
of annual maxima are short and fragmented. This becomes even more relevant 
in densely inhabited areas where growing capital density and population growth 
contribute to increase flood risk.

During last decades, considerable effort has been spent toward increasing 
the precision and the timeliness of remote sensing data and Earth Observa-
tion (EO)-derived maps (Schumann and Domeneghetti, 2016). The launch 
of new satellite missions has further improved EO-based flood mapping. 

http://www.emdat.be/
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Moreover, an increasing number of organizations and researchers have com-
mitted their efforts to the exploitation of satellite observations for flood iden-
tification and monitoring. Among all, the Global Flood Partnership (GFP), 
a global network of scientists, users, private and public organizations ac-
tive in flood-risk management and reduction, shares its experimental prod-
ucts when flooding is taking place (Alfieri et al., 2018). The success of the 
GFP comes from being part of a global forum built with the aim of testing 
and improving, in a collaborative manner, research tools in real emergency 
management situations, further increasing the ability to provide complete 
near real-time information by merging different sources. The whole frame-
work was tested in South Asia (Alfieri et al., 2018) and in the United States 
(Cohen et al., 2017).

Operational and research challenges regarding satellite-based quantita-
tive precipitation measurements are instead studied by the International Pre-
cipitation Working Group (IPWG; www.isac.cnr.it/~ipwg/index.html), co-
sponsored by the permanent Working Group of the Coordination Group for 
Meteorological Satellites (CGMS) and the World Meteorological Organiza-
tion (WMO).

With the aim to provide a concise but complete overview of flood monitor-
ing performed with EO data, this chapter starts with a description of currently 
available satellite data (Section 2). Then, in Section 3, services developed for an 
EO-based monitoring of precipitation events are reviewed. Section 4 focuses on 
systems and hydrological models for flood monitoring based on satellite data. 
Finally, Section 5 summarizes previous sections, highlighting the pros and cons 
of current approaches.

2 EO data for flood detection, monitoring, and assessment

2.1 Rainfall datasets

High-resolution satellite-derived precipitation products can provide valuable 
information when it is necessary to know in near real-time the spatial distribu-
tion of precipitation and its temporal evolution (Michaelides et al., 2009).

Near real-time rainfall estimations are performed using infrared (IR), visible 
(VIS), and microwave (MW) wavelengths. Relevant examples are Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN; Hsu et al., 1997), the Climate Prediction Center (CPC) Morph-
ing technique (CMORPH; Joyce et al., 2004), the Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; Huffman 
et al., 2007), the Global Satellite Map Product (GSMaP; Ushio et al., 2009), 
and the Integrated Multi-satellitE Retrievals for Global Precipitation Measure-
ment (IMERG; Huffman et al., 2019). IMERG data represent an important 
step forward in satellite precipitation estimation thanks to the high spatial/tem-
poral resolution and the global spatial coverage. Detailed information on the 
3D structure of precipitation events are currently available thanks to advanced 

http://www.isac.cnr.it/~ipwg/index.html


Flood Detection and Monitoring with EO Data Tools and Systems  Chapter | 9    197

spaceborne radar instruments like GPM’s Dual-frequency Precipitation Radar 
(DPR).

The original PERSIANN dataset (Hsu et al., 1997) was improved by the 
Center for Hydrometeorology and Remote Sensing (CHRS) at the University 
of California, Irvine, releasing PERSIANN-CCS, a quasi-global (60°N–60°S)  
high-resolution (≈ 4 km) real-time precipitation product based on IR data 
acquired by geostationary satellites as the sole input (Hong et al., 2004). This 
algorithm separates cloud images into distinctive cloud patches, extracts 
cloud features (like coldness, geometry, and texture), clusters cloud patches 
into subgroups, and calibrates cloud-top temperature and rainfall relation-
ship using gauge-corrected radar hourly rainfall data (Hong et al., 2004). A 
further step forward was possible thanks to PERSIANN Dynamic Infrared-
Rain rate model (PDIR), which improved PERSIANN-CSS algorithm by us-
ing climatological data to construct a dynamic brightness temperature—rain 
rate relationship, increasing the capture of warm precipitation and cloud 
patches (Nguyen et al., 2019b). PDIR’s improvement is also linked to an 
expansion of the cloud classification system that now includes monthly sets 
of cloud types.

These global rainfall datasets are characterized by geographically-depen-
dent accuracy. More specifically, higher accuracy is reached in tropics and sub-
tropic latitudes, while the quality of IR images acquired by geostationary satel-
lites tends to suffer at high latitude due to steep view angles (Wright, 2018). An 
orographic correction proved to be necessary to reduce the processes leading to 
an orographic enhancement of precipitation (Vicente et al., 2002). Furthermore, 
passive MW estimation performs better over the oceans than over heteroge-
neous land surfaces and complex terrains, where the highly variable emissivity 
of soils and vegetation is much higher than the one of the water (Michaelides 
et al., 2009).

It is important to note that every rainfall measurement represents a spa-
tial and temporal average over its grid cell, not allowing a finer-scale vari-
ability analysis and making flood modeling in fast-responding areas a dif-
ficult task. Moreover, biases and random errors that characterize this type 
of rainfall estimation are propagated during hydrologic modeling, posing 
limitations on the use of these products in flood forecasting (Nikolopoulos 
et al., 2013).

The possibility of retrieving rainfall estimations from soil moisture mea-
surements performed by satellite, through a kind of a “bottom-up” approach 
(SM2RAIN; Brocca et al., 2014), is showing promising results. However, the 
potential of such indirect estimation of rainfall pattern for flood monitoring on 
near real-time application is still under investigation.

Table 9.1 summarizes key aspects of previously mentioned datasets. More 
detailed overviews of currently adopted techniques for satellite-based rainfall 
measurements are available in Levizzani and Cattani (2019), Sun et al. (2018), 
and Michaelides et al. (2009).
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2.2 Satellite optical and radar imagery

Optical images, in particular very high-resolution ones, are currently adopted to 
evaluate the ground situation (e.g., flood extent and dynamic, as well as damag-
es induced by the inundations) (Voigt et al., 2007). Their use, however, provides 
useful information only in absence of clouds over the area of interest. Consider-
ing that flood events are often linked to adverse weather conditions, these data 
are limited to some cases (Matgen et al., 2011; Schumann and Moller, 2015).

Synthetic Aperture Radar (SAR), instead, measures the strength and the 
round-trip time of a microwave signal emitted by a radar antenna that can pen-
etrate clouds. These instruments illuminate the Earth’s surface (being indepen-
dent from solar illumination) and build an image from the energy reflected back 
to the antenna (i.e., the backscatter). The brightness value of each image pixel is 
directly linked to the strength of the backscatter, which in turn depends on sever-
al factors that characterize surfaces, like soil composition and related dielectric 

TABLE 9.1 Spatio-temporal characteristics of the main satellite-based 
rainfall datasets.

Dataset name
Spatial  
resolution

Temporal  
resolution References

Precipitation Estimation from 
Remotely Sensed Information 
using Artificial Neural Networks 
(PERSIANN)

0.25° × 0.25° 60°N–60° S Hsu et al. 
(1997)

Precipitation Estimation from 
Remotely Sensed Information 
using Artificial Neural Networks -  
Cloud Classification System 
(PERSIANN-CSS)

0.04° × 0.04° 60° N–60° S Hong et al. 
(2004)

Precipitation Estimation from 
Remotely Sensed Information 
using Artificial Neural Networks - 
Dynamic Infrared-Rain rate model 
(PDIR)

0.04° × 0.04° 60° N–60° S Nguyen 
et al. 
(2019b)

Climate Prediction Center (CPC) 
Morphing technique (CMORPH)

0.25° × 0.25° 60° N–60° S Joyce et al. 
(2004)

Tropical Rainfall Measuring 
Mission (TRMM) Multi-satellite 
Precipitation Analysis (TMPA)

0.25° × 0.25° 50° N–50° S Huffman 
et al. (2007)

Global Satellite Map Product 
(GSMaP)

0.1° × 0.1° 60° N–60° S Ushio et al. 
(2009)

Integrated Multi-satellitE 
Retrievals for Global Precipitation 
Measurement (IMERG)

0.1° × 0.1° 90° N–90° S Huffman 
et al. (2019)
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constant, roughness, and inclination. Generally, rough surfaces appear bright, 
while flat surfaces result dark; drier objects appear dark, while wetter objects 
become light. A flat water body, however, represents an exception: it acts as a flat 
surface and reflects the signal off from the radar. This important aspect allows 
extracting the flood extent, even if, in some cases, the accuracy of this delinea-
tion is deeply affected by particular ground conditions, like vegetation partially 
covered by water, buildings surrounded by water, shadows, etc. Although using 
a single image could provide reliable information, it is widely recognized that 
considering at least a pair of SAR images acquired during the flood event allows 
estimating the flood extent with greater accuracy (Matgen et al., 2011).

Valuable information for a near real-time mapping is currently provid-
ed by high-resolution SAR missions, like COSMOSky-Med, RADARSAT, 
Sentinel-1, TanDEM-X, TerraSAR-X, and the most recent Iceye.

2.3 Digital Elevation Models (DEMs): a glance to global,  
open-access spaceborne products

Precise representation of global terrain is essential to support any hydrological 
and hydraulic modeling and many studies have investigated the topographic 
role on hydraulic investigations (e.g., Hawker et al., 2018 and reference there-
in). High-resolution sensing techniques (e.g., GPS, LiDAR, etc.) are known to 
provide the best accuracy surveys; however, they require costs that are not com-
patible with resources of many communities. Thus, spaceborne DEMs represent 
the primary alternative in many parts of the globe.

Among mostly used DEMs, there is the Shuttle Radar Topography Mission 
(SRTM; obtained during an 11-day mission in February 2000), which provides 
land elevation retrieved with radar interferometry technique at near-global scale 
(80%) at 30 and 90 m resolution (Farr et al., 2007). Lately, higher spatial resolu-
tion global DEMs, such as Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer-Global DEM (ASTER GDEM; Tachikawa et al., 2011a) and 
Advanced Land Observing Satellite (ALOS; Tadono et al., 2014) have been de-
veloped using stereo viewing of optical satellite images, with the latter providing 
more accurate elevation data than previous missions (Courty et al., 2019). Howev-
er, all satellite-derived DEMs are affected by several errors, such as system noise 
(i.e., speckle and stripe noise; Rodriguez et al., 2006), as well as beam reflection 
of water bodies, tree canopies, or building that contribute to DEM bias and eleva-
tion overestimation (Yamazaki et al., 2017; Ekeu-wei and Blackburn, 2018).

In the last decade, many attempts have been made to curb such errors and treat 
the spaceborne products to identify globally available off-the-shelf modified 
DEMs that can be readily applied in hydrological applications. O’Loughlin 
et al. (2016) reduced average SRTM’s vertical bias using data from ICESat 
GLAS (Zwally et al., 2002) and information on vegetation height (Simard  
et al., 2011), forest canopy density, and climate regionalization maps (Broxton 
et al., 2014). Another example is represented by the global EarthEnv-DEM90 
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(Robinson et al., 2014; Tan et al., 2015), which has been obtained integrating 
several products (ASTER GDEM2, CGIAR-CSI SRTM V4.1, and Global Land 
Survey Digital Elevation Model) by means of delta surface filling and adaptive 
DEM noise smoothing methodology, improving the overall DEM accuracy.

Recently, Yamazaki et al. (2017) developed the Multi-Error-Removed 
Improved-Terrain DEM (MERIT DEM) obtained after removing several error 
sources, such as absolute bias, stripe noise, speckle noise, and tree height bias. 
Demanding to Ekeu-wei and Blackburn, 2018, (and reference therein) for a 
larger review and additional details, Table 9.2 summarizes the peculiarities of 
most common global satellite DEMs.

3 EO-based monitoring of precipitation events

3.1 Center for Hydrometeorology and Remote Sensing Data Portal

The Center for Hydrometeorology and Remote Sensing (CHRS) at the Univer-
sity of California, Irvine (UCI), recently developed a Data Portal (https://chrsda-
ta.eng.uci.edu) for quick access to their products (Fig. 9.1). PERSIANN, PER-
SIAN—Cloud Classification System (PERSIANN-CCS), PERSIANN—Climate 
Data Record (PERSIANN-CDR), and PERSIANN Dynamic Infrared-Rain  

TABLE 9.2 Characteristics of most used open-source globally available 
spaceborne DEMs.

DEM
Spatial  
resolution [m]

Vertical  
error [m] References

SRTM 30–90 ± 16 Rodriguez et al. (2006); 
Farr et al. (2007)

ASTER GDEM 30 ± 25 Tachikawa et al. (2011a,b)

ACE 2 GDEM 1000 > 10 Varga and Bašić (2015)

GTOP30 1000 9–30 Varga and Bašić (2015)

ALOS 30 ± 5 Tadono et al. (2014); Jilani 
et al. (2017)

GMTED2010 250 26–30 Danielson and Gesch (2011); 
Pakoksung and Takagi (2016)

aBare-Earth 
SRTM

90 4.85–12.64 Sampson et al. (2015); 
O’Loughlin et al. (2016)

aEarthEnv-
DEM90

90 4.13–10.55 Robinson et al. (2014); Tan 
et al. (2015)

aMERIT DEM 90 ± 2 Yamazaki et al. (2017)

aindicates DEMs obtained after error removing or data combination.
Modified from Ekeu-wei and Blackburn (2018).

https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
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FIGURE 9.1 Data Portal developed by The Center for Hydrometeorology and Remote Sensing (CHRS).
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rate model (PDIR) are customizable in their spatiotemporal extent and are 
available for visualization, download, comparison, and subscription (Nguyen 
et al., 2019a).

The Comparison tool implemented in the Data Portal compares PERSIANN 
datasets with other external datasets directly available on the data repository, 
generates a downloadable report of the characteristics of each dataset and es-
tablishes direct numerical and graphic comparisons between them (Nguyen 
et al., 2019a).

The Portal gives access also to other services, like iRain (https://irain.eng.
uci.edu), a data visualization platform. iRain was originally developed to pro-
vide information based on PERSIANN-CCS. The new update is instead based 
on PDIR. Rain totals are available for different time intervals: 3, 6, 12, 24, 48, 
and 72 hours. A 3-hour rain animation over the past 72 hours is also accessible. 
A spatial query allows to access additional statistics over specific areas selected 
by the user. Moreover, iRain identifies and tracks extreme precipitation events 
globally (Fig. 9.2). Every extreme event is characterized by a short report con-
taining storm statistics like maximum rainfall intensity (mm/3 h), average rain-
fall intensity (mm/3 h), maximum accumulated rainfall, storm coverage area, 
total rain volume, storm duration, and storm status. By clicking on identified 
events, the user is able to visualize a 3-hour animation of every single event 
over the past 72 hours (both in terms of spatial evolution and accumulated rain-
fall). End-users can subscribe, using their email, and setup rainfall alerts after 
having chosen a rainfall intensity over a specific time period (i.e., a rainfall 
threshold) and a location.

Additional information (like radar or rain gauge measurements) is acces-
sible where available (additional layers have partial coverage and are concen-
trated mainly in the United States of America).

A mobile app named “iRain UCI” is available for iOS and Android as a 
complement to the iRain website. Users can report local rainfall information as 
a supplement of CHRS data by means of a crowdsourcing functionality. Crowd-
sourced information is visible on iRain portal.

3.2 ITHACA Extreme Rainfall Detection System

The Extreme Rainfall Detection System (ERDS; http://erds.ithacaweb.org), 
developed and implemented by ITHACA, is a service for the monitoring and 
forecasting of rainfall events characterized by a global spatial coverage. ERDS 
is also an early-warning system (EWS) designed for the identification of ex-
treme rainfall events, convective storms, tropical storms, and heavy rainfall in-
duced by cyclones and hurricanes.

The system is currently performing two different analyses. The first one is 
a near real-time rainfall monitoring based on NASA GPM IMERG Early run 
half-hourly data, a near real-time product characterized by a 0.1° × 0.1° spa-
tial resolution, a quasi-global spatial coverage and a 4-hour latency (Huffman 

https://irain.eng.uci.edu/
https://irain.eng.uci.edu/
http://erds.ithacaweb.org/
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FIGURE 9.2 Example of extreme precipitation events identified by the iRain Data Portal, developed by The Center for Hydrometeorology and Remote 
Sensing (CHRS).
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et al., 2019). Near real-time accumulated rainfall maps based on GPM are 
updated on an hourly basis. The second one, instead, takes advantages of the 
output of the Global Forecast System (GFS) deterministic weather prediction 
model, characterized by a 0.25° × 0.25° spatial resolution and a global spa-
tial coverage (NCEP, 2015). GFS data are used to provide accumulated rainfall 
forecasts with a 12-hour update.

The extreme rainfall identification, performed at the same resolution of the 
input data, is based on the concept of activation threshold: an exceptional rain-
fall event is identified when the rainfall amount exceeds a specific threshold 
value (Mazzoglio et al., 2019a). Threshold values are data-dependent (values 
based on GPM data are different from the ones retrieved from GFS data), site-
specific, and time-dependent (threshold values increase as the aggregation inter-
val increases). The system is working using five different aggregation intervals 
(12, 24, 48, 72, and 96 hours). Shorter aggregation intervals would be character-
ized by a significant number of false alarms in the heavy rainfall identification, 
especially when GPM data are used (Mazzoglio et al., 2019a).

The outputs produced by ERDS are made available in two different formats 
through a WebGIS application (erds.ithacaweb.org). Specifically, the data can 
be downloaded in GeoTiff format, thus guaranteeing users to be able to view it 
in a geographic information system (GIS) environment and to use it for further 
analysis. The same data are also available through a Web Map Service (WMS), 
making them accessible even by non-expert users.

The system proved to provide reliable information based on GPM data (us-
ing the before mentioned aggregation intervals) for the near-real identification 
of heavy rainfall events characterized by duration greater than GPM latency 
(Mazzoglio et al., 2019a,b). It is important to highlight that the system may fail 
in the timely identification of intense rainfall events affecting small basins due 
to the combination of the coarse spatial resolution of satellite measurements and 
the latency in the availability of the data. The extreme rainfall detection per-
formed using GPM data is in fact characterized by a 4-hour delay (due to GPM 
data latency plus the time required for data download and processing). Further 
studies aimed at developing a temporal and spatial downscaling of satellite pre-
cipitation measurements could contribute to offer a more accurate output, espe-
cially for localized heavy rainfall events.

The global accuracy evaluation of this EWS is currently undergoing. Fig. 9.3 
shows the most affected areas, according to ERDS, during the heavy rainfall 
event that affected the South of Spain between September 11 and 14, 2019. The 
figure shows the number of alerts provided by ERDS, using GPM data as input 
and a 24-hour aggregation interval, compared to the Areas of Interest mapped 
by Copernicus Emergency Management Service (CEMS) in Rapid Mapping 
mode during the activation EMSR388—Flood in the Southeast of Spain. CEMS 
was triggered on September 12, 2019 at 13:37 UTC. Table 9.3, instead, shows 
the time of the first alert issued by ERDS. As reported in this table, the system 
was able to provide timely alerts over the most affected areas, especially when 
GFS data are used as input.

https://erds.ithacaweb.org
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4 Systems and hydrological models for flood monitoring

4.1 Dartmouth Flood Observatory—River and Reservoir Watch project

The Dartmouth Flood Observatory (DFO) monitors surface water across the 
globe for research, humanitarian, and water management applications. Among 
its several tools and projects, the River and Reservoir Watch (Version 3.7) al-
lows to routinely survey surface water via satellite passive microwave sensors 

TABLE 9.3 Date and time of the first alert provided by ERDS, using both 
GPM and GFS data as input.

Aggregation 
interval

First alert based on GPM data First alert based on GFS data

Date Time Date Time

12-hour 12/09/2019 08:00 UTC 12/09/2019 00:00 UTC

24-hour 12/09/2019 09:00 UTC 12/09/2019 00:00 UTC

48-hour 11/09/2019 23:00 UTC 11/09/2019 00:00 UTC

72-hour 12/09/2019 06:00 UTC 10/09/2019 00:00 UTC

96-hour 12/09/2019 07:00 UTC no alerts no alerts

FIGURE 9.3 Numbers of alerts provided by ERDS from 11/09/2019 00:00 UTC until 
16/09/2019 23:59 UTC using GPM data as input over a 24-hour aggregation interval, com-
pared to the Areas of Interest mapped by Copernicus Emergency Management Service (2019 
European Union), EMSR388.
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(e.g., AMSR-E, AMSR-2, TRMM, and GPM) and measure river discharge 
changes on a daily basis across the entire globe at a 10 km grid resolution (Brak-
enridge et al., 2007; Van Dijk et al., 2016). The River and Reservoir Watch is 
a cooperative project between the University of Colorado, the GDACS-GFDS 
(Global Disaster Alert Coordination System-Global Flood Detection System; 
see Section 4.3 of this Chapter for more details) of the European Commission 
Joint Research Centre, the University of Alabama, and NASA’s Jet Propulsion 
Laboratory (JPL).

Microwave sensors detect water and land areas at low and high emission, re-
spectively. Thus, lower signals indicate increased water coverage. This satellite-
observed signal is easily translated into discharge data (m3/s) and surface runoff 
(mm/day) using site-specific rating equations. Similarly to stage-discharge rat-
ing curves applied at in-situ gauging stations, a rating equation, based either on 
a linear regression or a second-order polynomial, is applied to derive discharge 
from microwave emission. The microwave satellite-observed signal is provided 
by the Global Flood Detection System (GFDS). Overall, there are nearly 10,000 
measurement sites across the globe, although only 334 sites are used and continu-
ously monitored for the River and Reservoir Watch tool (i.e., the majority of them 
is poorly located or not even located on rivers). Discharge values are obtained 
from WBM global runoff models (Cohen et al., 2011), using a 5-year comparison 
(2003–2007) window for model calibration (i.e., WBM modeled monthly mean 
daily, maximum daily, and minimum daily discharges are compared against ob-
served microwave emission; see also Brakenridge et al., 2012). A calibration by 
using in-situ gauging stations is also performed, where data are available (i.e., 
particularly across the United States). Each monitored site is provided with dis-
charge and runoff data (available by clicking on each site display on the map at 
http://floodobservatory.colorado.edu/DischargeAccess.html) updated twice a day 
at 2:30 a.m. and 2:30 p.m. Local Denver Time. The River and Reservoir Watch 
tool allows monitoring river discharge values in near-real time, by detecting low-
flow, normal-flow, moderate-flooding, and major-flooding conditions. Among 
many operational uses of these data, flood warnings and flood risk evaluation are 
the most relevant ones. The River and Reservoir Watch tool provides annual and 
monthly runoff values, and an evaluation of any trend in the 10-year recurrence 
interval flood over the period of record, thus easily allowing a clear detection in 
flood risk. In particular, extreme events, such as major floods, are identified as 
anomalies in a time series of discharge values at a given site by measuring the size 
of a flood event, namely by evaluating the number of standard deviations from 
the mean. For example, a flood magnitude equal to 2 identifies small and regular 
floods, whereas a magnitude of 4 represents large and unusual floods.

4.2 NASA’s near real-time Global Flood Mapping product

Near real-time (NRT) Global Flood Mapping is a global-scale product de-
veloped at NASA Goddard’s Hydrology Laboratory to timely and effectively 

http://floodobservatory.colorado.edu/DischargeAccess.html
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detect floods using available satellite data resources (https://floodmap.modaps.
eosdis.nasa.gov/index.php).

This product uses Moderate Resolution Imaging Spectroradiometer 
(MODIS) instrument, onboard NASA’s Terra and Aqua satellites, to pro-
vide twice a day (i.e., Terra and Aqua overpass the equator at 10:30 a.m. and 
1:30 p.m. local solar time) high-resolution data at 250 m on surface water and 
flood water extent. LANCE (Land Atmosphere Near real-time Capability for 
EOS; https://lance-modis.eosdis.nasa.gov) system at NASA processes MODIS 
images and combines data from all orbits falling within a 10° × 10° tile for 
each satellite, each day. Water is detected through an algorithm developed by 
the Dartmouth Flood Observatory, using a ratio of MODIS optical Band 1 and 
2, and a threshold on Band 7, over a multi-day product window (i.e., 2-day, 
3-day, and 14-day). A pixel is classified as MODIS Surface Water (MSW) if 
it is identified as water over at least 2 out of 4 (or 3 out of 6) observations, 
for the 2-day (or 3-day) composite. This multi-day water detection is needed 
to overcome issues with incomplete coverage (i.e., cloudiness) and cloud and 
terrain shadows, whose spectra incorrectly appear like water. A terrain shadow 
masking is now routinely applied to all products, thus eliminating this issue. 
A cloud shadow masking is applied, but only to single-day products. Detected 
surface water (MSW) is then compared against a reference layer showing per-
manent water (i.e., rivers, lakes, and oceans) to identify and isolate flood water 
surface. Namely, MSW pixels located outside the reference surface water layer 
are classified as MODIS Flood Water (MFW). The reference surface water layer 
(from NASA MODIS MOD44W) shows a few weaknesses (i.e., it is seasonally 
static and out of date in a few places), but it is the best available product at this 
stage. MSW and MFW do not present any indication of insufficient clear data 
to detect water extent, that is, less than 2 (or 3) clear observations in the 2-day 
(or 3-day) composite product. To overcome this deficiency, the MODIS Water 
Product (MWP) provides detailed information (Table 9.4). Despite some limita-
tions (i.e., cloud and terrain shadows, dense vegetation, and limited detection of 
small floods) NASA NRT Global Flood Mapping is a powerful product compa-
rable to the Dartmouth Flood Observatory River and Reservoir Watch project. 

TABLE 9.4 NASA MODIS NRT Global Flood Mapping: MODIS Water 
Product description.

MODIS Water 
Product 
(MWP)

0 Insufficient data to make water determination (cloudy, 
missing images, swath gaps, or bad data values).

1 No water detected.

2 Water detected, coinciding with reference water, classified 
as “not flood”.

3 Water detected, beyond reference water, classified as flood.

https://floodmap.modaps.eosdis.nasa.gov/index.php
https://floodmap.modaps.eosdis.nasa.gov/index.php
https://lance-modis.eosdis.nasa.gov/
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While the River and Reservoir Watch project may have more accurate products 
as experts have been involved in building the flood extent maps, NRT Global 
Flood Mapping provides more timely products, generated automatically within 
several hours of satellite overpass, although not checked for errors.

4.3 Global Disaster Alert Coordination System

The Global Disaster Alert Coordination System (GDACS; www.gdacs.org) is 
a cooperation framework between the United Nations and the European Com-
mission developed in order to provide timely alerts and facilitate information 
exchange in the first phase after major disasters. The system collects near real-
time information to provide multi-hazards disaster alerting for earthquakes, tsu-
namis, tropical cyclones, floods, and volcanoes. Moreover, GDACS provides 
access to coordination tools and operational services, like the Global Flood De-
tection System (GFDS; www.gdacs.org/floodmerge).

GFDS is an experimental system that provides daily detection of major riv-
erine floods at a spatial resolution of 0.09° × 0.09° using passive microwave 
satellite observations (Revilla-Romero et al., 2015). The technique was origi-
nally developed at the Dartmouth Flood Observatory and then it was modified 
at the Joint Research Centre (JRC) of the European Commission. The aim of 
GFDS is to provide high-frequency satellite-based flow information substitut-
ing the missing on-site gauging in many parts of the world (Kugler et al., 2007).

GFDS has used a different combination of passive microwave sensor since 
1998 (Revilla-Romero et al., 2015). JAXA Advanced Microwave Scanning Ra-
diometer 2 (AMSR2) and GPM passive microwave sensors are currently used 
to monitor surface water extent. In order to minimize the influence of clouds 
and local ground factors, brightness temperature (at a frequency of 36.5 GHz) 
measured by these sensors is normalized into a water signal that represents the 
amount of surface water in each pixel (Brakenridge et al., 2007). When a sig-
nificant increase of the surface water is detected (compared to the reference 
value), the system flags it as flood and the flood magnitude is defined as the 
number of standard deviations above the long-term mean. This anomaly ranges 
from high positive values (as in the case of large flood events) to negative val-
ues (dry conditions). Because it adapts automatically to different land surface 
characteristics, this methodology has the capability to be applied systematically 
over the entire globe (Kugler et al., 2007).

4.4 University of Maryland’s Global Flood Monitoring System

The Global Flood Monitoring System (GFMS; http://flood.umd.edu/; Wu 
et al., 2014) is an experimental scheme funded by NASA and developed at 
the University of Maryland. GFMS uses real-time TRMM Multi-satellite Pre-
cipitation Analysis (TMPA) and Global Precipitation Measurement (GPM) 
Integrated MultisatellitE Retrievals for GPM (IMERG) precipitation maps 

http://www.gdacs.org/
http://www.gdacs.org/floodmerge
http://flood.umd.edu/
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as input to a hydrological model settled to provide a nearly global coverage 
(3-hour frequency within the range 50°N–50°S). The hydrological and flow-
routing processes are modeled coupling the Variable Infiltration Capacity land 
surface model (VIC; Liang et al., 1994) with the recently developed physically 
based Dominant River Tracing Routing model (DRTR; Wu et al., 2012). VIC 
solves the full water and energy balances considering the subgrid heterogene-
ity of infiltration capacity for different land cover types and elevation bands, 
thus enabling a proper balance in terms of appropriate performance in runoff 
calculation and computational load at nearly-global scale (Wu et al., 2014). Hy-
drographic parameters for the runoff-routing scheme (e.g., drainage area, flow 
direction, channel width, and slope) are obtained at 1 km grid-cell resolution 
(Wu et al., 2012).

In addition to several hydrological variables (e.g., soil moisture, evapo-
transpiration, etc.), the GFMS provides an estimate of the expected discharge 
(m3/s) and the surface water storage (routed runoff), namely the water depth 
(mm) above dry ground of each computational cell, which is used for defining 
whether a cell is flooded or not, based on statistical thresholds. Global maps 
available online show the spatial distribution of the natural surface water con-
strained in the river channels and overflowing in flood-prone areas. In particular, 
the inundation map at a given time (updated every 3 hours) is defined as the 
amount of the routed runoff at the net of the referential water coverage (i.e., the 
95th percentile value map of the surface storage estimate retrieved by means of 
an extended model retrospective simulation; see Wu et al., 2012 for additional 
details). A cell is considered flooded once the water depth is larger than 10 mm. 
The current version of GFMS does not consider man-made constructions inter-
fering with the natural river systems (such as dams, embankments, retentions 
areas). Finally, in addition to real-time flood estimation and monitoring, the sys-
tem can provide short-term (4–5 days) flood forecasting at 1/8th degrees spatial 
resolution by referring to numerically predicted precipitations (e.g., GEOS-5; 
(Molod et al., 2012)). Maps of the cumulated rainfall observed from satellite 
during last 1–3 and 7 days are also provided.

The GFMS has been evaluated by means of a retrospective simulation car-
ried out over a 15-year period (1998–2012) for which a large dataset of gauge 
streamflow observations (more than 1000; from Global Runoff Data Centre—
GRDC) and reported flood events across the globe (more than 2000; from Dart-
mouth Flood Observatory—DFO) were available. Using real-time precipitation 
dataset (i.e., TRMM TMPA), the system detected about 87% of flood events 
greater than 1-day duration across the globe. In general, better performances 
are obtained concerning longer duration events (3-day instead of 1-day events). 
In the light of the topographic limit (anthropic elements are not considered), the 
system works better in case of fewer dams: for 3-day events over basins with 
limited number of dams, the detection probability is nearly 0.9, while the false 
alarm ratio is 0.6. Validation performed with real-time precipitation across the 
tropics (30°S–30°N) shows a mean Nash-Sutcliffe Coefficient of 0.19 for 28% 
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of the gauging stations, while the performance rises up to 0.33 over 51% of the 
same gauges considering a monthly scale (Wu et al., 2014).

Concluding, the GFMS represents a suitable tool for many international re-
lief and water management agencies (such as, UN World Food Program, na-
tional and regional security agencies in developing countries) since it is capable 
of providing real-time (as well as short-term forecasts) publicly available flood 
estimate for a large part of the globe.

5 Conclusions

Publicly-available EO datasets, tools for direct monitoring of extreme hydro-
meteorological events and hydrological models for flood monitoring based on 
satellite measurements were briefly reviewed in this chapter.

An overview of the characteristics of currently available EO datasets is re-
ported in Section 2. Concerning the rainfall measurement from satellite, signifi-
cant progress has been made in the last few years thanks to NASA/JAXA GPM 
mission. Nevertheless, an accurate high-resolution rainfall measurement from 
space is still a challenging problem. Efforts are required for increasing both the 
temporal/spatial resolution and the accuracy of global datasets. Perhaps, a high-
er spatiotemporal coverage is hindered by the continual loss of satellites due to 
ageing (Levizzani and Cattani, 2019). Good spatial and temporal resolutions 
of rainfall intensity are obtained using VIS/IR satellite observations. However, 
due to the intrinsic limits of the relationship between cloud brightness tempera-
ture and rainfall, it would be advisable to invest in increasing the number of 
passive microwave instruments. Smallsats (i.e., satellite of small size and mass, 
typically lower than 500 kg) are among the alternatives being explored (Leviz-
zani and Cattani, 2019). These considerations are also valid for SAR missions: 
a greater number of SAR instruments could provide a shorter revisit time.

Concerning applied hydrology, the growing fidelity and resolution of remote-
ly sensed datasets have fostered the development of techniques and modeling 
chains that attempt to forecast floods and droughts globally, which would not 
have been possible in the absence of remotely sensed precipitation data. Thanks 
to recent advances in numerical codes, processor speed and computing architec-
ture, substantial progresses in the field of flood monitoring have been achieved.

Tools for the monitoring of extreme rainfall events by means of precipita-
tion measurement performed by satellites were summarized in Section 3. Ser-
vices like ITHACA Extreme Rainfall Detection System and CHRS iRain are 
able to identify extreme events with a global spatial coverage in near real-time. 
As additional not-EO-based features, a tracking analysis is performed by iRain, 
while ERDS integrates a near real-time monitoring with the output of a weather 
prediction model (i.e., GFS).

Systems and hydrological models for flood monitoring were finally reviewed 
in Section 4. As highlighted in Section 4.4, major limitation concerns man-
made constructions not currently taken into account by global-scale flood mod-
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els. When optical data are used as input, a multi-day water detection is needed to 
overcome incomplete coverage due to cloudiness and shadows, whose spectra 
incorrectly appears like water. However, several flood event types put a strain 
on available tools (many rivers should be monitored at a much smaller scale 
than the one that typically characterizes freely-available EO images with daily 
revisit time).

From an end-user perspective, some of these operational services might 
result not intuitive. Minimum technical prerequisites are often necessary for 
a conscious understanding of the outputs provided by the available systems. 
Moreover, the full potential of these tools could be explored only when their 
complete integration will be possible. In the wake of these considerations, to 
unlock the full potential for EO data in flood disaster response, Schumann et al. 
(2016) suggested a stronger collaboration between agencies, product develop-
ers, and decision-makers.
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1 Introduction

Remote sensing is now used in a wide range of flood risk management appli-
cations, which include emergency response, flood extent, and damage assess-
ment, and the development of robust flood risk management strategies. Such 
applications rely on the use of flood models to predict the extent of the flooding 
for given storm events, as well as the velocity and depth of the water affecting 
flooded areas. Flood models generally rely on remote sensing data from mul-
tiple sources to generate model predictions. The rapid advancement in remote 
sensing monitoring and data collection over the last decade has facilitated mod-
eling activities. For example, in England, high-resolution digital terrain models 
(DTMs) and digital surface models (DSMs) of up to 25 cm resolution are avail-
able free of charge from the Environment Agency (EA) (Environment Agency, 
inpress). In addition, NASA’s Shuttle Radar Topography Mission (SRTM) has 
been providing a global 30 m resolution Digital Elevation Model (DEM) free 
of charge since 2015 (NASA, inpress). This increased availability of DEM to-
gether with other remote sensing data including aerial imagery from both air 
and space has facilitated the use of 2D flood modeling regardless of the source 
of the flooding.

The application of remote sensing data in flood modeling can broadly be 
divided based on: (1) flood types (i.e., pluvial, fluvial, and coastal); (2) model 
types (i.e., 1D and 2D); and (3) modeling phases (i.e., model calibration phase 
and model set up phase). Although 1D models are rarely used on their own for 
flood modeling, they are useful when building 1D-2D coupled hydrodynam-
ic models. In Section 1.1, we provide an overview of the application of flood 
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modelling based on the different phases of the modeling process—model set-up 
and calibration. Then in Section 1.2, we discuss the application of remote sens-
ing in flood damage and vulnerability assessments.

1.1 Remote sensing for flood modeling

1.1.1 Model setup
A 2D flood model typically requires products derived from remote sensing as 
input data, primarily DSMs and/or DTMs. The resolution of such products can 
vary from scales finer than 25 cm to scales coarser than 1 km depending on the 
flood types and spatial scale of the model. For example, in the case of pluvial 
modeling where detailed urban surface dynamics needs to be captured, the re-
quired resolution can be as small as a few centimeters. This accuracy can only 
be obtained using remote sensing data. For pluvial or coastal modeling, DEMs 
can be coarser depending on the terrain dynamics. In most cases, the accuracy 
and detail (resolution) of flood predictions depends upon the resolution of the 
DEM used to obtain the flood estimates. In addition to the terrain, waterbodies 
(e.g., rivers, canals, drainage network) also need to be represented in flood mod-
els. Depending on the complexity of the water bodies, it can either be directly 
represented in a DEM or by means of a 1D-2D coupled model which has the 
capability of representing waterbodies and associated structures. In a typical 
coupled model, waterbodies and the associated structures such as canals and 
drainage networks are represented in 1D to consider the overtopping/overflow 
aspects and are then coupled with a 2D model to predict the floodwater propaga-
tion over a surface.

Remote sensing is also used to characterize waterbody channels using pri-
marily echo-sounding based bathymetry where sound pulses are used to mea-
sure water depth (Hellequin et al. 2003). Although originally developed for 
marine application, echo-sounding soon became useful in inland water mea-
surements (Dost and Mannaerts, 2008; Kasvi et al., 2019). Laser-based remote 
sensing techniques such as LiDAR have also become widely used to measure 
inland water bathymetry (Abdallah et al., 2013; Kriechbaumer et al., 2016). 
These techniques have their limitations due to their cost and the influence of 
water clarity and movement on the measurements. However, due to the spatial 
coverage it is possible to achieve within limited time periods and the rapid tech-
nological advancements, they are widely used for inland and coastal bathymetry 
measurements.

Remote sensing can also be used to measure rainfall, one of the main inputs 
for pluvial flood modelling, using both active and passive techniques. Exam-
ples of active remote sensing include weather radar measurements (Wilson and 
Brandes, 1979; Thorndahl et al., 2017). Passive approaches to measure rain-
fall are possible at microwave and infrared wavelengths (Leijnse et al., 2007). 
Although ground-based point rainfall measurements are still widely used for 
flood modeling due to their high accuracy, remote sensing precipitation mea-
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surements are preferred in large scale flood models (>10 km) as they provide 
greater aerial and temporal coverage. It has also become a common practice 
to use a merged rainfall product in flood modeling where ground-based point 
measurments and remote sensing measurements are combined to produce a bet-
ter rainfall estimation using advanced Kriging methods such as spatio-temporal 
co-kriging (Sideris et al., 2014).

1.1.2 Model calibration
A major challenge with flood modeling is its calibration, especially for pluvial 
flood models. Typically pluvial flood depths are estimated from watermarks on 
buildings and structures if available and even where they are used, they are not 
always reliable measures. In fluvial flooding, water levels are usually calibrated 
by means of gauging stations. However, these measurements also become unre-
liable once the river is out of bank. Remote sensing therefore has an important 
role to play in calibrating and ground truthing flood models. Both flood ex-
tent and flood depths can be measured, although the latter is more challenging 
(Schumann et al., 2009).

Images taken by unmanned aerial vehicles (UAVs), aircraft and satellites in 
combination with classification algorithms can be used to calibrate flood extents. 
Examples of these data types include aerial photographs (Néelz et al., 2006), 
and Landsat (Khan et al., 2011), which are produced by either optical or mi-
crowave sensors. Microwave sensors, such as synthetic aperture radar (SAR) 
can penetrate through objects such as clouds and vegetation and provide clear 
images of the inundated area even during cloudy weather conditions. However, 
optical sensors, especially in the near infrared, are useful as they provide a clear 
distinction between water and land as these spectral bands are strongly absorbed 
by water, yet reflected by land.

Satellite data provides large area coverage, although the level of detail is 
limited. When higher resolution images are required, for example, to capture 
the flood dynamics in an urban environment, manned and unmanned aircraft 
systems (UAS) are preferred. UAS are emerging as an important means of pro-
viding high resolution data under challenging environmental conditions in a 
cost effective way.

As floodwater is often muddy and carrying debris, it is challenging and 
in some cases impossible to measure floodwater depths using remote sensing 
methods.

1.2 Remote sensing for the assessment of flood damages  
and vulnerability

Regardless of flood type, remote sensing data, mostly aerial images, can be used 
to assess flood damage (Klemas, 2015). As discussed in Section 1.1.2, these 
data can be collected from space or the air. Flood damage is generally assessed 
by comparing aerial images of the flooded area before and after an event. This 
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information can be used in combination with other data such as predicted flood 
maps or ground-based damage surveys (e.g., door-to-door surveys) to provide a 
better estimation of the damage. Further, by overlaying predicted 2D flood maps 
onto land use maps, damage for each land use type can be estimated. The map 
in Fig. 10.1 indicates the flood depth estimations for different land use types 
for the market town of Cockermouth (England). Flood vulnerability can be as-
sessed in a similar way using a flood map together with population data and 
other vulnerability measures. The vulnerability of other land use types such as 
roads and farmland can also be assessed using a flood map and corrosponding 
vulnerability measures.

Loss adjusters within the insurance sector typically use flood risk models to 
estimate the damage caused by a flood event to individual properties. Financial 
algorithms were used by Rivas et al. (2018) to calculate the direct tangible loss-
es to residential properties based on data collected using UAS. The high resolu-
tion imagery enabled the identification of damaged goods that were deposited 
outside households as a consequence of a flood event. Visual inspection of the 
imagery enabled an assessment to be made of the locations within the town 
where properties had been affected by the flooding and the relative impact on 
each household. The financial algorithms were based on multiple variables, in-
cluding: house type (e.g., terraced, bungalow), house age (i.e., historic period), 
and flood depth. The derived losses for the market town of Cockermout were 
estimated to be £10 million within the surveyed area. The information obtained 
from the combined use of remote sensing and flood modeling could be used to 

FIGURE 10.1 Land use flood depth map obtained by overlaying predicted 2D flood inunda-
tion map and land use map—Storm Desmond floods (5–6/12/2015), Cockermouth, Cumbria, 
United Kingdom. Attribution statement: Contains OS data © Crown Copyright and database.
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further inform flood risk management measures such as the best locations for 
property level flood resilience and resistance approaches.

2 Extending the use of emerging remote sensing technologies

This section provides examples from the literature and ongoing work on the 
novel applications of remote sensing in relation to physically-based modeling 
and machine learning (ML). The examples for physically-based models mainly 
use freely available remote sensing data in the United Kingdom. The ML sec-
tion provides examples from the literature of recent developments.

2.1 Remote sensing data in physically-based flood modeling

2.1.1 Remote sensing methods for flood type identification 
(Muthusamy et al., 2019)
Many flood events are caused by more than one type of flooding, for example, 
fluvial, pluvial, and coastal. It is therefore important when assessing the most 
appropriate mitigation measures to understand better the spatial extent, flood 
depth, and flood damage associated with the different sources. For example, 
the deployment of resources, during an event and the identification of evacu-
ation routes, requires an understanding of the predicted spatial and temporal 
propagation of flooding from all sources. To capture the spatial and temporal 
dynamics of a flood event correctly requires the incorporation of all sources 
of flooding in the modeling process (Chen et al., 2010; Apel et al., 2016). 
Remote sensing data can be used effectively in combination with ground-
based data to simulate and analyze composite flood events. In the follow-
ing example, a conceptual remote sensing-based, integrated approach is used 
to model a composite flood event and allocate the damages to the different 
sources of flooding.

Cockermouth, a town located in Cumbria, United Kingdom, is historically 
known for fluvial flooding. The town center is located at the confluence of two 
rivers (Fig. 10.2). However, during recent flood events, including three in 2015, 
on more detailed analysis, it was evident that the town was also affected by 
pluvial flooding. In this study, a high-resolution DEM was produced for Cock-
ermouth from a composite DSM and a DTM obtained from the EA (Fig. 10.2). 
Then, using this DEM, a 2D flood model was developed in HEC-RAS (v5) 2D. 
The flood event caused by storm Desmond in 2015 (5–6/12/2015) was selected 
for this study. Simulations were carried out with and without a contribution 
from pluvial flooding to compare the difference in the properties affected by the 
flooding in terms of both flood area and flood depth. These models were also 
used to compare the fluvial and combined (pluvial and fluvial) flood damage 
areas for different land-use types. The numbers of residential properties affected 
by fluvial and combined flooding were then compared using a combination of 
modeled results and UAS data. Fig. 10.3 shows a comparison of the properties 
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FIGURE 10.2 Digital Elevation Model (DEM) of the study site (Cockermouth, Allerdale, Cumbria, UK). Data collected by the Environment Agency (EA) in 
2015; DEM derived from photogrammetry techniques applied to aerial imagery collected from aircraft. The zoomed window shows a 3D image of the river conflu-
ence and a part of the town center. (Attribution statement: From Environment Agency copyright and/or database right 2019. All rights reserved (Environment Agency, 
inpress).)
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FIGURE 10.3 Flood depth (m) obtained from HEC-RAS (v5) 2D for fluvial flooding and combined (fluvial and pluvial) flooding scenarios, combined with 
land use map. (Attribution statement: Contains OS data © Crown Copyright and database)
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impacted by fluvial and combined (pluvial + fluvial) flooding for different land 
use types.

This study demonstrates how remote sensing, hydrological modeling, and 
flood damage data at a property level can be used together to differentiate be-
tween the flood extents and damage caused by fluvial, pluvial, and combined 
fluvial and pluvial flooding in the same event. Most of the data used in this 
study were obtained via remote sensing methods, including aircraft, satellites, 
and UASs and demonstrates the benefits of developing a remote sensing-based 
framework to enhance the current practice in the estimation of flood extent and 
damage from different sources. This framework can also be extended to include 
real-time flood calibration/prediction by making use of remote sensing data col-
lected as a flood propagates. However, such an extended framework needs to 
take into account the data and model processing times as real-time flood pre-
diction cannot be based on time-consuming modeling processes. Section 2.2 
discusses how this can be addressed using ML approaches, which have much 
faster processing times than physically based models such as the one used in 
this study.

2.1.2 Remote sensing to enhance flood modeling capabilities
DEM resolution plays a major role in the accuracy of flood modeling. The ter-
rains in urban catchments are highly variable due to the buildings and infra-
structure. The complexity of urban landscapes requires high-resolution DEMs 
sometimes as fine as a few centimeters. This is why most commonly used data 
such as the Shuttle Radar Topography Mission (SRTM) with a resolution of 30 
m is not sufficient for small urban catchments. With such low resolution, drain-
age networks including small water courses, both natural and man-made, cannot 
be represented, which can result in an over-prediction of flood extent and depth 
(Ozdemir et al., 2013). However, with the advancement in remote sensing meth-
ods, such as Light Detection and Ranging (LIDAR) some countries provide 
higher resolution DEM. For example, in England, high-resolution DTM and 
DSM of up to 25 cm resolution are available free of charge from the EA (En-
vironment Agency, inpress). With DEMs available at various resolutions, it is 
important to understand how the resolution of a DEM affects the flood modeling 
and the optimal resolution that is required to model a given catchment. Studies 
show that the effect of the DEM resolution in relation to the flood extent and 
depth calculated by a model depends on the flood type and the catchment char-
acteristics (Saksena and Merwade 2015; Ozdemir et al., 2013). In the following 
example, the effect of DEM resolution on the pluvial flood modeling results 
was determined for Storm Desmond in Cockermouth using DEM resolutions of 
1 and 50 m. The 1 m DSM and 1 m DTM obtained from the EA (Environment 
Agency, inpress) were used to generate both the 1 m and, by sub-sampling, the 
50 m DEMs. These DEMs were then used to develop 2D fluvial flood models 
in HEC-RAS (v5) 2D for the study site. The results, as presented in Fig. 10.4, 
were compared to quantify the effect of different resolution DEMs. As the 
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FIGURE 10.4 Flood maps produced for different resolution DEM obtained from HEC-RAS (v5) 2D.
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resolution increases so does the majority of the flood depth estimations. The 
flood depths in the areas close to the River Cocker show the largest increase. 
The main reason for this is the increasing lack of definition of the river channel 
with an associated reduction in the depth of the river resulting in reduced river 
channel conveyance. This then leads to an increase in the flood extent and depth 
especially in the immediate vicinity of the river. The effect is not as marked for 
the River Derwent (Fig. 10.2) which is much wider than the River Cocker. Also 
many of the areas showing as not being flooded using the 1 m resolution DEM 
due to the influence of buildings are indicated as being flooded when using the 
50 m resolution DEM as a result of the buildings being smoothed out

The approach outlined earlier can help decide what the optimal resolution is 
for a DEM in a particular type of topography and can be used in the design of 
data collection protocols for remote sensing. The results also demonstrate the 
importance of accurate representation of river channels and banks in 2D flood 
models. It may therefore be appropriate in some situations to use a composite 
DEM by merging a high resolution product for the river channel and banks with 
freely available lower resolution DEMs for the surrounding terrain.

2.2 Machine learning and remote sensing for flood applications

The application of ML including deep learning (DL) and remote sensing tech-
nologies in hydrology have shown remarkable potential in recent years. Remote-
ly sensed data are increasingly being used to build ML models, for example, to 
predict flood risk in a specific area (e.g. Bui et al., 2019; Chapi et al., 2017) 
or to map flooded areas during a flood event (e.g. Feng et al., 2015; Sarker 
et al., 2019). The current upsurge of publicly accessible Earth Observation data 
(e.g., satellite imagery) and advancements in both computing technology and 
ML algorithms have provided powerful tools for use in flood risk management 
applications.

ML is a branch of artificial intelligence (AI), where processes automatically 
learn from past experience and act without being explicitly programmed to do 
so. A ML model relies on a broad range of input training data such as histori-
cal flood events and other associated data from multi-sensor satellites. The data 
often requires preprocessing and transformation. For example, predicting river 
flow would require structuring the data into input and output formats and scal-
ing the datasets within a specific range. The data are then split into two sub-
sets for training and testing, where the testing dataset might typically comprise 
about 80% of the data with the remaining 20% retained for testing. A ML model 
is trained and optimized using the training subset. A separate set of test data is 
then used to evaluate the model’s performance. Following these testing steps, 
real-time data are fed into the model to make predictions (Fig. 10.5).

Many ML algorithms and architectures have been used in flood hydrology. 
Artificial neural networks (ANNs) are one of the most widely used algorithms 
for predicting both short- and long-term hydrological variables such as river 
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flow discharge and flood levels (Maier and Dandy, 2000; Fahimi et al., 2017; 
Dawson and Wilby, 2001; Kim and Barros, 2001). Other commonly used al-
gorithms include decision trees, support vector machines, and ensemble ML 
models such as random forest (Mosavi et al., 2018).

DL algorithms are another type of ML based on multilayer ANNs. DL has 
gained popularity in areas such as pattern recognition, object detection, and 
image classification. DL can be applied to regression problems such as predict-
ing the value of flood discharge, or classification problems such as classifying 
flooded and non-flooded areas from imagery trained with predefined flood la-
bels. For instance, Yang and Cervone (2019) used a large number of aerial pho-
tographs to train a DL model to classify rapidly flooded areas and assess flood 
damage. Another example involves the prediction of river discharge using deep 
recurrent neural networks (Le et al., 2019; Xiang et al., 2020).

ML and remote sensing data have been combined in a number of flood re-
lated applications including flood prediction (Kim and Barros, 2001; Shortridge 
et al., 2016; Zhou et al., 2018) flood risk assessment (Alipour et al., 2020; Bui 
et al., 2019; Chapi et al., 2017; Mojaddadi et al., 2017; Shahabi et al., 2020), and 
monitoring and mapping (Amitrano et al., 2018; Feng et al., 2015; Gebrehiwot 
et al., 2019; Ireland et al., 2015; Sarker et al., 2019).

ML models have been used extensively for flood prediction with varying 
predictive lead-times, often at the catchment scale. These models typically use 
multivariate datasets comprising meteorological, hydrometric, and catchment 
characteristics, and may include additional remotely sensed information such 
as soil moisture and land cover (Zhou et al., 2018; Shortridge et al., 2016; Kim 
and Barros, 2001). Other ML studies have used remote sensing products to 
extract flood conditioning factors (i.e., factors that have a relationship to flood-
ing), such as slope, aspect, soil types, and other indices, in order to predict flood 
risk, damage, and flood susceptibility (Shahabi et al., 2020; Chapi et al., 2017; 
Alipour et al., 2020; Bui et al., 2019).

One rapidly emerging area of interest is coupling ML with physically-
based (hydrologic and hydraulic) models. ML and remote sensing data can 

FIGURE 10.5 A simple machine learning (ML) pipeline.
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be leveraged to increase the predictive power of such physically-based mod-
els, to correct their biases and improve model accuracy (Yang et al., 2019; 
Zhang et al., 2018; Ahmad et al., 2010; Puttinaovarat and Horkaew, 2020; Tian 
et al., 2018; Bui et al., 2019; Zhou et al., 2018).

Flood assessment and flood extent mapping is another key example where 
ML and DL are increasingly being used together with remotely sensed data. 
The growth of high-resolution satellite data and UAS imagery has generated 
large volumes of spatial data with high spatiotemporal resolution. Many recent 
studies have combined remote sensing and ML to identify flood extents, by clas-
sifying pixels into “flooded” and “not flooded” (Schnebele and Cervone, 2013; 
Feng et al., 2015; L. Yang and Cervone, 2019; Gebrehiwot et al., 2019; Ireland 
et al., 2015; Sarker et al., 2019). Remote sensing combined with ML can also 
be used in rapid flood damage assessments to help with disaster response 
(Li et al., 2018; Amitrano et al., 2018; Mojaddadi et al., 2017; Yang and 
Cervone, 2019).

In previous sections, we described the use of UASs in the village of Cock-
ermouth to quantify flood damage (direct tangible losses) at residential property 
level and to differentiate the flood damages caused by fluvial, pluvial, and a 
combination of the two. This application could be further developed via the use 
of ML techniques by training a DL classifier to detect damage automatically 
within UAS images and the associated source of the flooding, fluvial or pluvial, 
in real time. Such an application requires the collection of UAS images that are 
processed and transmitted in real time. Current requirements for data collection 
and photogrammetric processing restrict the development of real-time applica-
tions when geomatic products (e.g., orthoimage or DEM) for the totality of the 
surveyed area are required. However, this limitation can be overcome by the 
on-board analysis of individual frames as soon as they are captured. Such ap-
plications will make a significant contribution to the rapid estimation of flood 
impacts. The approach could also be adapted to assist emergency responders 
identify flood evacuation routes.

3 Remote sensing and flood management

Effective flood risk management strategies require many organizations with dif-
ferent accountabilities and responsibilities to work together. In England, these 
are outlined in the National Flood Emergency Framework (Defra, 2014). These 
include the Department for Environment, Food and Rural Affairs (Defra), the 
EA, Lead Local Flood Authorities (LLFAs), and District Councils and Inter-
nal Drainage Boards (IDBs). Defra is responsible for Flood and Coastal Ero-
sion Risk Management Policy. The EA, which is a Non-Departmental Publicly 
Funded Body, and the largest of the Defra group of organizations, is respon-
sible for maintaining a strategic overview of all aspects of flooding. The LLFAs, 
which are the County and Unitary Councils, are responsible for developing and 
maintaining local flood risk management strategies. The EA is responsible for 
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addressing flood risk from main rivers, reservoirs, estuaries, and the sea, LLFAs 
for surface water and groundwater and District Councils and IDBs for ordinary 
water courses.

An effective flood risk management program has a number of components. 
These include: (1) the underpinning policy and governance arrangements, (2) 
flood risk assessments and plans that rely on intelligence from previous events, 
data, models, and maps, (3) a clear set of flood risk reduction measures such as 
property level resistance and resilience and catchment management measures 
and major flood risk management schemes, (4) operational and maintenance 
activities, (5) a reliable monitoring and forecasting program (e.g., weather), (6) 
spatial planning and development controls, (7) flood incident management and 
emergency response including rescue, and (8) recovery.

When localized flooding occurs in England, the response is lead by local 
emergency responders (Defra, 2010). For flood events that affect larger areas 
(lower level national flood events), the emergency response is coordinated and 
managed by Defra. Incidents which are classified as having a serious impact are 
coordinated by Defra through the Cabinet Office Briefing Room (A) (COBRA) 
whereas catastrophic events are coordinated by the Civil Contingencies Secre-
tariat within COBRA (Defra, 2014).

Over the past 20 years, remote sensing technologies have been used increas-
ingly in various aspects of flood risk management. These applications can be 
categorized in terms of their use as follows (Salmoral et al., 2020):

•	 before an event in developing DEMs, flood extent modeling, flood risk as-
sessments, the design of new flood risk management schemes, identifying 
safe shelter points and evacuation routes, the condition of flood risk man-
agement assets and maintenance;

•	 in the period immediately prior to a flood event in flood forecasting and 
flood warning including assessing a need for the evacuation of people;

•	 during an event to inform responders about actual flood extents and depths, 
flood sources and routes, and whether these are as expected from models, 
whether evacuation routes remain clear, identifying blockages that need to 
be cleared, breaches in structures in need of repair, people in need of rescue 
and provision of emergency relief supplies;

•	 post-events as part of damage and impact assessments, the ground truthing 
of flood models and flood risk assessments, assessing the performance of 
flood risk management structures, and identifying the source of the flooding.

Remote sensing data has become a fundamental part of many flood risk man-
agement activities in the “before and post event” categories outlined earlier. 
The EA has established a specialist team (Geomatics) to carry out, oversee, and 
commission as appropriate, such work (Salmoral et al., 2020). This ensures the 
data is gathered and utilized in a structured way. They are also responsible for 
being aware of developments in remote sensing technologies that can be applied 
to the wider flood risk management activities in the EA.
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Informed flood risk management decisions require a consistent approach, 
agreed methodologies and standards for geomatic products, catchment flood 
models, and the design of physical flood risk management schemes and struc-
tures. The use of non-standard remote sensing products and the associated de-
rived flood extents and depths could result in sub-optimal decisions being taken 
with respect to the design, development, and operation of, and investment in, 
flood risk management measures. A central data acquisition team ensures that 
flood management can be carried out in an efficient and effective way. They 
then provide the remote sensing data, geomatic products, and underpinning data 
for others in the EA, partners and stakeholders to use.

Central coordination of data acquisition requires a detailed knowledge of 
how the information will be used before, during, and after an event and the 
impact of ambient conditions on the surveying process. For example, the use 
of remote sensing technologies during an event tends to be on a more ad-hoc 
basis and is affected by factors such as: deployment time, the scale, and du-
ration of the flooding, the frequency with which repeat data can be obtained, 
whether there are multiple locations that need to be assessed, the resolution 
of the sensing system, the weather conditions, the timeliness in obtaining the 
outputs. Standardization of data collection under this varied range of underlying 
conditions is challenging and requires careful planning.

Similarly, there are challenges to the routine use of satellite and plane based 
remote sensing products during an event. Flooding associated with surface water 
and in rapid response catchments can occur and then subside in a matter of hours. 
This means that any technology used in support of such flood event response 
must be able to be deployed quickly. It is likely that they will need to be used 
by the emergency responders. Satellites and planes are unlikely to be able to be 
deployed in a timely manner to gather meaningful data to assist in the response.

In addition, satellites are not always over areas that are flooded and even 
when they are available, the data are only refreshed on a periodic basis. In ad-
dition, satellites and planes may not be able to provide data because of the pre-
vailing weather conditions. It is therefore unlikely that emergency responders 
will want to rely on data sources that are intermittent and on occasions may not 
be available. For these reasons, UASs based remote sensing systems tend to be 
used during flood events.

UAS are readily available in the market and affordable, with a wide range of 
platforms suitable for different applications. They can be used by various orga-
nizations including the EA, the local council, emergency responders, and insur-
ance companies. Often, they are used to provide images that can be streamed 
back to control rooms to inform and clarify situations and assist in their im-
mediate tasks. Such images can be used in a range of ways including: strategic 
and tactical situation awareness; to check the extent and location of flooding; 
whether evacuation routes remain clear and safe shelter points available; to 
identify people at risk and those who are trapped, blockages in water ways, the 
need for maintenance activities; to assist identify and then repair breaches in 
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flood risk management structures; impacted buildings and infrastructure and 
damage assessment.

Although there are clear benefits in the collection of standardized remote 
sensing information, there is not an established framework in England to de-
fine how to use UASs and for what purpose before, during, and after a flood 
event and how best to disseminate the data and images collected. As a result, 
sometimes data contains underlying errors, missing information, or cannot be 
used for the objective for which it was gathered. Data and images that are col-
lected during events will often be analyzed post–event, for example, to bet-
ter understand flood extents and depths, property and infrastructure impacts, to 
ground truth flood models and flood risk assessments, to identify the sources of 
the flooding, and the performance of flood risk management structures. Such 
information is vital if the most appropriate flood risk reduction and mitigation 
approaches are to be implemented. Lack of consistency in UAS data poten-
tially will result in sub-optimal management decisions. It is clear that a purpose 
driven and strategically coordinated approach is required to determine how best 
to use remote sensing approaches and technologies to inform flood risk man-
agement activities, including incident response. This will reduce duplication of 
effort and costs, ensure the timely capture of important data that can be used to 
inform current and future flood risk management activities and encourage the 
uptake of novel and disruptive technologies such as UAS.
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1 Introduction

As flooding and drought accounts for the majority of all global weather-related 
hazards, disaster risk reduction for hydrometeorological hazards receives sig-
nificant attention (United Nations Office for Disaster Risk Reduction, 2018), 
however, impact profiles of hydrometeorological hazards vary significantly 
across type. For example, riverine floods occur near riverbanks and often in ar-
eas known to be at risk for flooding, while flash floods can be caused by extreme 
rainfall, dam or levee breaks, rapid and/or unplanned settlement, and/or mud-
slides and debris (Xia et al., 2011; Zaharia et al., 2017). For flash floods, rainfall 
intensity, location, topography, land cover, and land use (including soil type, 
vegetation, urban development) are each contributing factors, while presenting 
disparate challenges in risk model parameterization compared to riverine and 
coastal floods (Gallus, 1999; Zampieri et al., 2005; Georgakakos 2006). Fur-
thermore, with increasing urbanization, flooding is leading to increased impact 
on lives and livelihoods, and one of the most common factors, both direct and 
indirect, in humanitarian emergencies that necessitate a large-scale response 
(Faccini et al., 2015; Cutter et al. 2018). In determining risk of impact from any 
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flood type, it is necessary to understand both the geophysical and non-geophys-
ical factors (Wahl et al., 2015; Couasnon et al., 2020; Bevacqua et al., 2020). 
For example, some locations are at low risk of flooding from a geophysical 
perspective (e.g., spatial and temporal anomalies of inundated land), while so-
cioeconomic factors such as the inability to evacuate due to health or low eco-
nomic standing can significantly increase risk of impact when a flood occurs 
(Chakraborty et al., 2020).

In recent years, there has been growing momentum within the humanitarian 
and risk management communities to shift from disaster response to anticipa-
tory action (or early action—in this chapter “anticipatory action” will address 
both terms)—the ability to provide critical support to at-risk communities prior 
to a disaster occurring (Stephens et al., 2015; Ruth et al., 2017). This is done 
through the development of predefined Standard Operating Procedures (SOPs), 
such as the Red Cross’s Early Action Protocols (EAPs), that determine how to 
prioritize taking anticipatory actions to decrease the impact of disasters, such as 
floods, if and when a hydrometeorological forecast exceeds a given threshold of 
magnitude and probability (Coughlan de Perez et al., 2016). These thresholds 
are determined by reviewing historical disasters, including the magnitude of 
geophysical hazard and the associated impact on people, their assets, and/or 
their livelihoods. When triggered, a financial instrument is activated, automati-
cally releasing funds for humanitarian anticipatory actions to minimize impact.

Fortunately, Earth observation (EO) data availability to support the un-
derstanding of hydrometeorological hazards and associated risk of impact is 
increasing, however data availability does not necessarily equate to discover-
ability, accessibility, and usefulness (Giuliani et al., 2017). EO can provide in-
formation on both the geophysical characteristics that drive flood and drought 
magnitude and impact, but increasingly they are providing the non-geophysical 
socioeconomic data that enables an improved understanding of vulnerability, 
infrastructure, and damage categorization, that in turn enhances the understand-
ing of exposure (Muis et al., 2015). These dynamics are challenging even in the 
most data-rich contexts, while in data-sparse locations, including many fragile 
states and regions that are experiencing armed conflict, a robust understanding 
of them is near impossible (Mason et al., 2015). The ability to connect the hu-
manitarian and EO communities and to convene dialog, presents opportunities 
for new types of sustainable partnerships and mutually beneficial engagement 
opportunities related to various hazards including hydrometeorological such as 
droughts, floods (Nauman et al., 2021) and landslides, tropical cyclones, heat 
waves and scenarios where multiple types of geophysical and non-geophysical 
hazards overlap in time and geographic areas.

2 Case study: flash flood anticipatory action in Ecuador

While operational anticipatory action systems (such as Forecast-based Financ-
ing from Red Cross and Start Network’s Anticipation Window) for riverine 
floods exist, there has been significantly less progress in developing similar 
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systems for flash floods (Rohwerder, 2017; MacLeod et al., 2021). Provid-
ing accurate forecasts for the rainfall element of a flash flood forecast at suf-
ficiently frequent temporal intervals is one of the primary challenges (Demeritt 
et al., 2010). Data assimilation at appropriate spatiotemporal scales also presents 
unique challenges specific to impact-based flash flood forecasting, in particu-
lar related to socioeconomic data elements (Hapuarachchi et al., 2011; Krucz-
kiewicz et al., 2018a). While these and other geophysical and socioeconomic 
challenges initially led to the de-prioritization of flash floods as a focus hazard, 
recently there has been increased interest within the humanitarian community 
to better understand the predictability of flash floods, the types of actions that 
can be taken to decrease their impact, and the appropriate lead times relative to 
develop an operational anticipatory action system (Nielsen et al., 2020).

Previous work on anticipatory action related to flash floods has identified 
various pathways forward. This includes the development of an approach in-
spired by riverine flood Forecast-based Financing (FbF), an anticipatory action 
approach initially developed by Red Cross Red Crescent Climate Centre, Ger-
man Red Cross, The International Federation of Red Cross Red Crescent Soci-
eties (IFRC), and the World Food Programme (WFP). However, due to the lack 
of historical flash flood impact data, and availability of flash flood forecasts that 
are not necessarily “fit for purpose” to support anticipatory action (including 
FbF), the NASA GEO global flash flood risk project (Flash Flood Risk Project) 
has identified opportunities for flash flood FbF development at appropriate lead 
times which both allow for early action to take place, and account for the spatial 
and temporal constraints of a sufficiently skillful forecast. More specifically, a 
primary goal of the Flash Flood Risk Project is development of the first EAP 
for flash floods. Ecuador emerged as priority area to explore development of a 
national level EAP for flash floods for three primary reasons: (1) the strategic 
plan of the Ecuador Red Cross has identified flash floods as a priority hazard 
of interest, (2) Ecuador Red Cross and Instituto Nacional de Meteorología e 
Hidrología (INAMHI—The National Meteorological and Hydrological Service 
of Ecuador) is actively collaborating on hazards other than flash floods (Joki-
nen, 2019), (3) Ecuador has experienced a notable increase in flash flood risk in 
recent years (Morán-Tejeda et al., 2016).

The Ensemble Framework for Flash Flood Forecasting (EF5), used by the 
United States National Oceanic and Atmospheric Agency’s National Weather 
Service for operational flash flood warnings, was identified as a potentially valu-
able process for understanding flash flood forecasting potential over Ecuador  
(Flamig et al., 2020). As an initial approach for describing the geophysical dy-
namics within the flash flood EAP development process, EF5 has been config-
ured for Ecuador. Through a combination of Digital Elevation Model (DEM) 
data, HydroSHEDS data from NASA’s Shuttle Radar Topography Mission 
(SRTM), and NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG) 
data integrated into EF5, a range of flooding magnitudes can be understood 
(Lehner et al., 2008; Huffman et al., 2019). If not for EO, the project goals of 
both developing improved flash flood forecasts for streamflow and for impact 
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(and thus development of the EAP) would be at the least significantly more dif-
ficult and at most, not possible.

One of the key challenges identified from recent experiences with anticipa-
tory action program development is that the trigger development process can 
differ significantly across organizations, geographic areas of interest, hazards 
and lead time, among other variables (Pichon, 2019). Further, the role of EO 
varies depending on the type of hazard, and thus also across flood types. How-
ever, bridging connections between EO and anticipatory action can offer oppor-
tunities to prioritize discussions around the ethical production of risk-informed 
products, their dissemination, and the accountability of the data provider in con-
nection to decision makers in the field (Schumann, 2019). This work is ongoing 
as a collaborative effort between Ecuadorian Red Cross, INAMHI, Columbia 
University-IRI, University of Oklahoma, Red Cross Red Crescent Climate Cen-
tre, NASA, and the Group on Earth Observations.

Although regional or local geospatial datasets can be used to configure EF5, 
an objective of the Flash Flood Risk Project is to develop a process, which can 
potentially be used to extend flash flood FbF beyond Ecuador. EOs are, therefore, 
key in providing geospatial information readily available at the global scale. For 
example, DEM data and its derivatives are central to EF5’s computational domain 
and mapping of its forecast products. HydroSHEDS (Lehner et al., 2008), which 
is mainly based on observations from NASA’s SRTM, provides these datasets at 
various resolutions. Exploratory work has begun to assess the forecast value in 
using a higher pixel resolution than that of the 5-km global implementation of 
EF5 (Clark et al., 2017). Fig. 11.1 shows a comparison of flow accumulation at 
1-km (Fig. 11.1A) and at 5-km (Fig. 11.1B), which depict the characterization of 
stream networks based on DEM at both pixel resolutions. Additionally, a-priori 
estimation of model parameters has been completed following the methodology 
described in Vergara et al. (2016) and Clark et al. (2017).

FIGURE 11.1 Flow accumulation grid used in EF5 at different pixel resolution. (A) 1-km 
and (B) 5-km.
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A critical parameter in EF5 for describing a range of flooding magnitudes 
owing to different levels of human intervention to the land is the percentage of 
impervious surface. This parameter can be derived from the impervious sur-
faces dataset (Elvidge et al., 2007), based partially on NASA’s MODIS land 
cover and SRTM (Gao et al., 2017). Last, and as the most important element in 
EF5, precipitation estimates are derived from NASA’s Integrated Multi-satellitE 
Retrievals for GPM (IMERG; Huffman et al., 2019) product, which offers high 
spatiotemporal resolution with global coverage. The opportunity for iteration of 
EF5 implementation, and EAP development, beyond Ecuador elevates IMERG 
over other satellite-based products currently used in flash flood forecasting for 
potential application in both the same region (Leon et al., 2020) and in other 
regions (Alsumaiti et al., 2020; Ma et al., 2020; Saouabe et al., 2020).

While it is clear that EO has enabled the availability of data that could poten-
tially be useful for anticipatory action systems (such as FbF), there are signifi-
cant challenges that leave a gap between availability and use for decision making 
related to disaster risk reduction and resilience. The opportunity in creating EO-
driven tools and derived data for integration within disaster management stan-
dard operating procedure lies in coupling novel technical approaches in EO data 
processing with novel partnerships. This coupling should be integrated within 
the roles and responsibilities of a “translator,” “integrator,’” and/or “broker”—a 
person or people (or organization) that is tasked to understand the opportunities 
and constraints of each the geophysical, socioeconomic, and policy aspects of 
EA systems, to convene discussions, and to facilitate implementation. To that 
point, identifying and describing the specific roles and responsibilities for each 
partner has been key to the initial success of the Flash Flood Risk Project.

As the National Meteorological and Hydrological Service in Ecuador, IN-
AMHI is responsible for issuing flash flood warnings and alerts, and in the con-
text of the project, for sharing information on systems and processes to ensure 
that any project output is supporting their current policies and standard opera-
tive procedures and/or future goals. Further, they led analyses in various basins 
including: Francisco de Orellana (Coca), Cañar, and Zarumilla. These included 
a baseline study, assessment of extreme values, streamflow modeling, thresh-
old definition, and real time analysis (Fig. 11.2) (Usamah et al., 2015; Manz 
et al., 2017). Conscious of the need to build-off of these previous studies, and 
with the possibility to broaden the study area, a group of experts from INAMHI’s 
Hydrology, Climatology, Meteorology, and Modeling division designed the col-
laboration between the Ecuadorian Red Cross and the NASA GEO Global Flash 
Flood Risk Project. Through several meetings and a workshop, INAMHI pre-
sented a general overview of the information that is available for the model 
calibration and validation activities, which included an assessment of events 
detected by automatic hydrological stations (http://186.42.174.236/HidroIn-
amhiV2/Front-End/#) in the Andes. With these ongoing efforts on policy and 
science related to flash flood risk, the first EAP for flash floods is progressing 
and is expected to be finalized in 2021.

http://186.42.174.236/HidroInamhiV2/Front-End/
http://186.42.174.236/HidroInamhiV2/Front-End/
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FIGURE 11.2 (A) Topographic map of Ecuador showing elevation. (B) Rainfall for five representative INAMHI meteorological stations. Rainfall is 
shown as a monthly average from 2000 to 2019.
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3 Case study: intense rainfall anticipatory action and 
response in Peru

The Peruvian Red Cross National Society (PRC) has implemented an EAP for 
extreme rainfall. This EAP addresses flooding related to extreme rainfall dur-
ing the summer months (between December and April), landslides, and riverine 
flooding due to overflow and failure of dikes. Anticipatory actions will be ac-
tivated based on forecasts from The Multisectoral Committee for the National 
Study of El Niño (ENFEN) and the Peruvian National Meteorological and Hy-
drological Service (SENAMHI), which afford PRC a window of time to act be-
fore the extreme event begins (Aguirre et al., 2019). The EAP is developed for 
cross-timescale risk assessment and early action including seasonal, monthly, 
and weekly forecast-based triggers using the 90th and 95th percentiles as dan-
ger levels in seasonal and 5-day rainfall forecasts, respectively.

The EAP for extreme rainfall includes parameters derived from EO data, 
such as vegetation, historical precipitation data, and timing and spatial extent 
of historical flood events. These parameters informed the development of his-
torical impact maps, which are essential for identifying which areas should be 
prioritized (and deprioritized) for the implementation of anticipatory actions 
(Ceccato et al., 2017). The main variables from EO that were used to develop 
the EAP are Normalized Difference Vegetation Index (NDVI) (derived from 
various sensors including from MODIS and the Landsat Program) and precipi-
tation data from the Global Precipitation Measurement (GPM) V6. From 2000 
to 2019, the mean annual precipitation values were calculated and historical 
floods were identified from Sentinel-2 through The Copernicus Emergency 
Management Service (Copernicus EMS). The analysis for the raw dataset was 
calculated in Google Earth Engine (GEE) and data processing was performed 
through QGIS. Fig. 11.1 shows the flood extension for the Piura River in March 
2017, driven by the El Niño Costero (Coastal El Niño). All of the computational 
analysis was carried out by the Red Cross FbF team in Peru.

In addition to anticipatory action, EO has been useful in humanitarian re-
sponse, such as during the 2017 El Niño Costero event in northern Peru (Son 
et al., 2020; McClain et al., 2021). After El Niño Costero driven floods, various 
agencies such as The Copernicus Programme, NASA, and ESA were activated 
during January to March 2017 (Novoa and Finer, 2017). The Civil Protection 
Agency of Peru reported 97 fatalities and 184,112 people affected, mostly in 
the cities of Piura, Trujillo, and Chiclayo. The main satellites that the Peruvian 
government used were from the European Satellite Agency (ESA) and other 
agencies, supported by Copernicus. A variety of SAR (synthetic aperture radar) 
sensors were used including RADARSAT-2 and TerraSAR-X and data from 
Sentinel missions 1&2, COSMOS-SkyMed, GeoEye-1, WorldView1, Deimos, 
and Pleiades (European Commission, 2017).

The experience gained through the efforts outlined in this case study 
could be adopted as a set of international best practices in support the Sendai 
Framework to augment existing capacities in using geospatial information and  
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services across phases of disaster risk management related to flood risk and ex-
treme rainfall (Whitcraft et al., 2019). The elements worth considering include 
the activities associated with the identification of spatial and temporal scales 
(including lead time) of interest from the humanitarian community, and subse-
quent activities around their integration within the trigger development process 
(Fig. 11.3). 

4 Case study: the 2020 Southwest Pacific dry season and 
COVID-19

Many Pacific Islanders rely heavily on household and community rainwater 
harvesting and surface water for freshwater security (Hadwen et al., 2015). Dur-
ing the dry season (approximately May to October for most Pacific countries), 
careful water management and drinking water safety practices are essential to 
ensure clean water is consistently available to meet basic household needs (El-
liott et al., 2017). This is particularly the case during anomalously dry periods 
where in some Pacific islands, as little as 10 days without rainfall can lead to 
failure of household rainwater harvesting systems (White, 2016). The dual risks 
of the water shortage and COVID-19 during the 2020 Southwest and Central 
Pacific dry season presented an unprecedented set of decisions around resource 
allocation for reducing risk.

FIGURE 11.3 Flood extension map over March 2017 for flooding of the Piura River, Peru 
related to the El Niño Costero event. Calculated with Google Earth Engine using Sentinel 2.  
(Peruvian Red Cross Forecast-based Financing team.)
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EOs have begun to be used by Red Cross National Societies (NS) in the 
Pacific islands region to improve understanding of meteorological drought risk 
(Luchetti et al., 2016; Kelman, 2019). The COVID-19 global pandemic situa-
tion in 2020 increased the importance of ensuring sufficient, reliable, and safe 
household and community water supply in Pacific Islands. In early- and mid-
2020, as the pandemic spread across the world, most Pacific Island countries 
remained free of COVID-19. From March 2020, Pacific NS began conducting 
hygiene campaigns and distribution of hand sanitizer, antibacterial soap, and 
disinfectant to limit risk of virus transmission.

COVID-19 risk reduction behavioral measures being promoted required 
reliable and safe water supply for hand-washing, general increased personal 
hygiene practices, and frequent disinfection of household surfaces. These be-
havior measures increased household water demand at a time when the threat 
of locations going into “lockdown” increased and travel was restricted between 
main and outer islands, rural areas, and urban centers. In a region where regular 
movement of family between communities and islands is common, these mea-
sures increased pressure on local water supply. As this period coincided with 
the South West Pacific dry season, IFRC Pacific Country Cluster Support Team 
(CCST) utilized EO derived seasonal rainfall forecasts to identify NSs in need 
of prioritized distribution of hand sanitizer, and funding for safe and secure 
drinking water programs and water hardware.

The Australian Community Climate Earth-System Simulator—Seasonal 
(ACCESS–S) is a dynamical forecast modeling system produced over a global 
domain, including the Pacific Islands region (Hudson et al., 2017). ACCESS-S 
uses ocean, atmosphere, ice, and land observations to initiate outlooks for the 
season ahead based on a 99-member ensemble, allowing for improved fore-
casts at various timescales including subseasonal (Gregory et al., 2020). The 
default ACCESS-S land and atmosphere model components operate at an ap-
proximate resolution of 60 km in the atmosphere and 25 km over the ocean, a 
significant improvement and opportunity to increase understanding of climate 
and climate impacts in the Pacific island region (Marshall and Hendon 2019). 
Outlooks derived from ACCESS-S are available at a subseasonal (weekly and 
fortnightly) and seasonal (1 month and 3 months) scale at multiple lead times 
(weeks/months before the forecast period).

To increase the value of these outlooks, IFRC worked with the Australian 
Bureau of Meteorology to develop a simple alert system, “Early Action Rainfall 
Watch” (EAR Watch), for anomalously dry and wet conditions early warning 
across Pacific island countries and divisions. Graduated alerts represent a com-
bination of (1) the probability of drier, near normal or wetter than normal condi-
tions (tercile probability method) in the upcoming 3-month period and (2) skill 
using the Linear Error in Probability Space (LEPS) method, alert 3 being high 
likelihood (Fig. 11.4).

The ACCESS-S-derived EAR Watch provides greater coverage than previous 
methods which used a statistical model providing outlooks for specific in-situ  
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station points only, thus limiting locations at which outlooks could be integrated 
into disaster risk reduction decision making. The EAR Watch alert system was used 
in combination with location-specific meteorological drought status derived from 
station data, and consideration of water supply vulnerability. This enabled early 
identification of locations most at risk of water insecurity in the months ahead.

While the use of EO for anticipatory action is in its infancy in the Pacific, 
nonetheless, basic applications to prevent compound disasters during the South 
West Pacific dry season have identified a number of gaps and lessons that will be 
useful going forward. In particular, standardized, systematic, and regularly updat-
ed data on water system vulnerability at as fine a scale as possible would greatly 
assist regional humanitarian organizations to accurately assess drought risk and 
enable more accurate targeting and prioritization of anticipatory action support.

5 Case study: the use of Earth Observations for climate and 
disaster risk reduction within The World Food Programme

WFP uses EO data in numerous ways, from facilitating an understanding of 
baseline risk to supporting the development of emergency response protocols 
to address the impacts of hydrometeorological shocks. The use, generation,  

FIGURE 11.4 Early Action Rainfall Watch produced 1 August 2020 for the target period 
September to November, 2020. The darker browns indicate higher likelihood of drier than normal 
conditions (such as in the central equatorial Pacific), with blues indicating higher likelihood of wet-
ter than normal conditions.
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management, and presentation of EO data at WFP cross-cuts numerous divi-
sions that together form an integrated disaster risk management (DRM) ap-
proach to a changing climate and evolving needs. Anticipatory actions are one 
component of WFP’s DRM strategy, utilizing EO data to define how to visualize 
and respond to a climate shock, often in near-real time, through to mitigating the 
impacts before they affect lives and livelihoods.

As conflicts and climate change affect an increasing number of people, and 
increase the number of people coping with reduced food security, WFP is in-
novating approaches to aid affected populations. One such innovation is the 
use of FbF, which aims to connect early warning systems (EWS) to anticipa-
tory actions and pre-positioned financing, to implement them. The challenges 
lie in needing high resolution, high-quality, long-term EO data in some of the 
most remote and data sparse locations globally to support the development and 
implementation of these emergency programs.

To support the delivery of humanitarian aid in the most vulnerable com-
munities, there is a need to prioritize on a sub-national level based on both his-
torical weather-data and the livelihood types within the focus areas. Having in-
creased confidence that a flood or other climate hazard is imminent or will likely 
occur at some point in the future only addresses some of the challenges faced by 
humanitarian organizations in prioritizing disaster risk reduction activities. Hu-
manitarian organizations also need to identify which communities will be most 
impacted, when, for what duration, and how to support the households most 
at-risk in mitigating potential impacts. This requires extensive data sets on past 
floods, rainfall, temperatures, dry spells, and a deep understanding of how com-
munities have adapted and are willing to adapt to changing seasons and severe 
weather (World Food Programme, 2014). In Mozambique, WFP is supporting 
partners in developing an integrated risk management approach to drought us-
ing a combination of EO data from the national meteorological service (INAM), 
the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), 
and satellite imagery from MODIS to support analysis of vegetation cover and 
land temperature (Nnachi, 2019). The assimilation of these data represents a 
new approach for WFP for mitigating the impacts of drought by offering both 
a historical analysis of past impacts to support program prioritization and the 
ability to predict future impacts within the occurrence of drier than average 
conditions, and subsequent drought.

Unlike floods, droughts are slow-onset in nature, and offer opportunities to 
mitigate impacts on households across various timescales. These phased activi-
ties can be characterized in three broad categories: (1) actions that are imple-
mented before the season begins to address risk and build resilience; (2) actions 
implemented midseason, with support from EO data, to identify and contain 
worsening conditions; and (3) late-season activities that support an early re-
sponse to likely increasing food needs.

For example, in Mozambique seasonal forecasts are being downscaled us-
ing information from EO analysis and subsequently operationalized to provide  
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skillful forecasts months before the rainfall season begins. During the cropping 
season, MODIS and Sentinel-2 data provides early indications of vegetation 
health and extent, while seasonal forecasts can provide information for the re-
maining rainfall season and consequent harvests. This type of early warning of-
fers humanitarian organizations and relevant stakeholders the information needed 
to implement time-sensitive anticipatory activities that can prevent or mitigate the 
impacts from drought, such as ensuring sustainable access to safe water, provid-
ing drought resistant and short-cycle crop seeds, and empowering communities 
to make risk-informed choices. Moreover, the mid-season activities are devel-
oped to protect vulnerable people and contain worsening conditions considering 
the window to prevent impacts has passed. In some scenarios, fully protecting 
vulnerable people from a drought shock may not be possible and therefore the 
early warnings from both forecast and observed information is also being used 
to ensure a timely and effective humanitarian response, through pre-positioned 
food, aid, and funding offering robust drought risk-management in Mozambique.

WFP has been supporting partner governments’ investment in EO data to 
help develop an understanding of baseline risk, develop climate-informed an-
ticipatory action plans, and support improved weather-forecasting skill. How-
ever, delivering aid, such as cash transfers, for use prior to a disaster is of little 
benefit if the necessary time needed to purchase items and/or services in antici-
pation of the disaster is not possible. WFP benefits from the extensive network 
of EOs which improves initial geophysical conditions, mid-season assessments, 
and validation of forecasts, the latter being extremely important if donors and 
governments are to offer funds before a natural hazard has become a humanitar-
ian disaster. Encouraging the UN and its partners to better integrate information 
from EO data and forecasts to increase reliable warning of impending crises and 
to act earlier to mitigate impact from disasters is increasingly a priority.

Looking toward the future and recognizing the importance of addressing the 
interface between conflict, food security, and climate change, WFP is support-
ing governments in building a comprehensive climate-risk financing strategy 
through inclusive-insurance programs. These climate finance programs, such 
as FbF, are enabled by high-quality, high-resolution EO data to develop para-
metric indices that support accurate trigger points to efficiently address climate 
shocks of different frequency, severity, and geographical impact (Makaudze and 
Miranda, 2010; Black et al., 2016; Jensen et al., 2019). As part of an effort to 
strengthen this integrated programming approach, WFP is currently assessing 
the feasibility and potential costs and benefits of integrated climate risk financ-
ing in Malawi, Bangladesh, and Zimbabwe.

6 Looking ahead—the future of EO and anticipatory 
humanitarian action

As demonstrated through these case studies, EOs have significant potential 
to increase the scale and precision of humanitarian action by enhancing un-
derstanding of where and when to carry out anticipatory actions, identifying 
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where investment in the development of anticipatory action systems should 
be prioritized, and affording new opportunities in monitoring and evaluation 
(Gros et al., 2020). However, data alone is insufficient for bridging the gaps 
between data and decisions and in acknowledgement of the constraints identi-
fied throughout this chapter, we highlight options to pair EO and anticipatory 
humanitarian action.

First, improved partnerships between the EO and anticipatory action com-
munities are necessary. Earth observing communities include a variety of orga-
nizations such as space agencies, commercial data companies, and academic 
research entities—groups that do not traditionally have significant knowledge 
of humanitarian systems and programming. Similarly, the humanitarian sec-
tor engages subject matter experts and policy specialists capable of develop-
ing programming to manage fragile and crisis-affected systems, with greater 
focus on qualitative data than geophysical. Incentivizing engagement among 
these entities should include a structured process of learning in order to adapt 
programming to include considerations of each other’s approaches (Nauman 
et al., 2021).

Additionally, the sharing of interdisciplinary approaches and providing 
opportunities to facilitate data application from national to community level 
for improved humanitarian outcomes (i.e., “last mile” approaches) is crucial 
if a mutually beneficially, and sustainable, partnership is desired (Shrestha 
et al., 2021, Wilkinson et al., 2021). Effective collaboration between scientists, 
government and non-government actors, private sector, civil society organiza-
tions, and local communities has the potential to result in tailored, contextually 
appropriate user-centered products and services that benefit those most vulner-
able to identified risks, however this goal must be articulated at the onset of 
the partnership development process and decisions (such as those related to 
resource allocations) should be made to ensure that this remains a focus (Kruc-
zkiewicz et al., 2018b; Hewitt et al., 2020). Further, through partnerships such 
as these, trust and respect can be built between otherwise diverse communities 
in a way that enables sustained collaboration and success, with additional op-
portunities for systematic reflection and evaluation of approaches (Bischiniotis 
et al., 2020; Wagner and Jaime, 2020). Before establishing best practices around 
the roles and responsibilities of such partnerships, a prerequisite step could be 
to review existing partnerships present in applied EO programming to better 
understand to what extent they involve mutually benefit collaboration. 

Finally, EO data derived products should require the communication of un-
certainty along with their suggested use, and/or require validation with local 
data and indigenous knowledge, in order to increase levels of trust and great-
er confidence in their relevance to decision making (Kettle and Dow, 2016;  
Vincent et al., 2018). A translator acting between the EO and humanitarian 
community can promote the identification of the types of decisions that can or 
cannot be made with particular forecasts and early warning models, with the 
goal of shifting the mindset of the EO community to reward and incentivize the 
development of tools and products that are tailored to inform action.
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1 Introduction

The devastation caused by the surface water flooding is widely acknowledged in 
scientific literature, as now there is the need to better coordinate prediction and 
monitoring efforts (Schumann et al., 2016). Current global flood forecasting 
systems, primarily consist of a numerical weather prediction and hydrological 
model cascade, which provide predictions of streamflow (Emerton et al., 2016). 
For example, the Global Flood Awareness System (GloFAS, Alfieri et al., 2013) 
provides forecast probabilities of the streamflow exceeding predefined flood 
severity thresholds, in the global channel network with a lead time of up to a 
month (Hirpa et al., 2018). GloFAS is the first globally concerted effort toward 
operational flood forecasting, which could potentially offset the disproportion-
ate impacts of flooding on developing nations where the necessary expertise 
and infrastructure might be lacking (Uhe et al., 2019). However, the lack of cor-
responding inundation information severely prohibits the direct translation of 
GloFAS forecasts into actionable insights for flood mitigation. As flood extent 
estimates are not provided, pre-emptively assessing risk and damage based on 
GloFAS predictions is nearly impossible.

Although there exists a widespread scientific consensus regarding the in-
clusion of hydraulic flood inundation models into global forecasting chains, 
there are mainly two reasons why this has not been materialized yet. The first, 
pertains to the availability of sufficient computational resources for operational 
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real-time ensemble forecasts of flood inundation. To put this in perspective, hy-
drological model calibration studies use thousands (Pappenberger et al., 2005) 
to a million model runs (Moradkhani et al., 2005a) within a research scenario, 
while GloFAS (real world scenario) can only use 51. This is primarily because 
a trade-off between computational time and prediction accuracy becomes abso-
lutely critical in an operational scenario where time is of essence (Sanders and 
Schubert, 2019). Moreover, in an ensemble forecasting model cascade, these 
51 GloFAS outputs are inputs to a hydraulic model, a task which requires even 
more time and even larger computational capabilities. Recent advances in sci-
entific computing prowess suggest that integrating flood inundation models into 
forecasting chains might now be feasible (Bates et al., 2017; Ward et al., 2015). 
However, extensive investigations into the computational demand versus accu-
racy trade-off are essential to realize this operationally.

The second reason is related to the data required for the implementation 
of flood inundation models (Bates, 2012; Bates et al., 2014). Typically, this 
necessarily includes information on upstream (rainfall or inflow) and down-
stream (outflow or water levels) boundary conditions, channel geometry, and 
floodplain topography. Among these, the floodplain topography and channel 
geometry are arguably the most critical factors which determine the accuracy 
of the simulated flood propagation. While the channel bathymetry controls the 
streamflow thresholds and thereby the timing at which the river banks are over-
topped or breached, the topographic representation of the floodplain connectiv-
ity and flow pathways dominates the resulting floodplain inundation patterns 
(Schumann et al., 2014). The uncertainty contributed by forecast inflow com-
pounds topographic errors, often leading to highly erroneous predictions of in-
undation extent (Hostache et al., 2018). Current global Digital Elevation Mod-
els (DEMs), such as those from the Shuttle Radar Topography Mission (SRTM) 
or from the Advanced Spaceborne Thermal Emission and Reflection Radiom-
eter (ASTER) mission exhibit large vertical errors to the order of several meters 
(Chen et al., 2018). These errors are exacerbated over complex topography and 
cannot resolve microtopographic variations in low gradient regions, limiting 
their utility toward generating flood predictions with high accuracy (Chu and 
Lindenschmidt, 2017; Grimaldi et al., 2019; Schumann and Bates, 2018).

Studies have explored a variety of bias correction (Kumar et al., 2019; Pra-
manik et al., 2010; Sanders, 2007), vegetation and artefact removal (Hirt, 2018; 
Yamazaki et al., 2017, 2012), artificial enforcement of drainage networks 
(Gallant et al., 2011; Yamazaki et al., 2019), and DEM merging techniques 
(O’Loughlin et al., 2016; Pham et al., 2018; Robinson et al., 2014; Wang 
et al., 2018; Yue et al., 2017) to improve the quality of global DEMs for flood 
modeling. For example, the global Multi Error Removed Improved Terrain 
(MERIT) DEM (Yamazaki et al., 2017) removed absolute bias, stripe noise, 
speckle noise, and tree height bias from a merged SRTM3 and AW3D eleva-
tion product. The resulting MERIT DEM showed significant improvements, 
especially in the representation of microtopographic variations and channel 
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networks in flat terrains. In spite of this, Schumann & Bates (2018) observe 
that these improved topographic datasets still exhibit vertical errors much larger 
than those acceptable for flood inundation forecasting.

Recent literature has explored the possibility of a high resolution global DEM 
based on TanDEM-X data, reporting sub-meter vertical accuracy in simulated 
water surface elevations (WSEs), indicating suitability for flood applications 
(Archer et al., 2018). Moreover, the TanDEM-X 90 (~1 arc second) product was 
also found to exhibit lower vertical errors than the MERIT DEM, for all land-use 
classes except tree-covered regions (Hawker et al., 2019). However, the devel-
opment and provision of a global product is still a long-term goal which would 
need extensive testing, as even small vertical errors can strongly impact flood 
forecasting accuracy especially at local scales (Schumann and Bates, 2018). As 
Hawker et al. (2019) demonstrate, the choice of an appropriate global DEM for 
floodplain applications should ideally be determined through an assessment of 
the predominant land cover in the region. While this recommendation is feasible 
on a case to case basis for research purposes, it also implies that when using any 
one of the global DEMs for operational forecasting, large vertical errors may 
still exist in one or more of the underlying land cover regions. Consequently, in 
order to prepare for the imminent integration of flood inundation models into 
global forecasting systems, methods to reduce the uncertainty contributed by 
topography need to be developed urgently (Fleischmann et al., 2019).

Earth Observation (EO) data have the potential to provide independent 
observations of surface water flood dynamics (Bates et al., 2014), which can 
be used to improve flood inundation predictions in near real-time as shown in 
Fig. 12.1. The primary objective of data assimilation is to optimally combine 
model trajectory and observed data, improving the agreement between them 
(Schumann et al., 2009). Data assimilation (DA) can be interpreted as a dy-
namic technique in that sense, where the observations are used to update model 
forecasts in an online manner (Smith et al., 2011). The implementation of DA 
techniques also allows extending the temporal coverage of instantaneous satel-
lite-based flood observations, through integration with a continuous dynamic 
process-based hydraulic flood inundation models (Lahoz et al., 2010). In fact 
studies like the one of Hostache et al. (2018) have shown that forecast errors 
can be reduced more than 50% at the assimilation time step, while improve-
ments can persist for more than 48 hours. EO-datasets which can be assimilated 
into flood models to improve forecast skill include water levels (WLs) (Matgen 
et al. 2010), inundation volumes (Revilla-Romero et al., 2016), and inundated 
area (Hostache et al. 2018).

While the inundated area can be directly derived from optical and micro-
wave images, satellite altimeters provide water level observation with typical 
footprint sizes in the order of kilometers (Hossain et al., 2014; Huang et al., 
2018b; Paiva et al., 2013; Schneider et al., 2018; Tourian et al., 2017). However, 
satellite altimetry is currently unable to resolve water levels in narrow channels 
at local and catchment scales (Biancamaria et al., 2016; Grimaldi et al., 2016; 
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Schumann et al., 2018; Schumann et al., 2014b), which is problematic as al-
most 25% of global rivers have widths <120 m (Frasson et al., 2019). Indeed, 
for narrow channels the surrounding topography can also significantly impact 
the echo shape returned to radar altimeters, adding uncertainties to the corre-
sponding WSE (Grimaldi et al., 2016). Although some innovative research is 
ongoing in this direction which promises future improvements (Bauer-Gottwein 
et al., 2015; Kim et al., 2019; Kim and Sharma, 2019; Michailovsky et al., 2012), 
especially with respect to the potential of swath altimetry for hydraulic flood 
inundation modeling applications (Alessio Domeneghetti et al., 2018b; Pitcher 
et al., 2018; Tuozzolo et al., 2019). The upcoming SWOT (Surface Water Ocean 
Topography) mission with an expected launch date of 2021, will use swath altim-
etry to provide observations of WSE, widths, and slopes simultaneously for riv-
ers wider than 100 m (Baratelli et al., 2018). Inverse modeling can then be used 
to remotely derive discharge and bathymetry information (slope and geometry) 
as well as flow velocity values within a hindcasting data assimilation framework 
(Baratelli et al., 2018; Brisset et al., 2018; Domeneghetti et al., 2018a,b; Durand 
et al., 2008; Kim et al., 2019; Oubanas et al., 2018a,b; Prigent et al., 2016; Revel 
et al., 2019; Yoon et al., 2012). Investigative studies preparing for the SWOT 
mission, have successfully demonstrated the value of combining virtual swath al-
timetry measurements with hydrodynamic models, for improved modeled depth 
and discharge estimates. Therefore, the SWOT satellite is expected to revolu-
tionize hydraulic data assimilation research, as remote sensing-based spatially 
distributed water levels will be available to modelers for the very first time.

FIGURE 12.1 Schematic of the Earth Observation data assimilation problem in hydrau-
lic modeling. Here, Earth Observations are interpreted as “truth” plus errors, as satellite-derived 
flood extents are expected to encompass the “true” flood extent even though a major component of 
measurement errors are also expected to be present in the observation. (Adapted after Moradkhani 
(2008).)
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While multiple studies have noted that the processing of optical satellite im-
agery to extract inundated areas is relatively straightforward (Lacava et al., 2019; 
Ogilvie et al., 2015; Oliveira et al., 2019), cloud persistence during flood events 
hinders their systematic use in flood monitoring (Huang et al., 2018a,b). Per 
contra, synthetic aperture radar (SAR) sensors which use active imaging tech-
niques are capable of cloud penetration and capturing observations through 
the day and night. SAR sensors are thus uniquely suited to flood mapping ap-
plications, especially for small to medium catchments, where flood events are 
quick and inundation often recedes before clouds have dissipated (Schumann 
and Moller, 2015). Moreover, satellite-based flood extents can be overlaid on 
DEMs, to obtain shoreline WLs after a number of postprocessing steps (Mason 
et al., 2012; Matgen et al., 2007a and 2007b; Schumann et al., 2007). In fact, 
comparisons of WLs derived from LiDAR and topographic contours with those 
derived from the global SRTM DEM, demonstrated that even coarse resolution 
DEMs have the potential to support flood modeling (Schumann et al., 2008). 
Recent years have witnessed the development of a variety of data assimilation 
techniques, which are designed to enhance the exploitation of the available 
satellite-derived WL datasets for flood model improvements (Domeneghetti 
et al., 2019). However, research in this direction has also revealed a number 
of caveats in the WL derivation process that must be effectively addressed to 
unlock the full potential of EO-data for flood disaster management (Schumann 
and Domeneghetti, 2016).

This chapter provides a discussion on the issues related to the integration 
of EO-data with hydraulic flood forecasting models within a data assimila-
tion framework, with an aim to harmonize and present the current progress in 
finding feasible solutions. Therefore, it is important to note that this chapter 
focuses exclusively on the use of EO-based hydraulic data assimilation to im-
prove predictions of floodplain inundation extent, water level, and flow velocity. 
This implies that studies on the assimilation of satellite altimetry for improved 
discharge modeling, for example, are not within the scope of this chapter and 
accordingly have not been covered. Consequently, an overview of the state of 
the art of data assimilation techniques proposed for flood inundation model im-
provements is presented first. Next, the estimation of relevant hydraulic model 
states and fluxes using flood data assimilation is described. Furthermore, some 
selected case studies from recent literature which demonstrate the potential of 
EO-based data assimilation for improved flood inundation forecasting are pre-
sented. Finally, future work and open research questions in EO-based data as-
similation for flood applications have been elucidated.

2 Principles of data assimilation

Mathematical models of environmental system dynamics can be used effec-
tively to generate future predictions of the system behavior, provided that the 
initial states of the system are known (Lakshmivarahan and Lewis, 2010). Here, 
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states refer to the condition of a given dynamic physical system at a particular 
instant in time. For example, water depth and flow velocities are hydraulic sys-
tem states. Unfortunately, observational data defining all the states of an envi-
ronmental system are extremely rare. Moreover, the models as well as the initial 
states contain inherent inaccuracies, which can lead to significant discrepan-
cies between the predicted and actual states of the system (Lahoz et al., 2010). 
Integrating observations of the system into the model can therefore improve 
state estimates while simultaneously providing information on the associated 
uncertainties.

State estimation is an inverse problem which can be solved using data as-
similation based on feedback design techniques. In environmental data assimi-
lation where the models are complex and non-linear, with large number of state 
variables (often in the order of ~108), system dynamics are often multi-scale, 
unstable, and chaotic (Nichols, 2010). Typically a large number of observations 
are also available through EO satellites, although their uneven spatiotemporal 
distribution makes the data assimilation problem ill-posed, and the state esti-
mates sensitive to observation errors. DA can be used either to update model 
states and/or parameters in real time or to re-analyze model predictions. In the 
first case, model states and/or parameters are sequentially updated each time 
an observation is available, therefore dynamically feeding observations back 
into the model as they become available. In the second case, many observations 
over a given time window are integrated “at once” to update model state vari-
ables and/or parameters and compute an optimal state trajectory (see Fig. 12.2). 
When focusing on the retrieval of model parameters, DA can be applied for 
calibrating in an optimal way uncertain models. Among the various available 
DA techniques that have been recently used in hydrodynamic modeling, one 
can cite three main families, namely variational methods, Ensemble Kalman 
Filters (EnKFs), and Particle Filters (PFs). Among variational methods, the one 
that has recently retained most attention is the 4DVAR. Originally developed 
for meteorological applications, the latter is based on optimal theory control. 

FIGURE 12.2 Schematic of the (A) sequential and (B) variational data assimilation approaches. 
(Taken from Walker and Houser (2005).)
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Provided that relevant observations are used, 4DVAR is very efficient for the 
retrieval of initial and boundary conditions as well as optimal parameter values 
(Lai and Monnier, 2009). However, it involves the non-trivial development of 
the adjoint code (i.e., inverse model) of the considered model necessary for 
computing the derivatives of a predefined quadratic cost function. Ensemble-
based filters require comparatively less model developments and they are more 
directed toward sequential DA. Filters based on the EnKF assume the uncer-
tainty of the observation and the model to be normally distributed while PFs 
relax this assumption allowing to consider any kind of observation uncertainty 
distribution (Plaza et al., 2012; Matgen et al., 2010). EnKFs use covariance 
matrices to estimate model and observation uncertainties and can be resource 
demanding especially when a large number of observations are assimilated 
(Mason et al., 2012). Instead, PFs compute prior and posterior probabilities 
base only on a weighting procedure (De Lannoy et al., 2007). A few studies 
have also adapted EnKFs and PFs for taking into account all observations “at 
once” (Hostache et al., 2015; Yoon et al., 2012). The derived so-called smooth-
ers are comparable to variational methods in the sense that observations with-
in a predefined time window are used to estimate the parameters and/or state 
variables (Plaza et al., 2012). In general, the data assimilation problem can be 
formulated as the task of finding the best estimates of system states x from a 
(noisy) dynamic model of the system given a (noisy) observations y, (Walker 
and Houser, 2005). In order to demystify the large amount of jargon typically 
associated with data assimilation, a list of terminology adapted from Walker and 
Houser (2005) has been provided in Table 12.1.

2.1 Sequential data assimilation

Commonly used sequential data assimilation methods include direct insertion 
(Mazzoleni et al., 2015), statistical/successive correction, optimal/statistical in-
terpolation, analysis correction, nudging (Patil and Ramsankaran, 2018), 3D-vari-
ational (Smith et al., 2013), Kalman filter and variants (Evensen, 2003), particle 
filter and variants (Arulampalam et al., 2002; Elvira et al., 2017), and evolution-
ary algorithm and variants (Dumedah, 2012). While some of the approaches like 
direct insertion, nudging, and optimal interpolation offer ease of implementation, 
observational or background uncertainty is often ignored. The widely popular 
sequential algorithm known as the Kalman filter, allows the use of uncertainty 
estimates in models and observations. However, the linearization of model equa-
tions is necessarily required, which can cause instability in solutions and make 
the assimilation problem intractable for highly non-linear systems common to 
geophysics. The variants of the ensemble Kalman filter, particle filter, and evolu-
tionary filters, while computationally more intensive, allow the full representation 
of model and observation uncertainties. These filters are therefore better suited 
for geophysical applications, as the models as well as EO satellites are known to 
contain a variety of inherent uncertainties which must be acknowledged.
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In the variants of Kalman filter, the model forecast is sequentially updated 
using the innovation, defined as the difference between the observation and the 
forecast in the observation space each time a new observation becomes avail-
able at time k . The analysis (updated forecast) is computed from the back-
ground states xk

b  and the innovation as follows:

( )= + −x x HxK y ,k
a

k
b

k k
b

 
(12.1)

k
xkb

xka=xkb+Kyk−Hxkb,

TABLE 12.1 Commonly used data assimilation terminology, after Walker 
and Houser (2005).

DA term Definition

State Condition of a given physical system, for example, water 
depth and flow velocities are hydraulic system states

State error Deviation of the estimated state from the truth

Prognostic A model state/flux required to propagate the model 
forward in time

Diagnostic A model state/flux diagnosed from the prognostic states—
not explicitly required to propagate the model

Observation Measurement of a model diagnostic or prognostic variable

Model ensemble Set of uniquely parameterized model realizations

Open loop Model ensemble without any data assimilation

Error covariance matrix Description of uncertainty in terms of standard deviations 
and correlations

State perturbation matrix Matrix containing values of deviations of each individual 
state vector from the ensemble mean vector

Prediction Model estimates of future states of a given system

Update Correction to a model prediction using observations

Background Model forecast, prediction, or state estimate prior to an 
update

Analysis State estimate after an update

Innovation Observation minus prediction, a priori residual between 
model prediction, and observation of system state

Gain matrix Correction factor applied to the innovation, calculated 
based on the level of confidence in the model, and the 
observation

Tangent linear model Linearized version of a non-linear model using the Taylor’s 
series expansion, around a chosen equilibrium point

Adjoint Inverse operator allowing the model to be run backwards 
in time
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where xk
a  is the analysis (updated model forecast), xk

ab  the background (prior 
model forecast), K the Kalman gain, and H the linearized observation operator 
that maps the model state space into the observation space.

The Kalman gain K  is a function of the relative confidence on the model 
and the observation, and computed based on the observation and model er-
ror covariances. In simplified terms, it determines how much of the innova-
tion has to be incorporated in the forecast to draw the analysis in an opti-
mal way. In contrast, PFs carry out the assimilation of the observation into 
the model based on a weighting procedure of an ensemble of model states 
called particles. As a starting point of PFs, the set of particles represent the 
prior probability density function ( )p xk  at time k, as follows (van Leeuwen 
et al., 2019):
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where δ  is the Dirac delta function, and xk
i  is the model state of the ith par-

ticle. PFs uses the Bayes theorem to estimate the posterior probability density 
p(x | y )k k , given the observation as:
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where ( )p y xk k  is the posterior probability density, ( )p y xk k  the probability 

density of the observation for each possible model state, ( )p y xk k
i  the weight 

of the ith particle, and wi  is the probability the observation given the states of 
the ith particle. The main limitation in PFs is the potentially high number of 
particle necessary for accurately representing the prior and posterior probability 
densities especially for high dimensional systems. Many further developments 
of PFs have been proposed to overcome this limitation, like resampling and 
tempering. Readers are referred to van Leeuwen et al. (2019) for an extensive 
review of such methods.

2.2 Variational data assimilation

Originally, variational data assimilation techniques find the initial condition of 
a model via minimizing a quadratic cost function J over a pre-specified time 
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window, computed based on model forecast and observation. Accordingly, the 
usual cost function takes the following form:
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where b  refers to the background, x  to the model state at initial time, k to time 
with available observations, N  is the length of the time window of the assimila-
tion, yk  the set of observation at time k, and [ ]H xk k  is the counterpart of the 
model prediction in the observation space. To identify the minimum of the cost 
function, implementations of 4DVar utilize an adjoint model to evaluate the 
derivatives of the cost function with respect to the initial model state x  (Walker 
and Houser, 2005). The adjoint model can be defined as a mathematical opera-
tor, which allows evaluating the cost function sensitivity to changes in initial 
model states, over the assimilation window.

Variational data assimilation solves therefore an optimization problem, 
where the initial state vector is retrieved based on uncertain observations over a 
given time window. Variational schemes can also be formulated using stronger 
(perfect model assumption) or weaker constraints (model errors as white process 
noise) for the retrieval of accurate parameter or boundary condition estimates.

As the backward integration of the model is essential over the entire time 
window at every assimilation time step, the development of robust adjoint mod-
els is essential. However, developing the adjoint model for the complex and 
non-linear equations of hydrological and hydraulic models, it is a scientific 
challenge in itself and still impede widespread applications of variational meth-
ods in flood modeling.

3 Assimilation of Earth Observations into hydraulic flood 
forecasting models

Disentangling and dealing with multi source uncertainty in modeling is wide-
ly accepted as a scientific challenge in hydrological and hydraulic modeling 
(Blöschl et al., 2019). Accordingly, most hydraulic data assimilation studies 
have employed EO-data assimilation with the objective of improving flood 
forecasting accuracy. As this requires dynamically updating the model trajec-
tory at each assimilation time step, as and when a new observation becomes 
available, most of the studies have employed sequential filtering techniques 
(Andreadis, 2018). A few studies have also investigated the potential of varia-
tional data assimilation approaches such as 4DVAR; although the main ob-
jective of these studies was not improving forecast accuracy in real time.

3.1 Water level assimilation using 4DVAR

These studies primarily focused on the selection of effective inputs and param-
eters in hindcasting scenarios, which implies that operational constraints of rapid 
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processing times were largely ignored. For example, Lai and Monnier (2009) 
proposed a method for assimilating EO-derived water level into a 2D shallow 
water model based on the 4DVAR algorithm for input and parameter updating 
and tested it in a synthetic experiment; in the study by Hostache et al. (2010) 
adopted the same assimilation framework and show, in a real word experiment, 
its efficiency for the retrieval of distributed friction parameters. Within a similar 
4DVAR-based assimilation framework, Lai et al. (2014) introduced the possibil-
ity of direct flood extent assimilation—eliminating the need for a water level 
processing step—for distributed channel roughness estimation. In Oubanas et al. 
(2018a,b) synthetically generated long time series of SWOT-like observations 
are assimilated into a 1D shallow water model using 4DVar. The proposed meth-
ods showed enabling the retrieval of an equivalent riverbed geometry and the 
upstream discharge time series. More general presentation of applications of 
variational DA can also be found in Fletcher (2018a,b) and Lahoz et al. (2010). 
However, the development of the adjoint code for hydraulic models is a signifi-
cant scientific challenge, which has thus far impeded the widespread application 
of the 4DVAR to flood data assimilation problems, specifically geared toward 
operational forecasting applications.

3.2 Water level assimilation using the Kalman filter and variants

The earliest studies which investigated the potential of EO-based assimilation 
for flood variable estimation typically used the Kalman filter (KF) and its vari-
ants (Evensen, 2003). The Kalman filter family of data assimilation approaches 
forecast the background error covariance matrix to calculate the Kalman gain, 
which determines how much of the observational information is taken up at 
each time step. This gain matrix is determined by the relative confidence in the 
model and the observations. The traditional Kalman filter approach achieves this 
using a standard error propagation theory on the tangent linear model, while the 
extended Kalman filter (EKF) uses a Taylor’s series expansion for lineariza-
tion (Walker and Houser, 2005). EKF allows the extension of KF to non-linear 
modeling problems, however, the computational cost exceeds model run times 
by a factor of one more than the number of assimilated observations (Habert 
et al., 2016). Here the computational cost is measured in terms of the number of 
binary matrix operations required at each time step to propagate the assimila-
tion system forward. The Ensemble Kalman filter or EnKF, computes the error 
covariance matrices from an ensemble of state forecasts using the Monte Carlo 
approach, significantly reducing computational cost and the required ensemble 
size (Madsen and Canizares, 1999).

Although the studies discussed in this paragraph did not directly use EO-
based flood variables for assimilation, they have been included here as they 
paved the way for future flood data assimilation studies. The first hydraulic 
data assimilation studies were by Madsen and Skotner (2005) and Neal et al. 
(2007), who assimilated ground gauge-based river level data at different points 
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along river reaches. Madsen and Skotner (2005) developed a novel hybrid as-
similation technique combining a simplified Kalman filter with an error forecast 
model, using gain functions with predefined shapes that reflect typical error cor-
relation structures along the reach. Neal et al. (2007) used the EnKF to simulta-
neously update the states and inputs of a 1D-hydrodynamic model. One major 
structural assumption in both studies was that the boundary conditions were 
the sole source of uncertainty. Both studies sequentially updated an augmented 
state vector including discharge and stage (Madsen and Canizares, 1999), as 
well as future state error covariance matrices, which were also parameterized 
through the assimilation scheme (see Fig. 12.3).

The error forecasting procedure allowed for an update of the inflow boundary 
conditions, which are known to strongly influence flood flow regimes between 
subsequent assimilation steps. By pre-emptively estimating and accounting for 
inflow errors in the assimilation framework, the forecast error reduction is ren-
dered persistent. An autoregressive error model was used to synthetically gen-
erate and subsequently predict temporally correlated inflow errors. On testing 
a variety of temporal sampling intervals for field hydrometric observations of 

FIGURE 12.3 Illustration of the combined filtering and error forecast procedure followed 
by Neal et al. (2007) and Madsen & Skotner (2005). At each assimilation time step in the filter-
ing period prior to the forecast, the innovation at all update locations is acquired, leading to a time 
series up to the time of the last available measurement (Row 1 plots). An error forecast model is 
then defined at each update location and used to propagate the innovation as per the modeled trend 
in the forecasting period. These future initial state error estimates are then used to update the state 
variables and retain the assimilation benefits for longer. (Taken from Madsen and Skotner (2005), 
© Elsevier, 2005.)
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water stage, Neal et al. (2007) concluded that the state uncertainty was overes-
timated when the sampling rate was reduced. This indicated that the observa-
tions were assigned relatively lower weights than model predictions, when the 
temporal density of the measurements was low.

The following study on hydraulic data assimilation was actually geared to-
ward the feasibility assessments of the proposed SWOT mission, then known as 
WatER—Water Elevation Recovery (Alsdorf et al., 2007). Through the assimi-
lation of synthetic swath-altimetry data into the raster-based hydraulic model 
Lisflood-FP (Bates and De Roo, 2000) using the ensemble square root Kalman 
filter EnSRKF (Evensen, 2004), Andreadis et al. (2007) investigated the pros-
pects for estimating channel flow and water depth. Errors were propagated from 
boundary inflows, generated by corrupting outputs obtained from the Variable 
Infiltration Capacity (VIC) model. Given that this was a feasibility study, syn-
thetic spatial fields of WL were generated using the NASA JPL SWOT simula-
tor (Fu and Rodriguez, 2004) by corrupting predictions from the “truth” model 
with Gaussian errors. A hydraulic data assimilation for EO-data was developed 
for the first time by Andreadis et al. (2007), to simultaneously update states and 
inputs by dynamically parameterizing the inflow error prediction model, follow-
ing Madsen and Skotner (2005). The EnSRKF-based approach was successful 
in retrieving channel water depth and discharge from the corrupted open loop 
simulations. While the filter showed low sensitivity to assumed observation er-
rors, it was highly sensitive to observation frequency; assimilation performance 
degraded substantially as the temporal frequency was halved.

The study by Matgen et al. (2007a,b) considered real EO-derived WL ob-
servations, as opposed to the synthetic ones used by Andreadis et al. (2007), 
within a sequential data assimilation framework for the very first time. As state 
updating is the most straightforward way to utilize EO data to correct models 
in real time (Grimaldi et al., 2016), this proof-of-concept study implemented 
a similar strategy. Water stages were derived from ERS-2 SAR and ENVISAT 
ASAR images, by intersecting with a LiDAR DEM using the REFIX approach 
of Schumann et al. (2007). Considering all the sources of uncertainty in EO-
based WL estimation, an interval of values is determined from the EO-based 
WL estimation approach and further refined by enforcing hydraulic coherence 
principles (Puech et al., 2007). Subsequently, the model generated water line is 
updated at the time steps of the EO data acquisition, to fall within the interval 
of EO-derived WLs at each model cross-section (Matgen et al., 2007a,b). As 
the calibrated 1D HEC-RAS model already performed very well for the study 
reach, the reported improvements were minor and rapidly decayed within a few 
hours. For instance, the assimilation of ERS-2 based WLs improved forecast 
error by 23 cm at the assimilation time step, but this reduced to 3 cm within 
3 hours of the assimilation, after which the analysis trajectory completely de-
cayed back to the background state values within ~4.5 hours. In contrast, the as-
similation of ENVISAT-derived WLs increased the deviation of the assimilated 
state vector from the open loop from 3 to 6 cm, which is an almost 100% 
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relative degradation. Although, the decay to the original model trajectory in this 
case was faster (~2 hours), these results can primarily be attributed to the flashy 
catchment characteristics, where the flood wave peaked in a few hours and re-
ceded within 3 days. This study particularly highlighted that EO-based data 
assimilation can even degrade model predictions when observation errors are 
not appropriately represented. The implication here is that some a priori quality 
control might be necessary to effectively filter outliers which may negatively 
impact forecast errors.

Extending the work of Andreadis et al. (2007), Durand et al. (2008) used 
data assimilation to estimate bathymetric depth and slope, through an inverse 
modeling approach. This study used Lisflood-FP (Bates and De Roo, 2000), 
errors in the upstream inflow, DEM, bathymetry, and the channel roughness 
parameter were considered for the first time. While there was no explicit objec-
tive toward flood forecasting, the realistic uncertainty scenario assumed in this 
study, made it a rather significant contribution to flood data assimilation litera-
ture. Bathymetric slope, channel roughness, and upstream inflow uncertainties 
were modeled as multiplicative log-normal error (MLNE) distributions, with 
unit mean and different coefficients of variation. Topographic uncertainty in 
floodplain DEM is modeled as a zero mean additive normal distribution, while 
bathymetric depth was estimated from the slope ensemble previously described. 
A novel assimilation scheme which used Monte Carlo techniques to modify a 
linear parameter estimator for non-linear cases was designed. Synthetic SWOT 
WL fields were assimilated to obtain the reach-averaged bathymetric slope and 
point-based bathymetric depth. Using the assimilation scheme, the reach-av-
eraged slope was estimated within 0.30 cm/km of the truth, while an improve-
ment of 84% was observed at the downstream point estimate of channel depth. 
The experiments detailed in this study corroborated the low measurement error 
sensitivity observed by Andreadis et al. (2007). This phenomenon was primar-
ily attributed to the higher magnitude model errors, which likely dominate over 
measurement errors within the assimilation framework.

Similarly, Neal et al. (2009) built upon the earlier body of work to estimate 
discharge, using a combination of hydrodynamic modeling and EO-derived En-
KF-based WL assimilation. This study considered the impact of incorrect ba-
thymetry specification on the predicted flows by simulating a data limited sce-
nario, where the channel cross-sections were simplified to a trapezoidal shape. 
The use of simple channel geometry led to an underestimation of hydraulic 
conveyance, resulting in higher predicted WLs for a given flow value. This is 
caused by an underrepresentation of the channel carrying capacity, resulting 
in an artificial increase of simulated WSEs. However, the assimilation of EO-
based WLs was able to effectively improve the retrievals of observed discharge, 
even in the data scarce scenario where simplified channel geometries were con-
sidered. This study corroborated the findings of Matgen et al. (2007a,b), who 
demonstrated that SAR images may not provide useful information across the 
entire model domain. It was also noted that forcing the model to reproduce 
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observations at certain locations, may introduce measurement bias leading to 
model performance degradation.

The studies which exclusively used state updating or evaluated its impacts 
with respect to input updating, highlighted that the analysis vector rapidly de-
cayed back to the background state trajectory immediately following the as-
similation (Andreadis et al., 2007; Matgen et al., 2007a,b). Schumann et al. 
(2009) attributed this lack of persistence in accuracy to the dominating effect of 
upstream boundary conditions in hydraulic modeling. They argued that as long 
as errors in the initial conditions and forcing data persisted, merely reinitializing 
the model with an updated state vector may not serve as an adequate solution. 
Based on these findings, the simultaneous updating of states and inputs was 
recommended to obtain more persistent forecast error reductions.

Furthermore, the work of Schumann et al. (2008) showed that SAR-derived 
WL observations, mostly exhibit non-Gaussian probability density functions 
(PDF) at each cross-section. It therefore follows, that the sum of these distri-
butions considered for the full river reach, is also strictly non-normal in form 
(Kitagawa, 1996). The EnKF algorithm assumes that the forecast and measure-
ment error covariance matrices are jointly normal to make the data assimila-
tion problem tractable; such that their respective PDFs can be sufficiently char-
acterized using only the first and second moments of the distribution, that is, 
mean and covariance (Moradkhani et al., 2005b). This raised questions about 
the theoretical justification of employing EnKF-based assimilation schemes for 
EO-based hydraulic data assimilation, where states are subject to unknown dis-
turbances (Moradkhani et al., 2005a). The conditional probabilities of strongly 
non-linear model trajectories can only be characterized sufficiently by tracking 
the higher order moments of the distribution (Moradkhani, 2008). However, the 
spatial coverage of EO-data implies that some observations can be discarded, 
for example, those that fail a normality test as suggested by Neal et al. (2009). 
While simple and easy to implement, this approach might reject potentially use-
ful information. Further studies then investigated possible ways to solve the 
problem of obtaining persistent improvements from hydraulic data assimilation 
while accounting for non-Gaussian uncertainties.

3.3 Water level assimilation using the particle filter and variants

Particle filters (PF) relax the assumption of Gaussianity regarding the form 
of the posterior probability density functions of the models and observations, 
offering certain advantages over KF and variants (Moradkhani, 2008). This 
enables PFs to easily manage the propagation of non-Gaussian distributions 
through highly non-linear hydraulic models, by tracking the temporal evolution 
of all the moments of the full probability density function (Plaza et al., 2012). It 
is rendered possible to consider multiple competing distributions, by updating 
the probabilities of any given model being true conditioned on the observation, 
rather than updating the state trajectory (Arulampalam et al., 2002). Exclusively 
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updating the PDFs also provides the unique advantage of avoiding the hydro-
static reinitialization shock, known to cause numerical instabilities in the hy-
draulic model domain, as fluxes drop to zero at the assimilation time step and 
momentum cannot be conserved (Hostache et al., 2018).

Early implementations of the PF used the sequential importance sampling 
(PF-SIS) algorithm. The PF-SIS algorithm used a Sequential Monte Carlo pro-
cedure to approximate the posterior true state PDF, through a number of inde-
pendent random samples called particles, sampled directly from the state-space. 
Subsequently, the conditional probability of a given model realization and the 
observation, is assigned as a weight to each particle and used to compute the 
expectation defined as the weighted ensemble mean. Starting with a likely pro-
posal distribution, weights and estimates are sequentially updated at every as-
similation time steps and the expectation is calculated, which is representative 
of the “analysis.” The PF-SIS conserves mass for each particle unlike the EnKF 
by selecting the most likely model runs, rather than updating model states which 
may cause discontinuities in the hydraulic model domain (Matgen et al., 2010).

The SIS algorithm, however, suffers from several significant limitations. 
First, there is the problem of sample degeneracy, where most of the particles 
attain very low weights after assimilation steps, leading to an underrepresenta-
tion of the state-parameter space in the approximated posterior PDF. In extreme 
cases, only one particle will acquire the full weight of unity leading to filter 
collapse, implying that the model uncertainty is not accounted for anymore. 
The second problem pertains to the ensemble size or particles required for an ef-
fective estimation of the posterior PDF. As the true state PDF approximation is 
dependent on discrete random sampling, it is understandable that the estimation 
will improve as increase in the number of samples. In theory, this approximation 
process will work best as the number of particles tends to infinity; this is obvi-
ous, as discrete sampling is being used to characterize a continuous process. 
However, this is nearly impossible to achieve in practice, due to the huge com-
putational demand of distributed hydraulic models.

Literature suggests several pragmatic solutions. Moradkhani et al. (2005a) 
suggested a variety of ensemble verification measures, to pre-emptively assess 
the skill and spread of the ensemble. Several resampling schemes have also 
been proposed, such as the Sequential Importance Resampling (SIR) algorithm. 
The SIR algorithm repopulates the particles by replicating the highly ranked 
particles, in proportion to their respective importance weights. In some cases 
simplistic solutions such as these may work, however, in most cases, the resam-
pling leads to the problem of sample impoverishment. This is when only a few 
particles are replicated many times, the ensemble therefore containing only a 
few unique model realizations. In this event, the effective particle population re-
mains spuriously high. Techniques such as inflation have also been proposed to 
artificially scale the error covariance matrices and compensate for the underes-
timation of model error covariance due to small ensemble sizes. These are used 
for sequential as well as variational assimilation (Browne, 2016; Evensen, 2003; 
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Fletcher, 2018b; Slivinski et al., 2015). Most studies use one or several of these 
in conjunction, to avoid filter collapse.

In this context, the study by Matgen et al. (2010) used the PF-SIR algorithm 
to assimilate synthetic EO-derived WLs into a coupled hydrological-hydraulic 
model. The PF-SIR algorithm was chosen primarily to relax the assumption of 
Gaussianity. Global weighting procedures such as the one used here, consider 
WLs simulated by a particular model realization along the entire channel reach 
as one particle. Weights at each cross-section were computed using a Gaussian 
PDF and aggregated through multiplication, by assuming (perhaps unrealisti-
cally) mutual statistical independence. The PF-based assimilation was able to 
retrieve the truth, even when errors of up to 5 m were introduced in the syn-
thetic WLs. This implied that for completely ungauged catchments, WLs ex-
tracted from a combination of coarse resolution satellite data and global DEMs, 
could also be useful to effectively constrain flood forecast errors (Schumann 
et al., 2008a,b). Consistently with previous findings (Andreadis et al., 2007; 
Matgen et al., 2007a,b), input updating was identified as a crucial aspect in 
retaining improvements to the model state trajectory. Interestingly, the study 
also found that a higher frequency of observations is required during the rising 
limb than during recession, as the errors in the precipitation are unpredictably 
compounded through the modeling cascade, resulting in increased model fore-
cast errors.

In order to address the gap of defining a suitable spatially and temporally 
variable non-Gaussian distribution of observations, Giustarini et al. (2012) sug-
gested using the full empirical distribution of WLs. Employing the empirical 
distribution with no assumptions about its form, finally allowed the optimal uti-
lization of the advantages of PF over KF variants. At each cross-section, a histo-
gram of the EO-derived WLs is computed, which is subsequently used to define 
the local likelihood of each particle. The final aggregation to global weights is 
achieved by following the approach proposed by Matgen et al. (2010). Two dif-
ferent case studies were presented in Giustarini et al. (2012), using coarse and 
high-resolution EO datasets, respectively; temporally persistent improvements 
in discharge estimation were obtained for both cases. Numerical experiments 
performed in this study, interestingly revealed a trade-off between WL and dis-
charge estimation accuracy, particularly in regions where channel bathymetry 
is poorly specified.

3.4 Filter localization and flood extent assimilation

In a pioneering study, which highlighted the possibility of degrading model 
forecasts through assimilation for the first time, Giustarini et al. (2011) demon-
strated that the use of global weighting procedures always leads to compromise 
solutions. Using synthetic and real experiments, assimilating field data at the 
cross-sections where EO-derived WLs were available, this study argued that a 
single model run cannot perform equally well along the entire river reach. In 
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fact the study showed that defining global weights as a product of local weights 
as proposed by Matgen et al. (2010), could even lead to the propagation of 
local scale systematic model errors over the whole domain. Global weights 
were found to favor acceptable solutions all over the domain, rather than well 
performing solutions locally. To avoid this problem, Giustarini et al. (2011) 
proposed the use of filter localization. Using a model setup identical to Mat-
gen et al. (2010), the assimilation was implemented by considering the model 
simulated WL at each cross-section as a separate particle. Local weights were 
calculated for each particle, by comparing with the corresponding EO-WLs, 
using uniform as well as normal PDFs. While this study advocated the use of 
filter localization techniques going forward, it also warned of potentially intro-
ducing bias into the model predictions, as a function of local inconsistencies in 
the calibrated model. The use of local PF for diagnosing and correcting model 
errors was recommended for hindcasting applications, while inflow correction 
was identified as a major research gap for forecasting problems.

Filter localization only updates the states close to the observation location, 
reducing the weight given to observations spatially disconnected from the es-
timated state variable (Fig. 12.4). The impact of using small ensemble sizes 
can then be minimized, primarily by decreasing the state-parameter subspace 
in which the analysis is conducted (García-Pintado et al., 2013). The study 
by García-Pintado et al. (2015) also investigated this issue through a series of 
SAR-derived WL assimilation experiments, based on the ensemble transform 
Kalman filter (ETKF) with and without localization. ETKF (Hunt et al., 2007) 
is an adaptation of the square root form of the EnKF. More specifically, the 
EnSRKF implementation explicitly updates both the ensemble mean and the 

FIGURE. 12.4 Illustration of filter localization for an example observation update location 
in 1-D. US = upstream and DS = downstream. (Adapted from Madsen and Skotner (2005).)
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error covariance at each assimilation time step to theoretically match the KF. 
The ETKF additionally introduces a transform matrix to ensure a symmetric 
solution (García-Pintado et al., 2013). Results obtained by García-Pintado et al. 
(2015), corroborated the need for filter localization to avoid the development 
of spurious correlations, within the forecast error covariance matrix (García-
pintado et al., 2014). The use of a flow distance based spatial domain localiza-
tion metric was recommended, although further testing for channel networks 
with varied geometries is required. Simultaneous estimation of states and inputs 
proved necessary for persistent reductions in forecast error as in earlier stud-
ies (Neal et al., 2009). The use of localized ETKF for simultaneous parameter 
estimation (lumped channel roughness and distributed bathymetry) was also 
investigated, although the results proved to be inconclusive in terms of forecast 
improvements. Possible reasons could be the localization distance or the er-
ror covariance chosen for the stochastic generation of bathymetry estimates, as 
the standalone experiments on channel friction demonstrated adequate conver-
gence. The findings highlighted that further experiments might be warranted 
to effectively tune the localization radii and the reach correlation length used 
in the bathymetry error generation model for improved forecast accuracies. 
Experimental results were corroborated by the findings of other studies, where 
empirical localization was found to significantly improve state estimation (Rev-
el et al., 2019; Yamazaki et al., 2018).

As most studies observed and Schumann et al. (2009) incisively pointed out, 
the problem of local uncertainties stemming from the measurement bias of EO-
derived WLs, required the development of more mature retrieval methods (An-
dreadis and Schumann, 2014; García-Pintado et al., 2013). Moreover, the use 
of the same DEM both to retrieve the EO-derived WLs and for the implementa-
tion of the hydraulic model leads to adding the DEM uncertainty twice in the 
resulting predictions. While this might be an acceptable risk where highly accu-
rate LiDAR-based elevation data are available, in the case of coarse resolution 
global topography this could severely impact the forecast error. Moreover, using 
the same elevation data additionally violates a basic principle of data assimila-
tion, which mandates the use of model independent observations to improve 
the accuracy of subsequent predictions. Furthermore, even with the advent of 
sophisticated thinning algorithms for the automatic derivation and appropriate 
subsample of EO-WLs (Mason et al., 2012), manual intervention is often still 
necessary (Hostache et al., 2018).

Recent studies have, therefore, focused on the development of techniques 
capable of directly assimilating flood extents into flood forecasting modeling 
cascades, rather than water levels (Hostache et al., 2018; Lai et al., 2014; Re-
villa-Romero et al., 2015, 2016; Shastry and Durand, 2019). Lai et al. (2014) 
and Revilla-Romero et al. (2016) both interpret inundation extents as a func-
tion of the internal model states to develop the cost function for assimilation, 
that is, water depth and discharge, respectively. The 4D-Var filter was used 
in the proof of concept study by Lai et al. (2014), for the assimilation of a 
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MODIS-derived flood extent map (250 m) to optimize a lumped friction pa-
rameter, with no particular aim toward forecasting. In contrast, Revilla-Rome-
ro et al. (2016) use the EnKF to assimilate dimensionless surface water extent 
observations (0.1°× 0.1°) satellite-derived from the Global Flood Detection 
System (http://www.gdacs.org/flooddetection), to improve near real-time 
(NRT) global flood forecasts. The EO-derived flood extents were interpreted 
as inundation volumes; the difference between the simulated and observed (in-
terpreted) value, was used to update the models within the EnKF framework. 
The study was conducted on a global scale and gauge validation demonstrated 
improvements for a major portion (~60%) of those evaluated. Although the use 
of EnKF was perhaps not theoretically justified, significant improvements were 
noted in practice.

Adopting a different approach, Hostache et al. (2018) directly assimilated 
SAR-derived flood extents using a PF-based assimilation framework. Through 
a comparison of modeled cell wet-dry status and satellite observed flood prob-
abilities, improvements of up to 50% were obtained in forecast WLs at the as-
similation time step. Inundation extents were retrieved from ENVISAT ASAR 
(resampled to 75 m) into the hydraulic model LISFLOOD-FP. As modeled flood 
extents are derived based on simulated water depth, the variation in the number 
of wet-dry cells at most time steps is limited. Consequently, the development of 
an extent based cost function with enough sensitivity to isolate the best perform-
ing ensemble members and drive the assimilation is a scientific challenge (Lai 
et al., 2014). Hostache et al. (2018) used a number of pragmatic mathematical 
solutions to facilitate the direct assimilation of flood extents in a real case. For 
example, the posterior variance was artificially inflated to avoid degeneracy. Al-
though this technical solution enabled a more realistic representation of forecast 
uncertainty, some more advanced solution should be proposed. Thus, the de-
velopment of novel flood extent assimilation techniques to optimally combine 
flood inundation models with EO-flood extents still remains an open scientific 
challenge (Van Wesemael et al., 2019).

4 Observation operators and characteristics

One common issue highlighted by previous studies was the possible degrada-
tion of forecast skill, caused by the introduction of measurement bias in (highly 
erroneous) observations. Although the issue of observation timing (Giustarini 
et al., 2011; Matgen et al., 2010) and frequency (Andreadis et al., 2007; Neal 
et al., 2009) was briefly discussed in a few studies, the first explicit discussion 
and assessment was provided by García-Pintado et al. (2013). Similarly, An-
dreadis and Schumann (2014) evaluated assimilation performance sensitivity 
to the observation spatial location for the very first time. Further studies in this 
direction, evaluated the impact of domain length (Cooper et al., 2018), observa-
tion error correlations (Waller et al., 2018), and observation operators used to 
calculate the innovation (Cooper et al., 2019).

http://www.gdacs.org/flooddetection
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In order to assess the impact of acquisition timing, García-Pintado et al., 
(2013) used an ETKF based assimilation strategy in conjunction with LIS-
FLOOD-FP, with a synthetic experiment based on the July 2007 flood event in 
the widely researched Severn Catchment, United Kingdom (Mason et al., 2010; 
Neal et al., 2011; Schumann et al., 2011). An error free model was considered 
with no parametric uncertainty, to independently evaluate the impacts of ob-
servation timing on inflow error correction, through several satellite first visit 
and revisit scenarios. Results illustrated that frequent assimilation during the 
decreasing limb does not lead to sensible improvement in the forecast, implying 
that post peak overpass frequency could be reduced when considering budget 
limited scenarios. However, as satellite flood extents which are used to derive 
the WLs for assimilation can only be informative for out-of-bank flows, the 
first visit time should ideally closely follow channel overtopping. Corroborating 
the findings of Matgen et al. (2010), the results of García-Pintado et al. (2013) 
demonstrated that multiple observations were necessary during the rising limb 
of the hydrograph, as additional errors are continuously introduced at the up-
stream boundary.

Subsequently, Andreadis and Schumann (2014) assessed the spatial obser-
vation impact on the forecast skill of hydraulic models, through the LETKF for-
mulation of Hunt et al. (2007) within an ensemble sensitivity (ES) framework 
(Liu and Kalnay, 2008). In the ES method, the LETKF cost function is modified 
such that each term can be calculated from the previously initialized ensemble 
forecasts. This eliminates the need for generating forecasts after the assimila-
tion step. The cost function can be pre-emptively computed for each observation 
time and for different lead times, simply by selecting the appropriate time steps 
for the forecasts and observations (Andreadis and Schumann, 2014). Using a 
continuous annual large-scale implementation of LISFLOOD-FP for the Ohio 
River, this seminal study showed for the very first time, that observations ac-
quired during low flows consistently degrade forecast error. A synthetic study 
was conducted where model errors stemming from inflows, parameters, topog-
raphy, and channel network delineation were considered. The observations were 
not explicitly assimilated, rather their impact was evaluated by just replacing 
the state and observation variables in the cost function equation. This allowed 
previously unused observations, such as river channel width and inundated area, 
to be considered alongside WSE. On assimilating WLs, the largest improve-
ments in forecast accuracy could be obtained during peak flows, although the 
error reductions decayed after 5–11 days in some locations and eventually led to 
forecast degradation. Interestingly, the findings indicated that the assimilation 
of channel top width mostly degraded forecast skill, while inundated area as-
similation mostly resulted in improvements. Further examination revealed that 
the improvements possible from the assimilation of either observed variable, 
could be considered as a direct function of the variability (e.g., see Figure 10 in 
Andreadis and Schumann (2014)). Authors also recommended the use of these 
methods to plan targeted satellite acquisitions, over reaches that would either 
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maximize the forecast error reduction or from the locations of fastest growing 
errors (Langland, 2006). For example, the study was able to identify three river 
reaches where observations had a positive impact on the forecasts for a lead 
time of up to 11 days ahead. If EO data were acquired covering those areas, 
forecast improvements could be maximized while minimizing costs incurred.

The study by Cooper et al. (2018) showed that the hydrostatic reinitializa-
tion shock, caused by the fluxes dropping to zero just after the update step in hy-
draulic data assimilation, could be minimized by applying preassimilation ve-
locities. This pragmatic solution was able to significantly reduce the root mean 
squared error values obtained just after the assimilation time. Using idealized 
synthetic domain topography, the study also demonstrated that persistence of er-
ror reductions from WL assimilation could be improved by simply considering 
a longer domain length. The WL observations in different parts of the domain 
are usually strongly correlated, thereby allowing the ETKF to effectively update 
downstream WLs. State augmentation was used to simultaneously update mod-
el states and parameters, resulting in clear improvements in forecast accuracy at 
all times. This finding also suggest an interdependence between parametric and 
inflow errors, due to similar forecast error characteristics obtained from both. 
Furthermore, the joint-state parameter estimation using EO-derived WLs is able 
to effectively detect and compensate for biases introduced in either or both.

In a study similar to Andreadis and Schumann (2014), the impact of obser-
vation quality on flood data assimilation was investigated by Waller et al., 2018. 
Through numerical experiments, the authors showed that statistical averages of 
observation-minus-background and observation-minus-analysis residuals can 
be useful for the estimation of error correlations in EO-derived WLs. Using the 
same flood event as García-Pintado et al. (2015), an analysis of observation er-
ror and spatiotemporal correlation was elucidated. Spatial analysis showed that 
the observed forecast error correlations were independent of observation errors. 
In terms of observation timing, the observations exhibit similar error standard 
deviations although the correlation length is fairly short. This is expected as this 
is the most dynamic part of the flood event, where ongoing precipitation is con-
tinuously adding errors to the domain while each tributary and sub-catchment 
respond differently. As the flood wave progresses, standard deviation decreases, 
while the correlation length scale increases. Given that such observation error 
assessments are possible at a relatively low computational cost, the authors rec-
ommend its use in the identification of data anomalies.

Sensitivity to observation operators was examined by Cooper et al. (2019) 
using the same idealized test domain as Cooper et al. (2018). In this study, 
backscatter from a SAR image was directly assimilated to improve hydraulic 
model forecasts for the first time. Inflow and parametric uncertainty was con-
sidered, in a synthetic experiment based on the 2012 River Severn flood event, 
to compare the performance of a WL-based and a backscatter based observation 
operator. SAR images were generated using a Gaussian mixture model, using 
the parameters empirically derived by Giustarini et al. (2016). These parameters 
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were perturbed within 1% of the values to obtain an ensemble of observed SAR 
images. The number of backscatter observations used was limited to match the 
number of satellite WL observations that can typically be expected, to facilitate 
an intercomparison of the observation operators independent of observation fre-
quency. For instance, WLs indirectly retrieved using SAR-based flood maps and 
DEMs, are only able to provide reliable estimates at specific shoreline locations 
which are unobstructed by riparian vegetation. Conversely, the assimilation of 
backscatter observations means that an observation could be available at every 
pixel, and thus the number of values used would need to be limited artificially, 
to enable an unbiased comparison against a WL based operator.

The new backscatter operator generally performs better than the WL opera-
tor in all the test cases considered in this study. Using backscatter directly also 
eliminated the need for multiple image processing steps and the water level deri-
vation, which has been identified as a major source of uncertainty (Schumann 
et al., 2009). The authors acknowledge that the new operator can exclusively 
work well in conditions where a clear separation exists between the land-water 
distributions of backscatter response. As this is rarely the case in reality where 
backscatter is affected by multiple sources of uncertainty (Schumann, 2019), 
the effectiveness of this operator has to be tested using a real case study. More-
over, directly using the backscatter values, removes the advantage offered by the 
probabilistic flood maps produced using a combination of the SAR backscatter, 
texture, or ancillary data (Dasgupta et al., 2018; Grimaldi et al., 2020).

5 Case studies

Almost all studies assimilating flood information into hydraulic models derive 
these from SAR images. This is mainly due to the capability of SAR sensors 
to acquire images day and night and to penetrate cloud cover. This makes SAR 
systems a lot more suitable for operational and near real-time applications such 
as sequential data assimilation as floods are due to heavy rainfall closely linked 
to important cloud covers. In the following section, we propose two case studies 
based on the paper by Giustarini et al. (2011) and Hostache et al. (2018) that 
assimilated SAR-derived information into flood inundation models.

5.1 Assimilation of SAR-derived water levels into a hydraulic model

The first study by Giustarini et al. (2011) sequentially assimilate WSE data 
derived from satellite SAR images into a 1-D hydraulic model of the Alzette 
River (Luxembourg). The proposed assimilation framework uses a PF with se-
quential importance resampling. The method employed for deriving WSE from 
Envisat and ERS images is based on the algorithm proposed by Hostache et al. 
(2009). The latter first maps flood extent from a SAR image based on a dual 
thresholding, therefore providing fuzzy flood extent limits. Next, the most reli-
able information is selected from the fuzzy flood extent limits based on land 



278    SECTION | 3 Emerging Applications and Challenges

use and topography information. This thinned information is then superimposed 
with a high accuracy digital elevation model in order to locally estimate fuzzy 
WSE data at the limit of the flood extent in the form of plausible intervals of 
WSEs. Eventually, based on predetermined flow paths, the intervals of WSE are 
constrained (i.e., their width is reduced) based on the hydraulic rule stating that 
WSEs decrease from upstream to downstream in a subcritical flow regime. This 
last step allows for substantially reducing WSE observation uncertainty.

For assimilating WSE observation derived from one ERS-2 and one EN-
VISAT SAR images, the study by Giustarini et al. (2011) evaluated two vari-
ants of Particle Filter with SIR: one with a global and one with a local particle 
weighting procedure. In both scenarios, the ensemble of model forecasts (i.e., 
particles) is generated using an ensemble of upstream boundary conditions of 
the hydraulic model (streamflow hydrographs generated using an ensemble of 
hydrologic model simulations with perturbed parameter sets, initial conditions 
and precipitation data).

This study confirms the finding of Matgen et al. (2010) in showing, as well 
in a real experiment, a substantial forecast improvement as a result of the assim-
ilation of satellite SAR derived information into a hydraulic model. Moreover, 
Giustarini et al. (2011) highlighted the need for envisaging bias in the observa-
tion. According to the authors, the localized PF is the preferred solution when 
assimilating unbiased and/or very accurate observations as it helps to retrieve 
the true water surface line at the assimilation time. However, in poorly gauged 
basins where satellite image are the only available data source, the PF with a 
global weighting procedure is to be recommended. Moreover this study shows 
the complementarity between in situ measurements and satellite data in the pro-
posed data assimilation framework as the combination of both datasets yields 
better forecast accuracy. Indeed, as argued by the authors, whereas in situ data 
are point measurement, but with high accuracy and high temporal sampling, 
satellite data provide instantaneous information with comparatively larger un-
certainty but spatially distributed over potentially large areas.

5.2 Assimilation of SAR-derived flood extent maps into a flood 
forecasting model chain

The second study by Hostache et al. (2018) assimilates probabilistic flood map 
(PFM) derived from satellite SAR images into a flood forecasting system com-
posed of a conceptual rainfall-runoff model and a 2-D shallow water model 
of the Severn and Avon Rivers (United Kingdom). The proposed assimilation 
framework uses a PF with sequential importance sampling, meaning that only 
particle weights are updated during the assimilation.

The motivation for assimilating flood extent instead of WSE information is 
that flood extent information can be derived from SAR data automatically and 
rather straightforwardly, while the assessment of WSE requires high accuracy 
topography (not available at a global scale) data and involves many additional 
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steps that cannot be easily automated. According to the authors, this hampers 
the assimilation of WSE information operationally and in near real-time. The 
automated method employed for deriving probabilistic flood maps from Envisat 
images is based on the algorithm proposed by Giustarini et al. (2016). This im-
age processing approach assigns each pixel a probability of being flooded based 
on its backscatter values. To do so, the probability density functions of “water” 
and “non-water” pixels is first parameterized based on the image histogram. 
Next the probability of each pixel being flooded given its backscatter value is 
computed based on the Bayes theorem using the previously parameterized dis-
tributions and assuming a prior probability of any pixel corresponding to water 
equal to 0.5. The Envisat Wide Swath Mode (WSM) image archive is exploited 
to derive 11 probabilistic flood maps over 4 different flood events of markedly 
different magnitudes.

For the sequential assimilation of PFM, Hostache et al. (2018) assumed that 
the dominant source of uncertainty in their flood forecasting models come from 
the rainfall uncertainty. They consequently perturbed the rainfall predictions of 
the ERA-interim database in order to emulate an ensemble of rainfall forecast. 
This ensemble of forcings is therefore propagated though the hydrological and 
hydraulic models allowing for simulating an ensemble of flood extent maps.

During the analysis (i.e., assimilation) steps, authors proposed to estimate 
the posterior probability of each particle (probability of the particles given the 
observation) by first estimating the particle likelihood (probability of the ob-
servation knowing the particle state) at the pixel scale and then multiplying the 
local pixel likelihoods to derive a global likelihood assuming, as usual in a PF, 
that observation errors are spatially independent. The weights of the particle, 
representing the posterior particle distribution, are eventually computed by nor-
malizing the model global likelihood. To estimate probability of the observation 
knowing the particle states, the following likelihood is proposed in Hostache 
et al. (2018):

( ) ( ) ( )≈ × + − × −p y x y x y x| 1 1 ,k j
i

k j
i

k j
i

k j
i

k j
i

k j
i

, , , , , , 
(12.5)

where i indicates the particle number, k the assimilation time step number, j the 
pixel number, yk j

i
,  the probability being water in the observed flood map, and 

xk j
i
,  the model prediction, taking values of 1 for pixels predicted as flooded and 

0 otherwise.
Moreover, in the proposed assimilation framework, a power coefficient is 

used when computing the posterior particle weights in order to combat sample 
degeneracy by inflating the posterior distribution variance. As acknowledged 
by authors, this is only a practical solution that nevertheless efficiently helps in 
keeping some variance in the posterior distribution.

The experimental results of this study show that, although flood extent is not 
a state variable of the model, errors of forecast water levels are reduced by more 
than 50% at the assimilation time step. Moreover, forecast improvements persist 

pyk,ji|xk,ji≍yk,ji×xk,ji+1−yk,ji×1
−xk,ji,

yk,ji
xk,ji
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over subsequent time steps for 24 to a few days. However, after 1 or a few days, 
forecast improvements vanish as the best-performing particles at the assimila-
tion time step do not maintain their high performance forever. The degradation 
of forecast improvement appears earlier when hydrological conditions change 
rapidly. Authors conclude that one of the main limitation of such an assimilation 
framework was the satellite revisit times, but this may reduce with increasing 
near real-time satellite images availability.

6 Opportunities and challenges

As data assimilation algorithms are extremely sensitive to observation charac-
teristics, several innovative possibilities emerge. First, optimal acquisition strat-
egies can be designed which allow maximum improvements in forecast skill 
while minimizing costs, based on the relationships between observation charac-
teristics and assimilation performance (Andreadis, 2018). Assimilation experi-
ments can be used to inform acquisition planning, thereby optimizing the loca-
tion, timing, and frequency of satellite-based flood observations to best support 
hydraulic forecasting of inundation. Similarly, assimilation can help to diagnose 
localized discrepancies, in model implementation or even parameterization.

In certain scenarios, integrating observations acquired at specific timings 
or locations have no impact on the assimilation and can even lead to model 
degradation. This phenomenon is typically a function of localized dominating 
model errors, although in rare cases, observation errors or the assimilation al-
gorithm itself could also lead to similar problems. For example, Schumann and 
Andreadis (2016) insightfully utilized this particular feature to objectively iden-
tify reaches which could especially benefit from high resolution topography. 
Using the LETKF-based ensemble sensitivity approach employed by Andreadis 
and Schumann (2014), optimum locations for LiDAR acquisitions along the 
Lower Zambezi River were identified, such that maximum improvements in 
accuracy could be obtained at minimum costs. The authors also demonstrate 
local improvements of up to 78% in risk estimates, which is substantial from an 
emergency management perspective.

In spite of the significant advances made toward hydraulic data assimilation 
of EO-data for improved operational food inundation forecasting, several areas 
still require extensive research. An objective estimation of the computational 
demand versus accuracy trade-off, considering the precision needs of the vari-
ous stakeholders involved, is the first challenge which needs to be addressed. 
The representation of model uncertainties ideally requires a large number of 
simulations to effectively explore the state parameter space. However, in prac-
tice each hydraulic model run on a global or even continental-scale, may re-
quire several hours of computational time depending on the grid resolution. As 
Schumann et al. (2014) demonstrated, higher resolution models are required to 
efficiently resolve local scale flow pathways. Studies have shown that higher 
resolution modeling is now possible at much larger scales, as a consequence of 
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the giant strides in scientific computing (Dottori et al., 2016; Quinn et al., 2019; 
Schumann et al., 2013; Uhe et al., 2019). Additionally, nested modeling ap-
proaches could be used to maximize computational efficiency. The work of Ma-
son et al. (2015), for instance, shows that it might be possible to pre-emptively 
diagnose, areas of large vertical errors in the specified DEM. Subsequently, 
these highly uncertain sub-domains of the hydraulic model, can serve as the 
focus of local scale high resolution modeling using LiDAR acquisitions, sig-
nificantly improving flood forecast skill (Fleischmann et al., 2019; Schumann 
and Andreadis, 2016).

Another significant challenge for effectively utilizing EO-based data assimila-
tion for improved flood forecasts is the adequate representation of anthropogenic 
factors like hydraulic infrastructure in models (Andreadis, 2018). Large hydro-
electric or irrigation dam reservoirs, often form a substantial portion of catchment 
storage capacity, yet data on reservoir operations are seldom available in the pub-
lic domain (Do et al., 2010). Although alternative methods to determine factors 
like irrigation supply and demand are currently being explored in literature (Broc-
ca et al., 2018; Zaussinger et al., 2018), significant uncertainties are remained 
in the accurate estimation of flood regulation measures (Schumann et al., 2018). 
Moreover, the implementation of flood control structures in the DEM is abso-
lutely vital for capturing the actual inundation patterns observed on ground. In 
fact, misrepresentation of structures can be especially expensive in terms of risk 
management, in the rare case of a breach which can suddenly inundate large re-
gions. Attempts are underway to develop global maps of control structures using 
EO-data, although several difficult challenges still remain (Wood et al., 2018).

The integration of other diverse datasets, for example, point observations 
of water levels and velocities from crowd-sourcing or depth Doppler maps of 
inundation from GNSS reflectometry, is another significant challenge that faces 
the flood data assimilation community. Using alternative datasets requires an 
objective estimation of the associated uncertainty and some data sources such 
as crowd-sourcing are still rather young in this direction. A lot of research is 
ongoing, where the potential utility of crowd-sourced and citizen science ob-
servations for flood inundation modeling is being investigated (Assumpção 
et al., 2018; Zheng et al., 2018). Significant progress has been made in this 
direction, but the filtering and standardization of the available data remain 
challenging (Mazzoleni, 2016). Alternative observations of flow velocities are 
also becoming available (Assumpção et al., 2018; Fujita et al., 2007; Muste 
et al., 2011), which soon might be available to the flood data assimilation com-
munity. There is also a need to integrate the research progress in the assimi-
lation of soil moisture (Patil and Ramsankaran, 2018) and evapotranspiration 
(Hartanto et al., 2017) in hydrological models with hydraulic data assimilation 
frameworks, such that the utilization of EO-data for flood inundation forecast-
ing can be optimally harmonized.

The final challenge is the translation of flood extent and depth estimates, into 
hazard and risk estimates, which are more relevant to the stakeholders (Ward 
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et al., 2015). In fact open source models exist, which can integrate hydrau-
lic model outputs with socioeconomic risk factors, for example, the GLOFRIS 
(Global Flood Risk) framework (Winsemius et al., 2013), yet the delivery of 
maps and inundation forecasts in often only in scientific terms. Open Street 
Maps (OSM) which uses local knowledge of citizen scientists, to maintain a 
detailed global vector database of road/rail/waterways and buildings, is yet an-
other rich resource which could potentially revolutionize flood emergency man-
agement. Maps of inundation could be intersected with the richly detailed OSM 
GIS layers, with structured crowd-sourced local information about assets at risk 
(Ward et al., 2015). The humanitarian benefits of the progress in flood inunda-
tion modeling can only be quantified through an evaluation of the impacts of 
improved forecasts on corresponding risk and hazard estimates (Pappenberger 
et al., 2015).

Schumann and Andreadis (2016) conducted such analyses for the first 
time in flood inundation modeling literature; although in streamflow forecast-
ing this is a widely recommended practice (Cloke et al., 2013; Pappenberger 
et al., 2015; Wetterhall et al., 2013). In this context, the High Resolution Settle-
ment Layer (HRSL) developed by Facebook in association with the Centre for 
International Earth Science Information Network (CIESIN) can also prove to be 
a valuable resource. HRSL provides gridded population density estimates for 33 
countries, at a ~30 m resolution for the year 2015, based on recent census data 
and high-resolution 50 cm DigitalGlobe imagery (https://www.ciesin.columbia.
edu/data/hrsl/). This dataset could be readily used to quantify the change in risk 
estimates resulting from improved flood data assimilation techniques. Devel-
oping comprehensive forecasting frameworks which synergize the progress in 
EO, numerical modeling, data assimilation, and scientific computing to enhance 
global flood hazard estimates, could significantly increase flood resilience. In 
light of urbanization and climate change exacerbating the number and impacts 
of extreme weather events, developing effective techniques to minimize global 
flood hazard are urgently required.

7 Summary and perspectives

This chapter presented an overview of the challenges and opportunities asso-
ciated with the online integration of EO data with hydraulic flood inundation 
models using data assimilation techniques. The general principles of data as-
similation were first discussed, along with a mathematical discussion on the 
theoretical background of different types of assimilation schemes. This was 
followed by a critical evaluation of the progress in EO-based hydraulic data 
assimilation studies, where the evolution of techniques with respect to the cur-
rent state-of-the-art was presented. Selected case studies which were pivotal to 
the advancement of hydraulic data assimilation algorithms were then discussed. 
Finally, the challenges in hydraulic data assimilation were systematically ex-
amined and the opportunities with respect to improved flood forecasting were 

https://www.ciesin.columbia.edu/data/hrsl/
https://www.ciesin.columbia.edu/data/hrsl/
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summarized. A synthesis of all the relevant literature in this direction revealed 
the following gaps:

1. Diagnostic assessments of localized flood flow behavior need to be under-
taken to identify which portions of the model domain could benefit the most 
from data assimilation. In fact, the possibility of forecast degradation as a 
consequence of assimilating in highly erroneous model sub-domains makes 
answering this question quite crucial.

2. The impact of assimilating highly uncertain observations needs to be further 
investigated, especially with respect to completely ungauged catchments. In 
this regard, efficient methods for quality control of the assimilated observa-
tions while retaining the maximum amount of information possible, also 
need to be designed.

3. Filter localization methods, which consider hydraulic relationships to ob-
jectively identify optimal regions of observation influence, need to be de-
veloped, to support operational applications of hydraulic data assimilation. 
Similarly, advanced techniques to artificially inflate the error covariance 
need to be considered, which allow a comprehensive representation of mod-
el uncertainties even with limited ensemble members.

4. Effective spatial cost functions, which are sensitive to subtle changes in the 
model state variable in question, need to be designed to better quantify the 
innovation and optimize the possible forecast improvements through assimi-
lation. In this context, techniques to synthetically scale the objective func-
tion values such that the sensitivity to changes in state can be enhanced also 
need to be explored.

Research on hydraulic data assimilation of Earth Observations of floods, is rela-
tively new and many scientific challenges remain. The availability of different 
flood observations from diverse sources will only increase in future and the 
hydraulic data assimilation community needs to evolve rapidly to keep up with 
the pace of advancements in measurement techniques. Estimates of associated 
uncertainty will vary based on each observation technique and the measured 
variable in question. In order to unlock the full potential of EO data for hydrau-
lic flood inundation forecasting, it is imperative to objectively estimate these 
uncertainties and remain cognizant of them during the assimilation process 
(Schumann et al., 2016). Harmonizing the progress in hydraulic modeling, data 
assimilation, and measurement techniques through the development of opera-
tional forecasting systems, is required to ensure the optimal utilization of EO-
data and can finally result in tangible humanitarian benefits.

References

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., Pappenberger, F., 2013. 
GloFAS-global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. 
Sci. 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013. 

https://doi.org/10.5194/hess-17-1161-2013
https://doi.org/10.5194/hess-17-1161-2013
https://doi.org/10.5194/hess-17-1161-2013


284    SECTION | 3 Emerging Applications and Challenges

Alsdorf, D.E., Rodriguez, E., Lettenmaier, D.P., 2007. Measuring surface water from space. Rev. 
Geophys. 45, 1–24. doi: 10.1029/2006RG000197.1.INTRODUCTION. 

Andreadis, K.M., 2018. Data assimilation and river hydrodynamic modeling over large scales. In: 
Global Flood Hazard, Applications in Modeling, Mapping, Forecasting, vol. 233. In: Geophysi-
cal Monograph, Series. American Geophysical Union and Wiley, pp. 229–237.

Andreadis, K.M., Clark, E.A., Lettenmaier, D.P., Alsdorf, D.E., 2007. Prospects for river discharge 
and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynam-
ics model. Geophys. Res. Lett. 34, 1–5. doi: 10.1029/2007GL029721. 

Andreadis, K.M., Schumann, G.J.P., 2014. Estimating the impact of satellite observations on the 
predictability of large-scale hydraulic models. Adv. Water Resour. 73, 44–54. doi: 10.1016/j.
advwatres.2014.06.006. 

Archer, L., Neal, J.C., Bates, P.D., House, J.I., 2018. Comparing TanDEM-X data with frequently-
used DEMs for flood inundation modelling. Water Resour. Res. 54 (12), 10,205–10,222. doi: 
10.1029/2018WR023688. 

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial on particle filters for on-
line nonlinear/non-GaussianBayesian tracking. IEEE Trans. Signal Process. 50, 174–188. doi: 
10.1109/78.978374. 

Assumpção, T.H., Popescu, I., Jonoski, A., Solomatine, D.P., 2018. Citizen observations contribut-
ing to flood modelling: opportunities and challenges. Hydrol. Earth Syst. Sci. 22, 1473–1489. 

Baratelli, F., Flipo, N., Rivière, A., Biancamaria, S., 2018. Retrieving river baseflow from SWOT 
spaceborne mission. Remote Sens. Environ. 218, 44–54. doi: 10.1016/j.rse.2018.09.013. 

Bates, P.D., 2012. Integrating remote sensing data with flood inundation models: how far have we 
got? Hydrol. Process. 26, 2515–2521. doi: 10.1002/hyp.9374. 

Bates, P.D., De Roo S a P.J., 2000. A simple raster based model for flood inundation simulation. J. 
Hydrol. 236, 54–77. doi: 10.1016/S0022-1694(00)00278-X. 

Bates, P.D., Neal, J., Sampson, C., Smith, A., Trigg, M., 2017. Progress toward hyperresolution 
models of global flood hazard. Risk Modeling for Hazards and Disasters. Elsevier Inc.doi: 
10.1016/B978-0-12-804071-3.00009-4. 

Bates, P.D., Neal, J.C., Alsdorf, D., Schumann, G.J.P., 2014. Observing global surface water flood 
dynamics. Surv. Geophys. 35, 839–852. doi: 10.1007/s10712-013-9269-4. 

Bauer-Gottwein, P., Jensen, I.H., Guzinski, R., Bredtoft, G.K.T., Hansen, S., Michailovsky, C.I., 
2015. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin 
case study. Hydrol. Earth Syst. Sci. 19, 1469–1485. doi: 10.5194/hess-19-1469-2015. 

Biancamaria, S., Lettenmaier, D.P., Pavelsky, T.M., 2016. The SWOT mission and its capabilities 
for land hydrology. Surv. Geophys. 37, 307–337. doi: 10.1007/s10712-015-9346-y. 

Blöschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J.W., 
McDonnell, J.J., Savenije, H.H.G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., 
Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S.T., Amin, A., Andréas-
sian, V., Arheimer, B., Aryal, S.K., Baker, V., Bardsley, E., Barendrecht, M.H., Bartosova, 
A., Batelaan, O., Berghuijs, W.R., Beven, K., Blume, T., Bogaard, T., Borges de Amorim, P., 
Böttcher, M.E., Boulet, G., Breinl, K., Brilly, M., Brocca, L., Buytaert, W., Castellarin, A., 
Castelletti, A., Chen, X., Chen, Y., Chen, Y., Chifflard, P., Claps, P., Clark, M.P., Collins, A.L., 
Croke, B., Dathe, A., David, P.C., de Barros, F.P.J., de Rooij, G., Di Baldassarre, G., Driscoll, 
J.M., Duethmann, D., Dwivedi, R., Eris, E., Farmer, W.H., Feiccabrino, J., Ferguson, G., Fer-
rari, E., Ferraris, S., Fersch, B., Finger, D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., 
Gaume, E., Gelfan, A., Geris, J., Gharari, S., Gleeson, T., Glendell, M., Gonzalez Bevacqua, 
A., González-Dugo, M.P., Grimaldi, S., Gupta, A.B., Guse, B., Han, D., Hannah, D., Harpold, 
A., Haun, S., Heal, K., Helfricht, K., Herrnegger, M., Hipsey, M., Hlavácˇiková, H., Hohmann, 

http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0015
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0015
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0010
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0010
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0010
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0020
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0020
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0020
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0025
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0025
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0025
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0035
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0035
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0035
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0040
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0040
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0045
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0045
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0050
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0050
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0055
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0055
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0060
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0060
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0060
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0065
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0065
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0070
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0070
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0070
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0075
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0075
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080


Earth Observation and Hydraulic Data Assimilation  Chapter | 12    285

C., Holko, L., Hopkinson, C., Hrachowitz, M., Illangasekare, T.H., Inam, A., Innocente, C., 
Istanbulluoglu, E., Jarihani, B., Kalantari, Z., Kalvans, A., Khanal, S., Khatami, S., Kiesel, J., 
Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., Kreamer, 
D., Kreibich, H., Kunstmann, H., Lange, H., Liberato, M.L.R., Lindquist, E., Link, T., Liu, J., 
Loucks, D.P., Luce, C., Mahé, G., Makarieva, O., Malard, J., Mashtayeva, S., Maskey, S., Mas-
Pla, J., Mavrova-Guirguinova, M., Mazzoleni, M., Mernild, S., Misstear, B.D., Montanari, A., 
Müller-Thomy, H., Nabizadeh, A., Nardi, F., Neale, C., Nesterova, N., Nurtaev, B., Odongo, 
V.O., Panda, S., Pande, S., Pang, Z., Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., 
Polo, M.J., Post, D., Prieto Sierra, C., Ramos, M.-H., Renner, M., Reynolds, J.E., Ridolfi, E., 
Rigon, R., Riva, M., Robertson, D.E., Rosso, R., Roy, T., Sá, J.H.M., Salvadori, G., Sandells, 
M., Schaefli, B., Schumann, A., Scolobig, A., Seibert, J., Servat, E., Shafiei, M., Sharma, A., 
Sidibe, M., Sidle, R.C., Skaugen, T., Smith, H., Spiessl, S.M., Stein, L., Steinsland, I., Strasser, 
U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong, R., Tussupova, K., 
Tyralis, H., Uijlenhoet, R., van Beek, R., van der Ent, R.J., van der Ploeg, M., Van Loon, A.F., 
van Meerveld, I., van Nooijen, R., van Oel, P.R., Vidal, J.-P., von Freyberg, J., Vorogushyn, S., 
Wachniew, P., Wade, A.J., Ward, P., Westerberg, I.K., White, C., Wood, E.F., Woods, R., Xu, Z., 
Yilmaz, K.K., Zhang, Y., 2019. Twenty-three unsolved problems in hydrology (UPH)—a com-
munity perspective. Hydrol. Sci. J. 64 (10), 1141–1158. doi: 10.1080/02626667.2019.1620507. 

Brisset, P., Monnier, J., Garambois, P.A., Roux, H., 2018. On the assimilation of altimetric data 
in 1D Saint–Venant river flow models. Adv. Water Resour. 119, 41–59. doi: 10.1016/j.advwa-
tres.2018.06.004. 

Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., Fernández-Prieto, 
D., 2018. How much water is used for irrigation? A new approach exploiting coarse resolution 
satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 73, 752–766. doi: 10.1016/j.
jag.2018.08.023. 

Browne, P.A., 2016. A comparison of the equivalent weights particle filter and the local ensemble 
transform Kalman filter in application to the barotropic vorticity equation. Tellus A Dyn. Me-
teorol. Oceanogr. 68 (1), 30466. doi: 10.3402/tellusa.v68.30466. 

Chen, H., Liang, Q., Liu, Y., Xie, S., 2018. Hydraulic correction method (HCM) to enhance the 
efficiency of SRTM DEM in flood modeling. J. Hydrol. 559, 56–70. doi: 10.1016/j.jhy-
drol.2018.01.056. 

Chu, T., Lindenschmidt, K.E., 2017. Comparison and validation of Digital Elevation Models de-
rived from InSAR for a Flat Inland Delta in the high latitudes of Northern Canada. Can. J. 
Remote Sens. 43, 109–123. doi: 10.1080/07038992.2017.1286936. 

Cloke, H., Pappenberger, F., Thielen, J., Thiemig, V., 2013. Operational European flood forecasting. 
In: Environmental Modeling: Finding Simplicity in Complexity, second ed. John Wiley & Sons, 
Inc., pp. 415–434. https://doi.org/10.1002/9781118351475.ch25.

Cooper, E.S., Dance, S.L., García-Pintado, J., Nichols, N.K., Smith, P., 2019. Observation operators 
for assimilation of satellite observations in fluvial inundation forecasting. Hydrol. Earth Syst. 
Sci. 23, 2541–2559, https://doi.org/10.5194/hess-2018-589. 

Cooper, E.S., Dance, S.L., Garcia-Pintado, J., Nichols, N.K., Smith, P.J., 2018. Observation impact, 
domain length and parameter estimation in data assimilation for flood forecasting. Environ. 
Model. Softw. 104, 199–214, https://doi.org/10.1016/j.envsoft.2018.03.013. 

Dasgupta, A., Grimaldi, S., Ramsankaran, R.A.A.J., Pauwels, V.R.N., Walker, J.P., 2018. Towards 
operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote 
Sens. Environ. 215, 313–329, https://doi.org/10.1016/j.rse.2018.06.019. 

Do, H.X., Westra, S., Leonard, M., Gudmundsson, L., 2010. Global-scale prediction of flood timing 
using atmospheric reanalysis. Water Resour. Res. 56 (1), 1–27.

http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0080
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0085
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0085
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0085
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0090
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0090
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0090
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0090
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0095
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0095
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0095
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0100
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0100
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0100
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0105
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0105
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0105
https://doi.org/10.1002/9781118351475.ch25
https://doi.org/10.5194/hess-2018-589
https://doi.org/10.1016/j.envsoft.2018.03.013
https://doi.org/10.1016/j.rse.2018.06.019
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0020
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0020
https://doi.org/10.1016/j.rse.2018.06.019
https://doi.org/10.1016/j.rse.2018.06.019
https://doi.org/10.1016/j.envsoft.2018.03.013
https://doi.org/10.1016/j.envsoft.2018.03.013
https://doi.org/10.5194/hess-2018-589
https://doi.org/10.5194/hess-2018-589
https://doi.org/10.1002/9781118351475.ch25
https://doi.org/10.1002/9781118351475.ch25


286    SECTION | 3 Emerging Applications and Challenges

De Lannoy, G.J.M., Reichle, R.H., Houser, P.R., Pauwels, V.R., Verhoest, N.E., 2007. Correcting 
for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. 
Res. 43, W09410. 

Domeneghetti, A., Schumann, G.J.P., Frasson, R.P.M., Wei, R., Pavelsky, T.M., Castellarin, A., 
Brath, A., Durand, M.T., 2018a. Characterizing water surface elevation under different flow 
conditions for the upcoming SWOT mission. J. Hydrol. 561, 848–861, https://doi.org/10.1016/j.
jhydrol.2018.04.046. 

Domeneghetti, A., Schumann, G.J.P., Tarpanelli, A., 2019. Preface: Remote sensing for flood map-
ping and monitoring of flood dynamics. Remote Sens. 11 (8), 943, https://doi.org/10.3390/
rs11080940. 

Domeneghetti, A., Tarpanelli, A., Grimaldi, L., Brath, A., 2018b. Flow duration curve from satel-
lite: Potential of a lifetime SWOT mission. Remote Sens. 10, 1–23, https://doi.org/10.3390/
rs10071107. 

Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F.A., Feyen, L., 2016. Development and 
evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102, 
https://doi.org/10.1016/j.advwatres.2016.05.002. 

Dumedah, G., 2012. Formulation of the evolutionary-based data assimilation, and its implementa-
tion in hydrological forecasting. Water Resour. Manag. 26, 3853–3870, https://doi.org/10.1007/
s11269-012-0107-0. 

Durand, M., Andreadis, K.M., Alsdorf, D.E., Lettenmaier, D.P., Moller, D., Wilson,  
M., 2008. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into 
a hydrodynamic model. Geophys. Res. Lett. 35, 1–5, https://doi.org/10.1029/2008GL034150. 

Elvira, V., Miguez, J., Djurie, P.M., 2017. Adapting the number of particles in sequential Monte 
Carlo methods through an online scheme for convergence assessment. IEEE Trans. Signal Pro-
cess. 65, 1781–1794, https://doi.org/10.1109/TSP.2016.2637324. 

Emerton, R.E., Stephens, E.M., Pappenberger, F., Pagano, T.C., Weerts, A.H., Wood, A.W., Sal-
amon, P., Brown, J.D., Hjerdt, N., Donnelly, C., Baugh, C.A., Cloke, H.L., 2016. Continental 
and global scale flood forecasting systems. Wiley Interdiscip. Rev. Water 3, 391–418, https://
doi.org/10.1002/wat2.1137. 

Evensen, G., 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 
54, 539–560, https://doi.org/10.1007/s10236-004-0099-2. 

Evensen, G., 2003. The Ensemble Kalman Filter: Theoretical formulation and practical implemen-
tation. Ocean Dyn. 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9. 

Fleischmann, A., Paiva, R., Collischonn, W., 2019. Can regional to continental river hydrodynam-
ic models be locally relevant? A cross-scale comparison. J. Hydrol. X 3, 100027, https://doi.
org/10.1016/j.hydroa.2019.100027. 

Fletcher, S.J., 2018a. Observation space variational data assimilation methods. Data Assim. Geosci. 
1, 753–763. doi: 10.1016/B978-0-12-804444-5.00018-0. 

Fletcher, S.J., 2018b. Variational data assimilation. In: Data Assimilation for the Geosciences, first 
ed. Elsevier, pp. 673–703. https://doi.org/10.1016/b978-0-12-804444-5.00016-7.

Frasson, R.P., de, M., Pavelsky, T.M., Fonstad, M.A., Durand, M.T., Allen, G.H., Schumann, G., 
Lion, C., Beighley, R.E., Yang, X., 2019. Global relationships between river width, slope, 
catchment area, Meander wavelength, sinuosity, and discharge. Geophys. Res. Lett. 46, 3252–
3262, https://doi.org/10.1029/2019GL082027. 

Fu, L., Rodriguez, E., 2004. High-resolution measurement of ocean surface topography by radar in-
terferometry for oceanographic and geophysical applications. In: Sparks, R.S.J., Hawkesworth, 
C.J., (Eds.), The State of the Planet: Frontiers and Challenges in Geophysics, Geophysical 

http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/optEIc3fu0F0j
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/optEIc3fu0F0j
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/optEIc3fu0F0j
https://doi.org/10.1016/j.jhydrol.2018.04.046
https://doi.org/10.1016/j.jhydrol.2018.04.046
https://doi.org/10.3390/rs11080940
https://doi.org/10.3390/rs11080940
https://doi.org/10.3390/rs10071107
https://doi.org/10.3390/rs10071107
https://doi.org/10.1016/j.advwatres.2016.05.002
https://doi.org/10.1007/s11269-012-0107-0
https://doi.org/10.1007/s11269-012-0107-0
https://doi.org/10.1029/2008GL034150
https://doi.org/10.1109/TSP.2016.2637324
https://doi.org/10.1002/wat2.1137
https://doi.org/10.1002/wat2.1137
https://doi.org/10.1007/s10236-004-0099-2
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1016/j.hydroa.2019.100027
https://doi.org/10.1016/j.hydroa.2019.100027
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0180
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0180
https://doi.org/10.1016/b978-0-12-804444-5.00016-7
https://doi.org/10.1029/2019GL082027
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0030
https://doi.org/10.1029/2019GL082027
https://doi.org/10.1029/2019GL082027
https://doi.org/10.1029/2019GL082027
https://doi.org/10.1016/b978-0-12-804444-5.00016-7
https://doi.org/10.1016/j.hydroa.2019.100027
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/s10236-004-0099-2
https://doi.org/10.1002/wat2.1137
https://doi.org/10.1002/wat2.1137
https://doi.org/10.1109/TSP.2016.2637324
https://doi.org/10.1109/TSP.2016.2637324
https://doi.org/10.1029/2008GL034150
https://doi.org/10.1029/2008GL034150
https://doi.org/10.1007/s11269-012-0107-0
https://doi.org/10.1016/j.advwatres.2016.05.002
https://doi.org/10.1016/j.advwatres.2016.05.002
https://doi.org/10.3390/rs10071107
https://doi.org/10.3390/rs11080940
https://doi.org/10.1016/j.jhydrol.2018.04.046
https://doi.org/10.1016/j.jhydrol.2018.04.046


Earth Observation and Hydraulic Data Assimilation  Chapter | 12    287

Monograph Series. American Geophysical Union, pp. 209–224. https://doi.org/http://dx.doi.
org/10.1029/150GM17.

Fujita, I., Watanabe, H., Tsubaki, R., 2007. Development of a non-intrusive and efficient flow moni-
toring technique: The space-time image velocimetry (STIV). Int. J. River Basin Manag. 5, 
105–114, https://doi.org/10.1080/15715124.2007.9635310. 

Gallant, J.C., Dowling, T.I., Read, A.M., Wilson, N., Tickle, P., Inskeep, C., 2011. 1 second SRTM 
Derived Products User Guide 106. Geoscience Australia.

García-pintado, J., Mason, D.C., Dance, S.L., 2014. Moderation of ensemble covariances for data 
assimilation of satellite-based water level observations into flood modeling. Geophys. Res. Abs. 
16, 11618.

García-Pintado, J., Mason, D.C., Dance, S.L., Cloke, H.L., Neal, J.C., Freer, J., Bates, P.D., 2015. 
Satellite-supported flood forecasting in river networks: A real case study. J. Hydrol. 523, 
706–724, https://doi.org/10.1016/j.jhydrol.2015.01.084. 

García-Pintado, J., Neal, J.C., Mason, D.C., Dance, S.L., Bates, P.D., 2013. Scheduling satellite-
based SAR acquisition for sequential assimilation of water level observations into flood model-
ling. J. Hydrol. 495, 252–266, https://doi.org/10.1016/j.jhydrol.2013.03.050. 

Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato Giovanni, Schlaffer, S., Matgen, P., 
2016. Probabilistic flood mapping using synthetic aperture radar data. IEEE Trans. Geosci. 
Remote Sens. 54, 6958–6969. 

Giustarini, L., Matgen, P., Hostache, R., Dostert, J., 2012. From SAR-derived flood mapping to wa-
ter level data assimilation into hydraulic models. In: Remote Sensing for Agriculture, Ecosys-
tems, and Hydrology XIV. SPIE Remote Sensing, Edinburgh, United Kingdom, pp. 85310U. 
https://doi.org/10.1117/12.974655.

Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V.R.N., De Lannoy, 
G.J.M., De Keyser, R., Pfister, L., Hoffmann, L., Savenije, H.H.G., 2011. Assimilating SAR-
derived water level data into a hydraulic model: a case study. Hydrol. Earth Syst. Sci. 15, 
2349–2365, https://doi.org/10.5194/hess-15-2349-2011. 

Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P., 2016. Remote sensing-derived water extent and 
level to constrain hydraulic flood forecasting models: Opportunities and challenges. Surv. Geo-
phys. 37, 977–1034, https://doi.org/10.1007/s10712-016-9378-y. 

Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, op-
portunities and pitfalls for global coupled hydrologic-hydraulic modeling of floods. Water Re-
sour. Res. 55, 1–24, https://doi.org/10.1029/2018WR024289. 

Grimaldi, S., Xu, J., Li, Y., Pauwels, V.R.N., Walker, J.P., 2020. Flood mapping under vegetation 
using single SAR acquisitions. Remote Sens. Environ. 237, 111582, https://doi.org/10.1016/j.
rse.2019.111582. 

Habert, J., Ricci, S., Le Pape, E., Thual, O., Piacentini, A., Goutal, N., Jonville, G., Rochoux, M., 
2016. Reduction of the uncertainties in the water level-discharge relation of a 1D hydrau-
lic model in the context of operational flood forecasting. J. Hydrol. 532, 52–64, https://doi.
org/10.1016/j.jhydrol.2015.11.023. 

Hartanto, I.M., van der Kwast, J., Alexandridis, T.K., Almeida, W., Song, Y., van Andel, S.J., Solom-
atine, D.P., 2017. Data assimilation of satellite-based actual evapotranspiration in a distributed 
hydrological model of a controlled water system. Int. J. Appl. Earth Obs. Geoinf. 57, 123–135, 
https://doi.org/10.1016/j.jag.2016.12.015. 

Hawker, L., Neal, J.C., Bates, P., 2019. Accuracy assessment of the TanDEM-X 90 Digital El-
evation Model for selected floodplain sites. Remote Sens. Environ. 232, 111319, https://doi.
org/10.1016/j.rse.2019.111319. 

http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0030
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0030
https://doi.org/10.1080/15715124.2007.9635310
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0035
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0035
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0040
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0040
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0040
https://doi.org/10.1016/j.jhydrol.2015.01.084
https://doi.org/10.1016/j.jhydrol.2013.03.050
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0205
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0205
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0205
https://doi.org/10.1117/12.974655
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.1007/s10712-016-9378-y
https://doi.org/10.1029/2018WR024289
https://doi.org/10.1016/j.rse.2019.111582
https://doi.org/10.1016/j.rse.2019.111582
https://doi.org/10.1016/j.jhydrol.2015.11.023
https://doi.org/10.1016/j.jhydrol.2015.11.023
https://doi.org/10.1016/j.jag.2016.12.015
https://doi.org/10.1016/j.rse.2019.111319
https://doi.org/10.1016/j.rse.2019.111319
https://doi.org/10.1016/j.rse.2019.111319
https://doi.org/10.1016/j.jag.2016.12.015
https://doi.org/10.1016/j.jag.2016.12.015
https://doi.org/10.1016/j.jag.2016.12.015
https://doi.org/10.1016/j.jhydrol.2015.11.023
https://doi.org/10.1016/j.jhydrol.2015.11.023
https://doi.org/10.1016/j.rse.2019.111582
https://doi.org/10.1029/2018WR024289
https://doi.org/10.1029/2018WR024289
https://doi.org/10.1007/s10712-016-9378-y
https://doi.org/10.1007/s10712-016-9378-y
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.1117/12.974655
https://doi.org/10.1117/12.974655
https://doi.org/10.1117/12.974655
https://doi.org/10.1016/j.jhydrol.2013.03.050
https://doi.org/10.1016/j.jhydrol.2013.03.050
https://doi.org/10.1016/j.jhydrol.2015.01.084
https://doi.org/10.1016/j.jhydrol.2015.01.084
https://doi.org/10.1080/15715124.2007.9635310
https://doi.org/10.1080/15715124.2007.9635310


288    SECTION | 3 Emerging Applications and Challenges

Hirpa, F.A., Salamon, P., Beck, H.E., Lorini, V., Alfieri, L., Zsoter, E., Dadson, S.J., 2018. Calibra-
tion of the Global Flood Awareness System (GloFAS) using daily streamflow data. J. Hydrol. 
566, 595–606, https://doi.org/10.1016/j.jhydrol.2018.09.052. 

Hirt, C., 2018. Artefact detection in global digital elevation models (DEMs): The Maximum Slope 
Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. 
Remote Sens. Environ. 207, 27–41, https://doi.org/10.1016/j.rse.2017.12.037. 

Hossain, F., Maswood, M., Siddique-E-Akbor, A.H., Yigzaw, W., Mazumdar, L.C., Ahmed, T., Hos-
sain, M., Shah-Newaz, S.M., Limaye, A., Lee, H., Pradhan, S., Shrestha, B., Bajracahrya, B., 
Biancamaria, S., Shum, C.K., Turk, F.J., 2014. A promising radar altimetry satellite system for 
operational flood forecasting in flood-prone bangladesh. IEEE Geosci. Remote Sens. Mag. 2, 
27–36, https://doi.org/10.1109/MGRS.2014.2345414. 

Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M., Corato, G., Pelich, R.M., 
Matgen, P., 2018. Near-real-time assimilation of SAR-derived flood maps for improving flood 
forecasts. Water Resour. Res. 54, 5516–5535, https://doi.org/10.1029/2017WR022205. 

Hostache, R., Lai, X., Monnier, J., Puech, C., 2010. Assimilation of spatially distributed water levels 
into a shallow-water flood model. Part II: Use of a remote sensing image of Mosel River. J. 
Hydrol. 390, 257–268, https://doi.org/10.1016/j.jhydrol.2010.07.003. 

Hostache, R., Matgen, P., Giustarini, L., Teferle, F.N., Tailliez, C., Iffly, J.F., Corato, G., 2015. A 
drifting GPS buoy for retrieving effective riverbed bathymetry. J. Hydrol. 520, 397–406, https://
doi.org/10.1016/j.jhydrol.2014.11.018. 

Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., Pfister, L., 2009. Water level es-
timation and reduction of hydraulic model calibration uncertainties using satellite SAR images 
of floods. IEEE Trans. Geosci. Remote Sens. 47 (2), 1–10. 

Huang, C., Chen, Y., Zhang, S., Wu, J., 2018a. Detecting, extracting, and monitoring surface 
water from space using optical sensors: A review. Rev. Geophys. 56, 333–360, https://doi.
org/10.1029/2018RG000598. 

Huang, Q., Long, D., Du, M., Zeng, C., Li, X., Hou, A., Hong, Y., 2018b. An improved approach 
to monitoring Brahmaputra River water levels using retracked altimetry data. Remote Sens. 
Environ. 211, 112–128, https://doi.org/10.1016/j.rse.2018.04.018. 

Hunt, B.R., Kostelich, E.J., Szunyogh, I., 2007. Efficient data assimilation for spatiotemporal chaos: 
A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom. 230, 112–126, https://
doi.org/10.1016/j.physd.2006.11.008. 

Kim, D., Yu, H., Lee, H., Beighley, E., Durand, M., Alsdorf, D.E., Hwang, E., 2019. Ensemble 
learning regression for estimating river discharges using satellite altimetry data: Central 
Congo River as a Test-bed. Remote Sens. Environ. 221, 741–755, https://doi.org/10.1016/j.
rse.2018.12.010. 

Kim, S., Sharma, A., 2019. The role of floodplain topography in deriving basin discharge us-
ing passive microwave remote sensing. Water Resour. Res. 55 (2), 1707–1716, https://doi.
org/10.1029/2018WR023627. 

Kitagawa, G., 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space mod-
els. J. Comput. Graph. Stat. 5, 1–25, https://doi.org/https://doi.org/10.1080/10618600.199
6.10474692. 

Kumar, A., Dasgupta, A., Lokhande, S., Ramsankaran, R.A.A.J., 2019. Benchmarking the Indian 
National CartoDEM against SRTM for 1D hydraulic modelling. Int. J. River Basin Manag. 17, 
1–10, https://doi.org/10.1080/15715124.2019.1606816. 

Lacava, T., Ciancia, E., Faruolo, M., Pergola, N., Satriano, V., Tramutoli, V., 2019. On the potential 
of RST-FLOOD on visible Infrared Imaging Radiometer Suite data for flooded areas detection. 
Remote Sens. 11, 598, https://doi.org/10.3390/rs11050598. 

https://doi.org/10.1016/j.jhydrol.2018.09.052
https://doi.org/10.1016/j.rse.2017.12.037
https://doi.org/10.1109/MGRS.2014.2345414
https://doi.org/10.1029/2017WR022205
https://doi.org/10.1016/j.jhydrol.2010.07.003
https://doi.org/10.1016/j.jhydrol.2014.11.018
https://doi.org/10.1016/j.jhydrol.2014.11.018
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0275
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0275
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0275
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1016/j.rse.2018.04.018
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1016/j.rse.2018.12.010
https://doi.org/10.1016/j.rse.2018.12.010
https://doi.org/10.1029/2018WR023627
https://doi.org/10.1029/2018WR023627
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0305
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0305
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0305
https://doi.org/10.1080/15715124.2019.1606816
https://doi.org/10.3390/rs11050598
https://doi.org/10.3390/rs11050598
https://doi.org/10.3390/rs11050598
https://doi.org/10.1080/15715124.2019.1606816
https://doi.org/10.1080/15715124.2019.1606816
https://doi.org/10.1029/2018WR023627
https://doi.org/10.1016/j.rse.2018.12.010
https://doi.org/10.1016/j.rse.2018.12.010
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1016/j.rse.2018.04.018
https://doi.org/10.1016/j.rse.2018.04.018
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1016/j.jhydrol.2014.11.018
https://doi.org/10.1016/j.jhydrol.2010.07.003
https://doi.org/10.1016/j.jhydrol.2010.07.003
https://doi.org/10.1029/2017WR022205
https://doi.org/10.1029/2017WR022205
https://doi.org/10.1109/MGRS.2014.2345414
https://doi.org/10.1109/MGRS.2014.2345414
https://doi.org/10.1109/MGRS.2014.2345414
https://doi.org/10.1109/MGRS.2014.2345414
https://doi.org/10.1016/j.rse.2017.12.037
https://doi.org/10.1016/j.rse.2017.12.037
https://doi.org/10.1016/j.jhydrol.2018.09.052
https://doi.org/10.1016/j.jhydrol.2018.09.052


Earth Observation and Hydraulic Data Assimilation  Chapter | 12    289

Lahoz, W., Khattatov, B., Menard, R., Nichols, N.K., Talagrand, O., Kalnay, E., Buehner, M., Cohn, 
S.E., Huang, X.-Y., Lynch, P., Thepaut, J.-N., Anderrson, E., Charlton-Perez, A., Swinbank, 
R., Rood, R.B., Yudin, V., Errera, Q., Elbern, H., Strunk, A., Nieradzik, L., Haines, K., Houser, 
P.R., Walker, J.P., De Lannoy, G.J.M., Bosilovich, M.G., Masutani, M., Schlatter, T.W., Errico, 
R.M., Stoffelen, A., Woollen, J.S., Emmitt, G.D., Riishojgaard, L.-P., Lord, S.J., Lewis, S.R., 
2010. Data Assimilation: Making Sense of Observations, first ed. Springer-Verlag Berlin Hei-
delberg, London, https://doi.org/10.1007/978-3-540-74703-1. 

Lai, X., Liang, Q., Yesou, H., Daillet, S., 2014. Variational assimilation of remotely sensed flood ex-
tents using a 2-D flood model. Hydrol. Earth Syst. Sci. 18, 4325–4339, https://doi.org/10.5194/
hess-18-4325-2014. 

Lai, X., Monnier, J., 2009. Assimilation of spatially distributed water levels into a shallow-wa-
ter flood model. Part I: Mathematical method and test case. J. Hydrol. 377, 1–11, https://doi.
org/10.1016/j.jhydrol.2009.07.058. 

Lakshmivarahan, S., Lewis, J.M., 2010. Forward Sensitivity Approach to dynamic data assimila-
tion. Adv. Meteorol. 2010, 1–2. 

Langland, R.H., 2006. Issues in targeted observing. Q. J. R. Meteorol. Soc. 131, 3409–3425, https://
doi.org/10.1256/qj.05.130. 

Liu, J., Kalnay, E., 2008. Estimating observation impact without adjoint model in an ensemble Kal-
man filter. Q. J. R. Meteorol. Soc. 134, 1327–1335, https://doi.org/10.1002/qj.280. 

Madsen, H., Canizares, R., 1999. Comparison of extended and ensemble Kalman filters. Int. J. 
Numer. Methods Fluids 31, 961–981. 

Madsen, H., Skotner, C., 2005. Adaptive state updating in real-time river flow forecasting—
A combined filtering and error forecasting procedure. J. Hydrol. 308, 302–312, https://doi.
org/10.1016/j.jhydrol.2004.10.030. 

Mason, D.C., Garcia-Pintado, J., Cloke, H.L., Dance, S.L., 2015. The potential of flood forecasting 
using a variable-resolution global Digital Terrain Model and flood extents from synthetic aper-
ture radar images. Front. Earth Sci. 3, 1–14, https://doi.org/10.3389/feart.2015.00043. 

Mason, D.C., Schumann, G.J.-P., Neal, J.C., Garcia-Pintado, J., Bates, P.D., 2012. Automatic near 
real-time selection of flood water levels from high resolution Synthetic Aperture Radar images 
for assimilation into hydraulic models: A case study. Remote Sens. Environ. 124, 705–716, 
https://doi.org/10.1016/j.rse.2012.06.017. 

Mason, D.C., Speck, R., Devereux, B., Schumann, G.J.P., Neal, J.C., Bates, P.D., 2010. Flood detec-
tion in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 48, 882–894, https://
doi.org/10.1109/tgrs.2009.2029236. 

Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffmann, L., Plaza, D., Pauwels, V.R.N., De 
Lannoy, G.J.M., De Keyser, R., Savenije, H.H.G., 2010. Towards the sequential assimilation 
of SAR-derived water stages into hydraulic models using the Particle Filter: proof of concept. 
Hydrol. Earth Syst. Sci. 14, 1773–1785, https://doi.org/10.5194/hess-14-1773-2010. 

Matgen, P., Schumann, G., Henry, J.-B., Hoffmann, L., Pfister, L., 2007a. Integration of SAR-de-
rived river inundation areas, high-precision topographic data and a river flow model toward 
near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 9, 247–263, https://doi.
org/10.1016/j.jag.2006.03.003. 

Matgen, P., Schumann, G., Pappenberger, F., Pfister, L., 2007. Sequential assimilation of remotely 
sensed water stages in flood inundation models. In: Proceedings of Symposium HS3007 at 
IUGG2007. Perugia, Italy, pp. 78–88.

Mazzoleni, M., 2016. Improving flood prediction assimilating uncertain crowdsourced data into 
hydrologic and hydraulic models. Delft University of Technology and UNESCO-IHE Institute 
for Water Education.

https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.5194/hess-18-4325-2014
https://doi.org/10.5194/hess-18-4325-2014
https://doi.org/10.1016/j.jhydrol.2009.07.058
https://doi.org/10.1016/j.jhydrol.2009.07.058
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0050
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0050
https://doi.org/10.1256/qj.05.130
https://doi.org/10.1256/qj.05.130
https://doi.org/10.1002/qj.280
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0345
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0345
https://doi.org/10.1016/j.jhydrol.2004.10.030
https://doi.org/10.1016/j.jhydrol.2004.10.030
https://doi.org/10.3389/feart.2015.00043
https://doi.org/10.1016/j.rse.2012.06.017
https://doi.org/10.1109/tgrs.2009.2029236
https://doi.org/10.1109/tgrs.2009.2029236
https://doi.org/10.5194/hess-14-1773-2010
https://doi.org/10.1016/j.jag.2006.03.003
https://doi.org/10.1016/j.jag.2006.03.003
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0055
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0055
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0055
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0060
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0060
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0060
https://doi.org/10.1016/j.jag.2006.03.003
https://doi.org/10.1016/j.jag.2006.03.003
https://doi.org/10.5194/hess-14-1773-2010
https://doi.org/10.5194/hess-14-1773-2010
https://doi.org/10.5194/hess-14-1773-2010
https://doi.org/10.1109/tgrs.2009.2029236
https://doi.org/10.1016/j.rse.2012.06.017
https://doi.org/10.1016/j.rse.2012.06.017
https://doi.org/10.1016/j.rse.2012.06.017
https://doi.org/10.3389/feart.2015.00043
https://doi.org/10.3389/feart.2015.00043
https://doi.org/10.1016/j.jhydrol.2004.10.030
https://doi.org/10.1002/qj.280
https://doi.org/10.1016/j.jhydrol.2009.07.058
https://doi.org/10.5194/hess-18-4325-2014
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1


290    SECTION | 3 Emerging Applications and Challenges

Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D., 2015. Assimilating uncertain, dy-
namic and intermittent streamflow observations in hydrological models. Adv. Water Resour. 83, 
323–339, https://doi.org/10.1016/j.advwatres.2015.07.004. 

Michailovsky, C.I., McEnnis, S., Berry, P.A.M., Smith, R., Bauer-Gottwein, P., 2012. River moni-
toring from satellite radar altimetry in the Zambezi River basin. Hydrol. Earth Syst. Sci. 16, 
2181–2192, https://doi.org/10.5194/hess-16-2181-2012. 

Moradkhani, H., 2008. Hydrologic remote sensing and land surface data assimilation. Sensors 8, 
2986–3004, https://doi.org/10.3390/s8052986. 

Moradkhani, H., Hsu, K.-L., Gupta, H., Sorooshian, S., 2005a. Uncertainty assessment of hydro-
logic model states and parameters: Sequential data assimilation using the particle filter. Water 
Resour. Res. 41, 1–17, https://doi.org/10.1029/2004WR003604. 

Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R., 2005b. Dual state-parameter estimation 
of hydrological models using ensemble Kalman filter. Adv. Water Resour. 28, 135–147, https://
doi.org/10.1016/j.advwatres.2004.09.002. 

Muste, M., Ho, H.C., Kim, D., 2011. Considerations on direct stream flow measurements using 
video imagery: Outlook and research needs. J. Hydro-Environment Res. 5, 289–300, https://
doi.org/10.1016/j.jher.2010.11.002. 

Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., Pappenberger, F., 2009. A data assimila-
tion approach to discharge estimation from space. Hydrol. Process. 23, 3641–3649, https://doi.
org/10.1002/hyp.7518. 

Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., Mason, D., 2011. Evaluating a new 
LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK. J. 
Flood Risk Manag. 4, 88–95, https://doi.org/10.1111/j.1753-318X. 2011.01093.x. 

Neal, J.C., Atkinson, P.M., Hutton, C.W., 2007. Flood inundation model updating using an en-
semble Kalman filter and spatially distributed measurements. J. Hydrol. 336, 401–415, https://
doi.org/10.1016/j.jhydrol.2007.01.012. 

Nichols, N.K., 2010. Mathematical concepts of data assimilation. In: Lahoz, W. (Ed.), Data Assimi-
lation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 13–39, https://doi.org/10.1007/978-
3-540-74703-1_2. 

O’Loughlin, F.E., Paiva, R.C.D., Durand, M., Alsdorf, D.E., Bates, P.D., 2016. A multi-sensor ap-
proach towards a global vegetation corrected SRTM DEM product. Remote Sens. Environ. 182, 
49–59, https://doi.org/10.1016/j.rse.2016.04.018. 

Ogilvie, A., Belaud, G., Delenne, C., Bailly, J.-S., Bader, J.-C., Oleksiak, A., Ferry, L., Martin, D., 
2015. Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data. 
J. Hydrol. 523, 368–383, https://doi.org/10.1016/j.jhydrol.2015.01.036. 

Oliveira, E.R., Disperati, L., Cenci, L., Pereira, L.G., Alves, F.L., 2019. Multi-Index Image Differ-
encing Method (MINDED) for flood extent estimations. Remote Sens. 11, 1–29. 

Oubanas, H., Gejadze, I., Malaterre, P.O., Durand, M., Wei, R., Frasson, R.P.M., Domeneghe-
tti, A., 2018a. Discharge estimation in ungauged basins through variational data assimila-
tion: The potential of the SWOT mission. Water Resour. Res. 54, 2405–2423, https://doi.
org/10.1002/2017WR021735. 

Oubanas, H., Gejadze, I., Malaterre, P.O., Mercier, F., 2018b. River discharge estimation 
from synthetic SWOT-type observations using variational data assimilation and the 
full Saint-Venant hydraulic model. J. Hydrol. 559, 638–647, https://doi.org/10.1016/j.
jhydrol.2018.02.004. 

Paiva, R.C.D., Collischonn, W., Bonnet, M.P., De Gonçalves, L.G.G., Calmant, S., Getirana, a., 
Santos Da Silva, J., 2013. Assimilating in situ and radar altimetry data into a large-scale hydro-
logic-hydrodynamic model for streamflow forecast in the Amazon. Hydrol. Earth Syst. Sci. 17, 
2929–2946, https://doi.org/10.5194/hess-17-2929-2013. 

https://doi.org/10.1016/j.advwatres.2015.07.004
https://doi.org/10.5194/hess-16-2181-2012
https://doi.org/10.3390/s8052986
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1016/j.jher.2010.11.002
https://doi.org/10.1016/j.jher.2010.11.002
https://doi.org/10.1002/hyp.7518
https://doi.org/10.1002/hyp.7518
https://doi.org/10.1111/j.1753-318X.%202011.01093.x
https://doi.org/10.1016/j.jhydrol.2007.01.012
https://doi.org/10.1016/j.jhydrol.2007.01.012
https://doi.org/10.1007/978-3-540-74703-1_2
https://doi.org/10.1007/978-3-540-74703-1_2
https://doi.org/10.1016/j.rse.2016.04.018
https://doi.org/10.1016/j.jhydrol.2015.01.036
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0440
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0440
https://doi.org/10.1002/2017WR021735
https://doi.org/10.1002/2017WR021735
https://doi.org/10.1016/j.jhydrol.2018.02.004
https://doi.org/10.1016/j.jhydrol.2018.02.004
https://doi.org/10.5194/hess-17-2929-2013
https://doi.org/10.5194/hess-17-2929-2013
https://doi.org/10.5194/hess-17-2929-2013
https://doi.org/10.5194/hess-17-2929-2013
https://doi.org/10.1016/j.jhydrol.2018.02.004
https://doi.org/10.1016/j.jhydrol.2018.02.004
https://doi.org/10.1002/2017WR021735
https://doi.org/10.1002/2017WR021735
https://doi.org/10.1016/j.jhydrol.2015.01.036
https://doi.org/10.1016/j.jhydrol.2015.01.036
https://doi.org/10.1016/j.rse.2016.04.018
https://doi.org/10.1016/j.rse.2016.04.018
https://doi.org/10.1007/978-3-540-74703-1_2
https://doi.org/10.1016/j.jhydrol.2007.01.012
https://doi.org/10.1111/j.1753-318X.%202011.01093.x
https://doi.org/10.1111/j.1753-318X.%202011.01093.x
https://doi.org/10.1002/hyp.7518
https://doi.org/10.1016/j.jher.2010.11.002
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1029/2004WR003604
https://doi.org/10.3390/s8052986
https://doi.org/10.5194/hess-16-2181-2012
https://doi.org/10.5194/hess-16-2181-2012
https://doi.org/10.1016/j.advwatres.2015.07.004
https://doi.org/10.1016/j.advwatres.2015.07.004


Earth Observation and Hydraulic Data Assimilation  Chapter | 12    291

Pappenberger, F., Beven, K., Horritt, M., Blazkova, S., 2005. Uncertainty in the calibration of effec-
tive roughness parameters in HEC-RAS using inundation and downstream level observations. 
J. Hydrol. 302, 46–69, https://doi.org/10.1016/j.jhydrol.2004.06.036. 

Pappenberger, F., Ramos, M.H., Cloke, H.L., Wetterhall, F., Alfieri, L., Bogner, K., Muel-
ler, A., Salamon, P., 2015. How do I know if my forecasts are better? Using benchmarks 
in hydrological ensemble prediction. J. Hydrol. 522, 697–713, https://doi.org/10.1016/j. 
jhydrol.2015.01.024. 

Patil, A., Ramsankaran, R., 2018. Improved streamflow simulations by coupling Soil Moisture 
Analytical Relationship in EnKF based hydrological data assimilation framework. Adv. Water 
Resour. 121, 173–188, https://doi.org/10.1016/J.ADVWATRES.2018.08.010. 

Pham, H.T., Marshall, L., Johnson, F., Sharma, A., 2018. A method for combining SRTM DEM and 
ASTER GDEM2 to improve topography estimation in regions without reference data. Remote 
Sens. Environ. 210, 229–241, https://doi.org/10.1016/j.rse.2018.03.026. 

Pitcher, L.H., Pavelsky, T.M., Smith, L.C., Moller, D.K., Altenau, E.H., Allen, G.H., Lion, C., But-
man, D., Cooley, S.W., Fayne, J., Bertram, M., 2018. AirSWOT InSAR mapping of surface 
water elevations and hydraulic gradients across the Yukon Flats Basin, Alaska. Water Resour. 
Res. 55 (2), 937–953, https://doi.org/10.1029/2018WR023274. 

Plaza, D.A., De Keyser, R., De Lannoy, G.J.M., Giustarini, L., Matgen, P., Pauwels, V.R.N., 2012. 
The importance of parameter resampling for soil moisture data assimilation into hydrologic 
models using the particle filter. Hydrol. Earth Syst. Sci. 16, 375–390, https://doi.org/10.5194/
hess-16-375-2012. 

Pramanik, N., Panda, R.K., Sen, D., 2010. One dimensional hydrodynamic modeling of river flow 
using DEM extracted river cross-sections. Water Resour. Manag. 24, 835–852, https://doi.
org/10.1007/s11269-009-9474-6. 

Prigent, C., Lettenmaier, D.P., Aires, F., Papa, F., 2016. Toward a high-resolution monitoring of con-
tinental surface water extent and dynamics, at Global Scale: from GIEMS (Global Inundation 
Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). Surv. Geophys. 37, 
339–355, https://doi.org/10.1007/s10712-015-9339-x. 

Puech, C., Hostache, R., Raclot, D., Matgen, P., 2007. Estimation of flood water levels by merging 
DEM and satellite imagery using hydraulics laws through AI to enhance the estimates. In: Pro-
ceedings of Second Space for Hydrology Workshop. ESA, Geneva, pp. 1–7.

Quinn, N., Bates, P.D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J., Heffernan, J., 2019. 
The spatial dependence of flood hazard and risk in the United States. Water Resour. Res. 55, 
1890–1911, https://doi.org/10.1029/2018WR024205. 

Revel, M., Ikeshima, D., Yamazaki, D., Kanae, S., 2019. A physically based empirical localiza-
tion method for assimilating synthetic SWOT observations of a continental-scale river: A 
case study in the Congo basin. Water (Switzerland) 11 (4), 829. https://doi.org/10.3390/
w11040829.

Revilla-Romero, B., Hirpa, F.A., del Pozo, J.T., Salamon, P., Brakenridge, R., Pappenberger, F., 
de Groeve, T., Pozo, J.T. del, Salamon, P., Brakenridge, R., Pappenberger, F., de Groeve, T., 
2015. On the use of global flood forecasts and satellite-derived inundation maps for flood 
monitoring in data-sparse regions. Remote Sens. 7, 15702–15728, https://doi.org/10.3390/
rs71115702. 

Revilla-Romero, B., Wanders, N., Burek, P., Salamon, P., de Roo, A., 2016. Integrating remotely 
sensed surface water extent into continental scale hydrology. J. Hydrol. 543, 659–670, https://
doi.org/10.1016/j.jhydrol.2016.10.041. 

Robinson, N., Regetz, J., Guralnick, R.P., 2014. EarthEnv-DEM90: A nearly-global, void-free, 
multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS 
J. Photogramm. Remote Sens. 87, 57–67, https://doi.org/10.1016/j.isprsjprs.2013.11.002. 

https://doi.org/10.1016/j.jhydrol.2004.06.036
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1016/J.ADVWATRES.2018.08.010
https://doi.org/10.1016/j.rse.2018.03.026
https://doi.org/10.1029/2018WR023274
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.1007/s11269-009-9474-6
https://doi.org/10.1007/s11269-009-9474-6
https://doi.org/10.1007/s10712-015-9339-x
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0065
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0065
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0065
https://doi.org/10.1029/2018WR024205
https://doi.org/10.3390/w11040829
https://doi.org/10.3390/w11040829
https://doi.org/10.3390/rs71115702
https://doi.org/10.3390/rs71115702
https://doi.org/10.1016/j.jhydrol.2016.10.041
https://doi.org/10.1016/j.jhydrol.2016.10.041
https://doi.org/10.1016/j.isprsjprs.2013.11.002
https://doi.org/10.1016/j.isprsjprs.2013.11.002
https://doi.org/10.1016/j.isprsjprs.2013.11.002
https://doi.org/10.1016/j.jhydrol.2016.10.041
https://doi.org/10.3390/rs71115702
https://doi.org/10.3390/rs71115702
https://doi.org/10.3390/rs71115702
https://doi.org/10.3390/w11040829
https://doi.org/10.3390/w11040829
https://doi.org/10.1029/2018WR024205
https://doi.org/10.1029/2018WR024205
https://doi.org/10.1007/s10712-015-9339-x
https://doi.org/10.1007/s10712-015-9339-x
https://doi.org/10.1007/s10712-015-9339-x
https://doi.org/10.1007/s11269-009-9474-6
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.1029/2018WR023274
https://doi.org/10.1029/2018WR023274
https://doi.org/10.1029/2018WR023274
https://doi.org/10.1016/j.rse.2018.03.026
https://doi.org/10.1016/j.rse.2018.03.026
https://doi.org/10.1016/J.ADVWATRES.2018.08.010
https://doi.org/10.1016/J.ADVWATRES.2018.08.010
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1016/j.jhydrol.2004.06.036
https://doi.org/10.1016/j.jhydrol.2004.06.036


292    SECTION | 3 Emerging Applications and Challenges

Sanders, B.F., 2007. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Re-
sour. 30, 1831–1843, https://doi.org/10.1016/j.advwatres.2007.02.005. 

Sanders, B.F., Schubert, J.E., 2019. PRIMo: Parallel raster inundation model. Adv. Water Resour. 
126, 79–95, https://doi.org/10.1016/J.ADVWATRES.2019.02.007. 

Schneider, R., Tarpanelli, A., Nielsen, K., Madsen, H., Bauer-Gottwein, P., 2018. Evaluation of 
multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic 
model. Adv. Water Resour. 112, 17–26, https://doi.org/10.1016/j.advwatres.2017.11.027. 

Schumann, G., Bates, P.D., Horritt, M.S., Matgen, P., Pappenberger, F., 2009. Progress in integra-
tion of remote sensing-derived flood extent and stage data and hydraulic models. Rev. Geophys. 
47, 1–20, https://doi.org/10.1029/2008RG000274. 

Schumann, G., Brakenridge, G., Kettner, A., Kashif, R., Niebuhr, E., 2018. Assisting flood disaster 
response with Earth Observation data and products: A critical assessment. Remote Sens. 10, 
1230, https://doi.org/10.3390/rs10081230. 

Schumann, G., Cutler, M., Black, A., Matgen, P., Pfister, L., Hoffmann, L., Pappenberger, F., 2008a. 
Evaluating uncertain flood inundation predictions with uncertain remotely sensed water stages. 
Int. J. River Basin Manag. 5124, 37–41, https://doi.org/10.1080/15715124.2008.9635347. 

Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P., Pappenberger, F., Pfister, L., 2007. 
High-resolution 3-D flood information from radar imagery for flood hazard management. IEEE 
Trans. Geosci. Remote Sens. 45, 1715–1725, https://doi.org/10.1109/TGRS.2006.888103. 

Schumann, G., Matgen, P., Cutler, M.E.J.E.J., Black, a., Hoffmann, L., Pfister, L., 2008. Compari-
son of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J. 
Photogramm. Remote Sens. 63, 283–296, https://doi.org/10.1016/j.isprsjprs.2007.09.004. 

Schumann, G., Matgen, P., Pappenberger, F., 2008b. Conditioning water stages from satellite imag-
ery on uncertain data points. IEEE Geosci. Remote Sens. Lett. 5, 810–813. 

Schumann, G.J.-P., Bates, P.D., 2018. The need for a high-accuracy. Open-access global DEM. 
Front. Earth Sci. 6, 225, https://doi.org/10.3389/FEART.2018.00225. 

Schumann, G.J.-P., Bates, P.D., Neal, J.C., Andreadis, K.M., 2014. Technology: Fight floods on a 
global scale. Nature 507, 169, https://doi.org/10.1038/507169e. 

Schumann, G.J.-P., Frye, S., Wells, G., Adler, R.F., Brakenridge, R., Bolten, J., Murray, J.,  
Slayback, D., Policelli, F., Kirschbaum, D., Wu, H., Cappelaere, P., Howard, T., Flamig, 
Z., Clark, R., Stough, T., Chini, M., Matgen, P., Green, D., Jones, B., Plicelli, F., Kirsch-
baum, D., Wu, H., Cappelaere, P., Howard, T., Flamig, Z., Clark, R., Stough, T., Chini, 
M., Matgen, P., Green, D., Jones, B., 2016. Unlocking the full potential of Earth observa-
tion during the 2015 Texas flood disaster. Water Resour. Res. 52, 3288–3293, https://doi.
org/10.1002/2015WR017126. 

Schumann, G.J.-P., 2019. The need for scientific rigour and accountability in flood mapping to 
better support disaster response. Hydrol. Process. 33 (24), 3138–3142, https://doi.org/10.1002/
hyp.13547. 

Schumann, G.J., Moller, D.K., 2015. Microwave remote sensing of flood inundation. Phys. Chem. 
Earth 83–84, 84–95, https://doi.org/10.1016/j.pce.2015.05.002. 

Schumann, G.J., Neal, J.C., Voisin, N., Andreadis, K.M., Pappenberger, F., Phanthuwongpakdee, 
N., Hall, A.C., Bates, P.D., 2013. A first large-scale flood inundation forecasting model. Water 
Resour. Res. 49, 6248–6257, https://doi.org/10.1002/wrcr.20521. 

Schumann, G.J.P., Andreadis, K.M., 2016. A method to assess localized impact of better floodplain to-
pography on flood risk prediction. Adv. Meteorol. 2016, https://doi.org/10.1155/2016/6408319. 

Schumann, G.J.P., Bates, P.D., Neal, J.C., Andreadis, K.M., 2014b. Measuring and mapping flood 
processes. Hydro-Meteorological Hazards, Risks, and Disasters. Elsevier Inc., https://doi.
org/10.1016/B978-0-12-394846-5.00002-3. 

https://doi.org/10.1016/j.advwatres.2007.02.005
https://doi.org/10.1016/J.ADVWATRES.2019.02.007
https://doi.org/10.1016/j.advwatres.2017.11.027
https://doi.org/10.1029/2008RG000274
https://doi.org/10.3390/rs10081230
https://doi.org/10.1080/15715124.2008.9635347
https://doi.org/10.1109/TGRS.2006.888103
https://doi.org/10.1016/j.isprsjprs.2007.09.004
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0560
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0560
https://doi.org/10.3389/FEART.2018.00225
https://doi.org/10.1038/507169e
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/hyp.13547
https://doi.org/10.1002/hyp.13547
https://doi.org/10.1016/j.pce.2015.05.002
https://doi.org/10.1002/wrcr.20521
https://doi.org/10.1155/2016/6408319
https://doi.org/10.1016/B978-0-12-394846-5.00002-3
https://doi.org/10.1016/B978-0-12-394846-5.00002-3
https://doi.org/10.1016/B978-0-12-394846-5.00002-3
https://doi.org/10.1155/2016/6408319
https://doi.org/10.1002/wrcr.20521
https://doi.org/10.1002/wrcr.20521
https://doi.org/10.1016/j.pce.2015.05.002
https://doi.org/10.1002/hyp.13547
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1002/2015WR017126
https://doi.org/10.1038/507169e
https://doi.org/10.3389/FEART.2018.00225
https://doi.org/10.1016/j.isprsjprs.2007.09.004
https://doi.org/10.1016/j.isprsjprs.2007.09.004
https://doi.org/10.1109/TGRS.2006.888103
https://doi.org/10.1109/TGRS.2006.888103
https://doi.org/10.1080/15715124.2008.9635347
https://doi.org/10.1080/15715124.2008.9635347
https://doi.org/10.3390/rs10081230
https://doi.org/10.3390/rs10081230
https://doi.org/10.1029/2008RG000274
https://doi.org/10.1029/2008RG000274
https://doi.org/10.1016/j.advwatres.2017.11.027
https://doi.org/10.1016/j.advwatres.2017.11.027
https://doi.org/10.1016/J.ADVWATRES.2019.02.007
https://doi.org/10.1016/j.advwatres.2007.02.005


Earth Observation and Hydraulic Data Assimilation  Chapter | 12    293

Schumann, G.J.P., Domeneghetti, A., 2016. Exploiting the proliferation of current and future satel-
lite observations of rivers. Hydrol. Process. 30, 2891–2896, https://doi.org/10.1002/hyp.10825. 

Schumann, G.J.P., Neal, J.C., Mason, D.C., Bates, P.D., 2011. The accuracy of sequential aerial 
photography and SAR data for observing urban flood dynamics, a case study of the UK summer 
2007 floods. Remote Sens. Environ. 115, 2536–2546, https://doi.org/10.1016/j.rse.2011.04.039. 

Shastry, A., Durand, M., 2019. Utilizing flood inundation observations to obtain floodplain topogra-
phy in data-scarce regions. Front. Earth Sci. 6, 1–10, https://doi.org/10.3389/feart.2018.00243. 

Slivinski, L., Spiller, E., Apte, A., 2015. A Hybrid particle-Ensemble Kalman filter for Lagrangian 
data assimilation. Mon. Weather Rev. 143, 195–211, https://doi.org/http://dx.doi.org/10.1175/
MWR-D-14-00051.1. 

Smith, P.J., Dance, S.L., Nichols, N.K., 2011. A hybrid data assimilation scheme for model pa-
rameter estimation: Application to morphodynamic modelling. Comput. Fluids 46, 436–441, 
https://doi.org/10.1016/j.compfluid.2011.01.010. 

Smith, P.J., Thornhill, G.D., Dance, S.L., Lawless, a.S., Mason, D.C., Nichols, N.K., 2013. Data 
assimilation for state and parameter estimation: Application to morphodynamic modelling. Q. 
J. R. Meteorol. Soc. 139, 314–327, https://doi.org/10.1002/qj.1944. 

Tourian, M.J., Schwatke, C., Sneeuw, N., 2017. River discharge estimation at daily resolution from 
satellite altimetry over an entire river basin. J. Hydrol. 546, 230–247, https://doi.org/10.1016/j.
jhydrol.2017.01.009. 

Tuozzolo, S., Lind, G., Overstreet, B., Mangano, J., Fonstad, M., Hagemann, M., Frasson, R.P.M., 
Larnier, K., Garambois, P.-A., Monnier, J., Durand, M., 2019. Estimating river discharge with 
swath altimetry: A proof of concept using AirSWOT observations. Geophys. Res. Lett. 46 (3), 
1459–1466, https://doi.org/10.1029/2018GL080771. 

Uhe, P., Mitchell, D., Bates, P., Sampson, C., Smith, A., ISLAM, A.S., 2019. Enhanced flood  
risk with 1.5°C global warming in the Ganges-Brahmaputra-Meghna basin. Environ. Res. Lett. 
14 (7), 074031, https://doi.org/10.1088/1748-9326/ab10ee. 

van Leeuwen, P.J., Künsch, H.R., Nerger, L., Potthast, R., Reich, S., 2019. Particle filters for high-
dimensional geoscience applications: A review. Q. J. R. Meteorol. Soc. 145, 2335–2365, 
https://doi.org/10.1002/qj.3551. 

Van Wesemael, A., Landuyt, L., Lievens, H., Verhoest, N.E.C., 2019. Improving flood inundation 
forecasts through the assimilation of in situ floodplain water level measurements based on al-
ternative observation network configurations. Adv. Water Resour. 130, 229–243, https://doi.
org/10.1016/j.advwatres.2019.05.025. 

Walker, J.P., Houser, P.R., 2005. Hydrologic data assimilation. Adv. water Sci. Methodol., 233, 
https://doi.org/10.5772/1112. 

Waller, J.A., García-Pintado, J., Mason, D.C., Dance, S.L., Nichols, N.K., 2018. Technical note: 
Analysis of observation uncertainty for flood assimilation and forecasting. Hydrol. Earth Syst. 
Sci. Discuss. 22 (7), 3983–3992. https://doi.org/10.5194/hess-22-3983-2018. 

Wang, X., Holland, D.M., Gudmundsson, G.H., 2018. Accurate coastal DEM generation by merg-
ing ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antartica. Remote Sens. Envi-
ron. 206, 218–230, https://doi.org/10.1016/j.rse.2017.12.041. 

Ward, P.J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., de Perez, 
E.C., Rudari, R., Trigg, M.a., Winsemius, H.C., 2015. Usefulness and limitations of global 
flood risk models. Nat. Clim. Chang. 5, 712–715, https://doi.org/10.1038/nclimate2742. 

Wetterhall, F., Pappenberger, F., Alfieri, L., Cloke, H.L., Thielen-Del Pozo, J., Balabanova, S., 
Danˇhelka, J., Vogelbacher, a., Salamon, P., Carrasco, I., Cabrera-Tordera, a.J., Corzo-Tosca-
no, M., Garcia-Padilla, M., Garcia-Sanchez, R.J., Ardilouze, C., Jurela, S., Terek, B., Csik, a., 
Casey, J., Stankunavicˇius, G., Ceres, V., Sprokkereef, E., Stam, J., Anghel, E., Vladikovic, 

https://doi.org/10.1002/hyp.10825
https://doi.org/10.1016/j.rse.2011.04.039
https://doi.org/10.3389/feart.2018.00243
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0620
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0620
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0620
https://doi.org/10.1016/j.compfluid.2011.01.010
https://doi.org/10.1002/qj.1944
https://doi.org/10.1016/j.jhydrol.2017.01.009
https://doi.org/10.1016/j.jhydrol.2017.01.009
https://doi.org/10.1029/2018GL080771
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0645
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0645
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0645
https://doi.org/10.1002/qj.3551
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0655
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0655
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0655
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0655
https://doi.org/10.5772/1112
https://doi.org/10.5194/hess-22-3983-2018
https://doi.org/10.1016/j.rse.2017.12.041
https://doi.org/10.1038/nclimate2742
https://doi.org/10.1002/hyp.10825
https://doi.org/10.1016/j.rse.2011.04.039
https://doi.org/10.1016/j.rse.2011.04.039
https://doi.org/10.3389/feart.2018.00243
https://doi.org/10.1016/j.compfluid.2011.01.010
https://doi.org/10.1016/j.compfluid.2011.01.010
https://doi.org/10.1002/qj.1944
https://doi.org/10.1002/qj.1944
https://doi.org/10.1016/j.jhydrol.2017.01.009
https://doi.org/10.1029/2018GL080771
https://doi.org/10.1029/2018GL080771
https://doi.org/10.1029/2018GL080771
https://doi.org/10.1002/qj.3551
https://doi.org/10.1002/qj.3551
https://doi.org/10.5194/hess-17-4389-2013
https://doi.org/10.5194/hess-17-4389-2013
https://doi.org/10.1038/nclimate2742
https://doi.org/10.1038/nclimate2742
https://doi.org/10.1016/j.rse.2017.12.041
https://doi.org/10.1016/j.rse.2017.12.041
https://doi.org/10.5194/hess-22-3983-2018
https://doi.org/10.5194/hess-22-3983-2018
https://doi.org/10.5772/1112


294    SECTION | 3 Emerging Applications and Challenges

D., Alionte Eklund, C., Hjerdt, N., Djerv, H., Holmberg, F., Nilsson, J., Nyström, K., Sušnik, 
M., Hazlinger, M., Holubecka, M., 2013. HESS Opinions “forecaster priorities for improving 
probabilistic flood forecasts”. Hydrol. Earth Syst. Sci. 17, 4389–4399, https://doi.org/10.5194/
hess-17-4389-2013. 

Winsemius, H.C., Van Beek, L.P.H., Jongman, B., Ward, P.J., Bouwman, A., 2013. A framework 
for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892, https://doi.
org/10.5194/hess-17-1871-2013. 

Wood, M., Jong, S.M.De, Straatsma, M.W., 2018. Locating flood embankments using SAR time 
series: A proof of concept. Int. J. Appl. Earth Obs. Geoinf. 70, 72–83, https://doi.org/10.1016/j.
jag.2018.04.003. 

Yamazaki, D., Baugh, C.a., Bates, P.D., Kanae, S., Alsdorf, D.E., Oki, T., 2012. Adjustment of a 
spaceborne DEM for use in floodplain hydrodynamic modeling. J. Hydrol. 436-437, 81–91, 
https://doi.org/10.1016/j.jhydrol.2012.02.045. 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P.D., Allen, G., Pavelsky, T., 2019. MERIT Hydro: A 
high-resolution global hydrography map based on latest topography datasets. Water Resour. 
Res. 55, 5053–5073, https://doi.org/10.1029/2019WR024873. 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson, 
C.C., Kanae, S., Bates, P.D., 2017. A high-accuracy map of global terrain elevations. Geophys. 
Res. Lett. 44, 5844–5853, https://doi.org/10.1002/2017GL072874. 

Yamazaki, D., Revel, M., Kanae, S., 2018. Model based observation localization weighting function 
for Amazon mainstream. J. Jpn. Soc. Civil Eng. 74 (5), 157–162.

Yoon, Y., Durand, M., Merry, C.J., Clark, E.a., Andreadis, K.M., Alsdorf, D.E., 2012. Estimating 
river bathymetry from data assimilation of synthetic SWOT measurements. J. Hydrol. 464-465, 
363–375, https://doi.org/10.1016/j.jhydrol.2012.07.028. 

Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., Yuan, Q., 2017. High-quality seamless DEM 
generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. 
Photogramm. Remote Sens. 123, 20–34, https://doi.org/10.1016/j.isprsjprs.2016.11.002. 

Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., Brocca, L., 2018. Estimating 
irrigation water use over the contiguous United States by combining satellite and reanalysis soil 
moisture data. Hydrol. Earth Syst. Sci. 23, 897–923. 

Zheng, F., Tao, R., Maier, H.R., See, L., Savic, D., Zhang, T., Chen, Q., Assumpção, T.H., Yang, P., 
Heidari, B., Rieckermann, J., Minsker, B., Bi, W., Cai, X., Solomatine, D., Popescu, I., 2018. 
Crowd sourcing methods for data collection in geophysics: State of the art, issues, and future 

directions. Rev. Geophys. 56, 698–740, https://doi.org/10.1029/2018RG000616. 

Further Reading

Briggs, J., Dowd, M., Meyer, R., 2013. Data assimilation for large-scale spatio-temporal systems 
using a location particle smoother. Environmetrics 24, 81–97. doi: 10.1002/env.2184. 

Schumann, G., Di Baldassarre, G., Alsdorf, D., Bates, P.D., 2010. Near real-time flood wave ap-
proximation on large rivers from space: Application to the River Po, Italy. Water Resour. Res. 
46, 1–8, https://doi.org/10.1029/2008WR007672. 

Schumann, G., Pappenberger, F., Matgen, P., 2008c. Estimating uncertainty associated with water 
stages from a single SAR image. Adv. Water Resour. 31, 1038–1047, https://doi.org/10.1016/j.
advwatres.2008.04.008. 

Schumann, G.J.P., Andreadis, K.M., Bates, P.D., 2014a. Downscaling coarse grid hydrodynamic 
model simulations over large domains. J. Hydrol. 508, 289–298, https://doi.org/10.1016/j.jhy-

drol.2013.08.051. 

https://doi.org/10.5194/hess-17-4389-2013
https://doi.org/10.5194/hess-17-4389-2013
https://doi.org/10.5194/hess-17-1871-2013
https://doi.org/10.5194/hess-17-1871-2013
https://doi.org/10.1016/j.jag.2018.04.003
https://doi.org/10.1016/j.jag.2018.04.003
https://doi.org/10.1016/j.jhydrol.2012.02.045
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1002/2017GL072874
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0075
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/or0075
https://doi.org/10.1016/j.jhydrol.2012.07.028
https://doi.org/10.1016/j.isprsjprs.2016.11.002
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0720
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0720
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0720
https://doi.org/10.1029/2018RG000616
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0730
http://refhub.elsevier.com/B978-0-12-819412-6.00012-2/ref0730
https://doi.org/10.1029/2008WR007672
https://doi.org/10.1016/j.advwatres.2008.04.008
https://doi.org/10.1016/j.advwatres.2008.04.008
https://doi.org/10.1016/j.jhydrol.2013.08.051
https://doi.org/10.1016/j.jhydrol.2013.08.051
https://doi.org/10.1029/2008WR007672
https://doi.org/10.1029/2018RG000616
https://doi.org/10.1016/j.isprsjprs.2016.11.002
https://doi.org/10.1016/j.jhydrol.2012.07.028
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1016/j.jhydrol.2012.02.045
https://doi.org/10.5194/hess-17-1871-2013
https://doi.org/10.1016/j.jag.2018.04.003
https://doi.org/10.1016/j.jhydrol.2012.02.045


295
Earth Observation for Flood Applications. http://dx.doi.org/10.1016/B978-0-12-819412-6.00013-4
Copyright © 2021 Elsevier Ltd. All rights reserved.

Chapter 13

Artificial Intelligence for Flood 
Observation

Ruo-Qian Wang
Department of Civil and Environmental Engineering, Rutgers University, New Brunswick, NJ, 
United States

1 Introduction

In the last few years, artificial intelligence (AI) is increasingly becoming power-
ful. It can diagnose diseases, write financial analytics, drive cars, trade stocks, 
and even compose hit music and produce trailers for horror movies. The most 
remarkable milestone might be the moment when the AI program, AlphaGo, 
demonstrated a superior art to beat Lee Sedol, an 18-time world champion 
at the most sophisticated game invented in human history—Go (Holcomb 
et al., 2018). From a science and engineering perspective, could AI be harnessed 
to benefit our society, for example, predict and manage natural disasters—such 
as floods—better than humans can?

A computer game and a flood are obviously two very different fields. But AI 
is being more frequently adopted in flooding related research. This chapter is 
targeted to demonstrate important advances in AI’s applications in flood related 
study. Due to the limited time and the author’s knowledge, this chapter cannot 
and will not exhaust the relevant studies—actually it’s almost impossible because 
new flood studies using AI are being published every week and many AI-related 
flood papers scattered across a wide spectrum of literature and can be traced to a 
few decades ago. However, this chapter is planned to follow and comment on the 
general trend and the frontier of the field with a “review” of reviews and high-
lights of typical studies. This chapter provides a general road map of the field and 
points the topics that the readers are most interested in for further studies.

This chapter is organized in the following structure: Section 2 reviews the 
definition and major application of AI; Section 3 describes the AI’s application 
in extracting flood information from crowdsourcing data (social media and mo-
bile phone apps); Section 4 reviews the video surveillance camera data in flood 
monitoring; Section 5 highlight the need for more studies to use the emerging 
AI enabled Big Data in flood research. The chapter ends with a summary and 
outlook of the future research directions.
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2 What’s AI?

AI is intelligence demonstrated by machines. In contrast to the pursuit of gener-
al machine intelligence, the AI concept used in engineering and applied science 
is machine learning, which is the study of algorithms and statistical models that 
computer systems use to perform a specific task without using explicit instruc-
tions, relying on patterns and inference instead.

To explain the general idea of machine learning, let’s take a look of the 
general function,

=y f x( ),

where x and y are the input and output of the function f. Machine learning is 
the task to find a general function, without knowing the structure or knowledge 
of f itself, to replace f within a limited error. In machine learning tasks, x is  
usually known, and y is either completely, partially known, or unknown. Ac-
cordingly, machine learning can be classified into three categories, that is, su-
pervised learning (y is known), semi-supervised learning (y is partially known), 
and unsupervised learning (y is unknown). The process to tune a machine learn-
ing model that is targeted to approximate f is called “training.”

The common machine learning algorithms include Linear Regression,  
Logistic Regression, Decision Tree, Support Vector Machine, Naive Bayes,  
k-Nearest Neighbor, K-Means, Random Forest, and Dimensionality Reduc-
tion Algorithms. Recent years witnessed the rising of deep learning algorithms, 
which uses multiple layers to progressively extract higher level features from 
the raw input and were found useful in many practical applications such as 
Natural Language Processing and Computer Vision.

Thanks to the development of AI, the unconventional data sources, often 
described as “Big Data,” become possible to provide useful information for 
engineering application such as flood monitoring. This chapter is targeted to 
outline the advances from this perspective.

3 Extracting flood information from crowdsourcing data 
using AI

Recently, pluvial flooding (flooding due to heavy precipitation) and nuisance 
flooding (flooding due to sea-level rise, also called “sunny day flooding”) 
become grave concerns in the flooding research (Rosenzweig et al., 2018; 
Moftakhari et al., 2018). Different from the traditional fluvial flooding, it is 
more challenging to collect data for these chronical, spreading, and low magni-
tude flood events. Traditional flood monitoring means are limited, for example, 
the sensor network is expensive to install and maintain in the city area, insur-
ance reports are usually inaccessible and delayed in time, and government sur-
vey is incomplete in coverage and inaccurate in the record (Wang et al., 2018a). 
In addition, many cities lack an early warning mechanism to prepare and  

y=f(x),



Artificial Intelligence for Flood Observation  Chapter | 13    297

mitigate the impact. Citizen science and crowdsourcing are providing an alter-
native and innovative solutions to the data collection need and the hope is to 
use AI to automatically process the unconventional “Big Data” for contributing 
to early warning systems and flood forecasting model validations (See, 2019). 
Another hope is to expect crowdsourcing to supplement data obtained from 
more traditional sources through data fusion and eventually improve the data 
coverage and resolution in space and time taking its advantage in continuous 
coverage in time and high spatial resolution in space. Crowdsourcing is also 
expected to play a significant role in developing countries where basic flood 
warning and monitoring infrastructure is pooled constructed and maintained 
so that crowdsourcing can enable badly needed data collection to fill the gap, 
particularly due to its relatively low implementation cost.

Two review papers that are targeted to exhaust the development in the 
crowdsourcing/citizen science field worth mentioning here. Zheng et al. (2018) 
reviewed crowdsourcing-based data acquisition methods that have been used 
in a broad spectrum, covering seven domains of geophysics including weather, 
precipitation, air pollution, geography, ecology, surface water, and natural haz-
ard management. They proposed a new framework to categorize the studies 
and highlighted the common issues in data acquisition methods. They include 
the management of crowdsourcing projects, data quality, data processing, and 
data privacy. See (2019) focused on the current activities in citizen science and 
crowdsourcing with respect to applications of pluvial flooding. They developed 
four themes to describe the flooding research: (1) applications relevant during 
a flood event, which includes automated street flooding detection using crowd-
sourced photographs and sensors, analysis of social media, and online and 
mobile applications for flood reporting; (2) applications related to post-flood 
events; (3) the use of citizen science and crowdsourcing for model development 
and validation; and (4) the development of integrated systems. They pointed out 
that advances in the use of citizen science and crowdsourcing data can benefit 
the other three topics.

3.1 Extracting flood information from social media data

There are majorly two data sources in crowdsourcing flood monitoring, namely 
social media and mobile phone app. Social media was first used in the damage 
assessment study after the Haiti earthquake (Muralidharan et al., 2011). It was 
later used in flood monitoring such as in Jongman et al. (2015) and Fohringer 
et al. (2015).

In the pilot studies, social media data were processed manually, which is 
a slow and expensive process and cannot be used in real-time monitoring. AI 
has shown the potential to address these problems. Wang et al. (2018a) created 
a new method using AI to automatize the process, in which Natural Language 
Processing techniques are applied to the data collected from Twitter. They could 
use topic modeling to filter the relevant topic and Name Entity Recognition 
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to extract the flood location information. They found that the Big Data-based 
flood monitoring approaches can complement the existing means of flood data 
collection and the validation against precipitation data showed a good correla-
tion. They further developed the method to use local gazetteers to achieve high 
location accuracy and applied the improved method to the flood of Hurricane 
Harvey in 2017 (Fig. 13.1) (Wang et al., 2020). They demonstrated that social 
media can effectively inform the diaster rescue phases and serve as a passive  
hotline to inform the disaster management. Asmai et al. (2019) conducted a 
more general study. They used the topic modeling approach of Term Frequen-
cy-Inverse Document Frequency (TF-IDF) to automatically filter the flooding 
topic, but the location name was not extracted. So, their flood prediction is gen-
eral in geolocation.

Interested readers may consult to a more detailed review on the progress in 
this direction of Yu et al. (2019). They focused on the practical applications of 
employing social media data for a wide range of public applications, including 
environmental monitoring, water resource managing, disaster and emergency 
response. They further pointed out that the creative ideas and new values could 
be conveyed through a 4Ws (What, Why, When, hoW) model. They also men-
tioned controversial issues associated with social media data such as data col-
lection, data quality management, fake news detection, privacy issues, etc.

Although social media is shown to potentially provide useful information in 
flood monitoring, the concern on the data quality is grave, which could signifi-
cantly limit it in practical applications. This issue is not expected to be quickly 
resolved in the near future. So researchers have started to explore the “niche” 
application for this emerging technology, one of which is in the emergency re-
sponse and rescue activities. As mentioned in Kankanamge et al. (2019), highly 
reliable in-situ location information is critical for rescue efforts during and after 
disasters, but often not easy or even possible to access. They reviewed the recent 

FIGURE 13.1 Process of Twitter flood monitoring (Wang, 2018).
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development in this direction and found disaster reduction to be promising in 
assisting policymakers and disaster risk managers to make informed decisions 
before, during and after disasters. They also found an increasing trend of litera-
ture in focusing on volunteer crowdsourcing between 2006 and 2018.

Aware of the challenge in data quality, another recent trend of using social 
media flood data is to fuse the data with other data sources, for example, re-
mote sensing. The fusion will benefit both the data types and improve the data 
coverage through the complementing characteristics. Qi et al. (2019) provided 
an overview on the integration and joint analysis of remote sensing and social 
media data in urban observation applications. Four opportunities were identi-
fied in exploiting the value of social media data: to investigate the relationship 
among humans, environment, and urban, to help urban planning, to manage 
urban disaster, and to monitor urban environment. The future possibilities to 
combine remote sensing and social media data were exciting and it was believed 
to profoundly change the future research and practice.

3.2 Extracting flood information from mobile device data

Smart phones have fundamentally changed the lifestyle and business in the 
world. As a reliable means of citizen science data collection, smart phones have 
also been used to enable flood monitoring. In comparison to social media data, 
observation from mobile phone is better in quality through the customized de-
sign of smart phone apps. Wang et al., 2018a has shown that the mobile phone 
app, MyCoast, can be useful in the application of observing the coastal flood 
(Fig. 13.2). Computer vision scheme was applied in automatic processing of the 
mobile phone data in recognizing the flood scenes.

The geolocation information is usually available through the volunteered 
mobile phone data from the GPS positioning service of smart phones. However, 

FIGURE 13.2 Graphic user interface of MyCoast (Wang et al., 2018b).
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it is challenging when the collected data, for example, photos, have no geoloca-
tion information. This is often in the case that the original mobile phone app is 
not designed for the purpose and the study was aimed to use the existing data 
that were collected through the past studies with other intentions. Kim and Ham 
(2019) presented a novel geospatial localization method to address such prob-
lem using distant objects based participatory sensing. The proposed geospatial 
localization process consists of a geographic coordinate conversion, mean-shift 
clustering, deep learning-based object detection, magnetic declination adjust-
ment, line of sight equation formulation, and the Moore-Penrose generalized 
inverse method. The experiments were conducted in Houston and College Sta-
tion in Texas to evaluate the accuracy of the proposed method. The experimental 
results demonstrated a reasonable reliability with distance errors of 1.5–27.8 
m in the cases that the distance from observers to the objects of interest were 
17–296 m. AI is playing a significant role in the study that has the potential to 
enable rapid data collection over large urban areas, especially beneficial for 
disaster preparedness.

4 Extracting flood information from surveillance video 
cameras using AI

Another field that AI has enabled is extracting flood information from surveil-
lance video cameras. Video surveillance equipments, which are readily avail-
able in many cities and can record urban waterlogging processes in video form, 
have become potential data sources that flood researchers start to tap on. Bet-
ter than crowdsourcing data, video cameras can provide more reliable objec-
tive water depth information. For example, Jiang et al. (2018, 2019) invented 
an approach to extract urban waterlogging depths from video images based on 
machine learning methods and Golparvar and Wang (2020) developed a mono-
plotting based flood extent mapping scheme (Fig. 13.3). The latter study focus-
ing on the high tide flood in Newport Beach, California, showed that advanced 
computer visioon schemes can effectively map the flood extent from images 
collected through social media. The method was shown effective in mining and 
utilizing urban waterlogging depth information from video images. The low 
economic cost, good accuracy, high spatiotemporal resolution, and wide cover-
age are some of the attractive features of the proposed method.

Similarly, Moy de Vitry et al. (2019) performed a study on estimating water 
depth from surveillance camera systems. A deep convolutional neural network 
(DCNN) was employed to detect floodwater in surveillance footage and a quali-
tative flood index was developed to ensure the estimation consistent. The study 
trained the model with 1218 flooding images collected from the Internet from 
six surveillance videos. They cover a range of flooding and lighting conditions. 
The study reported a 75% correlation to the actual water level fluctuation on 
average.
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5 Progress in using AI extracted and processed data

The rise of the reviewed unconventional data sources enabled by AI provides 
a great opportunity to revolutionize the flood monitoring and prediction. How-
ever, relatively speaking, still very limited effort has been made to use the new 
data sources to improve our understanding and prediction of flood events (Mas-
key, 2019).

A recent effort in this direction by Wang et al. (2018b) is highlighted, 
who developed a new holistic framework for using information collected from 
multiple sources for setting parameters of a 2D flood model. They used a 
Cellular Automata based model CADDIES to simulate surface water flood 
inundation. Social media were used to set model parameters and investigate 
the infiltration and drainage system capacity in an urban flood environment. 
The results of processing terrain datasets indicated that the representation of 
urban micro-features is critical to the accuracy of modeling results and deeper 
study is needed to explore the best practice in using social media for flood 
modeling.

FIGURE 13.3 An example of AI-supported camera monitoring of flooding extent and depth. 
(Jiang et al., 2019).



302    SECTION | 3 Emerging Applications and Challenges

6 Summary and future research directions

This chapter uses the method of “review of the reviews” and highlights the typi-
cal studies to examine the frontier development of the application of “Big Data” 
enabled by AI. This chapter first reviews the definition of AI and then overview 
the rise of unconventional data sources including crowdsourcing data and sur-
veillance camera videos. The focus is on the application of AI that was designed 
to enable these new data sources for flood monitoring. Here a series of observa-
tions are made through this review. First, the AI application in flood monitor-
ing is very new: for example, the earliest paper for social media application in 
natural hazard is less than 10 years old; social media application in flooding is 
less than 5 years old; and the involvement of AI to enable automatic data min-
ing is even younger. This emerging field still has a great potential in the future. 
Second, AI is the key to practical use of the Big Data. Featured as the 3 “Vs”—
volume, velocity, and variety, Big Data is almost impossible to be used in flood 
modeling and prediction without AI. Third, data quality control is difficult in the 
AI-enabled big data. There is no universal or highly transferrable method in the 
field. This issue significantly prevents the scaling up of the method from places 
to places. Better AI models are still in need to improve the data quality. On the 
other hand, designing the protocol in data collection to address the data quality 
issues is still needed to improve our practice of data collection in the future.

Predicting the future is dangerous, but an outlook could at least inspire the 
future studies to focus on the important issues emerging from the literature 
(at least at the current stage). From the author’s perspective, the future studies 
should focus on the following areas to better harness the power of AI and incu-
bate a healthy and sustainable research field.

1. Finding the “niche” application of crowdsourcing data

 Data quality is still the major issue in AI related data processing. Using such 
data as the major data source to validate and understand the holistic picture 
of floods is still far from practical. Future researchers are encouraged to 
focus on particular areas that have less requirement of data quality and com-
plete coverage to sustain the interest of AI-based flood monitoring studies. 
One example is the rescue and emergency response, in which field highly 
localized and detailed information is needed and big data could play a more 
important role there.

2. Fusion and assimilation of the AI-enabled big data
 Data fusion and assimilation can combine different data sources to improve 

flood estimate and forecasting. This field is still less explored than the data 
mining field and many “lower-hanging fruits” are more likely to be in this 
direction.

3. Innovative future AI application
 AI is a fast developing field. New methods and applications are emerging 

from the community every day. Chasing the pace is not easy but if a quick 
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application of the proved methods could be established, large improvement 
of the flood monitoring field can be expected.

4. Personalized data service
 Another idea that has been discussed in the field for years is to harness the 

power of AI to provide personalized data service for the end users. AI com-
bining big data has the power to collect data from each user and customize 
the information for personal level communication. Researchers have dis-
cussed the possibilities to use this advantage to solicit better data volunteer-
ing and make better information for personal decisions (Wang et al., 2018a). 
Research following this direction may have a better chance to make an im-
pact.
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Chapter 14

The Full Potential of EO for 
Flood Applications: Managing 
Expectations

Guy J-P. Schumann
Research and Education Department, RSS-Hydro, Dudelange, Luxembourg; Remote Sensing 
Solutions, Barnstable, MA, United States; School of Geographical Sciences, University of Bristol, 
Bristol, United Kingdom; INSTAAR, University of Colorado, Boulder, CO, United States

1 Introduction

The occurrence of flooding is a natural process and in many regions of the world 
regular flooding sustains biodiversity, ecosystems, and agriculture. However, 
when rivers burst their banks at above normal conditions, flooding can pose sig-
nificant risks to people, livelihoods, exposed assets, and the environment. The 
level of impact depends on the magnitude of the event, the type of flood, and 
the degree of vulnerability of people and exposed assets. At a global level, flood 
frequency and impact seem to be increasing every year and certainly making 
the past years a flood rich period (Lane, 2009). With a possible intensification 
of the hydrological cycle (Hirmas et al., 2018), large and unprecedented events 
may become more frequent than expected One of the most notable recent disas-
ters was without a doubt Cyclone Idai in early 2019, which caused widespread, 
unprecedented flooding in Mozambique and surrounding countries (Fig. 14.1). 
Entire nations have been devastated and complete recovery from this disaster 
will hardly be possible for most people in these regions (Schumann, 2019).

Recent high-magnitude floods have covered spatial scales well beyond what 
has been observed or measured in the past and are frequently surpassing tra-
ditional regional measurement and also disaster response coverage, thus high-
lighting the need for data and monitoring coverages that can only be provided 
by remote sensing platforms (i.e., satellite and airborne sensors). Remote sens-
ing, in its true definition, is the acquisition of information about an object or 
phenomenon without making physical contact with the object, but is now more 
commonly referred to as the scanning of the Earth by satellite or high-flying 
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aircraft and therefore slowly becoming popularly synonymous with the science 
of Earth Observation (EO) (Schumann, 2017).

Remote sensing of flood event processes and variables can be beneficial to 
many sectors and activities, including flood risk mitigation planning, disaster 
relief services, global (re-)insurance markets, and research of course. However, 
the amount and quality of information available varies greatly with location, 
spatial scales, and time. Remote sensing of floods can complement ground-
based observations and be integrated with computer models of flooding for 
event re-analysis, such as demonstrated by Schumann et al. (2011) and for flood 
forecasting (see Hossain et al. (2014), e.g., using radar altimetry) in order to 
augment the amount of information available to end-users, decision-makers, 
and scientists.

However, before using remote sensing data or products for flood mapping, 
monitoring, and prediction, it is important to engage with end-users to under-
stand their needs, requirements, and their preferred timeline as well as the ap-
propriate spatial resolution of the delivered products. Based on a survey among 
hydrologists in Europe (Blyth, 1997), Fig. 14.2 shows the requirement in terms 
of spatial resolution and turnaround time for different flood management sec-
tors. For instance, flood mapping for emergency response assistance could be 
done at any spatial resolution and accuracy may be less important but data or 
products should be made available within 48 hours, preferably even within the 
first 12–24 hours, while for the insurance industry the opposite situation would 
apply; spatial resolutions finer than 10 m but timeliness might actually be less 
important.

FIGURE 14.1 Millions of people in Mozambique, Malawi, and Zimbabwe have been affected 
by Cyclone Idai. The image shown is from the Copernicus Sentinel-1 SAR satellite and shows the 
extent of flooding, depicted in red, around the port town of Beira in Mozambique on 19 March. 
(Image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO.)
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FIGURE 14.2 End-user requirements in timeliness and spatial resolution of satellite remote sensing flood products.
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This situation seems favorable, at least at first glance, as it is in line with 
the fundamental physical principle that by increasing satellite swath cover-
age thus decreasing spatial resolution, the orbital revisit time is increased. 
For flood applications, however, the situation is far from ideal since in many 
cases, research scientists and product developers do not meet end-user needs 
at all and expectations are not managed adequately, leading to a lot of frus-
tration and confusion in both camps. On the one hand, scientists most often 
lack understanding of end-user needs and on the other hand, decision-mak-
ers are oftentimes reluctant to use new data and methods in their operations 
or systems.

Nevertheless, over the past 2 decades, remote sensing has clearly been trans-
formative in the way we now understand flood processes at different scales, 
model and predict floods, and also assist flood disaster response. Success stories 
are numerous but both the science and end-user communities need to be aware 
of the fundamental limitations of remote sensing of floods and manage expecta-
tions accordingly (Schumann, 2017).

The following sections in this chapter will detail this problem and highlight 
challenges, pitfalls, and opportunities in remote sensing applications of floods, 
suggesting possible ways forward.

2 How far have we got?

The potential that optical satellite images can contribute to flood science and ap-
plications has been known for over 40 years. Several studies in the early 1970s 
demonstrated the value of optical satellite imagery to map the evolution of flood-
ing from space and indicated strong application potential for such maps for a 
number of sectors (Currey, 1977; Deutsch and Ruggles, 1978; Robinove, 1978).

The variables which both scientists and practitioners involved with flood 
risk management would like to measure or estimate during a flood event, and 
hopefully over different spatial and temporal scales, might include discharge, 
flow velocity and direction, water volume, depth and level, flooded area, and 
flood edge. Remote sensing can provide information about most of these with 
varying degrees of accuracy, however depth, discharge, and flow velocities can 
only be obtained indirectly through integration with auxiliary datasets, a hydro-
dynamic model, or gauging networks. Also, water volume and in some cases 
water level estimation requires the use of a topographic data set.

Information about floods can be obtained from a large variety of sensors. 
Among the most common are sensors operating in the visible to infrared (opti-
cal) range of the electromagnetic signal spectrum or in the microwave range. 
Radiometers that record data in the microwave range and optical sensors are pas-
sive instruments, which mean they record signals emitted by the Earth surface 
whereas synthetic aperture radar (SAR) or altimeters (LiDAR, radar) record the 
backscatter properties of the satellite-transmitted signal. The information about 
floods that can be retrieved from a satellite or airborne instruments operating in 
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the visible-to-infrared ranges depends on daylight, weather conditions (particu-
larly clouds and rain), vegetation canopy density (especially emerging flooded 
vegetation or overhanging vegetation), and the chemical composition as well 
as the turbidity of the water (e.g., water sediment loads), all of which can vary 
considerably during flood events. These limitations are considerable, and the 
situation is oftentimes further aggravated by the fact that the satellite needs to 
be passing over the flood at the right time.

Despite many non-trivial issues outlined earlier and discussed in more de-
tail in the next section, in the past 15 years, remote sensing has clearly shifted 
hydrological science and applications as well as model predictions from a data-
poor to a data-rich environment (Bates, 2004, 2012). This is also evident in the 
many engineering and scientific efforts that are currently made to further aug-
ment this data-rich environment by developing satellite missions with advanced 
sensor technology that can be utilized for addressing research and application 
needs in hydrology, such as the existing European Sentinel missions, NASA's 
recent ICESat-2 and CYGNSS missions, the upcoming NASA/CNES SWOT 
mission or new commercial missions like ICEYE, and the small satellites op-
erated by Planet Labs, Inc. Many of the existing and future satellite missions 
and airborne platforms provide rich datasets with great potential for enhanced 
monitoring, measuring, and mapping hydrological processes, including extreme 
events or defining climatological trends. The proliferation of free and open data 
from many satellites also help to improve process models and model predictions 
through machine learning approaches (Nevo et al., 2019), new data assimila-
tion techniques (Andreadis and Schumann, 2014), and parameter scaling be-
havior (Schumann et al., 2007a), and ultimately for an exploration of the ways 
in which new data sources may reduce uncertainty in hydrological predictions 
(Schumann and Domeneghetti, 2016).

Alongside data proliferation, recent advances in distributed high-perfor-
mance computing, cloud-based service infrastructure, and web application 
programming interfaces, allow unsupervised flood mapping algorithms to be 
readily and easily deployed across computing server networks and thus map 
floods across large areas (country-level or global level) with an unprecedented 
data and product latency that satisfies end-user requirements. Fig. 14.3 shows an 
example of such an unsupervised flood mapping algorithm developed for SAR 
images from ESA and other agencies missions (Hostache et al., 2012; Matgen 
et al., 2011).

In an editorial article of a special issue on remote sensing for flood monitor-
ing and management, Schumann (2015) argues that with a proliferation of free 
EO data now and in the near future, there is an obvious need to not only under-
stand the limitations and errors of the data and methods (Ticehurst et al., 2014) 
but also to develop more sophisticated data processing algorithms (Dasgupta 
et al., 2018) as well as robust frameworks for handling the many heterogeneous 
geospatial data sets (Chen et al., 2015) and for effective information manage-
ment and transfer across networks.
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FIGURE 14.3 Example illustration of a fully automated flood mapping algorithm developed by Matgen et al. (2011) at the Luxembourg Institute of Science 
and Technology (LIST). Their SAR-based flood mapping software HASARD has been developed with support from ESA.
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It is clear that many advances in remote sensing technologies and methods 
relevant to flood applications have been made in recent years but many chal-
lenges, pitfalls, and opportunities in remote sensing of floods still remain and 
need to be solved in order to allow unlocking the full potential of EO for flood 
applications.

3 Current challenges, pitfalls, and opportunities

The following sections will describe current major challenges, outline main pit-
falls, and briefly discusses potential opportunities thereof.

3.1 Challenges

Clouds. Probably one of the bigger problems in optical satellite remote sensing 
of floods is without a doubt that of frequent, persistent and large-scale cloud cov-
er (Fig. 14.4). This is particularly the case during short-lived but high-intensity 
pluvial floods (so called flash floods) and coastal floods in small- to medium-
sized catchments in temperate regions where, in general, moderate-sized floods 
may have receded before weather conditions improve (Schumann et al., 2007a). 
Indeed, it seems that in many situations, microwave sensors, especially SAR, 
are the only realistic option to monitor and map floods reliably and routinely. 
Microwave sensors present an inviting alternative as the signals can penetrate 
clouds, work independent of daylight and during adverse weather conditions. 
Nonetheless, given the high orbital repeat cycle of lower resolution optical sen-
sors, like MODIS, an automated cloud detection and masking algorithm (Foga 
et al., 2017; Griffin et al., 2003) can assist in generating a multi-day cloud-free 
composite image of a flood, such as produced by experimental NASA GSFC 

FIGURE 14.4 Typical cloudy scene from an optical satellite image during a large-scale flood 
event, particularly along coastal areas. Depicted here is an image of Mozambique where in mid-
February 2020 hundreds were impacted by heavy rains and flooding in several central provinces 
(image acquisition date: February 12, 2020). (NASA EOSDIS Worldview)
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Global Flood Mapping system (https://floodmap.modaps.eosdis.nasa.gov/). 
Also, merging of SAR and optical imagery could be potentially promising for 
surface water mapping applications (Markert et al., 2018).

Vegetation. Accurately mapping flooding beneath vegetation is for obvi-
ous reasons desirable as it allows the mapping of flooded agricultural fields, of 
abnormal wetland inundation, and of flooded recreational park land and for-
ests. However, optical satellite sensors and the side-looking nature of SAR limit 
detection of flooding beneath vegetation. Mapping flooded vegetation or wet-
lands with optical satellite imagery has been achieved with only limited success 
(DeVries et al., 2017). In the case of SAR, vegetation typically causes diffusive 
and volume scattering and at short wavelengths, most signals do not penetrate 
dense vegetation cover (Schumann and Moller 2015). At longer radar wave-
lengths (e.g., L- or P-band), however, several successful approaches have been 
developed and been demonstrated (see e.g., Hess et al. (1990) for an extensive 
review), even at shorter, more commonly used wavelengths, such as C- or X-
band (El Hajj et al., 2019; Grimaldi et al., 2020; Pierdicca et al., 2017; Plank 
et al., 2017) (Fig. 14.5). Multi-satellite data, including passive microwave, have 

FIGURE 14.5 Schematic illustrating different backscatter mechanisms typical for short 
(e.g., X/C) and long (e.g., P/L) wavelength electromagnetic signals for various surface cover 
under non-flood and flooded conditions. Grass/soil is illustrated in (A). In this, when the cover 
is “dry,” there is surface reflection at both short and long wavelengths due to the relative surface 
roughness in addition to volume backscatter from the grasses (short wavelength) and penetration 
into the soil itself (penetration will be greater at the long wavelengths). When flooded, the reflection 
becomes specular (assuming little surface roughness of the water) although emergent vegetation 
will create backscatter at the short wavelengths. For forest (B), short wavelength scatter will be 
dominated by volume scattering within the canopy and, if dense the electromagnetic energy might 
not penetrate to the surface. Longer wavelengths will scatter from branches and tree structure in 
addition to “double-bounce” surface/trunk backscatter. When inundated the “double bounce” return 
will be highly amplified. In urban regions (C) the “double-bounce” effect can tend to dominate 
at both scales, although surfaces will appear “rougher” at short wavelengths, dulling this. When 
flooded, the “double” and indeed multiple-bounce returns will be heightened significantly. (Taken 
from Schumann and Moller (2015).)

https://floodmap.modaps.eosdis.nasa.gov/


The Full Potential of EO for Flood Applications  Chapter | 14    313

also been used successfully to map global wetland inundation dynamics (Pri-
gent et al., 2012) and recent innovative approaches have looked at GNSS re-
flectometer technology to improve the mapping of flooded forests (Rodriguez-
Alvarez et al., 2019).

Urban areas. Most people and valuable assets at risk from flooding are 
located in urban areas, so it is obviously desirable to map flooding in those 
areas. However, urban areas in flood present important challenges: inadequate 
spatial resolution; high building density obstructing street view; many different 
building types and a large variety of other man-made features, which cause a 
lot of signal distortion (Fig. 14.5); obstruction by cloud cover; and mixing of 
many different land cover types that are flooded and non-flooded. In fact due to 
these challenges, at present, accurate remote sensing of urban flooding seems 
restricted either to aerial photography (Yu and Lane, 2006), dGPS-generated 
wrack marks (McMillan and Brasington, 2007; Neal et al., 2009), or the use of 
high resolution LiDAR intensity data (Hoefle et al., 2009). Some successes have 
been shown using space-borne fine resolution SAR particularly sensors like 
TerraSAR-X or COSMO-SkyMed (Chini et al., 2012; Giustarini et al., 2013; 
Mason et al., 2010). However, more fundamental research is required into un-
derstanding the complex interactions between building structure and SAR sig-
nal processing as well as noise reduction and shadow/layover effects. Parts of 
those complex issues can be solved by employing a theoretical scattering model 
(Franceschetti et al., 2003) as demonstrated by Mason et al. (2014) or by mak-
ing use of complementary SAR signal information contained in signal polariza-
tion modes or signal coherence (Chaabani et al., 2018; Chini et al., 2016), which 
has been shown recently to hold most promise for reliable operational urban 
flood mapping (Chini et al., 2019).

Flow depth, discharge, and velocity. As mentioned earlier, remote sensing 
of water depth, discharge, and flow velocities is very challenging and requires 
the use of cutting-edge technologies and thus, most of the time, these variables 
are inferred from remote sensing indirectly through integration with auxiliary 
datasets (Schumann et al., 2007b), a hydrodynamic model via assimilation (An-
dreadis et al., 2007; Andreadis and Schumann, 2014) or in-situ measurement 
stations (Straatsma, 2009). Measuring depth of clear river and coastal waters 
has been shown to be possible with green LiDAR (Kinzel et al., 2013; Zhao 
et al., 2017) but because of relatively high sediment content, flood waters are 
typically turbid and so flood depth can only really be inferred by integrating 
remotely sensed water level or extent with a high-accuracy digital elevation 
model (Cohen et al., 2019; Schumann et al., 2007b). For measuring flow veloc-
ity, image velocimetry is showing great potential, as demonstrated by Muste 
et al. (2014) for characterizing shallow free-surface flows. This technique quan-
tifies the movement of small to large particles or objects moving within illumi-
nated planes transecting the body of water—the assumption being that objects 
accurately follow the underlying flow. Obtaining discharge measurements for 
many river locations from satellites would be a game-changer. Innovative meth-
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odologies have been studied using a combination of variations in river width 
and water level measurements from remote sensing, making some assumptions 
on river cross-sectional geometry (Durand et al., 2016; Tarpanelli et al., 2015). 
Similar methodologies are planned to be employed for retrieving instantaneous 
discharge of rivers wider than 50–100 m from measurements of water surface 
slopes, water levels, and widths by the upcoming NASA/CNES Surface Water 
Ocean Topography (SWOT) satellite mission, the first satellite mission dedi-
cated to hydrology (https://swot.jpl.nasa.gov/).

Global open-access, accurate topography. It is clear that current global, 
open-access DEMs cannot resolve the detail of terrain features that control 
flooding (Schumann et al., 2014). Thus, these DEMs cannot be used to accu-
rately simulate or predict local scale processes or impacts thereof. Even after 
considerable preprocessing to remove significant biases (due to vegetation and 
other physical structures) and to reduce inherent vertical errors, publicly avail-
able global DEMs still suffer from inaccuracies oftentimes orders of magnitude 
greater than length scales of the processes that are simulated (Schumann and 
Bates, 2018). However, as argued by Schumann et al. (2014), the technologies 
and funds to create a high-accuracy, open-access, global DEM are certainly 
available but such an undertaking would require a high-level international con-
sortium and serious commitment of various sectors, including private industry; 
however, there is no doubt that the benefits of such a dataset would largely 
outweigh the costs (Schumann et al., 2016). Existing promising candidate tech-
nologies or datasets include of course existing and new airborne and drone 
LiDAR and photogrammetric DEMs, commercial high-resolution satellite 
DEMs, and recent developments in airborne single-pass interferometry (Faherty 
et al., 2020; Schumann et al., 2016).

3.2 Pitfalls

Within the major challenges described earlier, there are some pitfalls that can 
significantly limit the success for solutions or indeed make robust and reliable 
solutions difficult to develop.

For instance, the rapidly and constantly changing nature of urban landscapes 
and vegetation dynamics over different spatial and temporal scales poses a dif-
ficult problem for addressing the challenge of mapping inundation below veg-
etation canopy and in urban areas. Although characterizing and simulating or 
predicting the various signal interactions in these complex and dynamic envi-
ronments is possible and the theoretical basis of doing so is known and robust, 
practical application of the mathematical models that need to be part of the 
solution requires expert SAR signal knowledge. Therefore, at least for the mo-
ment, promising operational solutions that have been proposed for flood map-
ping from SAR under different types of vegetation or urban areas are limited 
to only a few papers as outlined in the previous section. This is particularly 
true for urban flood mapping that received only recently the attention it de-

https://swot.jpl.nasa.gov/
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serves using complex SAR signal coherence processing (Chini et al., 2019; Li 
et al., 2019a,b).

Another pitfall, fairly obvious when looking at most of the published litera-
ture on remote sensing of floods, is that of relatively little scientific innovation 
and rigor (Schumann, 2019). Nowadays, with the popular use of web applica-
tion programming interfaces or APIs for short, and the recent proliferation of 
online open-access satellite data and other valuable geospatial datasets, pro-
ducing a more or less adequate flood map from a satellite image has become a 
fairly straightforward exercise and can be realized without much effort or expert 
knowledge. However, most of the commonly applied algorithms over large spa-
tial coverage and across many types of imagery in a fully- or semi-automatic 
way are fairly dated and moreover, albeit robust and reliable, they were mostly 
developed for relatively “small” image data loads and often only demonstrated 
at case study level. Instead of faster and global processing for applications with 
less attention to scientific advances, there should be much more focus on scien-
tific innovation first, especially when the goal is rapid, automated processing at 
global level for non-expert end-users.

3.3 Opportunities

Naturally, with challenges come many opportunities. More communities, or-
ganizations, and individual end-users want readily accessible flood maps in-
stantly and with actual actionable information content that can be trusted 
(Schumann, 2018). Furthermore, many of the non-scientific or non-expert com-
munities or end-users are becoming increasingly science-aware, and so scien-
tific evaluation of products and services offered becomes almost a requirement 
in the eyes of the end-users and not only for the scientists as could be expected.

In terms of fast online data loading and processing, there is also the obvious 
opportunity of researching ways of how to use online analytics platforms, high-
performance compute engines, and machine learning-based algorithms most 
efficiently.

4 Managing expectations

We have clearly entered an era of big data and the Internet of Things (IoT), in 
which everyone and everything is connected across networks, transmitting and 
receiving quasi an overload of information. In this context, Schumann et al. 
(2018) argued that for remote sensing of floods, the grand challenge now lies in 
ensuring sustainable and interoperable use as well as optimized distribution of 
remote sensing products and services for science and end-user applications as 
well as for operational flood disaster assistance. It is obvious that without a clear 
reality check, it is difficult to manage expectations, which is needed to match 
capabilities and needs.

There is no doubt that remote sensing, in particular satellite remote sensing, 
has seen significant progress over recent year, especially over the last 2 decades. 
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Alongside this, the need and desire for geospatial datasets to inform decision-
making processes is also clearly increasing. However, in the context of flood di-
sasters for instance, in recent years, response coordination between EO product 
developers and decision-makers during flood disasters has only slowly, albeit 
steadily, improved (Schumann et al., 2018), mainly because many challenges 
still remain and technical capabilities oftentimes are not well aligned with end-
user needs. In order to address this mismatch and also the many challenges that 
exist in making EO data more readily usable and actionable in assisting flood 
management as well as flood disaster preparedness, response and resilience, the 
scientific community should seek closer collaboration with end-users (Hossain 
et al., 2016). As a result, outcomes of an effective partnership between product 
users and developers would be mutually beneficial and, at the same time, formal 
partnerships would ensure that expectations from both sides are properly man-
aged.

5 Conclusions

The ability to observe, monitor, and measure floods and associated processes 
from satellites has been known since the early launch of the first Landsat sat-
ellite in the 1970s. However, until about a decade ago, satellite images, and 
especially those depicting a flood, have been rather difficult to obtain for free to 
conduct scientific analysis. Over the last decade, with the proliferation of satel-
lite missions, largely due to the EC Copernicus Sentinel program, the increas-
ing market potential of commercial small satellites and the IoT technologies, 
satellite remote sensing of floods has come a long way. Indeed, the increase in 
the number of peer-reviewed publications in recent years bears witness to that 
progress (Schumann and Moller, 2015). The main challenge now lies in turning 
that research progress into reliable and user-friendly applications that can be 
transitioned to end-user organizations.

Many of the existing and future satellite missions and airborne platforms 
provide rich data with great potential for enhanced monitoring, measuring, and 
mapping of floods, improving hydraulic models through new data assimilation 
techniques and parameter scaling behavior, and ultimately for an exploration 
of the ways in which new data sources may reduce uncertainty in flood predic-
tions. Having said that, many challenges still lie ahead, among which the most 
important ones have been discussed in this chapter and are related to the devel-
opment of robust, sharable, and interoperable operational mapping algorithms 
that are independent of satellite and image type and can be applied in a variety 
of environments (Schumann and Moller, 2015). Some scientific studies outlined 
in this chapter have introduced algorithms that are geared toward this aim but 
more research and applied case studies are needed to ultimately demonstrate to 
decision makers that EO should be an integral part of flood management and 
disaster relief operations.
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1 Introduction

Changing hydrological conditions are occurring all over the world, owing mostly 
to phenomena of climate change that affect atmospheric and earth surface pro-
cesses. Temporal and spatial changes in rainfall have caused fundamental variation 
in surface water as well as flood events (IPCC, 2007). Losses due to all types of 
floods are not only economic (several billions of EUR every year at global level 
(Hirabayashi et al., 2013)) but also loss of lives. Responding appropriately to these 
threatening situations necessitates the use of innovative flood management tech-
niques and technologies more than ever. The main priority of any flood manage-
ment solution is to find suitable methods and models in order to manage floods bet-
ter and to prepare facing this natural hazard and risk phenomenon and minimizing 
losses (Zare and Koch, 2014). Nowadays, scientific and technological advances, 
particularly in geospatial and remote sensing (RS) techniques have enabled the ap-
plication of new tools for describing large areas affected by floods and also facili-
tating flood disaster management. The combination of these techniques and data-
driven computing tools such as machine learning (ML) and artificial intelligence 
(AI) approaches have led to increased accuracy in satellite image processing, that 
is, practical information from satellite imagery during flood events can be extract-
ed using ML and AI methods (Chen et al., 2018; Yang and Cervone, 2019). These 
methods are based on ideas how information is processed in biological systems. 
One of the advantages of such “soft” computing methods in system modeling is 
getting relatively accurate results without having well-defined nonlinear physical 
relations between variables (Nayak et al., 2013; Zare and Koch, 2018).
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RS image processing using these data driven methods can be entwined with 
two main challenges. On one hand many parameters including different image 
provider, weather condition, spatial resolution, number of spectral bands, time 
interval between two overpasses and etc., should be considered for using images 
(Quinn et al., 2018). On the other hand, finding answer to a research questions 
of “which types of ML are suitable for processing satellite image of floods?” 
is difficult because of a multitude of methods. In this context, this chapter is 
focusing on these challenges and is organized as follows. Section 2 addresses 
the early history of applications of ML/AI methods in satellite image process-
ing. Section 3 highlights the theory of recent ML methods for satellite image 
processing, more specifically the deep learning (DL) methods. Section 4 pres-
ents some illustrative case studies and the perspectives on the impacts of DL in 
satellite images processing during flood hazards studies are given in Section 5. 
Finally, the chapter concludes with Section 6.

2 Early history of methods

2.1 Application of machine learning in satellite image processing

ML is the ability of a machine to improve its performance by imitating human 
learning methods (repetition and experience) using artificial intelligence (AI) 
techniques (Mitchell, 1997; Witten and Frank, 2005). ML methods can enhance 
the computing infrastructure of data driven methods including statistics, AI, 
data mining, and pattern recognition. Therefore, it makes sense to apply it to 
solve a variety of data classification and process problems, including image seg-
mentation. In this regard, many researchers have been using ML for RS image 
processing in flood studies, mainly because of the following reasons:

•	 A satellite image is a snapshot of a land surface (Liang et al., 2013), where-
as, a flood event is taken place because of different time-dependent param-
eters (e.g., heavy rainfall). Moreover, some parameters cannot be seen in 
an image such as the effect of unsaturated zone on the generation of a flood 
event, ergo, a satellite images lacks knowledge about the whole process of 
flooding. In this situation ML uses its ability to learn by repetition.

•	 Flooding is a complex physical process (Mosavi et al., 2018), so ML can 
simplify the complexity by training a system using input/output data.

2.2 History of application in remote sensing (RS) satellite images 
for flood hazards

ML was applied for satellite image classification in flood studies. This has been 
of interest to Earth Observation (EO) researchers for a relatively long period of 
time. Typically, an ML method follows the workflow illustrated in Fig. 15.1.

Some notable ML approaches for efficient detection and classifica-
tion of flooding in remote sensing imagery are k nearest neighbors (Thakur 
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et al., 2020), decision trees (Chapi et al., 2017; Janizadeh et al., 2019; Tehrany 
et al., 2013), random forests (Chaabani et al., 2018), support vector machine 
(Bui et al., 2019; Choubin et al., 2019; Dodangeh et al., 2020), and feed forward 
neural networks (FFNN) (Badrzadeh et al., 2015; Jensen, 2016; Skakun, 2010).

2.2.1 k nearest neighbors (kNN)
k nearest neighbors (kNN) is one of the simplest unsupervised ML algorithms 
in classification problems, it is also called the laziest learning method which 
was introduced by Fix and Hodges (1951) for the first time as a non-parametric 
method for pattern classification (Fig. 15.2).

FIGURE 15.1 Machine learning standard workflow. (From Sarkar et al. (2018).)

FIGURE 15.2 Example of kNN classification.
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2.2.2 Random forests (RF)
Random forests (RF) is a classification ensemble learning algorithm that was 
introduced by Breiman (2001). It consists of multiple decision trees (DT); each 
tree has a single vote for a class (see Fig. 15.3). The most votes from all the trees 
in a forest will be selected as a final decision for assigning a class to unclassified 
data; such data could be a pixel in a satellite image for instance (Jensen, 2016; 
Rodriguez-Galiano et al., 2012).

FIGURE 15.3 Random forest workflow. (From Wang et al. (2015).)
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2.2.3 Support vector machine (SVM)
Support vector machine (SVM) might be the most popular classifier ML meth-
od that is used for processing remotely sensed data (Scheunders et al., 2018; 
Scholz, 2019). It was proposed by Boser et al. (1992). The main idea of SVM is 
to find the optimal separating hyperplane by maximizing the margin space which 
causes maximum separation between two classes (Fig. 15.4A). For this separa-
tion, the data on the boundaries of the margin—called support vectors (SV)—
play an important role in the SVM classification problem because the middle of 
the margin is the optimal solution (Diop et al., 2018; Jensen, 2016; Scheunders 
et al., 2018). As Fig. 15.4 shows, in satellite image processing studies, the input 
space has a non-linear relation with output classes, ergo, kernel functions (e.g., 
sigmoid, polynomial, and spectral angle mapper kernels) are applied to project 
the spatial features into the higher dimensional space (Jensen, 2016).

2.2.4 Feed Forward Neural Network (FFNN)
The basic concept of an artificial neural network (ANN) is derived from an anal-
ogy with the biological nervous system of the human brain and how the latter 
processes information through its millions of neurons interconnected to each 
other by synapses. Borrowing this analogy, an ANN is a massively parallel sys-
tem composed of many processing elements (neurons), where the synapses are 
actually variable weights, specifying the connections between individual neu-
rons and which are adjusted, that is, may be switched on or off during the train-
ing- or learning- phase of the ANN, similar to what happens in the biological 
brain (Heaton, 2005; Zare and Koch, 2016). Multilayer FFNN is one of the 

FIGURE 15.4 (A) Classifying objects with a SVM, (B) SVM workflow.
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most popular and most widely used ANN-models. It is also a biologically in-
spired classification algorithm and consists of a number of simple neuron-like 
processing units, organized in layers. Every unit in a layer is connected with 
all the units in the previous layer (Fig. 15.5) by weights. The latter encode the 
knowledge about the network and are estimated during the training process, dis-
cussed later. Data enters at the inputs and passes through the network, layer by 
layer, until it arrive at the outputs. During normal operation, that is, when it acts 
as a classifier, there is no feedback between layers. This is why they are called 
FFNNs. When the network-weights and -biases are initialized, the network is 
ready for training. The multilayer FFNN can be trained for nonlinear and com-
plex patterns. Essentially, the training consists mathematically of the adaptive 
computation (back-projection) of the weights between the various input- and 
output-units, by a local, or better, a global optimization method, such that some 
(squared) error- (objective) function 

E w( ) 2

between observed and ANN-predicted output is minimized (Daliakopoulos 
et al., 2005; Møller, 1993).

E(w)2

FIGURE 15.5 Architecture of FFNN with one hidden layer.
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In recent years, there has been a significant improvement in satellite image 
processing using a cutting-edge implementation of FFNN called deep learning. 
This will be described and discussed in the next section.

3 Recent methods

3.1 Deep learning (DL)

DL is a subfield of AI and ML as shown in Fig. 15.6. The notion of “deep” in 
this approach comes from a multilayer structure in learning process, and there-
fore it is not necessarily related to the deeper understanding of this methodol-
ogy for problem solving. Hence, it could be also called “layered representations 
learning” and “hierarchical representations learning” (Chollet, 2017).

Although the idea of DL was first introduced in 1993, it was not really ap-
plied for more than a decade because of the lack of data and high-performance 
computing hardware as well as popularity of other ML models at the time like 
support vector machine (SVM). However, a lot of labeled data have been col-
lecting since 2006 and, moreover, significant progress in computers and data 
training methods have been made in recent years that removed obstacles to 
apply DL methods (Fig. 15.7). In fact, more recently it has become a rather 
hot topic in image processing, specifically the convolutional neural networks 
(CNN) DL model (Chollet, 2017; Hatt et al., 2019).

FIGURE 15.6 (A) artificial intelligence (AI), machine learning (ML), and deep learning (DL); 
(B) Architecture of a DL model (Chollet, 2017).

FIGURE 15.7 History of DL.
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3.2 Application of deep learning to flood mapping

DL algorithms can classify the labeled data to make prediction for unlabeled 
ones (Bishop, 2006). For instance, when training and validating a DL algorithm 
like CNN for classifying satellite images as either flooded or non-flooded la-
beled pixels, it can be applied for classifying new unlabeled satellite images as 
either flooded or non-flooded areas (Fig. 15.8).

In flood studies, satellite imagery data are often used for identifying flood 
extent. Although optical satellite images are used for mapping of floods by 
many researchers, on numerous occasions optical satellite images are not re-
ally applicable for flood mapping because of frequent cloud cover during flood 
events as well as the problem of image acquisition during nighttime. In addi-
tion, flood events can occur outside satellite overpasses. Therefore, microwave 
wavelengths of the electro-magnetic spectrum, especially synthetic aperture 
radar (SAR) are mostly used to overcome these typical problems when using 
ML/DL algorithms in flood studies (Wagenaar et al., 2019). The most popular 
DL algorithm for satellite image classification is CNN, which is a multi-layer 
feed-forward artificial neural network comprising convolution, non-linearity, 
and pooling layers at each feature-extraction stage (Potnis et al., 2019). Flood 
mapping from SAR image processing using CNN generally consists of follow-
ing steps (Chaabani et al., 2018; Hansen and Jorgensen, 2015; Li et al., 2019; 
Skakun, 2010):

•	 SAR satellite imagery pre-processing: (1) terrain distortion should be cor-
rected using a digital elevation model (DEM) (2) exact geographic coordi-
nates of pixels (geopositioning) should be determined

FIGURE 15.8 Architecture of convolutional neural network (CNN) classifier for flood sus-
ceptibility mapping (Wang et al., 2020).
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•	 Segmentation of image: generating several feature maps are extracted by 
convolution, consequently the dimensions (Width × Height) will be reduced 
(downsampling) in pooling layer

•	 Classification: of final feature maps (learned representation), a conversion 
(e.g., linear classifier) is used to determine position/categories on the input 
map and apply it for prediction of new SAR images.

In the next section, classification of SAR satellite images of floods using ML 
methods will be described in detail using illustrative case studies.

4 Illustrative case studies

Illustrative examples/cases of techniques in ML for processing the satellite im-
ages of floods are based on outcomes of three notable research papers. It reflects 
the ability of three data driven models, namely, RF, SVM, and CNN for using 
remote sensed data to generate flood maps.

4.1 Flood mapping in Quebec, Canada

This research shows the results of assessing the flood mapping capabilities of 
SAR imagery acquired by the bistatic pair TanDEM-X/TerraSAR-X (TDX/
TSX). Chaabani et al. (2018) provided a RF method to classify different land 
cover types of flooded areas based on multi-temporal input data of TDX/TSX 
SAR intensities and their bistatic InSAR coherence on the following acquisition 
dates:

•	 May 14, 2011, during a flood event

•	 July 14, 2011, after a flood event

•	 August 29, 2012, after a flood event

Due to the lack of flood extent ground measurements during SAR data acqui-
sition, authors decided to utilize the LISFLOOD-FP hydraulic model (Neal 
et al., 2011) in order to cross evaluation the ML algorithm. For validating 
the LISFLOOD-FP model simulation, a flood map was extracted manually 
from a high-resolution GeoEye-1 optical image. The results showed very good 
agreement with an overall accuracy (OA) of 98% and a critical success index 
(CSI) of 94% between observed flood extent and model results for the May 
14, 2011 flood event. As a next step, a RF classifier was employed to catego-
rize all SAR image pixels into 10 different land cover classes during a flood 
event including flooded pixels (river, flooded agricultural zone, flooded for-
est zone, and flooded residential) and non-flooded pixels (dry agriculture, dry 
forest zone, dry urban zone, dry roads, dry grass, and buildings roofs). The 
most accurate RF model showed an OA of 79% when evaluated with the result 
of LISFLOOD-FP which was considered as a reference. As Fig. 15.9 shows, 
flood areas obtained with the RF model agree well with those simulated by the 
LISFLOOD-FP model. The authors finally concluded that the generated flood 
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extents map by remotely sensed satellite images can be applied for either ML 
data driven methods or physical models to improve their capability of flood 
simulations or predictions.

4.2 Flood susceptibility assessment in Kuala Terengganu, Malaysia

Tehrany et al. (2015) did some research on generating flood susceptibility 
maps with a SVM model. 181 flooded areas were determined by using Ter-
raSAR-X imagery of the Nov 27, 2009 flood event, this was validated by sev-
eral field surveys. The same numbers of flooded and non-flooded areas were 
chosen, that is, 362 locations consisting of flooded and non-flooded areas were 
introduced to the SVM model as input data. As expected, most of the flooded 
areas were located near rivers and flat floodplains. In order to develop a ML 
model, data were divided into two sets, wherefore the length of the training 
data set was 70% (127 flooded + 127 non-flooded cases) and test (prediction) 
data made up the remaining 30%. In the next step, the SVM model was then 
evaluated by using the spatial distribution of 10 flood condition factors in-
cluding altitude, slope, curvature, stream power index (SPI), topographic wet-
ness index (TWI), distance from the river, geology, land use/cover (LULC), 

FIGURE 15.9 (A) Chaabani et al. (2018) research paper workflow and (B) contingency maps that 
show the agreement between hydraulic model-derived flood extent and RF classified maps.
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soil, and surface runoff. These factors were introduced to the SVM model as 
complementary GIS-maps. The results indicated that the auxiliary data (in this 
case the additional factors) can improve the precision of the ML model. As 
Fig. 15.4 shows, one of the crucial elements in the structure of SVM model are 
the kernel functions. Tehrany et al. (2015) used four kernel functions, namely, 
linear (LN), polynomial (PL), radial basis functions (RBF), and sigmoid (SIG) 
functions to study the impact of changing functions on final results. The au-
thors also used the frequency ratio (FR) statistical method to show the profi-
ciency of their SVM model. Both SVM and FR models were validated by the 
area under the curve (AUC) method where a value of AUC = 1 shows a prefect 
classification. The calculated success rate of AUC for all SVM models was 
between 0.82 and 0.89 for the training phase and 0.82 and 0.85 for the test-
ing (prediction) phase, whereas the rate for the FR model was 0.72 and 0.61 
in training and testing phases, respectively. Finally, they concluded that their 
SVM model can be used as an accurate and reliable ML model for producing 
flood susceptibility maps.

4.3 Urban flood mapping in Houston, United States

Li et al. (2019) research objectives were to first study the performance of dif-
ferent SAR information on flood mapping problems applying CNN. Second, 
develop an innovative semi-supervised deep neural network framework. The 
case study focused on floods during hurricane Harvey in August 2017. Authors 
showed that flooded pixels in SAR imagery have different appearances related 
to the backscattered energy between two classes (flooded and non-flooded). 
They used five different scenarios combining several SAR information and 
found the most important information from SAR data for urban flood mapping 
to be multi temporal intensity. Merging this information with SAR coherence 
information separate the flooded and non-flooded classes more effectively in 
ML algorithms. In a subsequent step, two parallel deep CNNs were used in 
the classification process. The input data were consisting of four TerraSAR-X 
HH-polarized Stripmap datasets: one pre-flood image (August 10, 2017), one 
co-flood image (September 01, 2017), and two post-flood images (October 
26, November 17 and 28, 2017). The CNNs were connected to each other 
so that the weights of the second one (teacher model) would be updated by 
the first one (student model) in each iteration. The most innovative part of 
their research is using pseudo labeling of unlabeled sampling which updated 
the training data, hence the name of their model “active self-learning” CNN 
model or “A SL-CNN.” The workflow of A SL-CNN is shown in Fig. 15.10. 
The advantage of this self-learning model is reducing the effect of limited 
training samples. Moreover, the A SL-CNN framework is applicable not only 
to TerraSAR-X data but also to the other SAR mission data like Sentinel-1 
satellite images.
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5 Perspectives

ML and AI are very popular topics in all basic and applied science and, more 
recently, also flood management. The most recent subfield of ML and AI is 
DL, which facilitates satellite image processing for flood studies. The biggest 
challenges of ML models in Earth observation and generating flood maps are 
recognizing that one is working with extreme value data, that is, flood extents 
of two similar rainfall storms are not the same, not even for the same location. 
Everything is highly stochastic, and the second challenge is that most (if not 
all) of existing ML models are “Data-In, Model-Out,” this black box approach 
is not desirable for hydrologist because the physical relation between input and 
output are missed. To overcome the first problem, the combination of ML and 
cloud computing can be the solution. A cloud-based system can be easily used 
to manipulate a wide range of data aggregators (satellite images, digital eleva-
tion models, climate data, and infrastructure data). The collected data would be 
sent to a cloud platform instantly. In the backend, the real-time data stream and 
previous action experiences are sent to the designed DL model. In the case of a 
new flood event, which is not available in the historical dataset, the DL model 
immediately generates a new event and outputs will be updated by Internet of 
Things (IoT) event hub (Fig. 15.11). The problem of black box can be over-
come by using parallel physical modeling. In other words, the ML data-driven 

FIGURE 15.10 Active self-learning CNN (Li et al., 2019).



Satellite Images of Floods  Chapter | 15    333

methods run complementary to physical models and feed the physical model to 
calibrate involved parameters and vice versa. For example, a flood extent map 
simulated by ML uses as an input a 2D flood hazard model to calibrate a param-
eter like the SCS curve number (CN) or the runoff coefficient (C).

6 Conclusion

Currently, several ML methods are being applied to extract features from satel-
lite images for flood mapping and consequently obtain spatial distribution of 
flood risks with acceptable levels of accuracy. This chapter introduced the basic 
concepts of ML algorithms and their application in flood studies. Through the 
illustration of different notable case studies, it is becoming clear that ML tech-
niques for generating flood maps can be of great practical value for decision-
making in water resource management and disaster response; however, impor-
tant challenges remain. One of the bigger challenges is clearly that variables, 
which both scientists and practitioners involved with flood risk management, 
would like to measure or estimate during a flood event, and hopefully over dif-
ferent spatial and temporal scales, might include not only flooded area but also 
discharge, flow velocity and direction, water volume and level. Remote sensing 
can provide information about most of these with varying degrees of accuracy, 
however discharge and flow velocities can only be obtained indirectly through 
integration with a hydrodynamic model or gauging networks. Also, water vol-
ume and in some cases water level estimation requires the use of a topographic 
data set. So far, however, most studies using remote sensing data and ML ap-
proaches for floods are focusing on flooded area or extent. Future studies should 
be looking at the use of remote sensing and ML methods to estimate the many 
other flood parameters that remote sensing can inform about either directly or 
indirectly.

FIGURE 15.11 Cloud computing and deep learning.
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Chapter 16

Merged AMSR-E/AMSR-2 
and GPM Passive Microwave 
Radiometry for Measuring River 
Floods, Runoff, and Ice Cover

G. Robert Brakenridgea, Son. V. Nghiemb and Zsofia Kuglerc

aCSDMS, INSTAAR, University of Colorado, Boulder, CO, United States; bJet Propulsion 
Laboratory, California Institute of Technology, Pasadena, CA, United States; cBudapest University 
of Technology and Economics, Budapest, Hungary

1 Introduction

Because of their importance to local economies, river flows have long been 
measured on the ground: at gauging stations (Fekete and Vorosmarty, 2007). 
However, the discharge data are not freely shared among all nations, and each 
station requires a sustained investment of personnel time, even after installation, 
in order to continually maintain and update the calibration to discharge. Also, 
and even though many river basins are transnational, efforts to compile data 
internationally must include data of varying quality and temporal and spatial 
coverage. This type of water data is regarded by some nations as state secrets; 
in other parts of the world, data collection is reduced due to funding issues (Shi-
klomanov et al., 2002). At some locations, flow observations have never been 
initiated (Fig. 16.1). As a result, the flow hydrology measurement needs and 
how they may be addressed are active topics of discussion in the hydrological 
community (Fekete et al., 2015; Famiglietti et al., 2015).

Accurate hydrological modeling also depends critically on improvements 
to the observational data: “processing more of the same poor quality data will 
only lead to poorer quality model results” (Fekete et al., 2016). Satellite-based 
measurements of the Earth’s water cycle are therefore central to better un-
derstanding surface water fluxes and to modeling thereof (Pekel et al., 2016); 
as well as for understanding flood risk (Brakenridge, 2018). These observa-
tions are required for more efficient water resources management, and for bet-
ter prediction of and responses to floods and droughts (Alsdorf et al., 2003,  
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FIGURE 16.1 River discharge gauging stations with records collected at the Global Runoff Data Center (GRDC). Only dark blue stations are currently active; 
others are discontinued. Primarily monthly (only) data are available from GRDC; the shared archives of daily data are much more limited. Coverage by any data is 
sparse in portions of South America, some areas of Africa, and much of Asia (GRDC, 2010).
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Brakenridge et al., 2016). Observational work using advanced technology on 
atmospheric components of the water cycle has made rapid progress: with the 
advent of satellite precipitation and also groundwater storage measurements at 
continental to global scales. Thus, the fluxes of water to and from the Earth’s 
surface and its atmosphere are, increasingly, being directly measured. Now, an-
other critical component of the cycle, water surface runoff (in mm) and river 
discharge (in m3/s), is beginning to be measured via remote sensing. The two 
are similar measurements: discharge is converted to runoff by use of the contrib-
uting drainage area. We address here one method to accomplish direct measure-
ments of river flow variation (discharge and runoff).

2 Definition of discharge and runoff

River and stream watersheds are defined in map view by the surface drainage 
network. During times of no precipitation or snowmelt, watersheds generate riv-
er base flow from groundwater discharge. The visible rivers, lakes, and wetlands 
in a watershed are the surface water expression of that ground water system. 
Also, during and after precipitation events or periods of snowmelt, higher run-
off and discharge are achieved for various lengths of time (referred to as storm 
or flood hydrographs). Discharge (Eq. 16.1) is the volume of channeled water 
moving pass a measurement site along a river, and is expressed as

Q wdv= (16.1)

where Q is discharge in m3/s, w and d are flow width and depth, respectively, 
in m, and v is flow velocity in m/s. This simple flow continuity equation when 
applied to rivers includes abundant further complexity, because river channels 
are rarely rectangular, and each width increment across an actual flowing river 
includes a particular average depth and velocity.

Discharge is commonly measured on the ground via continuous river level 
(stage) recording, and then calibrated to discharge by intermittent sampling of 
the cross-sectional flow area and flow velocity. Current velocity meters are low-
ered into the river, and maximum depths and velocities (at different measure-
ment depths in the flow column) are obtained in a series of measurements across 
the river. Intermittent measurements of Q by such field measurements of flow 
cross sectional area and velocity provide information about Q at different stage, 
as measured in the field at a permanent location. The relation between Q and 
stage is known as a rating curve, and it must be revised over time as channel 
dimensions, and thus the actual empirical relation, change. However, once the 
rating curves are established, instantaneous discharge is commonly measured 
(in many nations) to ±20% using only the stage value.

Runoff is essentially the same discharge information, but adjusted to wa-
tershed area and particular time intervals. Thus, an average discharge in m3/s 
measured for the day, via stage, can be immediately transformed to total daily 
water volume/day using the total number of seconds in a day. This daily volume 

Q=wdv
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is usefully recast to daily runoff by dividing volume by total upstream drainage 
area.

R 86400 Q / A= × (16.2)

where R is runoff in mm/day, Q is discharge converted to mm3/s, and A is con-
tributing watershed area, in mm2.

Among the uses of this conversion from Q to R is that R is directly compa-
rable to other relevant measurements or model results for watershed land sur-
faces, such as total millimeter of daily rainfall or evapotranspiration. Note that 
these units are conventionally used in hydrology, rather than the International 
System of Units.

3 Temporal sampling requirements

In the latter part of the 20th century, it was widely believed in the remote sens-
ing/Earth Science community that discharge and runoff could not be directly 
measured from orbital platforms, but must instead be either modeled, or mea-
sured on the ground. There are two reasons for this:

1. Flow velocity is critical in any direct measurements of discharge (per equa-
tion 1), and, so far, there are only very experimental techniques of retrieving 
even surface flow velocities. Direct measurements of cross-sectional flow 
velocities from satellite remote sensing are not available at all.

2. Although, in principle, accurate river stages can be measured via satellite 
altimetry, discharge along many rivers can vary by an order of magnitude 
over time scales of only several days or even several hours (Fig. 16.2). An 
altimetric satellite system capable of retrieving stages on a global basis at 
this temporal resolution is difficult to accomplish. Like precipitation, runoff 
can be a very dynamic phenomenon, and difficult to adequately characterize 
unless revisits of at least daily can be attained. In addition, satellite altimetry 
is an along-track, nadir directional profiling tool that allows stage measure-
ments only where the satellites ground track crosses the river channel: which 
imposes a significant spatially limitation to measurements.

In this regard, NASA’s upcoming Surface Water and Ocean Topography 
Mission (SWOT) will offer, for the planned mission duration of ~3 years, river 
stage data at many locations across the world on a relatively coarse time step 
(weekly or twice-weekly, depending on latitude), but with a high precision of 
better than several centimeters. A major use of such data will be calibration of 
hydrological models which produce river stage and slope results along exten-
sive drainage networks or even globally (Pavelsky et al., 2014). The calibrated 
models can then, in turn, be driven with daily climatology to predict river dis-
charge and runoff at daily time steps. SWOT will be the first altimetry mission 
designed to monitor discharge and runoff changes, but its temporal sampling 
and limited mission duration constrain its utility for sustained observations.

R=86400×Q/A
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Our work demonstrates that satellite microwave radiometry technology has 
the complementary ability to measure discharge and runoff with the advantage 
of a daily record extending back to at least 1998, and continuing indefinitely 
into the future, for as long as satellites such as GCOM-W, GPM, and follow-
on’s continue operating. The radiometry method does require accurate cali-
brations, which can be provided by river gauging, or in the future by SWOT 
measurements, thereby extending the value of SWOT backward in time before 
the SWOT launch and forward beyond the SWOT lifetime. Where there is no 
river gauge or SWOT coverage, the calibration can be accomplished by using 
a hydrology model such as the Water Balance Model (WBM) to estimate river 
discharge within the limit of model uncertainties (Brakenridge et al., 2012; Co-
hen et al., 2011). It should be noted that many of the world’s in situ “gauging 
stations” monitor only stage and are also not calibrated to discharge: yet even 
such uncalibrated information provides useful monitoring, including relative 
flood magnitudes and durations, flow seasonality, and present flow status rela-
tive to a mean.

4 Potential of microwave radiometry

Satellite microwave satellites such as the Japanese Space Agency’s GCOM-
W and NASA’s GPM provide global coverage of the radiation emitted from 
the Earth’s land surface on a daily basis and, at certain wavelengths, without  

FIGURE 16.2 Portion of the gauging station discharge record for the Trinity River, Texas. 
In late September 2016, discharge rose from ~1000 ft3/s to ~ 5000 ft3/s in 3 days. In August of the 
same year, an order of magnitude increase occurred in 8 days.
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major interference from cloud cover. Using a strategy first developed for wide-
area optical sensors (Brakenridge et al., 2005), these sensors (e.g., AMSR-E, 
AMSR-2, TRMM/TMI, and GPM/GMI) can monitor river discharge changes 
via the accompanying changes in reach surface water extent. As rivers rise and 
discharge increases, water area within “satellite gauging sites” (selected parcels 
of floodplain land measuring approximately 10 km x 10 km; Figs. 16.3–16.5) 
also increases (Brakenridge et al., 2005, 2007, 2012; Van Dijk et al., 2016). 
Because at some frequencies the emission from water is much less than from 
land (even very wet land), the proportion of water and land within each pixel in 
a microwave image can be sensitively monitored by measuring the bulk or total 
emission.

The specific measurement parcels are selected from globally gridded mi-
crowave products whose pixels are at roughly 10 km spatial scale. A ~37-GHz 

FIGURE 16.3 Footprint of a ~10 km measurement pixel from a daily global gridded micro-
wave product produced at the JRC (Joint Research Centre, European Commission). This pixel 
is a measurement site for monitoring discharge changes along the Wabash River, southern Indiana, 
United States.
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image pixel of these dimensions centered over a river is commonly “mixed;” it 
includes both water (low emission), and land (much higher emission). As the 
proportion of water area rises, the bulk emitted radiation declines. The micro-
wave signal is thereby sensitive to flow width changes (Fig. 16.6).

FIGURE 16.4 A meander bend covered by the measurement pixel showing the opportunity 
for flow area expansion onto the point bars and floodplain as stage and discharge increase.

FIGURE 16.5 View of a typical river meander, showing the point bar (inside of meander 
bend) and steeper cut bank (outside of bend). As flow increases, flow width and measurement 
site water area increase. This is the Brazos River below Possum Kingdom Lake, Texas. This image 
is courtesy of HuecoBear via Wikimedia Commons, https://commons.wikimedia.org.

https://commons.wikimedia.org/
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For in-situ river gauging stations, transformation of the remote sensing sig-
nal to river discharge values must be accomplished using a rating equation. For 
an automated online satellite-based system (River Watch; http://floodobserva-
tory.colorado.edu/Discharge Access.html), this is accomplished by runs of a 
global runoff model (Brakenridge et al., 2012; Cohen et al., 2011). Five years 
(2003–07) provide abundant model output for calibration.

The model produces daily discharge values for these years at each measure-
ment site and daily maximum, mean and minimum values for each month of the 
5-year period can be used (model global grid resolution is also 10 km). A rating 
curve equation then is constructed from the set of 180 daily discharge/remote 
sensing pairs (Fig. 16.7). Commonly, a linear or a second-order polynomial 
equation provides an acceptable fit. As is the case for in situ stage/discharge 
rating equations or curves, the relations are entirely empirical. The use of only 
5 years of comparison of model to remote sensing is less than ideal (the rare 
very large flows may not be included); future work could compare longer time 
series.

The potential for remote sensing of streamflow is demonstrated in Figs. 16.6 
and 16.7 (daily values) and 16.8 (monthly runoff). The use of in situ data pro-
vides the most accurate rating equation, but even the model-derived curve, 
though exhibiting a different slope, allows for useful results without the need for 
data from the ground. The model predictive strength is assessed by Nash-Sut-
cliffe (N-S) statistics (Nash and Sutcliffe, 1970), discussed in a section below.

Significant scatter is expected in the model and remote sensing plots of daily 
values, as both model and remote sensing errors are included. In this regard, 
global scale modeling may perform poorly at some sites in simulating daily 

FIGURE 16.6 In situ gauging station discharge (vertical axis is river discharge in m3/s) can 
be compared with the satellite water flow area signal for co-located measurement sites/gaug-
ing stations in the United States. In this example for River Watch site 446, Trinity River, Texas, 
the two independent time series of station data (blue line) and remote sensing (black) are shown 
for a portion of the 1998-present period of record. The satellite-based flow area measurements have 
been first transformed to discharge values using an empirical regression equation such as shown in 
Fig. 16.7.

http://floodobservatory.colorado.edu/Discharge%20Access.html
http://floodobservatory.colorado.edu/Discharge%20Access.html
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discharge changes, even while the remote sensing is tracking actual discharge 
and runoff changes very well (Fig. 16.8). Or the site may be poorly located and 
the remote sensing signal itself not be very sensitive to discharge changes (e.g., 
rivers within narrow mountain valleys). However, in many cases, at sites where 
discharge causes significant changes in surface water area, there is a strong 
correlation between modeled discharge and the remote sensing signal: both are 
independently tracking actual discharge changes (Figs. 16.9 and 16.10).

For most River Watch sites at present, there is no comparison to in situ data, 
and if the WBM model exhibits bias, this will be reflected in the rating curve 
and in the satellite-based daily discharge values. However, we stress that the 
observed model and remote sensing scatter in plots such as Fig. 16.9 does not 

FIGURE 16.7 Two rating equations for site #460, Trinity River, Texas. The WBM model re-
sults are shown as black crosses, and, as expected, exhibit a large amount of scatter compared with 
the remote sensing. The scatter is expected in this case because the river includes control structures 
that are not part of the WBM model. The in situ gauging station discharges are more highly cor-
related to the remote sensing.

FIGURE 16.8 Satellite observation (x-axis) of Trinity River monthly runoff (mm) at River 
Watch site #460, compared to runoff (y-axis, mm) measured at the local gauging station.
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necessarily represent errors in microwave signal or limits to the accuracy of the 
method, but instead is induced by model errors, including due to man-made 
structures (dams, levees, etc.) unaccounted in the model. This is the case for 
a number of rivers monitored by in situ gauging stations in the United States 
(Fig. 16.7).

We have obtained hundreds of rating curves, globally, similar to that in 
Fig. 16.9; but more work remains in order to improve the results: (1) the straight 
line rating illustrated in Fig. 16.9 is a simplistic fit to the data, (2) the amount of 
scatter appears to decrease with increasing discharge, and (3) attempts to cal-
culate a daily confidence interval or error limits for daily values must thus con-
sider that these will vary for low flow and high flow states (Figs. 16.8 and 16.9).

5 River Watch data processing

Data from River Watch version 3 and higher (Fig. 16.11) are available online, 
derived from the NASA/Japanese Space Agency Advanced Scanning Micro-
wave Radiometer AMSR-E Ka-band at 36.5 GHz, the NASA/Japanese Space 
Agency TRMM Ka-band 37 GHz channel, and 37 GHz information from the 
AMSR-2 and GPM sensors. The discharge estimator (the remote sensing sig-
nal) is the ratio of the daily calibrating value (“C”) that represent the 95th per-
centile of the day’s driest (brightest) emissivity within a 9 pixel × 9 pixel array 
surrounding the site, and “M,” the emissivity from a measurement pixel cen-
tered over the river and its floodplain. The 95th percentile is used instead of the 
hottest pixel to exclude outliers due to measurement noise. Explanation of why 
this ratio, instead of simply the M pixel radiance value, is used is below.

FIGURE 16.9 Scatter plot comparing WBM-modeled daily discharge over a 5-year period 
(January–December monthly daily maximum, minimum, and mean discharges) to the remote 
sensing for River Watch site #30 along the Ayeyarwady River, Myanmar. Although a better 
curve could be fit to these data, a straight line is a useful first-approximation rating equation. Some 
of the scatter is likely due to model errors.
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FIGURE 16.10 Same data as in Fig. 16.9 arranged as 5 year time series of maximum (left) mean (middle), and minimum (right) discharge values. The red 
line shows the model results and the blue line is the remote sensing transformed by the rating equation in Fig. 16.9.



348    SECTION | 3 Emerging Applications and Challenges

Passive microwave signatures measured by a radiometer over a target area 
are related to the product (T × eH) of the physical temperature T and surface 
emissivity eH for the horizontal polarization H (Brakenridge et al., 2012; Ng-
hiem et al., 2012). Thus, the signatures at both the calibration target C and the 
measurement target M vary with the land surface temperature that drives the 
seasonal rhythm of the landscape. Unlike the polarization ratio or gradient ratio 
traditionally used in passive microwave remote sensing, the C/M ratio approxi-
mately cancels out the physical temperature while maintaining a high sensitiv-
ity to the surface water change conveyed in the measurement pixel emissivity 
(Brakenridge et al., 2007).

The sites within reach of TRMM (between 50° N and S) begin in January 
1998; they add AMSR-E data when such became available in mid-2002 (the 
data are merged); continue using TRMM-only during the AMSR hiatus in 2012 
and early 2013 (between AMSR-E and AMSR-2); and then extend to today 
using merged AMSR-2 and GPM. The record at higher latitude sites begins 
in mid-2002 (following launch of AMSR-E), and there is a gap in 2012–2013 
between the termination of AMSR-E and initiation of AMSR-2 because no data 
was collected at these locations for this interval (Fig. 16.12). The gridding algo-
rithm to produce the global daily images is accomplished at the JRC; the origi-
nal data are near real time swath information from each sensor. A JRC Technical 
Report provides further information (De Groeve et al., 2015).

JRC produces a daily global grid at 10 km (near the equator) pixel resolu-
tion and provides daily ratio data for fixed pixels within that 4000 × 2000 pixel 
grid. Where data from more than one sensor are available, the merged gridded 
product uses all (De Groeve et al., 2015). At lower latitudes, the coverage is less 
than daily from AMSR-E and AMSR-2: River Watch Version 3.4 uses a forward 
moving 4-day running mean to avoid such data gaps and because river discharge 
exhibits strong temporal autocorrelation.

At the Flood Observatory (see link in Fig. 16.11), the ratio data from the 
JRC are ingested once each day, and the html displays for each site are updated 
and added to the Observatory web site at 14:30 local time in Denver, Colorado, 
United States. Each site outputs two html pages: one providing plots of the 
results but also some tabular data, the second, “data” html provides the rating 
curve and access to the complete record of satellite-measured discharge. For 
comparison purposes, a reference 20th percentile of the measured discharge 
for each day of the year, 2000–2010 is also calculated and provides a useful 
seasonally-adjusted low flow threshold. See individual site plots and data acces-
sible from the (Fig. 16.11) online portal.

The River Watch approach to measuring river discharge is novel in that mi-
crowave sensors designed to monitor other aspects of the hydrologic cycle are 
here employed to measure river discharge changes and watershed runoff on the 
ground. Thus, in order to observe atmospheric conditions, such as precipitation, 
ground-sensing channels were included on AMSR, TRMM, and now GPM: 
these provide the background component of upwelling microwave radiation 
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FIGURE 16.11 Status of River Watch version 3 online satellite gauging sites. Yellow dots for low flow, blue dots for normal flow, and purple (recurrence inter-
val >1.5 y) and red (recurrence interval > 5 y) dots for moderate and severe flooding. Display is updated daily (Status: August 15, 2020). (https://floodobservatory.
colorado.edu/DischargeAccess.html).

https://floodobservatory.colorado.edu/DischargeAccess.html
https://floodobservatory.colorado.edu/DischargeAccess.html


350    SECTION | 3 Emerging Applications and Challenges

against which precipitation can be observed via other microwave frequencies. 
River Watch uses the Ka-band channel to alleviate severe atmospheric effects 
compared to higher-frequency data while retaining a better spatial resolution 
compared to lower-frequency data.

6 Discharge measurement accuracy

Several studies examine the impact of various ground characteristics on the accu-
racy of this microwave radiometry approach (Revilla-Romero et al., 2014, 2015). 
As would be expected, there are locations where the method does not work well: 
(1) narrow straight, steep-gradient rivers where flow area expansion accommo-
dates much less discharge variability than does velocity and depth, (2) channels 
with artificial levees that constrain all but rare floods from expanding onto the 
floodplain, (3) rivers with heavily vegetated floodplains where tree canopies 
obscure the signal variation as flow area expands, (4) ice-covered rivers, when 
ice cover is present (see next section), and (5) rivers in humid climate zones like 
tropical, subtropical, or monsoon climate where the potentially high atmospher-
ic water vapor affects the flow observation quality. However, coupled with these 
constraints is the advantage that even small rivers (especially meandering riv-
ers) can be reliably monitored, provided that the gauging site chosen allows for 
flow expansion into channel/lower floodplain features. These include in-channel 
and side-channel bars, point bars (Fig. 16.5), small tributary mouths, and nega-
tive floodplain relief (Lewin and Ashworth, 2014). Braided rivers can also be 
measured through this approach, as these rivers strongly respond to discharge 
changes though flow area expansions and contractions. Also, rivers with steep 
banks and large channels that contain sandbars and islands can be effectively 
monitored as flow rises and these features are submerged, even while in situ 
gauging methods may become inaccurate due to complex in-channel bathym-
etry and topography that changes. Channel cross-sectional area at a gauging 

FIGURE 16.12 Temporal coverage, 1998 to present, of passive microwave sensors built and 
operated by NASA and by JAXA (Japanese Space Agency). Each satellite provides daily or near-
daily imaging. (From De Groeve et al., 2015.)
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station is subject to excavation and aggradation even within a flood event; these 
local changes are expected to have a less severe effect on rating curves when, 
instead, a 10-km long parcel of river and floodplain is used to monitor discharge 
passing through the reach.

The combined remote sensing and model output also allow assessments of 
the signal/noise characteristics and the model/remote sensing agreement exhib-
ited by each gauging site (Table 16.1). As for in situ gauging stations, there is 
no expectation that each site records discharge changes with equal precision 
and accuracy. The signal range statistic records the total measured variability 
of the satellite discharge-estimator signal; larger values indicate that the remote 
sensing signal is more sensitive to discharge variation. The noise statistic refers 
to the average signal variability, day to day: larger values indicate more non-
hydrologic noise as even small rivers commonly do not vary greatly, on the av-
erage, between sequential days. Also, comparison to the model results provides 
useful information aside from the rating curve: the r2 values shown in Table 16.1 
are the coefficient of determination of the remote sensing for the independent 
WBM modeling discharge results (over 5 years, 2003–07). If the remote sens-
ing is first calibrated to discharge values by the rating equation, these values are 
identical to those calculated via the N-S equation (Nash and Sutcliffe, 1970).

The N-S statistic is often used to measure the predictive strength of hydro-
logical models for actual measured discharge. In the present case, these values, 
for the global River Watch array, evaluate the predictive strength of the remote 
sensing as compared to the WBM global model results. This method commonly 
produces N-S values from 0.60 to 0.85. Also, as shown in Fig. 16.6, N-S and 
least squares coefficients of determination are sometimes much higher when the 
remote sensing is compared to in situ measured discharge rather than modeled 
discharge: the modeling is less accurate than the remote sensing.

TABLE 16.1 Sample of microwave discharge (River Watch) measurement 
statistics at different sites along the Chindwin (108 and 23) and Ayeyarwady 
(26, 29, 30) rivers in Myanmar.

Site S/M Rangea Rangeb S/N r2

108 VG 0.11 21 G 0.66

23 G 0.08 26 F 0.57

26 VG 0.09 17 F 0.67

29 G 0.12 36 F 0.57

30 VG 0.20 35 VG 0.70

Sites with high r2 signal/model, “S/M” coefficient values suggest that both remote sensing and 
modeling are correlated and tracking actual discharge changes. Sites with larger signal range (a) 
and signal to noise (S/N) produce more stable daily values with smaller daily errors. Rangeb are 
discharge ranges between maximums and minimums observed in 103 m3/s. F, G, VG, and E criteria 
are described in text.
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These descriptive statistics allow useful summary assessments of relative 
measurement site utility. Thus, a somewhat arbitrary but still meaningful rank-
ing of how the gauging sites perform as compared to the model runs is as fol-
lows: r2 > 0.8, Excellent; >0.7, Very Good; >0.6, Good; >0.44, Fair; <0.44, 
Poor. Also, the S/N for all sites in the array can be assigned a ranking, as fol-
lows: >20, Excellent; >15, Very Good; >10, Good; >5, Fair; <5, Poor. Note 
that, in some cases, especially along large rivers, the n = 180 model output, 
such as illustrated in Fig. 16.10, when compared to the equivalent time series 
of remote sensing signal, is apparently offset by one unit forward or backward 
in time, suggesting that the model routes the flow too quickly or too slowly to 
the measurement site. In this case, because the purpose of the modeling is to 
develop a rating curve, shifting the model output to match the remote sensing 
is appropriate and greatly improves the N-S and coefficient of determination 
statistics (e.g., from initial values such as 0.3 to shifted values of 0.7). This situ-
ation demonstrates the potential usefulness of the remote sensing information in 
the calibration of hydrological model water routing formulae and coefficients.

7 Detection of river ice cover and spring flooding

The initiation and removal of river ice cover can also be detected via microwave 
C/M information and has clear relevance to flooding. Because the permittivity at 
microwave frequencies changes strongly between the liquid phase (water) and 
solid phase (ice) (Nghiem et al., 2012; Kong, 2008), the C/M ratio changes from 
>1 to <1 when a river changes from a liquid to solid remote sensing target, with 
the river permittivity magnitude switching from being larger to being smaller 
than that of soil as the river freezes up. This was demonstrated for the Lena and 
other rivers (Brakenridge et al., 2007; Kugler et al., 2010).

Fig. 16.13 shows, from an earlier version of River Watch, the independent 
microwave signals obtained from a measurement pixel centered over an Arctic 
river valley (River Watch site #100158, northern Pechora River, Russia) and 
from a pixel from adjacent land outside of the river valley. Fig. 16.14 illustrates 
only the ratio data from the same site, for years 2014 and 2015, as transformed 
via a WBM-based rating equation and a filter applied to screen the ice-covered 
intervals. The filter automatically detects the dates in the spring and fall when 
the C/M data show minimum values, prior to the sharp rise as ice cover dis-
sipates, and also just prior to re-establishment of ice and matching C and M in 
the fall.

In temporal and spatial detail along river valleys, ice-break up and establish-
ment can be complex. Ice jams may form and temporarily dam flow: producing 
backwater effects and disturbing the rating equation’s validity (but the flooding 
is directly observed in any case). These processes can be examined in detail 
using optical sensors such as the NASA Moderate Resolution Imaging Spectro-
radiometer (MODIS) in clear-sky conditions, but we use such data here to pro-
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FIGURE 16.14 River Watch output for site #100158 showing two annual hydrographs, and 
the ratio signal prior to filtering (brown line) and after filtering (brown line underlain by black 
shading). Also shown is the 20th percentile discharge for each day used to identify unusually low 
flow or drought conditions (green line).

FIGURE 16.13 Brightness temperatures (digitized radiance values, vertical axis) measured 
by AMSR-2 for 2 years over River Watch site #100158 on the Pechora River, Arctic Russia. 
The (lower) blue line, M, shows data from the measurement pixel, over the river; the green line, C, is 
from a near-by comparison pixel outside of the river valley. Transition to ice-free conditions occurs 
in latest May/early June (sharp drop in blue line); full ice cover is established by late December (the 
lines diverge, then, as ice cover is established, merge). The C/M ratio provides the discharge signal 
during the period without ice cover. Early summer high discharge progressively decreases during 
the mainly dry high Arctic summer.
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vide a sample validation of the microwave results. Shown in Fig. 16.15 are four 
MODIS scenes over this river reach during the 2014 spring and summer. They 
can be compared to the microwave signal independently obtained (Fig. 16.14).

River Watch (versions 3.4 to the current 3.8) uses source data processed at 
the Joint Research Centre that is provided only as C/M ratio information. Thus, 

FIGURE 16.15 Four sample scenes from optical (MODIS bands 1,2,7) imaging of the Pecho-
ra River location used to provide confirmation of the timing of spring ice-out and the follow-
ing discharge changes. Compare with Fig. 16.14. Top left: May 4, 2014. Top right: May 14. Bot-
tom left: May 16. Bottom right: June 17. According to these images, ice cover was fully in place still 
on May 4, but break-up was underway by May 14 (there is significant haze and cloud obscuration 
in this scene). Already by May 16, the flow area and discharge had greatly expanded: the “spring 
freshet” was underway. By June 17, the spring flood was declining into the lower discharge values 
that would prevail for the rest of the summer.
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the ice cover filter must detect ice-covered time periods using only the ratios. 
We locate the transition point in each season by determining the minimum ratio 
value within spring and autumn; the system then computes discharge values 
only between the times of these signal minimums. A constant sub-ice flow is 
estimated for the period of ice cover and from the modeling results. Fig. 16.16 
provides the monthly runoff time series at the Pechora River site; Fig. 16.17 
shows the annual runoff values and changes in the ice-free season for each year. 
There is utility in maintaining such observations into the future for attempts to 
understand and monitor climate change in the Arctic. In this regard, excessive 
terrestrial heat flux into the Arctic Ocean via river discharge can impact sea ice 
retreat processes (Yang et al., 2015; Nghiem et al., 2014). As well, the seasonal 
timing of ice break-up controls spring flooding, and is itself likely to be respon-
sive to climate change.

FIGURE 16.16 Monthly runoff for the Pechora River gauging site, showing low runoff 
amounts for 2010 but higher peak monthly runoff amounts for 2008 instead of 2007 (compare 
with Fig. 16.17). 2008 had a larger initial spring flood, but high discharge was sustained for a longer 
period through summer 2007. These data could also be used to determine if unusually long seasons 
were caused by early ice release, late establishment of ice cover, or both.

FIGURE 16.17 Total annual runoff at the Pechora River Watch site, upstream watershed 
area of 247,665 km2 (left) and number of ice-free days (right), both expressed as percent of 
the mean. The year 2010 experienced an unusually long ice-free season, and also unusually low 
annual runoff. The year 2007 had unusually large total annual runoff during an ice-free season of 
normal length.
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The spatial distribution of ice break-up events over Arctic rivers may help to 
characterize the effects of climate change on continental river ice cover and its 
duration; it also has implications for flood hazard in many high latitude com-
munities situated along rivers. The lack of in situ hydrological measurements 
in these remote regions in harsh environments makes the use of satellite data a 
key technique to obtain basic information regarding river flow regime and flood 
history. Positioning microwave satellite measurement pixels every 50 km along 
Arctic rivers allows observations of river ice changes not only through time 
but also geospatially. From upstream to downstream, the melting in spring can 
thereby be monitored.

For example, and for the River Ob in western Siberia, Russia, Fig. 16.18 
shows that the timing of the ice break up is not gradually changing from earlier 
dates at upstream (lower latitude) to later dates downstream (higher latitude). In 
2004, regions on higher latitude were affected by above average temperatures 
in spring. For this reason, sites between 62° and 65° N were observed to have 
earlier ice melting during the spring. Thus, close monitoring of Arctic rivers en-
ables an identification of locations where floating ice may accumulate and pose 
a threat of severe ice-jam flooding (e.g., on the River Tom, a tributary of the Ob 
River Zemtsov et al., 2014).

The location of river control structures can also change the timing of river 
ice melting in spring or freezing in late autumn or winter. This is the case above 

FIGURE 16.18 Ice break up times in 2004 derived from AMSR-E observations set every 
50 km along the Ob River, Russia. Ice break-up times do not gradually vary from upstream to 
downstream.
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Novosibirsk on the River Ob where the 200-km long, ~17-km wide Novosibirsk 
Reservoir (often called Ob Sea) alters the duration of ice-free periods. In the 
year 2004 and also in subsequent years, AMSR-E observed a delayed melting of 
the ice cover at the upstream end of the reservoir nearer to the dam (Fig. 16.19). 
This delay is due to wider and deeper bathymetry of the upstream part of the 
reservoir. AMSR-E observations confirm the results of hydrothermal simulation 
which outputs seasonal water temperature conditions in the reservoir (Kravtch-
enko et al., 2019). The temperature distribution in May shows a more intense 
melting of the ice in the shallower upstream part in the south and a later warm-
ing of the deeper part of the reservoir in the north.

8 Summary and conclusion

Passive microwave radiometry has a surprising power to monitor river discharge 
changes at an appropriate temporal sampling interval and with considerable ac-
curacy over multiple decades and continuing into the future. This capability 
was unanticipated as the TMI, AMSR-E, AMSR-2, and GMI sensors aboard 
TRMM, AQUA, GCOM-W, and GPM satellites, respectively, were being de-
signed. Yet such measurements are crucial to understanding the magnitudes of 
river floods, and to improving the estimation of future flood risk. Also, because 

FIGURE 16.19 Ice break up times derived from AMSR-E observations over the Novosibirsk 
Reservoir (Ob River), Russia in 2004. Ice break up times shift to later dates near the dam (Sites 
13423, 13407) in the wider and deeper waterbody of the Ob Reservoir compared to the narrower 
upstream parts (Sites 13396 to 13365).
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of the continued maintenance of the pre-1998 Ka-band microwave records in 
data archives, and new processing techniques, the way is open for extending 
consistent river discharge and watershed runoff observational records back in 
time by at least another decade (Paget et al., 2016). The demonstrated capabil-
ity can be incorporated into future missions, such as the Copernicus Imaging 
Microwave Radiometer (CIMR) with radiometers from L to Ka bands provid-
ing observations out to 2040. As is the case also for precipitation observations, 
the identification of floods (anomalies) along rivers requires a long time series, 
so that unusual events can be distinguished from normal seasonal variability. 
The orbital microwave sensors are ideally configured to provide such, and also 
because high spatial resolution is not essential and cloud cover interference is 
relatively small.

This chapter notes several areas where current methodology is less than 
ideal, and more sophisticated methods of analysis could be employed. For ex-
ample, signal to discharge rating curves are empirical in character, and could 
instead be created via adaptive regression methods that allow the derived curves 
and equations to fit as closely as possible to the constraining data. Also, the dis-
charge values are derived from imperfect global runoff models. Although these 
have the advantage of being driven from observational precipitation amounts 
and land surface variables, it would be advantageous to develop a systematic 
method of comparing space-based to ground-based discharge measurements in 
order to detect model bias, and allow accurate extension of the ground-based 
data; even while accurate altimetry measurements from future satellites can be 
utilized as calibration data. In addition to Ka-band radiometers, satellite L-band 
radiometers, such as SMOS, SMAP, and the future CIRM, can improve river dis-
charge measurements in the tropics (Nghiem et al., 2019; Kugler et al., 2019).

Finally, the microwave information also has the capability, in many cases, to 
automatically detect the timing and duration of ice cover over high latitude riv-
ers. The removal of ice cover is an important environmental/ecological variable 
throughout northern North America and Asia and over the Arctic Ocean, and the 
existing microwave sensors are sensing this variable. The spring flood can be 
automatically detected, when and where it occurs. The challenge is to process 
such data from many more measurement sites, link such to available ground 
sensors and other orbital data, and thereby provide important new and trusted 
information regarding Arctic river flow changes. This area of work is ready for 
rapid progress providing new measurement and analysis capabilities.
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