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55 Abstract

56 Low-yielding catchments with ephemeral streams provide a stern test of the capability of conceptual catchment models for
57 predicting the hydrologic response of the natural landscape. Sustained periods of little or no flow mean that the information content
58 of the streamflow time-series for parameter estimation is limited. During periods with no streamflow, such ephemeral catchments
59 also offer no information on a catchment’s soil moisture status. As a result, parameters estimated solely from streamflow data are
60 often poorly identified and span a wide range of the feasible parameter space. These general observations were confirmed by an
61 application of the conceptual VIC model in a 6 ha experimental catchment in eastern Australia. Using a Monte Carlo style assessment
62 of parameter uncertainty, it was shown that the simple three-parameter model was ill-posed when calibrated solely to the streamflow
63 response. Failure of the calibration procedure to distinguish unique antecedent moisture storage conditions prior to large rainfall
64 events meant that the observed streamflow response could be replicated from a large envelope of potential parameter combinations.
65 The inclusion of an estimated time-series index ofareal soil moisture status into the calibration procedure, however, significantly
66 reduced the number of feasible parameter combinations, and resulted in predictions that confirmed Bowen ratio measurements of
67 actual evapotranspiration. Attempts to further reduce parameter uncertainty by including the measured evapotranspiration data into
68 the joint calibration procedure were unsuccessful. The shortness of the measurement record was seen as a major factor inhibiting
69 improvement. The results of this study highlight the critical importance of antecedent moisture conditions on streamflow yields in
70 ephemeral catchments and point to the desirability of spatio-temporal soil moisture accounting. Future research efforts are discussed
71 in terms of establishing the appropriate spatial and temporal resolution of soil moisture measurements needed to extend the results
72 observed for this small experimental study to larger catchments. 2002 Published by Elsevier Science Ltd.
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78 1. Introduction

79 Catchment models are hypotheses of the dynamic
80 water balance at the catchment scale. The identification
81 of such models requires validating the model hypotheses
82 and, as part of that process, making inferences about
83 model parameters. In this article, the issue of parameter
84 identification is considered in the application of concep-
85 tual catchment models in low-yielding ephemeral catch-
86 ments.
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87Conceptual models typically involve a configuration
88of interconnected stores with mathematical transfer func-
89tions used to direct the movement of water between
90stores or into the stream. Although a mass balance is
91enforced for each store, the flux equations defining flows
92into and out of the stores are typically conceptual rather
93than physically based (Nash and Sutcliffe, 1970). This
94conceptual nature means that many of the parameters,
95state variables, and fluxes are not directly measurable
96and usually represent spatially and temporally lumped
97catchment characteristics. Consequently, although rather
98parsimonious and not very data intensive, one of the dis-
99tinguishing characteristics of conceptual models is that
100the process of parameter inference relies heavily upon
101calibration via inverse reasoning, typically to an
102observed time-series of streamflow.
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103 In low-yielding ephemeral catchments, parameter
104 identification by calibration to a streamflow record is
105 hampered by the fact that the number of non-zero data
106 points in the streamflow time-series may be quite small,
107 even though the length of record is large. Thus, the infor-
108 mation content of the streamflow time-series for para-
109 meter identification is small. This presents particular
110 problems for models that generate surface runoff through
111 a threshold process such as a spilling bucket. During
112 calibration the exceedence of the threshold may rarely
113 occur and thus the bucket size is unidentifiable. This can
114 lead to problems such as the existence of multiple optima
115 within the feasible parameter space and the presence of
116 high interaction or correlation between subsets of fitted
117 model parameters (see Duan et al., 1992; Freer et al.,
118 1996). In more humid catchments this problem is often
119 not as severe, as the information contained in the stream-
120 flow series is likely to be rich enough to activate every
121 model process several times during calibration (Ye et
122 al., 1997).
123 A key outcome of ill-defined model parameters is that
124 it can no longer be assumed that accurate streamflow
125 simulation at the catchment outlet reflects accurate
126 simulation of internal catchment states and responses.
127 This situation arises from the large number of model
128 parameter sets that produce virtually indistinguishable
129 simulated streamflow time-series even though the rela-
130 tive contributions of the fluxes that make up the stream-
131 flow vary greatly.
132 One obvious and well-documented way to increase the
133 information content available for parameter estimation
134 is to augment streamflow data with other kinds of
135 hydrologic information relevant to the prediction task
136 (see for example, Mroczkowski et al., 1997; Franks et
137 al., 1998). Examples of multiple responses include stre-
138 amflow and stream chemical tracer data at different
139 locations within a catchment and measurable internal
140 hydrologic fluxes or states such as soil moisture, satu-
141 rated areas, piezometric levels, and evapotranspiration at
142 selected locations. Such data represent a much richer
143 source of information about the catchment water balance
144 dynamics than do streamflow data alone. General state-
145 ments relating multiple data sources with improved para-
146 meter identification, however, have been shown to be not
147 universal. It has been shown, for example, that aug-
148 menting streamflow with ‘point’ groundwater measure-
149 ments does little to reduce parameter and predictive
150 uncertainty (e.g. Seibert et al., 1997; Kuczera and
151 Mroczkowski, 1998. Areal soil moisture, however,
152 would appear to provide a valuable source of additional
153 information, especially for ephemeral catchments during
154 periods with no streamflow, and thus no information on
155 catchment-average soil moisture status.
156 Soil moisture content is a major control on hydrolog-
157 ical processes for both storm and interstorm periods.
158 During storm periods it influences the partitioning of
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159precipitation into infiltration and runoff (for saturation
160excess processes). For interstorm periods, soil moisture
161determines whether the soil column can meet the atmos-
162pheric demand for moisture; either at the surface (bare
163soil evaporation) or in the root zone (transpiration) and
164it thus affects the partitioning between latent and sens-
165ible heat fluxes. In this way, the soil moisture content is
166the link between the surface energy and water balances.
167In most conceptual models there is some represen-
168tation of soil moisture status, but validation against field
169data is often difficult because of at least two problems.
170Firstly, field measurements of soil moisture content are
171made at the point scale while conceptual models provide
172an estimate for a specified area, producing a disparity in
173scales. Secondly, soil moisture is highly variable in
174space, meaning that individual point measurements
175rarely if ever represent the spatial average of even small
176areas. This necessitates that areal values are estimated
177from many point measurements.
178The hydrological literature contains few examples of
179catchment studies where distributed measurements of
180soil moisture values have been compared with values
181simulated by conceptual catchment models. Johnston
182and Pilgrim (1976) showed a comparison between soil
183moisture modelled with a simple conceptual model and
184soil moisture data obtained from field measurements,
185providing an independent assessment of model perform-
186ance. Kuczera (1983) used soil moisture and throughfall
187measurements with a conceptual rainfall-runoff model.
188He noted that the use of data on runoff, soil moisture and
189interception with catchment models can yield substantial
190reductions in the uncertainty of model parameters.
191Kalma et al. (1995) described a comparison between
192simulated soil moisture resulting from both a fixed and
193variable storage conceptualisation and a soil moisture
194index based on point measurements to show the potential
195of conceptual models to make useful predictions of soil
196moisture status at the catchment scale. Western et al.
197(1999) demonstrated that simulated time-series of spati-
198ally average soil moisture storage achieved with a quasi-
199distributed conceptual model was consistent with the
200observed soil moisture characteristics. The statistical dis-
201tribution of soil moisture storage assumed in the model,
202however, was shown to differ from that observed.
203This article aims to re-examine the usefulness of con-
204ceptual models for soil moisture prediction at the catch-
205ment scale. This is done via a case study application of
206the conceptual variable infiltration capacity (VIC) model
207(Wood et al., 1992) in a 6 ha experimental catchment
208located in eastern Australia. The low-yielding catch-
209ment, which is representative of a large number of catch-
210ments in semiarid regions of Australia, was chosen to
211be a stern test of the capability of the VIC model. The
212VIC model uses a statistical distribution to characterise
213the spatial variation in soil moisture storage. For the cur-
214rent study, this distribution is determined explicitly by
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215 calibration against combinations of surface runoff, soil
216 moisture and evapotranspiration data. Monte Carlo based
217 assessment of parameter uncertainty resulting from indi-
218 vidual and joint calibrations leads to the main contri-
219 bution of the article, namely to provide insight into the
220 value of field measured soil moisture, evapotranspiration
221 and surface runoff data for parameter inference and
222 hydrological prediction in low-yielding ephemeral catch-
223 ments.

224 2. Study area

225 The 6 ha Nerrigundah experimental catchment is
226 located in the Williams River catchment, approximately
227 11 km north-west of Dungog, New South Wales, Aus-
228 tralia (Fig. 1). The catchment runs east to west with a
229 relief of 27 m. Hillslopes range from 3 to 22%, with the
230 main drainage line having an average slope of 9%. Aver-
231 age annual rainfall is 1000 mm and areal potential eva-

989
990

991
992993

994 Fig. 1. The Nerrigundah experimental catchment, showing the
995 location of the measurement sensors.996
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232potranspiration is 1600 mm. The soil type is a moder-
233ately well drained clay-loam duplex with an A horizon
234of approximately 30–40 cm and a clay B horizon from
23550 to over 100 cm deep. Measurement of bulk density
236from 19 spatially distributed soil core samples indicate
237that the mean porosity for the catchment is approxi-
238mately 50–55% v/v, while permeameter measurements
239indicate that the saturated hydraulic conductivity of the
240A horizon is an order of magnitude larger than that of
241the B horizon (Walker et al., 2001).

2423. Measurements

243For the 908-day period of investigation (28.10.1996–
24407.04.1999) undertaken in this study, a variety of hydro-
245meteorological variables were measured. A weather
246station continuously measured net radiation, atmospheric
247pressure, wind speed and direction, relative humidity, air
248temperature, rainfall, soil heat flux and soil temperature
249at various depths. Apart from rainfall, all measurements
250were made at 1-min intervals, with the average taken
251every 10 min. Rainfall was recorded for each tip of the
2520.2 mm tipping bucket pluviometer.
253A 45 cm Parshall flume at the catchment outlet moni-
254tored surface runoff. A second pluviometer was located
255at the flume, and four collecting rain gauges were distrib-
256uted throughout the catchment to check the spatial varia-
257bility of rainfall. The additional gauges showed that rain-
258fall at Nerrigundah was spatially uniform at both the
259event and seasonal scales.
260The soil moisture profile was continuously monitored
261at 15 min increments using five Virrib soil moisture sen-
262sors (Komin, Technical Data) installed at depths of 10,
26315, 20, 30 and 40 cm for an individual point in the catch-
264ment, located at the weather station. The spatial variation
265of soil moisture profiles was periodically monitored with
266time domain reflectometry (TDR) probes of various
267lengths up to the maximum of 1 m or bedrock at 13 sites
268distributed throughout the catchment. The location of
269these sites is displayed in Fig. 1. The spatial TDR soil
270moisture measurements were made on 40 days (at
271approximately 2-week intervals) during the experi-
272mental period.

2733.1. Intensive intersampling period

274For a 24-day intensive soil moisture sampling period
275(04.03.1999–28.03.1999), evapotranspiration measure-
276ments were made with a Campbell Scientific Bowen
277ratio system. The Bowen ratio system was located next
278to the weather station and measured sensible and latent
279heat fluxes over 15-min time intervals. The location of
280the system achieved the required fetch-to-height ratio of
2811:150 (Heilman et al., 1989) for the predominant south-
282east wind direction. Based on spatial TDR soil moisture
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283 measurements for the top 40 cm during the intensive
284 measurement period, it was considered that the moisture
285 conditions at the Bowen ratio measuring site were
286 slightly drier than the catchment-wide ‘average’ . It
287 should also be noted that above average soil moisture
288 conditions were present during the intensive sampling
289 period relative to the entire measurement period.
290 Fig. 2 displays the time-series of soil moisture (%
291 v/v), latent heat flux (W/m2) and daily-accumulated
292 actual evapotranspiration (mm/day) for the 24-day inten-
293 sive measurement period. The period corresponded to a
294 gradual lowering of soil moisture content from 42 to
295 36% v/v over the first 16 days of measurement before a
296 15 mm rain event on 20.03.1999 and a 30 mm rain event
297 on the 22.03.1999 resulted in a rise in soil moisture con-
298 tent back to 45% v/v, with a subsequent lowering to 40%
299 v/v over the following 6 days.

300 4. Soil moisture analysis

301 The 13 spatially distributed measurements of soil
302 moisture were discontinuous in time (i.e. approximately
303 one measurement every 2 weeks) while the Virrib soil
304 moisture sensors at the weather station provided a con-
305 tinuous soil moisture time series for an individual point.
306 In order to recover a continuous record of areal soil
307 moisture, a merging of the two data sets was performed.

998
999

1000
10011002

1003 Fig. 2. Measured soil moisture (% v/v), latent heat flux (W/m2) and
1004 daily-accumulated actual evapotranspiration (mm/day) for the 24-day
1005 intensive measurement period.1006
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308The idea was to utilise the spatial measurements to
309obtain instantaneous catchment average soil moisture
310estimates, and then to statistically regress these areal
311estimates against the corresponding point measurements.
312The resulting relationship would thus allow for the
313reconstruction of a continuous areal estimate from the
314continuous point record.
315Following the methodology of Kalma et al. (1995) a
316soil moisture index approach was utilised in an effort to
317aggregate the spatial (point-scale) soil moisture measure-
318ments to a single quantity that was representative of
319areal soil moisture availability within the catchment. For
320each spatial location and for each day of measurement,
321the local value of the volumetric moisture content of the
322total soil profile (SM∗, % v/v) was measured with the
323TDR equipment. The soil moisture index SMI∗ at each
324location was then defined by

325SMI∗ � (SM∗�SM∗
min) / (SM∗

max�SM∗
min) � A /B (1) 326

327where A � (SM∗�SM∗
min) is the removable component

328of total soil moisture (% v/v) and B � (SM∗
max�

329SM∗
min) represents the maximum soil moisture storage

330capacity (% v/v) at that point (with values obtained for
331the entire sampling period). SMI∗ values thus range
332between 0 and 1. Finally, with SMI∗ estimated for each
333location, it was assumed that for each day of measure-
334ment, the areal soil moisture storage could be estimated
335from SMI∗∗(�A /�B) based on all measurements on that
336day. The utility of the index approach can be seen in the
337comparison plots of Fig. 3a and b. Fig. 3a shows the
338actual measured temporal variation of the soil moisture
339content (% v/v) in the top 40 cm for a dry (Profile 2),
340intermediate (Profile 4) and wet (Profile 8) catchment
341location. Fig. 3b shows the corresponding plot using the
342index approach, and highlights the improved similarity
343between the profiles when using the index approach.
344The temporal dynamics of the areal soil moisture
345index (SMI∗∗) based on the 13 spatial locations was
346compared to the corresponding point moisture index
347(SMI∗), as measured at the continuous Virrib monitor-
348ing site. As a result of soil disturbance during instal-
349lation, a 10-month ‘settling-in’ period of the Virrib sen-
350sors was allowed in an effort to permit the soil to re-
351establish equilibrium conditions. The comparison was
352therefore not attempted until day 315 (22.08.1997) of the
353experimental campaign, resulting in a total of 40
354point/spatial combinations.
355Fig. 4 shows the plot of these 40 point/spatial soil
356moisture index combinations, along with a fitted cubic
357polynomial resulting from the regression between both
358quantities. The nature of the polynomial is likely to inte-
359grate the effects of a number of features, making exact
360physical explanation difficult. Firstly, the shape is likely
361to reflect the fact that the continuous soil moisture
362measurements were made at a comparatively dry
363location within the catchment. It is also likely to account
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1009

1010
10111012

1013 Fig. 3. (a) Measured temporal variation of the soil moisture content
1014 (% v/v) in the top 40 cm for a dry (Profile 2), intermediate (Profile
1015 4) and wet (Profile 8) catchment location, and (b) the corresponding
1016 temporal variation using the soil moisture index approach.1017

1019
1020

1021
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1024 Fig. 4. Comparison between the continuous point moisture index
1025 (SMI∗) and the areal soil moisture index (SMI∗∗) for all days of
1026 spatial soil moisture measurement.1027

1

1 ENSO: environmental modelling & software - ELSEVIER2 06-06-02 10:39:16 Rev 16.03x ENSO$$266P

364for differences in the measurement techniques. The Vir-
365rib sensors (at various depths) consist of two horizontally
366inserted stainless steel concentric circular rings
367(electrodes of diameter 28 and 20 cm), which allow soil
368moisture measurement by means of an electro-magnetic
369field generated around the two electrodes. The TDR sen-
370sors, on the other hand, measure the down and return
371travel time of an electro-magnetic wave for two verti-
372cally inserted stainless steel probes of known length.
373While both approaches make use of the dielectric
374properties of water, the structural differences in the
375approaches are likely to result in slight differences in
376how the measurements respond to temporal changes in
377soil water content.
378Fig. 5 displays the result of the regression edited, con-
379tinuous point moisture index (SMI∗ (point-edit)), which
380can subsequently be interpreted as a continuous estimate
381of areal soil moisture index. Also shown for comparison
382purposes is the corresponding soil moisture index
383(SMI∗∗) resulting from the 13 spatial profiles. It can be
384seen that there is good agreement between the continu-
385ous and instantaneous estimates, which engenders con-
386fidence in utilising the developed areal estimates for
387describing the catchment average soil moisture status.
388Potential inaccuracies induced by the largely unknown
389parameter uncertainty of the regression relationship
390should, however, be kept in mind for the modelling that
391is to follow.

3925. Description of the VIC model

393The conceptual water balance model used here is the
394single layer VIC model (Wood et al., 1992; Sivapalan
395and Woods, 1995; Kalma et al., 1995). Fig. 6a provides
396a schematic illustration of the soil moisture distribution
397approach that forms the basis of the VIC model. The
398VIC model assumes that scaled infiltration (i.e. storage)
399capacity is a random variable with its cumulative distri-

1029
1030

1031
10321033

1034Fig. 5. Comparison of the regression edited, continuous point moist-
1035ure index (SMI∗ (point-edit)), and the corresponding spatial moisture
1036index (SMI∗∗) resulting from the 13 spatial profiles. 1037



1
2

3 ARTICLE IN PRESS
4

5
6

1 62 S.A. Wooldridge et al. / Environmental Modelling & Software �� (2002) ���–���
31039
1040

1041
10421043

1044 Fig. 6. (a) Distribution approach towards variability in catchment
1045 storage capacity, and (b) schematic of the VIC hydrologic model con-
1046 ceptualisation (after Kalma et al., 1995).1047

400 bution function given by the Xinanjiang distribution
401 (Zhao et al., 1980). The distribution function allows for
402 a variable bucket conceptualisation that allows runoff
403 generation and evapotranspiration to vary within an area
404 (e.g. lumped catchment). Here, we apply the modified
405 distribution function (Kalma et al., 1995), which
406 includes a minimum storage level for the initiation of
407 surface runoff (see Fig. 6b). The cumulative distribution
408 of the scaled (i.e. normalised) storage capacity, s, is
409 given by

410 s � 1�(1�smin)(1�a)1/b (2)411

412 where a represents the saturated fraction of the total
413 catchment area, smin, the threshold for overland flow and
414 b, the model parameter giving the concave-up shape for
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415values less than 1 and convex-up for values greater than
4161. Storage capacity at any point in a catchment is defined
417as the maximum depth of rainfall, which can infiltrate
418at that point. The scaled storage capacity, s, is the local
419storage capacity divided by the largest storage capacity
420at any point in the catchment.
421The soil moisture status for the entire catchment can
422be described by the scaled soil moisture variable, v,
423which represents the actual scaled soil moisture in stor-
424age at every point of the catchment. Antecedent soil
425moisture is indicated by v0. Those points on the land
426surface with s � v0 are considered to be saturated,
427before any rain begins. If all soil water in the catchment
428is assumed to be held in saturated soil, then the scaled
429soil moisture can be written as v0 � y0 / zmax, where y0

430is the height of saturated soil above bedrock (for
431locations that are not already totally saturated) and zmax

432the maximal soil depth across the catchment (y0 is
433assumed to be constant throughout the catchment). For
434a given v (equal to s at saturation), the fraction of land
435surface which is saturated is denoted by a, and the total
436soil moisture held in the catchment denoted by w. Given
437values of b and smin, any one of v, w or a is sufficient
438to define the moisture status for the entire catchment.
439Kalma et al. (1995) specify all of these functional
440relationships.
441The VIC model therefore produces a time series of w,
442the total moisture storage for the entire catchment. If the
443w values are divided by wc, the maximum possible value
444of w when all the soil is saturated, then the ratio w /wc

445is a catchment-scale wetness index. For the modified
446Xinanjiang distribution (Eq. (2))

447wc � smin � (1�smin) / (b � 1) (3) 448

449Within the current VIC formulation, catchment-scale
450evapotranspiration is calculated by integrating a point-
451scale model of evapotranspiration over the catchment-
452wide distribution of soil moisture conditions. The two-
453parameter point-scale model results in local evapotran-
454spiration Es being estimated as a function of local soil
455moisture via the following step function

456Es /Ep � [(v � yc) /s]
h
for(v � yc) � sEs /Ep (4)

457� 1for(v � yc)�s 458

459where Ep is the potential evapotranspiration from a uni-
460formly wetted surface, v, the level of soil moisture (equal
461to s at saturation), s, the local maximum of soil moisture,
462yc, the scaled capillary fringe thickness and h, a property
463of the soil and vegetation types, assumed to be constant
464in space. The total actual catchment evapotranspiration
465Ea may then be found (see Sivapalan and Woods
466(1995) by

467Ea /Ep(v,yc) � �
1

0

Es /Ep(s;v,yc)Fs(s)ds (5)
468
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469 Subsurface runoff in the VIC model is calculated as
470 a linear function of average soil moisture storage, and
471 surface runoff is calculated by a simple water balance.

472 6. Application of the VIC model

473 6.1. VIC simulations

474 For the current application of the VIC model a daily
475 time step was used. Results are based on the 908-day
476 period between 28.10.1996 and the 07.04.1999. Potential
477 evapotranspiration (Ep) for the period was calculated
478 with the Penman–Monteith model, following the meth-
479 odology outlined by Smith et al. (1991). Net radiation,
480 temperature, humidity and wind data were obtained from
481 the Nerrigundah weather station. Daily rainfall was taken
482 as the average of the measured volumes obtained from
483 the two pluviometers within the catchment. Both rainfall
484 and potential evapotranspiration were assumed to be spa-
485 tially uniform.
486 Simulations began on 28.10.1996 with the initial con-
487 dition of zero available water storage (i.e. maximum
488 simulated saturation deficit). To allow the internal state
489 variables to reach equilibrium, an 8-month period was
490 allowed before any calibration of the model parameters
491 was performed. Other parameters that were set prior to
492 the calibration included the conceptual maximum soil
493 depth for active soil water movement (Dmax � 1 m, esti-
494 mated from soil core data), the hydrologically active
495 porosity (�q � qsat�qpwp � 0.38m3 /m3), the estimated
496 height of the capillary fringe divided by Dmax (yc �
497 0.16m/m) and the subsurface recession constant (kc �
498 0.0).

499 6.2. Parameter optimisation

500 Calibration of the VIC model parameters b, Smin and
501 h was performed with the nonlinear regression software
502 nlfit (Kuczera, 1994) using a sum of squared errors
503 objective function. The parameter search strategy
504 employed the robust shuffled complex evolution method
505 of Duan et al. (1992) searching over a large hypercube
506 in parameter space; the number of complexes was set
507 equal to the number of fitted parameters. Though not as
508 efficient as gradient search strategies, it virtually guaran-
509 tees termination close to the global optimum (Kuczera,
510 1997).
511 The VIC model was jointly calibrated to combinations
512 of daily streamflow, soil moisture and evapotranspiration
513 time series data from the Nerrigundah catchment. The
514 joint calibration strategy, based on the work of Kuczera
515 (1983), required care in its implementation. The key step
516 was specification of a weight matrix, �, which deter-
517 mines how much weight is assigned to each fitted
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518response. Misspecification of the weights can result in
519poor fits for some responses. To guard against this, it
520was decided to initially fit each response separately with
521s2

i ,i � 1,…,m, being the residual variance from m
522observed time series. The weight matrix was then
523initialised to zero except for the diagonal elements,
524which were set to

525��1
i,i � 1 /s2

i i � 1,…,m (6) 526

527This ensured that the joint calibration did not give
528undue weight to any particular response. After the first
529joint calibration the weight matrix was updated using the
530joint residual vectors.
531To assess the worth of the different data sources in
532terms of parameter identification, a thorough uncertainty
533analysis was undertaken for the optimal parameter sets.
534This was achieved by directly computing the posterior
535probability distribution of each parameter. The posterior
536probability distribution represents what is known about
537a parameter given the available data. All things being
538equal, the more a posterior distribution concentrates its
539probability mass about a particular value the more pre-
540cise (or certain) the knowledge of that parameter will be.
541Monte Carlo-based methods provide a useful tool for
542sampling from the posterior distribution. Two generic
543Monte-Carlo sampling approaches exist: namely impor-
544tance sampling and Markov chain sampling. Kuczera
545and Parent (1998), provide a complete description of
546both approaches, and emphasize that Markov chain sam-
547pling is a more efficient method as it adapts to the true
548shape of the posterior distribution via a random walk
549process. For the present application, the Markov chain
550sampling methodology of Kuczera and Parent (1998)
551was adopted, resulting in the implementation of the
552Metropolis algorithm (Metropolis et al., 1953). The
553algorithm was used to generate five parallel sequences,
554each with 2500 samples. Each sequence was started at
555the most probable parameter value. The first 500 samples
556in each sequence are discarded, leaving a total of 10,000
557samples. The parameter covariance and Metropolis sca-
558ling were updated after every 500 samples. An accept-
559able R statistic (Gelman et al., 1997) indicated approxi-
560mate convergence.

5617. Results and discussion

5627.1. Calibration to streamflow

563In a general sense, calibration of the VIC model to
564streamflow involved optimising the model parameters to
565ensure that the minimum soil moisture deficit (smin�v)
566following a prolonged dry period would generate the
567correct amount of streamflow for the next large rainfall
568event. This could be achieved by adjusting either the
569threshold depth to overland flow, smin, or the evaporation
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570 parameter, b (which would then change v). Table 1a
571 presents the Metropolis-sampled posterior mean and
572 standard deviation of the three fitted VIC parameters
573 obtained from calibration against the observed stream-
574 flow record. Fig. 7a presents the corresponding plot of
575 the observed and predicted streamflow responses. The
576 good agreement between responses as indicated by the
577 relatively high Nash and Sutcliffe (1970) coefficient of
578 efficiency (i.e. E2 � 0.90), implies that the VIC model
579 was able to successfully capture the streamflow response
580 of the catchment to precipitation and other climatic
581 inputs. The large standard deviations associated with the
582 posterior means of the fitted parameters, however, sug-
583 gest a high degree of uncertainty associated with the
584 optimal parameter estimates. This high degree of uncer-
585 tainty is demonstrated by the plot of the posterior density
586 distribution of the 10,000 Metropolis samples for the b
587 and smin (Fig. 8a) and, b and h (Fig. 8b) parameters. Both
588 plots indicate a high degree of parameter interaction, and
589 suggest that an equally acceptable streamflow prediction
590 could occur from over a wide range of the feasible para-
591 meter space. Presumably this parameter interaction is a
592 result of the previously mentioned fact, that for adequate
593 runoff prediction with the VIC model following dry per-
594 iods (a common occurrence in ephemeral catchments),
595 it is not strictly necessary that the actual level of soil
596 moisture in storage (i.e. v) needs to be predicted cor-
597 rectly, only that the minimum soil moisture deficit

598 (smin � v)599

600 is correct. Subsequently, there are many ways in which

1119

1120 Table 1
1121 Metropolis sampled, posterior mean and standard deviation of the three
1122 fitted VIC parameters resulting from calibration to (a) streamflow data,
1123 (b) joint streamflow and soil moisture data (c) joint streamflow and
1124 evapotranspiration data and, (d) joint streamflow, soil moisture and
1125 evapotranspiration data1126

11301134
1138

Parameter Mean Standard deviation1142

11461150
1154

(a) Calibration to streamflow data1156

b 2.32 1.0651160

smin 0.19 0.0161164

h 1.08 0.1461168

(b) Calibration to streamflow � soil moisture data1170

b 2.91 0.1701174

smin 0.33 0.0081178

h 2.02 0.0541182

(c) Calibration to streamflow � evapotranspiration data1184

b 0.865 0.0631188

smin 0.463 0.0491192

h 4.41 0.3471196

(d) Calibration to streamflow � soil moisture � evapotranspiration
data1199

b 2.68 0.1681203

smin 0.31 0.0101207

h 2.19 0.0821211

1215
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1049
1050

1051
10521053

1054Fig. 7. Streamflow calibration. Comparison of observed and model
1055predicted (a) streamflow, (b) areal soil moisture status and (c) evapo-
1056transpiration. 1057

601b, smin and h can interact to ensure that the correct vol-
602ume of runoff is achieved.
603As an independent check of the usefulness of the stre-
604amflow calibrated VIC model as a predictor of the
605dynamic catchment water balance, a comparison was
606made between model predicted soil moisture status and
607actual evapotranspiration, and the equivalent quantities
608as obtained by field measurement. Fig. 7b displays the
609comparison of the areal wetness index obtained from the
610merged point and spatial field analysis (SMI∗ (point-
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1061

1062
10631064

1065 Fig. 8. A plot of the posterior probability surface for the VIC model parameters; (a) b and smin and (b) b and h resulting from calibration solely
1066 to streamflow data. Each plot is based on 10,000 samples as generated by the Metropolis algorithm.1067

611 edited)) and that produced by the VIC model (w /wc). It
612 can be seen that while the temporal trace of relative
613 catchment wetness shows good agreement, the absolute
614 values are rarely consistent. On average, over the entire
615 period of investigation, the model simulates the catch-
616 ment as being drier than reality. Although only a rela-
617 tively short record, comparison of observed and pre-
618 dicted actual evapotranspiration for the 24-day Bowen
619 ratio measurement campaign (Fig. 7c) suggests that a
620 possible reason for the drier prediction of soil moisture
621 status could be due to the fact that the model para-
622 meterisation results in an over-prediction of actual eva-
623 potranspiration for relatively wet conditions. The
624 essence of the evapotranspiration scheme utilised by the
625 VIC (as described by Eq. (4)) is that the actual evapor-
626 ation from bare-soil and vegetated surfaces is a fraction
627 	 of the energy-limited (potential) rate, Ea � 	Ep, where
628 	 is non-linearly related to soil moisture availability. The
629 performance of this type of evapotranspiration scheme
630 has traditionally been shown to become less satisfactory
631 as the modelling time-scale is reduced, leading to an
632 overestimation of evaporation during wet periods, and
633 under-estimation during dry periods (Chen et al., 1996).
634 Because there are significant no-flow periods in the cali-
635 bration record, within which there is no information
636 available to infer the correct temporal evolution of soil
637 moisture status, it is likely that the evapotranspiration
638 rates resulting from such a scheme are not sufficiently
639 constrained by the streamflow response alone.

640 7.2. Joint calibration involving streamflow and soil
641 moisture

642 Table 1b presents the Metropolis sampled, posterior
643 mean and standard deviation of the three fitted VIC

1
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644model parameters obtained from joint calibration to the
645observed streamflow and areal soil moisture data. The
646corresponding plots of observed and predicted stream-
647flow (Fig. 9a) and areal soil moisture status (Fig. 9b)
648resulting from the two optimised time-series, show that
649while streamflow predictability is similar in comparison
650to the single streamflow calibrated model, soil moisture
651prediction is considerably more consistent with the
652jointly calibrated model. Weiss and Smith (1998) explain
653that it is common for the fit of each individual data set
654based on a joint calibration to be worse than the fit of
655each data set using the estimates from that data set. The
656improvement in the prediction of the internal soil moist-
657ure state variable also corresponds with a significant
658reduction in the standard deviations associated with the
659mean posterior parameter values of the optimal para-
660meter set (Table 1b). This reduction in parameter uncer-
661tainty is reflected in the constrained posterior density dis-
662tributions for the b and smin (Fig. 10a) and, b and h (Fig.
66310b) parameters.
664From Fig. 9 it is clear that the inclusion of the soil
665moisture data in the calibration process has provided
666additional information with which to accept or reject
667competing model parameterisations. This additional
668information can be reconciled with the fact that by forc-
669ing the model to reproduce the time-series of soil moist-
670ure status, the acceptable range of the evaporation para-
671meter h is necessarily reduced. Because of the
672competing interaction of smin and b, the constraining of
673b must similarly constrain the acceptable range of smin.
674As an independent check of the value of the reduced
675parameter uncertainty, Fig. 9c shows the 24-day time-
676series of observed and predicted actual evapotranspir-
677ation resulting from the joint streamflow and soil moist-
678ure calibrated model. Comparison of the plot to the cor-
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1074 Fig. 9. Joint streamflow and soil moisture calibration. Comparison
1075 of observed and model predicted (a) streamflow, (b) areal soil moisture
1076 status and (c) evapotranspiration.1077

679 responding predictions resulting from the streamflow
680 calibrated model (Fig. 7c) shows that the jointly cali-
681 brated model results in considerably improved prediction
682 of evapotranspiration, with predictions being surpris-
683 ingly accurate given the conceptual simplicity of the eva-
684 potranspiration routine. The improvement in evapotran-
685 spiration prediction highlights the importance of accurate
686 soil moisture accounting when evapotranspiration rou-
687 tines based on Ea � 	Ep relationships are applied at the
688 small-catchment scale. The comparatively poor evapo-
689 transpiration estimates from the 23.03.1999 to

1

1 ENSO: environmental modelling & software - ELSEVIER2 06-06-02 10:39:16 Rev 16.03x ENSO$$266P

69026.03.1999 could possibly be related to measurement
691error, as rain fell during this period and could have inter-
692fered with the measurement sensors of the Bowen ratio
693system. Assuming the data to be true could, however,
694allude to the above-mentioned deficiency with this style
695of evapotranspiration routine that results in over-esti-
696mation of evapotranspiration for the wet conditions.
697A question that deserves to be asked about the joint
698soil moisture calibration is, ‘Would the same constrain-
699ing of the parameters occur for a humid, energy limited
700catchment as opposed to a water limited ephemeral
701catchment?’ While the answer to this question obviously
702lies in a repeat application, initial reasoning would tend
703to suggest not. For the humid catchment with abundant
704water supply, the VIC model conceptualisation would
705consistently result in the local soil moisture storage
706level, v, being above smin. The correct simulation of
707evaporation and runoff would therefore only require that
708the changes in soil moisture be correct and not necessar-
709ily require the absolute values of soil moisture to be cor-
710rect. Specifying soil moisture correctly may therefore not
711provide improved simulation of fluxes such as evapo-
712transpiration and streamflow for humid catchments. In
713such situations it may prove more beneficial to investi-
714gate the integrated value of soil moisture status (i.e. satu-
715rated area fraction).

7167.3. Joint calibration involving streamflow and
717evapotranspiration

718The measured 24-day evapotranspiration record was
719utilised to investigate the ability of a joint calibration
720based on streamflow and evapotranspiration to aid in
721parameter identification and thereby constrain parameter
722uncertainty. Theoretically, if the evapotranspiration rec-
723ord could be considered representative of the areal esti-
724mate, and if it was of a sufficient length to contain the
725dynamics of both the wetting and drying of the soil pro-
726file for a variety of catchment wetness conditions, then
727one would expect it to be a rich source of information
728with which to condition the internal dynamics of the
729model.
730Table 1c presents the Metropolis-sampled posterior
731mean and standard deviation of the three fitted VIC para-
732meters obtained from joint calibration to the observed
733streamflow and evapotranspiration data. Examination of
734the parameter values for the optimal parameter set
735reveals a considerably smaller value of b and larger
736values of smin and h compared to the previous parameter
737combinations. The result of these parameter changes in
738terms of changes in model function can be reconciled as
739follows. The smaller value of b will result in lower levels
740of saturation over all soil moisture levels and lead to
741reduced surface runoff for a given rainfall input. The
742larger value of smin means a greater level of antecedent
743wetness needs to be exceeded before the initiation of
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1085 Fig. 10. A plot of the posterior probability surface for the VIC model parameters; (a) b and smin and (b)b and h resulting from joint calibration
1086 to streamflow � soil moisture data. Each plot is based on 10,000 samples as generated by the Metropolis algorithm.1087

744 surface runoff. Finally, the larger value of h means a
745 reduced rate of evapotranspiration, although this will be
746 offset to some extent by higher average soil moisture
747 levels. A consequence of these parameter changes is a
748 less dynamic catchment in terms of runoff and evaporat-
749 ive fluxes, meaning that more water is held in storage.
750 The result of this parameterisation in terms of pre-
751 dicted streamflow, soil moisture and evapotranspiration
752 can be seen in Fig. 11. Due to the joint conditioning,
753 the parameterisation results in good predictions of the
754 streamflow and evapotranspiration responses. The pre-
755 dicted soil moisture response, however, shows a poor
756 correlation with the observed equivalent, with a more
757 constant (i.e. less dynamic) soil moisture variation.
758 Clearly, the evapotranspiration and streamflow fluxes
759 have been achieved at the expense of non-realistic soil
760 moisture conditions. By maintaining the catchment in a
761 ‘wet’ state, the streamflow and evapotranspiration vol-
762 umes have been simulated with lower rates of evapotran-
763 spiration and streamflow per unit surface area in unit
764 time.
765 The poorly constrained posterior probability density
766 distributions for the b and smin (Fig. 12a), and b and h
767 (Fig. 12b) parameters, confirm the uncertainty associated
768 with the model parameterisation. It should be noted that
769 the y-axis scale describing the variation of smin (Fig. 12a)
770 and h (Fig. 12b) is different from the earlier equivalent
771 plots and those which are to follow. In the case of smin

772 (Fig. 12a), the y-axis scale is threefold larger, and for
773 h (Fig. 12b), the y-axis scale is eightfold larger. In a
774 comparative sense therefore, there is considerably more
775 variation in the smin and h parameters for the case when
776 optimisation is based on the joint streamflow and evapo-
777 transpiration record.

1
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778The inability of the evapotranspiration data to provide
779constrained, physically realistic, parameter estimates is
780a possible consequence of the Bowen ratio measure-
781ments not being representative of the ‘averaged’ evapo-
782transpiration behaviour of the catchment (e.g. due to soil
783moisture and atmospheric boundary layer variability
784etc.). Given the reasonably homogeneous nature of the
785catchment, a more likely reason is that the evapotranspir-
786ation record was too short to capture the full spectrum of
787soil moisture/evapotranspiration conditions experienced
788within the catchment. Because the measuring period only
789corresponded with the catchment being in a relatively
790wet state, the parameterisation was not forced to be rep-
791resentative of the total dynamics experienced by the
792catchment.
793This result has a number of implications. Firstly, it
794would appear that multiple discontinuous measurement
795periods for a range of soil moisture conditions may prove
796to be more beneficial than a long continuous measure-
797ment record obtained under similar moisture conditions.
798Secondly, and in a related fashion, when undertaking
799joint calibrations with variables of different measure-
800ment periods, a method of weighting each response vari-
801able that takes into consideration the range of ‘ realised’
802responses during the conditioning period relative the
803‘potential’ range (over all conditions) may be beneficial.
804While the current study re-confirms the inability of stre-
805amflow (especially for ephemeral conditions) to strongly
806constrain model behaviour, it would appear that too
807much weight was given to the period for which evapo-
808transpiration measurements were undertaken.
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1094 Fig. 11. Joint streamflow and evapotranspiration calibration. Com-
1095 parison of observed and model predicted (a) streamflow, (b) areal soil
1096 moisture status and (c) evapotranspiration.1097

809 7.4. Joint calibration involving streamflow, soil
810 moisture and evapotranspiration

811 The final component of this study investigated the
812 potential of observed streamflow, areal soil moisture and
813 evapotranspiration data to provide improved constraint
814 of parameter estimates. Table 1 presents the Metropolis-
815 sampled posterior mean and standard deviation of the
816 three fitted VIC parameters obtained from the joint cali-
817 bration. It can be seen that the optimal parameter set is
818 very similar to that determined using only the streamflow

1
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819and soil moisture data. However, comparison of the
820associated standard deviations for the model parameters
821indicates a slight deterioration with the inclusion of the
822evapotranspiration data. This is confirmed by the slightly
823less constrained posterior probability density distri-
824butions for the b and smin (Fig. 13a), and b and h (Fig.
82513b) parameters. Such a result would appear to suggest
826that the additional information in the evapotranspiration
827record (above that contained by the streamflow and soil
828moisture data) is limited. This is likely a consequence
829of the limitations of the evapotranspiration data outlined
830in the previous section. Although not shown, investi-
831gation of the fitted streamflow, areal soil moisture status
832and evapotranspiration time-series also showed that the
833slight improvement gained in predicting the evapotran-
834spiration response (in comparison to the joint streamflow
835and soil moisture parameterisation) was at the expense
836of the soil moisture response.

8378. Conclusions and recommendations

838This study has illustrated how a simple three-para-
839meter version of the conceptual VIC model is ill-posed
840when calibrated to the streamflow time-series for a 6 ha
841ephemeral catchment. The fact that a streamflow
842response is an integrated result of both quick-flow and
843slow-flow processes, combined with the fact that
844extended periods with no streamflow offer no infor-
845mation on the catchment’s soil moisture status, makes
846the process of inferring the compartmentalisation of stor-
847age within the catchment largely unachievable. As a
848consequence, the internal soil moisture state and evapo-
849transpiration flux of the model, while being able to pro-
850vide a trace of the temporal dynamics, have only limited
851correspondence in terms of the correct absolute values.
852The inclusion of an additional measure of areal soil
853moisture status was shown to provide significant con-
854straint of the feasible parameter space, by providing
855additional information regarding the correct compart-
856mentalisation of storage. This result confirms sugges-
857tions by Jakeman and Hornberger (1993) who concluded
858with regard to the robust application of conceptual mod-
859els that “ information on the flow needs to be obtained
860from time-series data on the inputs and outputs of about
861every second storage that is separately parameterised” .
862If, for example, with three or more connected storages,
863one has flow data only into the first and out of the last
864storage, then the uncertainties of estimating the charac-
865teristic hydrological properties of all these storages will
866be extremely high.
867For the present study, the availability of spatially dis-
868tributed measurements of soil moisture was a key factor
869in defining a meaningful catchment-scale soil moisture
870index. While these measurements were obtained using
871only modest equipment, for larger catchments it would
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1105 Fig. 12. A plot of the posterior probability surface for the VIC model parameters; (a) b and smin and (b) b and h resulting from joint calibration
1106 to streamflow � evapotranspiration data. Each plot is based on 10,000 samples as generated by the Metropolis algorithm.1107

1110
1111

1112
11131114

1115 Fig. 13. A plot of the posterior probability surface for the VIC model parameters; (a) b and smin and (b) b and h resulting from joint calibration
1116 to streamflow � soil moisture � evapotranspiration data. Each plot is based on 10,000 samples as generated by the Metropolis algorithm.1117

872 become increasingly difficult to maintain such a sam-
873 pling density. This raises an important question. If some
874 form of ‘ internal’ moisture measurement is required to
875 provide confidence in the application of conceptual mod-
876 els for use in catchment management studies and other
877 applications, ‘To what level of detail should these
878 measurements be made, both spatially and temporally?’
879 Recent studies indicate that it might be possible to obtain
880 reliable areal estimates of soil moisture from a limited
881 number of point measurements, if the locations of these
882 measurements are chosen thoughtfully (Grayson and
883 Western, 1998). Our work with the VIC model within

1
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884the Nerrigundah catchment also suggests that the most
885important time to optimise the model in terms of the
886correct soil moisture storage (i.e. antecedent conditions)
887is the dry period prior to a significant runoff event. While
888predicting the onset of significant runoff events is prob-
889lematic, historical/seasonal rainfall-runoff information
890may provide clues for suggesting appropriate sampling
891times. It may be therefore that it is not necessary to have
892extravagantly detailed spatial and temporal soil moisture
893patterns to provide significant parameter constraint
894within land surface models. The utility of such sugges-
895tions will be the focus of additional research efforts.
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