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18.1. Introduction

Soil moisture content is an important component of 
the hydrologic cycle, particularly over vegetation root-
zone depths where its variation is linked to the relative 
fractions of evaporative and sensible heat flux (LE and H) 
feedbacks to the lower atmosphere, surface runoff, and 
groundwater recharge [Brutsaert, 2005]. Quantifying 
these processes across catchments using land surface 
models (LSMs), therefore, depends on soil moisture state 
prediction. Improved characterization of root-zone soil 
moisture quantities has the potential to contribute toward 
better predictions for a range of hydrological processes — 
information that will ultimately benefit agricultural and 
land-use management decisions (e.g., better irrigation 
scheduling), numerical weather prediction (NWP; e.g., 
through improved LE and H feedbacks), and emergency 
management (e.g., improved flood prediction). While an 
imperfect model structure means that improving certain 
model variables will not necessarily lead to improvements 
in predictions of all other model variables [Drusch, 2007], 
improved root-zone soil moisture can translate to 
improvement in predictions of other water-balance-
related quantities [Pipunic et al., 2013]. Therefore, the 
ability to routinely improve root-zone moisture prediction 
is an important aim, and the impact on other hydrologic 
variables of interest may contribute to a better under-
standing of model structural inaccuracies.

Inherent LSM uncertainty, resulting from errors in 
input data (meteorological forcing and parameter infor-
mation on soil and vegetation properties) and model 
structural inaccuracies, is the impetus for data assimila-
tion techniques such as the ensemble Kalman filter 
[EnKF: Evensen, 1994], where observed information is 
used to sequentially update/correct LSM states through 
time, based on both modeled and observed error statistics. 
For routine constraint of root-zone soil moisture predic-
tion across catchments, assimilating relevant remotely 
sensed data is ideal given their broad spatial coverage at 
regular repeat intervals.

Brightness temperature observations from passive 
microwave remote sensors have proven particularly suit-
able for deriving spatial estimates of  soil moisture [Kerr 
et al., 2010; Njoku et al., 2003]. However, these estimates 
have major limitations, including coarse spatial resolu-
tion (>10 km) and shallow sensing depth, which varies 
depending on a sensor’s spectral frequency and the 
near-surface moisture conditions but is typically within 
the top few centimeters of  soil at most. Therefore, the 
impact from assimilating such data products must be 
able to adequately translate to the model’s deeper layers 
in order to improve root-zone estimates. A number of 
studies using synthetic data or in situ field data have 
shown near-surface moisture assimilation can improve 
root-zone predictions [e.g., Pipunic et al., 2013; Kumar 
et al., 2009; Pipunic et al., 2008; Walker et al., 2001; 
Entekhabi et al., 1994], with some modest improvements 
to deeper soil moisture from assimilating remotely 
sensed near-surface moisture shown by Reichle et al. 
[2007]. More recent work demonstrating the value of 
assimilating remotely sensed near-surface moisture for 
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deeper LSM moisture state predictions includes Draper 
et al. [2012] and Liu et al. [2011].

Remotely sensed data assimilation in a spatially 
distributed modeling framework generally involves 
greater uncertainty than is the case with more controlled 
scenarios using synthetic or one-dimensional field-
based data. This is partly due to varying spatial scales of 
different data sets used for model input in addition to 
their measurement error, while the uncertainty in assim-
ilated remotely sensed data may also be high [Reichle 
et  al., 2007]. Furthermore, the coverage of  well-cali-
brated independent in situ data is  relatively sparse for 
many landscapes, posing a problem for validation on a 
global scale. Consequently, the availability of  such data 
should be taken advantage of  to support research that 
can contribute to a clearer understanding of  the benefits 
and limitations of  remotely sensed near-surface soil 
moisture assimilation in terms of  optimizing deeper 
root-zone moisture predictions.

This study utilizes in situ soil moisture profile data 
from the OzNet monitoring network in southeastern 
Australia [Smith et al., 2012] to validate LSM assimila-
tion results. The impact from assimilating a near-surface 
soil moisture data product — derived from the Advanced 
Microwave Scanning Radiometer for the Earth Observing 
System (AMSR-E) observations of the top ~1–2 cm of 
soil — on deeper soil moisture profile predictions from 
the Community Atmosphere Biosphere Land Exchange 
model [CABLE; Kowalczyk et al., 2006] is examined. 
CABLE is the land surface component coupled with 
the  Met Office unified model as part of ACCESS 1.3 
(Australian Community Climate and Earth-System 
Simulator) used for climate simulations [Kowalczyk et al., 
2013] and is also planned for use in Australia’s NWP in 
the near future [Law et al., 2012]. It has yet to be rigor-
ously tested with the assimilation of remotely sensed 
data for improving moisture prediction. A 100 × 100 km2 
agricultural landscape in the Yanco region of New South 
Wales, Australia, is the focus of the experiment, where 
predicted moisture states were validated against 0–5 cm, 
0–30 cm, and 0–60 cm in situ moisture data from 12 OzNet 
sites. The aim was to show if  assimilating the near-surface 
moisture product demonstrated potential as a dependa-
ble way to improve CABLE root-zone moisture predic-
tion for this environment. Knowledge gained here from 
assimilating AMSR-E data is also assumed relevant to 
use of data from the successor sensor AMSR-2 [Imaoka 
et al., 2010].

The EnKF algorithm was used to update the prognostic 
soil moisture and temperature states for each of CABLE’s 
six soil layers. Two specific procedures were followed here 
in implementing the EnKF, which can potentially remedy 
some common issues, but which do not appear to have 
been thoroughly tested in real-world applications. First, 

we perturbed model parameter values for key soil hydraulic 
properties determined from field-sampled soil [McKenzie 
et al., 2000], where perturbation was guided by the associated 
error information supplied in the form of 5th and 95th 
percentile values. Perturbing time-invariant parameters 
ensures the LSM state ensemble spread is maintained and 
avoids potential problems with ensemble collapse that 
will render the filter ineffective. By using parameters with 
error estimates determined from analysis of real field 
samples, this approach for generating ensembles and 
maintaining their spread has a sound basis when compared 
to directly perturbing state predictions at each time 
step or applying covariance inflation [e.g., Anderson and 
Anderson, 1999] prior to state updating, using values 
estimated through trial and error. Second, the bias 
correction scheme of Ryu et al. [2009] was implemented 
to remove state ensemble biases caused by nonlinear 
model physics. This is the first implementation of this 
technique in a real remotely sensed data assimilation 
application.

18.2. Data Sets and Experimental Setup

The 100 × 100 km2 study area for this assimilation 
experiment incorporates 12 OzNet soil moisture 
monitoring sites in the Yanco region within the 
Murrumbidgee catchment [Smith et al., 2012]. This 
mostly agricultural region is dominated by crops/pas-
ture and located in the southeast of  Australia within 
the Murray-Darling Basin. CABLE simulations were 
run at 5 km spatial resolution over the area while the 
AMSR-E soil moisture product used for assimilation 
[Owe et al., 2008] was provided at 25 km resolution 
(Figure 18.1).

18.2.1. Model Specifications

The CABLE model version 2.0 was used for this 
research. This model calculates water and energy 
exchanges at the land surface for both soil and vegeta-
tion surfaces, with detailed descriptions of  the model 
physics provided by Kowalczyk et al. [2006]. The soil 
scheme consists of  a six layer soil profile over 4.60 m 
with layer thicknesses of: 2.2, 5.8, 15.4, 40.9, 108.5, and 
287.2 cm, respectively, from top to bottom. Vertical 
water movement between layers is based on the Richards 
equation with the relationships of  Clapp and Hornberger 
[1978] for hydraulic conductivity (K) and air entry poten-
tial (ψaep). CABLE can only be assigned with the one set 
of  soil parameter values which apply to all six layers; 
therefore, depth varying soil hydraulic properties are not 
represented.

Calculations of  LE are done separately for soil and 
vegetation canopy surfaces, and thus the leaf  area index 
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(LAI) is an important model parameter for defining the 
fraction of  bare soil to vegetation surface for energy 
balance calculations. A Penman-Monteith-based calcu-
lation is used for the canopy LE, which incorporates a 
term linked to stomatal conductance and hence a water 
availability term, which consists of  the available mois-
ture content in the soil layers weighted by the relative 
fraction of  roots in each. Vegetation root fractions for 
each soil layer are user-specified parameters, which are 
constant through the simulation time. The soil com
ponent of  LE is calculated based on the potential 
evaporation weighted by moisture availability in the top 
soil layer.

18.2.2. Model Inputs

Meteorologic forcing data determines the CABLE time 
step interval and simulation period, and the essential var-
iables include short- and long-wave incoming radiation, 
air temperature, rainfall, wind speed, and specific humid-
ity. Referring to Figure 18.1, forcing data is available for 
the Griffith and Yanco Agricultural Institute (station Y3) 
sites, while rainfall data is also available for each of the 
soil moisture stations (Y1–Y13). All of these data were 
used in this study and are provided on a 30 min time 
series, which is the integration time step for the simula-
tions performed.
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Figure 18.1  An overview of the study region location in the top left and a closeup of it in the two bottom panels. 
The closeups show: 25 km AMSR-E soil moisture product pixels (black squares); 5 km CABLE simulation pixels 
(gray squares); and locations of OzNet in situ soil moisture and rainfall stations (Y1–Y13) with Griffith meteorologi-
cal station (dots). The closeup on the left shows polygons representing the mapped soil units used for prescribing 
model soil parameters to simulation pixels, and the closeup on the right shows the zones corresponding to in situ 
stations (dark gray lines), which were used to assign rainfall to simulation pixels. All other meteorological forcing 
from Y3 and Griffith stations were assigned to simulation pixels based on nearest proximity to either station.
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Some of the key soil parameters relevant to CABLE 
include wilting point (θwilt), field capacity (θfc), bulk den-
sity (ρsoil), and hydraulic conductivity at saturation (Ks). 
Values for these used in this study are from McKenzie 
et al. [2000] and are based on field sample analysis asso-
ciated with mapped spatial soil units from the Atlas 
of  Australian Soils [Northcote et al., 1960–1968; see 
Figure 18.1] and soil type interpretations from Northcote 
[1979]. Each mapped soil unit is associated with A-horizon 
and B-horizon property data for at least one Dominant 
Principle Profile Form and possibly one or more 
Subdominant Principle Profile Forms. In this study the 
A-horizon data was used since the focus is on a generally 
low vegetation region including large areas of grassland 
with vegetation rooting depth assumed to be predomi-
nantly shallow (~0.5–1.0 m). For each spatial soil unit 
only the Dominant Principle Profile Form data was used.

McKenzie et al. [2000] relied on the work of Williams 
et al. [1992] for determining parameters θfc (defined as soil 
moisture content at 0.1 bar pressure head) and θwilt (defined 
as soil moisture content at 15 bar pressure head), where 
Williams et al. [1992] demonstrated pedotransfer functions 
for predicting the Campbell [1974] water retention curve 
using basic soil characteristic information obtainable from 
field samples including ρsoil, soil texture, and soil structure 
classifications (for which they provide details). McKenzie 
et al. [2000] references a range of work conducted by 
CSIRO Land and Water and some published data sets as 
providing the basis for the Ks estimates they provide.

In summary, the key soil parameter values from 
McKenzie et al. [2000] associated with soil units in 
Figure 18.1 are ρsoil, θwilt, θfc, and Ks. For all of these except 
Ks, the 5th, 50th, and 95th percentile values were included, 
and the 50th percentile values used for the spin-up and 
open loop (OL). Other key soil parameters for CABLE — 
θsat (soil moisture content at saturation), ψaep, and the 
b  parameter from Campbell [1974] equations — were 
calculated using the data from McKenzie et al. [2000]. 
The θsat calculation was done using Williams et al. [1992]

	
θ ρsat soil= −[ ]×1 2650 0 93( / ) . , 	 (18.1)

where 2650 kg/m3 is a standard value for density of min-
eral solids. Values for ψaep and b were generated from θfc, 
θwilt, and θsat using [Campbell, 1974]

	
ψ ψ θ θ= −

aep sat( / ) ,b 	 (18.2)

where ψ is the pressure head (m) for a soil with moisture 
content θ, and θfc in this data set corresponds to ψ = 1 m 
and θwilt to ψ = 150 m. Hence there is a value for θsat and 
two unique values of ψ corresponding to θfc and θwilt, 

which enables the use of two simultaneous equations to 
solve for the two unknowns ψaep and b. For the key vegeta-
tion parameter LAI, the remotely sensed Moderate 
Resolution Imaging Spectroradiometer (MODIS) data 
product MYD15A2 (Aqua) LAI/fPAR (fraction of pho-
tosynthetically active radiation) was used (courtesy of 
NASA Land Processes Distributed Active Archive 
Center; LP DAAC), which is an 8 day composite of 1 km 
spatial resolution data.

Generating spatially distributed inputs from the forcing 
and sourced parameter data for running CABLE over the 
study region involved assigning the data to the 5 km simu-
lation pixels. For point scale data, the study region was 
subdivided using Theissen polygons and values assigned 
to pixels based on the point site in nearest proximity. 
Thus the region was split into two for assigning all meas-
ured meteorological forcing variables (except rainfall) 
from the Griffith and Y3 station sites, while 14 subdi-
vided zones were used to assign rainfall data from all soil 
moisture stations (Y1–Y13) including the Griffith site 
(see Figure 18.1).

The 1 km scale MODIS-based LAI data were spatially 
averaged within each 5 km simulation pixel domain. Key 
soil parameter data based on the work of McKenzie et al. 
[2000], and associated with the soil units in Figure 18.1, 
were assigned to pixels according to the dominant frac-
tion of the soil unit polygons within each pixel. All 
CABLE vegetation parameters other than LAI, and soil 
parameters other than those previously discussed, were 
assigned the default global values provided with the 
CABLE code.

18.2.3. Assimilation Data

The AMSR-E near-surface soil moisture data used for 
this study was the version 04 level 3A product, on a 
~25 × 25 km resolution grid, derived using the Land 
Parameter Retrieval Model (LPRM) developed jointly by 
the Vrije Universiteit Amsterdam and NASA [VUA-
NASA; Owe et al., 2008]. Crow et al. [2010] found that 
this algorithm produced good-quality soil moisture data 
relative to other algorithms in a global evaluation. The 
data represents moisture in only the top ~1–2 cm of soil, 
and its availability corresponds to two repeat satellite 
overpasses per day at most for a geographic region — the 
descending overpass (~01:30–02:00 local time) and 
ascending overpass (~13:30–14:00 local time). Previous 
work [Su et al., 2013; Draper et al., 2009b] indicates that 
data from the descending (local morning) overpass pro-
vides superior moisture estimates for a similar region in 
the Murrumbidgee catchment to that focused on in this 
study. Hence assimilation of AMSR-E near-surface soil 
moisture was performed only once per day (subject to 
data availability) for 1:30 a.m. local time.
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18.2.4. Assimilation Algorithm

The EnKF after Evensen [1994] is one variant of filters 
based on the original Kalman filter [Kalman, 1960] and 
was used for assimilation in this study. The general form 
of the Kalman filter can be represented as

	 X X K Z Zk
a

k
f

k k
f= + −( ), 	 (18.3)

where the model state vector X consists of 12 state values 
in this experiment—soil moisture and soil temperature 
for the six CABLE soil layers—and the observation, Z, 
is the AMSR-E soil moisture value. Subscript k refers to 
the assimilation time step, superscript f denotes model 
predicted values, and superscript a denotes analyzed 
(updated) values. Thus the innovation here ( )Z Zk k

f−  rep-
resents the observation-based AMSR-E moisture minus 
the CABLE-predicted soil moisture for the top 2.2 cm 
thick soil layer.

The Kalman gain (K) depends on the relative uncer-
tainties between model predictions and observed data, 
and weights the innovations to determine the degree to 
which predicted states Xk

f  are adjusted. Therefore, defin-
ing model and observation error is crucially important 
and affects the filter performance, yet is very challenging 
especially for complex nonlinear models [Crow and 
Reichle, 2008]. The EnKF is a Monte Carlo approach to 
Kalman filtering based on generating ensembles of simu-
lation predictions about a mean (or “true”) value, and 
using the ensemble spreads for different predictions to 
calculate the error covariances required for K.

Factors contributing to LSM prediction error include 
uncertainty in model structure, input forcing, and 
parameter data. Richter et al. [2004] demonstrated 
the sensitivity of  LSM water balance prediction to soil 
parameters, with the implication that soil parameter 
uncertainty can play a major part in overall water bal-
ance prediction error, particularly for soil moisture. The 
most comprehensive set of  quantitative uncertainty 
information available was for soil hydraulic properties 
estimated from field data analysis. Hence, we endeavored 
to define model error based on observed uncertainty 
information from data analysis of  key soil hydraulic 
parameters that directly affect modeled soil moisture 
dynamics through the Richards equation. As such, 
CABLE ensemble predictions were generated using soil 
parameter ensembles for parameters that had an associ-
ated uncertainty range—the procedure is discussed in 
the following section.

Since soil parameters are time invariant, the same 
parameter ensembles are applied to every simulation time 
step. Consequently, the model prediction ensembles were 
able to maintain a constant spread for the EnKF, thus 

avoiding the potential for ensemble collapse and filter 
divergence [Whitaker and Hamill, 2002]. These problems 
can occur for implementations where underestimates of 
model uncertainty (via ensemble spread) persist over 
time, and are further reduced with successive updates 
until ensembles collapse toward a single member. At this 
point the EnKF is ineffective since model predictions are 
weighted as highly certain, with their trajectory diverging 
from observed information [Slater and Clark, 2006]. If  
perturbing only forcing inputs such as rainfall [e.g., 
Turner et al., 2008], time steps with no rain are typically 
associated with no rainfall error (hence no perturbation), 
which may result in an underestimated ensemble spread 
for state predictions. Consequently, applying state pertur-
bation or covariance inflation [Anderson and Anderson, 
1999] to ensure the ensemble spread correctly represents 
the overall model error relies largely on trial and error. 
The soil parameter perturbation applied in this work at 
least has some basis in uncertainty estimates from field 
data with no tuning required to maintain the ensemble 
spread.

Another feature of the EnKF application used for this 
work is the procedure to minimize unintended bias in 
model state ensembles during assimilation, as demon-
strated by Ryu et al. [2009]. Essentially, for a model per-
turbed with zero-mean Gaussian noise as is typical for 
EnKF implementation, nonlinear model processes can 
result in biased ensemble state predictions that can lead 
to degraded impacts on deeper soil states. Potential prob-
lems with biased ensembles from parameter perturbation 
is also described in earlier work by De Lannoy et al. 
[2006]. The implemented bias correction procedure of 
Ryu et al. [2009] is discussed more in the following 
section.

18.3. Methodology

Eight years of  data were compiled for the study region 
(Figure  18.1)—from 1 July 1 2002 to 30 June 2010—
including meteorological forcing and parameters (with 
time varying LAI) at the 5 km scale, and AMSR-E mois-
ture data at the 25 km scale for the 1:30 a.m. local time 
overpass. Following a 10 year spinup to provide initial 
soil moisture and temperature state values for all six 
CABLE soil layers, a single unperturbed OL simulation 
was run with the full 8 years of  compiled input data. 
The first 4 years of  this—1 July 2002 to 30 June 2006—
were used for examining model AMSR-E bias and 
determining factors for correction. The following 4 
years—1 July 2006 to 30 June 2010—was the main 
experiment period where assimilation was performed 
after bias correction.

There were three main components to the experimental 
work. First was determining and removing the systematic 
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bias between AMSR-E moisture data and CABLE mois-
ture predictions for its top soil layer. Setting up the 
parameter error perturbation along with the online bias 
correction from Ryu et al. [2009] was then carried out 
for EnKF implementation. Finally, the assimilation was 
performed and the resulting soil moisture predictions 
assessed against in situ data.

18.3.1. Observed-Modeled Bias Removal

The statistical basis for data assimilation is to correct 
for random model errors. Therefore, systematic biases 
between modeled and observed states need to be 
accounted for and removed prior to assimilation. 
Rescaling remotely sensed soil moisture data to match 
the climatology of the model predicted near-surface 
moisture is somewhat standard practice [e.g., Draper 
et al., 2009a; Drusch et al., 2005].

A rescaling approach was applied to match the mean 
and standard deviation of the AMSR-E data series to 
that of the CABLE predicted series for the top 0–2.2 cm 
soil layer. A limitation to removing long-term model 
observation climatological differences is the relatively 
short record of remotely sensed data (~10 years for 
AMSR-E). This makes it difficult to know if  the rescaling 
based on a certain period is representative of future dif-
ferences, which has potential implications for rescaling 
new data as it becomes available in real-world modeling 
applications. To test this, the rescaling relationship 
between AMSR-E moisture data and CABLE was deter-
mined for an initial 4 year period, which was then applied 
to rescale data over the following 4 year period for use in 
the data assimilation experiment.

Rescaling the AMSR-E moisture series for the period 1 
July 2002 to 30 June 2006 removed much of the bias rela-
tive to CABLE. Using the same mean and standard devi-
ation as a benchmark, the rescaling was applied for the 
assimilation period of 1 July 2006 to 30 June 2010 for 
which much of the bias was also removed (Figure 18.2), 
and the resulting 4 year rescaled AMSR-E data series was 
used in the assimilation.

18.3.2. EnKF Implementation

Uncertainty in both the observed data and the model 
predictions forms the basis for data assimilation but 
remain difficult to define. Major sources of error for 
LSMs such as CABLE are model physics, where complex 
physical interactions are represented with generalized 
relationships; inaccurate parameters related to the water 
balance due to a general lack of quality and quantity 
(including spatial detail) of such data, errors in key mete-
orological forcing inputs, and, in the shorter term, uncer-
tain initial state variables. For the EnKF to work 
optimally, the total model error from all of these sources 
needs to be adequately represented by the ensemble 
spread, which at present is extremely challenging.

The strategy here was perturbing key CABLE soil 
parameter inputs for which uncertainty information was 
available, resulting in a consistent ensemble spread for 
soil state predictions reflecting the impact of this uncer-
tainty. State values for all six CABLE soil layers were also 
perturbed for the initial time step of the 1 July 2006 to 30 
June 2010 assimilation period. An ensemble of random 
zero-mean Gaussian variates, together with the standard 
deviation (σ) of available uncertainty estimates, were used 
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Figure 18.2  Time series plots showing bias removal between AMSR-E (local morning overpass) and CABLE soil 
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indicates this was adequate for removing much of the bias over the experiment period, and the resulting AMSR-E 
data were used for assimilation here.
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to generate ensembles for the different inputs within the 
95% confidence interval (± 1.96σ). The ensemble size 
used here was 30 members. Perturbation of soil parame-
ters was performed once and the resulting parameter 
ensembles used throughout the whole experiment period. 
Care was taken to ensure ensemble member values for 
particular parameters were sensible in relation to corre-
sponding members for other parameters (e.g., each per-
turbed θfc value, ranked from minimum to maximum, is 
matched with a perturbed θwilt value that is in the corre-
sponding position of minimum to maximum rank 
ordered θwilt values, to avoid physically unrealistic combi-
nations of these two parameters).

With no knowledge of the true initial state values 
across the study region, uncertainty estimates were made 
for their ensemble generation with: σ = 0.04 vol/vol for the 
six soil moisture states and σ = 4 °C for the six soil tem-
perature states. The 5th and 95th percentile values pro-
vided with θwilt, θfc, and ρsoil soil parameters sourced 
directly from McKenzie et al. [2000] were used for esti-
mating σ values, from which ensembles were generated 
for each of the parameters with 95% confidence interval.

Corresponding ensemble member values for θfc and θwilt 
were sorted in ascending order to ensure a reasonable 
available water range between the two, with an assumption 
of some correlation between the two with changes in soil 
texture. Ensemble members for ρsoil were used to calculate 
an ensemble for θsat using equation 18.1, and θsat ensemble 
member values were sorted in ascending order to corre-
spond with ascending values of θfc and θwilt members. The 
ensembles for all these parameters were then used to calcu-
late ensembles for ψaep and b using equation 18.2. 
Calculating the ensemble values for these (and θsat) ensured 
consistency in the relationships between corresponding 
ensemble members for all related parameter values.

Values for Ks are available with the McKenzie et al. 
[2000] soils map data and are classified according to a 
corresponding log10 linear scale with increments of 0.5 
per class, with uncertainty information given only in 
terms of ± n classes. The strategy here involved generating 
ensembles for inputs within a 95% confidence interval, 
therefore ± n was treated as the bounds for this interval, 
and the log10 linear scale value for Ks associated with each 
soil unit was treated as the ensemble mean value (used in 
spinup and OL). Ensemble generation was done here 
with the log10 linear scale data assuming a Gaussian dis-
tribution, and the resulting distribution of values was 
transformed back to provide ensembles for Ks distributed 
on a log10 scale with units of millimeters/hour.

Observational error applied to the AMSR-E (VUA-
NASA) moisture product for the assimilation was σ = 0.06 
vol/vol [Parinussa et al., 2011]. While validation of this 
product by Draper et al. [2009b] over the Murrumbidgee 
catchment (where this experiment was performed) 

resulted in an error estimate of ~0.02–0.04 vol/vol (after 
rescaling the product to minimize bias relative to in situ 
validation data), the more conservative estimate of 0.06 
vol/vol was used.

As previously discussed, a problem with the EnKF is 
that even when applying Gaussian perturbations for error 
representation, predicted state ensemble means are often 
biased during the assimilation due to nonlinear model 
processes. The approach of Ryu et al. [2009] used to 
address this involved running an additional ensemble 
member with no model perturbation (the OL) in parallel 
with the other 30 members resulting from perturbations. 
Prior to calculating model error covariances for K [equa-
tion 18.3] at each EnKF state update time step, the 
ensemble mean of the perturbed predictions is corrected 
(by correcting each perturbed ensemble member accord-
ingly) to remove bias relative to the single unperturbed 
member. The bias-corrected ensemble of predictions is 
then used as per normal for covariance calculations, and 
the resulting mean of the updated state ensemble is used 
as the initial state value for the unperturbed (OL) mem-
ber for the next prediction period between observations.

Ryu et al. [2009] describe specific soil moisture biases 
introduced by ensemble end members near the bounds of 
the model soil moisture range, defined in this study by θwilt 
and θsat, which are the lower and the upper bounds, 
respectively. In many models (including CABLE) any 
members less than θwilt will be reset to θwilt and any mem-
bers greater than θsat are reset to θsat. Therefore, as ensem-
ble means approach these bounds for either near dry or 
near saturated conditions, the normal distribution of the 
ensembles implies that a number of members will exceed 
and therefore be reset, leading to a concentration of 
members with boundary values. This skews the ensemble 
distributions and biases the means away from the bound-
aries. To correct for this bias, the Ryu et al. [2009] 
approach needs to adjust the skewed members toward the 
boundaries, which has the potential to excessively reduce 
the ensemble spread and lead to filter divergence. 
However, it was found that this problem can be avoided 
by perturbing model soil parameters, which ensured an 
adequate spread is maintained, at least in terms of uncer-
tainty introduced by the key soil parameters.

Finally, given the spatial disparity between model sim-
ulation (5 km) and AMSR-E product (25 km) resolutions 
(Figure 18.1), the average of predictions for all 5 km sim-
ulation pixels within each AMSR-E footprint domain 
were first calculated, and the up-scaled values used to cal-
culate innovations with the corresponding ASMR-E data 
[bracketed term in equation 18.3]. The resulting update 
terms (innovation weighted by K) were then applied back 
to the states for each individual 5 km simulation domain. 
This approach ensured the spatial variability of moisture 
between 5 km simulation pixels was maintained.



312  Remote Sensing of the Terrestrial Water Cycle

18.3.3. Assessing the Assimilation

The experimental simulation was performed for the 4 
year period spanning from 1 July 2006 to 30 June 2010. 
The AMSR-E soil moisture data for the ~01:30 a.m. local 
overpass time were assimilated into the top soil layer of 
the CABLE LSM, and the impact on updates made to its 
deeper root-zone moisture state predictions was assessed 
for 12 OzNet station sites: Y1 – Y10, Y12, and Y13 
(Figure 18.1).

Assimilation outputs for the 5 km simulation pixels 
were compared against available in situ data from collo-
cated OzNet stations over the 4 year period. Moisture 
values for the different soil layers in CABLE, and also 
those measured in situ at the stations (for 0–5 cm—except 
for Y3 which was 0–7 cm, 0–30 cm, and 30–60 cm depths) 
were depth averaged where necessary to enable direct 
comparisons for 0–5 cm, 0–30 cm and 0–60 cm depth 
ranges. The calculation of depth averaged values for com-
parisons is summarized in Table 18.1. For this predomi-
nantly pasture/crop region the root zone is defined as 
0–60 cm.

To facilitate meaningful/bias-free error assessment of 
assimilation results, the in situ observed data series for 
each validation site were rescaled (by matching their 
series mean and standard deviation) to the OL series 
for the experiment period. This is consistent with the 
assimilation performed relative to the CABLE OL cli-
matology (using rescaled AMSR-E data). Metrics used 
to compare both OL and assimilation/updated (UP) 
outputs with rescaled in situ data were the root-mean-
squared error (RMSE) and the coefficient of  determi-
nation (R2).

The overall impact over the study region was assessed 
for the three soil depths, where mean differences between 

UP and OL in terms of both RMSE and R2 values were 
calculated across the 12 sites. A permutation test (with 
10,000 resamples) was applied where the statistical sig-
nificance of these mean differences (indicating the signifi-
cance of the overall impact from data assimilation) was 
tested. Therefore, the null hypothesis was that the mean 
differences between UP and OL across the 12 sites in 
terms of RMSE and R2 values is zero. Determining the 
significance of any of the mean differences (therefore the 
significance of the overall assimilation impacts) was 
through p values resulting from the tests.

Normalized values for RMSE and R2, which represent 
improvement or degradation from OL to UP, were also 
calculated and plotted to summarize the overall assimila-
tion impacts for the three depths. The normalized RMSE 
is simply the ratio between the RMSE for UP and OL:

	
NRMSE

RMSE

RMSE
UP

OL

= , 	 (18.4)

while for R2 the ratio between the unexplained variance in 
UP to the unexplained variance in OL was used:

	

NR
UP

OL

2

2

2

1

1
=

−( )
−( )

R

R
. 	 (18.5)

Values of NRMSE = 1 and NR2 = 1 from equations 18.4 
and 18.5 indicate no impact on CABLE from the assimi-
lation in terms of changes in residual error (RMSE) or 
explained variance (R2), respectively. Values for each that 
are <1 indicate improvement, and values for each that are 
>1 represent degradation from the assimilation according 
to the respective metrics.

Table 18.1  Calculations applied for averaging modeled and in situ soil moisture data over different depths (in cm) to enable 
direct comparisons between them

In Situ Soil Moisture CABLE Soil Moisture

0–5 cm (0–7 cm for Y3 only) Direct measurements 2 2 2 8

5
2 2 4 8

7

0 2 2 2 2 8

0 2 2 2 2 8

. .

. .

. .

. .

× + ×( )

× + ×( )

( )

( )

− −

− −

θ θ

θ θ

M M

M M

0–30 cm Direct measurements 2 2 5 8 15 4 6 60 2 2 2 2 8 8 23 4 23 4 64 3. . . .. . . . .×( ) + ×( ) + ×( ) + ×− − − −θ θ θ θM M M MM( )
30

0–60 cm (root zone) 30 30

60
0 30 30 60×( ) + ×( )− −θ θI I

2 2 5 8 15 4 36 60 2 2 2 2 8 8 23 4 23 4 64. . . .. . . . .×( ) + ×( ) + ×( ) + ×− − − −θ θ θ θM M M
33

60

M( )

Note: Moisture content data is represented by θ, with superscripts indicating whether it is an in situ measurement (I) or model 
prediction (M), and subscripts indicating the depth range of the data (i.e., for CABLE they represent model soil layer depths).
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18.4. Results and Discussion

A complete summary of  assessments for assimilation 
impacts over the root zone is displayed in Table  18.2, 
showing R2 and RMSE metrics for both OL and UP 
relative to in situ data. Mean differences between OL 
and UP for these metrics across the 12 validation sites 
are also included along with corresponding p values 
from the permutation tests, which tested whether the 
mean differences are significantly different to zero as an 
indication of  how significant the overall assimilation 
impacts were.

From Table  18.2, the greatest improvements in UP 
compared to OL were for the 0–5 cm depth, with improved 
RMSE and R2 scores for 7 out of 12 and 10 out of 12 sta-
tions respectively. The 0–5 cm depth was also the only 
depth range where the overall improvement from assimi-
lation across all sites was statistically significant, but only 
in terms of mean improvement in R2 for which a p value 
of 0.009 indicates significance at the 99% confidence 
level. For 0–30 cm and 0–60 cm depths, there was improve-
ment in terms of RMSE for 7 out 12 and 6 out of 12 sta-
tions, respectively, and improvement in R2 for 8 out of 12 
and 7 out of 12 stations, respectively. None of the overall 
changes from the assimilation across the 12 sites for 
0–30 cm and 0–60 cm depths, as per average RMSE and 

R2 differences, were statistically significant according to 
corresponding p values from permutation tests. These 
results demonstrate some difficulty in improving mod-
eled soil moisture states with depth from the assimilation 
of a shallow moisture product. It also appears that the 
assimilation may be slightly better at improving the tem-
poral variance of predictions as indicated by R2 than 
reducing overall residual error as indicated by reduced 
RMSE.

Figure  18.3 provides a visual summary of overall 
improvement to soil moisture in the 3 depths across the 
12 sites. It shows median and interquartile ranges of 
NRMSE and NR2 [equations 18.4 and 18.5] for the 12 
sites. All points in the plot fall below 1 for both NMRSE 
and NR2, indicating some overall improvement based on 
the median values of these metrics. By contrast, the mean 
difference values for RMSE and R2 in Table 18.2 indicate 
slight overall degradation for some depths. However, 
given the very small sample size of 12 stations, the means 
are likely to be skewed by one or two extreme differences 
for each depth (the validity of the permutation tests for 
means is based on the resampling of 10,000 sets of 
differences).

Plots in Figure 18.4 are time series results illustrating 
the assimilation impacts on the root-zone moisture pre-
diction, sampled from three sites. One where there was 

Table 18.2  Root-mean-squared error (RMSE) and coefficient of determination (R2) assessments of predicted soil moisture from 
the 4 year assimilation experiment relative to in situ data for the 12 OzNet sites Y1–Y10, Y12, and Y13

Site

0–5 cm 0–30 cm 0–60 cm

RMSE R2 RMSE R2 RMSE R2

OL UP OL UP OL UP OL UP OL UP OL UP

Y1 0.021 0.018 0.34 0.63 0.022 0.018 0.19 0.53 0.021 0.019 0.14 0.36
Y2 0.008 0.026 0.39 0.39 0.007 0.028 0.50 0.11 0.007 0.029 0.48 0.01
Y3 0.017 0.012 0.36 0.66 0.018 0.014 0.25 0.46 0.017 0.014 0.25 0.44
Y4 0.007 0.007 0.54 0.63 0.011 0.009 0.25 0.40 0.010 0.010 0.29 0.33
Y5 0.008 0.009 0.49 0.65 0.012 0.011 0.08 0.38 0.009 0.012 0.36 0.18
Y6 0.014 0.011 0.16 0.43 0.018 0.014 0.00 0.11 0.018 0.015 0.01 0.04
Y7 0.007 0.007 0.49 0.59 0.009 0.009 0.26 0.43 0.009 0.008 0.21 0.45
Y8 0.007 0.006 0.48 0.58 0.007 0.009 0.58 0.41 0.007 0.010 0.55 0.23
Y9 0.022 0.016 0.12 0.32 0.024 0.020 0.01 0.05 0.024 0.020 4.2E-7 0.02
Y10 0.006 0.011 0.57 0.37 0.007 0.011 0.42 0.38 0.007 0.010 0.46 0.45
Y12 0.008 0.006 0.40 0.67 0.011 0.009 0.10 0.21 0.012 0.010 2.1E-3 0.06
Y13 0.008 0.007 0.33 0.46 0.007 0.008 0.47 0.39 0.008 0.008 0.37 0.29

μ (mean 
differences)

−2.5 × 10−4 0.14 −5.8 × 10−4 0.06 −1.3 × 10−3 −0.02

p value for μ 
(H0: μ = 0)

0.476 0.009 0.408 0.196 0.305 0.612

Note: Values for each metric in bold indicate an improvement from the assimilation, and the nonbold font indicates either no 
improvement or a degraded impact. The bottom two rows include the means of differences between OL and UP in terms of 
RMSE and R2, along with corresponding p values from permutation tests for whether the mean differences significantly differ 
from zero.
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clear root-zone improvement according to both RMSE 
and R2 (Y1), one where there was degradation (Y5), and 
one where there was minor improvement in either one or 
both metrics (Y6). The Y6 site is of particular interest as 
the in situ data contains information from isolated irriga-
tion events. The root-zone time series plots shown in 
Figure  18.4 highlight the ability of the assimilation to 
translate information on AMSR-E and CABLE differ-
ences for the near-surface down to deeper root-zone 
states in CABLE. Another feature to note from 
Figure 18.4 is the ensemble extremes in each plot, which 
demonstrate the maintained ensemble spread over the 4 
year experiment period due to the input of perturbed 
parameter ensembles.

For Y5, where the UP root-zone series was degraded 
overall from OL (Table  18.2), most of the adjustments 
appear to be in the right direction relative to the in situ 
data (except for around December 2007), but they over-
shoot it, which is generally the case for most other sites 
where the root zone has also been degraded. This may be 
an issue of imbalanced model-observation error repre-
sentation or coupling strength between the near surface 
and deeper soil layers in CABLE. A more detailed inves-
tigation is necessary to better understand the degraded 
results.

For the Y6 series where known irrigation events are 
present in the in situ data (~September 2006 and 2007), 
there is negligible evidence of  it in the modeled series. 

While it is expected that AMSR-E is able to detect such 
events relative to dry surrounds, and for such informa-
tion to be assimilated into the model, in this case the 
irrigation was known to be at the paddock scale only (in 
the order of  ~100s of  m2) and hence the lack of  impact. 
This highlights a particular limitation of  broad-scale 
(~10s of  km2) moisture data from microwave remote 
sensing in terms of  constraining water balances and 
providing useful information for agricultural decisions 
relevant to specific small-scale areas (~100s of  meters to 
~1 km). Also relevant to this issue is the large-scale dis-
crepancy between model inputs (forcing and parame-
ters), assimilated data products, and the point scale 
validation data, which adds to the difficulty of  defining 
uncertainty and evaluating results in experiments such 
as this.

18.5. Conclusions

Assimilating remotely sensed near-surface soil mois-
ture into the CABLE LSM was shown to make some 
improvement to deeper moisture state prediction. 
However, the only overall improvement across all 12 vali-
dation sites that was statistically significant (at the 99% 
confidence level) was the average improvement in pre-
dicted variance by 0.14 over the 0–5 cm depth. The ability 
for improvement was also shown to drop off  with increas-
ing depth—for the full 0–60 cm root zone, some improve-
ment was evident for only just over half  of the validation 
sites. While a larger sample size of validation data would 
enable stronger conclusions to be drawn, investigating 
near-surface and deeper moisture state coupling in 
CABLE, and the sensitivity of the near-surface and 
deeper state error correlations to different perturbations, 
may also provide insight into the cause of degraded 
assimilation impacts.

Perturbing key soil parameters with informed uncer-
tainty estimates successfully maintained predicted 
ensemble spreads for the EnKF, without applying 
covariance inflation or perturbations based on trial and 
error. Consequently, the online bias correction that was 
implemented worked well, with no evidence of  it lead-
ing to ensemble collapse, which may be a problem in 
some cases when ensemble mean moisture state values 
approach the extremes of  the model soil moisture 
range. The presence of  small-scale irrigation in the 
study region explicitly highlighted the issue of  uncer-
tainty from spatial scale discrepancies between data 
used for model input, assimilation, and validation, par-
ticularly for agricultural areas. Therefore, information 
from broad-scale remotely sensed data (~10s of  km) 
such as AMSR-E may not always provide water bal-
ance information that is useful for decision making at 
the farm/paddock scale.
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Figure 18.3  Plot showing the median NRMSE against the 
median NR2 [equations 18.4 and 18.5] across the 12 validation 
sites for the 3 soil depths examined, along with interquartile 
ranges (25th and 75th percentiles). Grid lines on the plot at 1 
for both NRMSE and NR2 signify no difference between UP 
and OL, while values <1 signify improvement from the assimi-
lation and values > 1 signify degradation.
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Figure 18.4  Time series plots of data sampled at 1:30 a.m. (local) time for three OzNet station sites, with a priori 
output from the assimilation procedure. Shown are the impacts on CABLE root-zone moisture predictions result-
ing from the assimilation of AMSR-E soil moisture data at previous update times, including a priori maximum and 
minimum ensemble end members resulting from the perturbed parameter ensemble inputs. UP for station Y1 
(top) was an overall improvement on OL (see Table 18.2), for Y5 (middle) it was degraded overall, and for Y6 (bot-
tom) there was some improvement (only in terms of RMSE). Note the impact on Y6 in situ data from irrigation 
in ~ September 2006 and 2007.
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