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Abstract 
Hydrodynamic models can predict states of interest to the coastal engineer, however, due to uncertainties in the 
model physics, model parameters, initial conditions, and model forcing data, large errors in prediction often result. 
To counter this, an ensemble sequential data assimilation scheme has been applied to the Model for Estuaries and 
Coastal Oceans (MECO), to constrain model predicted water temperature with remotely sensed sea-surface 
temperature observations. This paper describes a series of synthetic twin experiments that contrast two ensemble 
sequential data assimilation schemes, the Ensemble Kalman Filter (EnKF) and the Ensemble Square Root Filter 
(EnSRF) in both one and three dimensional forms. The experiments show that the assimilation greatly improves the 
model prediction. The three dimensional form outperforms the one dimensional form, and that the EnSRF 
outperformed the EnKF significantly in the one dimensional form but only marginally in the three dimensional form.  
 
1 Introduction  
Data assimilation is a statistical technique, which 
combines a model forecast and an observation to 
estimate the true state of the phenomenon being 
predicted. This paper presents an introduction to the 
concepts of sequential data assimilation and compares 
two well-known techniques from the literature in a 
coastal application. Synthetic surface temperature 
fields (SST) are assimilated into a coastal 
hydrodynamic model and show significant 
improvement in the prediction capability of the model.  
 
The benefits of using data assimilation are its ability to 
improve model prediction. This is of importance in 
short range forecasting where a prediction of a future 
state is desired. In a coastal setting this could be where 
will be the location of an algal blooms most likely be, 
or what concentration of suspended sediment should 
we expect at a given location two days hence, while in 
a ports setting improved prediction of water levels or 
wave fields have obvious benefits for the safety and 
reliability of shipping. Other benefits of data 
assimilation are that an investigation of the data 
assimilation analysis can point to potential model 
deficiencies. For instance, if the assimilation always 
corrects the model in a certain direction this is 
suggestive of a poor model parameterisation. Thus 
data assimilation provides feedback that aids model 
improvement.  
 
Accurate prediction of water temperature is of 
particular importance in ecological modelling, where 
temperature influences growth parameters. 
Unfortunately, accurate prediction of water 
temperature is not always possible, especially in highly 
enclosed water bodies where atmospheric exchange is 
the dominant driver of water temperature. Errors in 
water temperature prediction are due to our poor 
understanding and conceptualisation of 
thermodynamics and hydrodynamics, as well as 
uncertainties in initial conditions, model parameters, 
and model forcing data.  
 

Model prediction errors can be reduced by using data 
assimilation. Data assimilation combines the model 
predicted states with observations based on their 
relative uncertainties. The result of data assimilation is 
a new set of state estimates that are closer to the truth 
and have a lower level of uncertainty than either data 
set (model or observations) individually. Data 
assimilation techniques have been widely applied in 
meteorology and oceanography (Gill and Malanotte-
Rizzoli, 1991), but assimilation of sea-surface 
temperature (SST) into coastal ocean models has 
received far less attention. 
 
Applying data assimilation to coastal models has 
become increasingly accessible due to recent advances 
in computing power and the launch of new satellite 
observing systems. However, while many data 
assimilation approaches exist in the literature, it is not 
clear which of these are best suited to bay and estuary 
modelling. Therefore, as well as introducing data 
assimilation generally, this paper explores the 
characteristics of two ensemble sequential data 
assimilation techniques – the Ensemble Kalman Filter 
(EnKF) and the Ensemble Square Root Filter (EnSRF). 
The key difference between these two data 
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Figure 1: Location diagram for Port Phillip Bay, south 
eastern Australia. 



 

assimilation techniques is their treatment of 
observations. These two techniques are contrasted in a 
series of synthetic twin experiments in both one 
dimensional (where only the vertical correlation of the 
water column is considered for individual model cells 
and the assimilation is performed cell wise through the 
model domain) and three dimensional (where the 
spatial correlation of model states is considered and 
the entire model domain is modified by the 
assimilation in a single step) form. The experiments 
are undertaken for Port Phillip Bay located in south 
eastern Australia (Figure 1). 
 
2 Theoretical Background 
It is well understood that both model predictions and 
observations of a physical state are often prone to 
error. For models the mathematical equations 
representing the phenomenon are a simplification of 
actual processes; computing power limits the spatial 
and temporal resolution and uncertainties associated 
with boundary and initial conditions all combine to 
produce uncertainties in the model prediction.  
 
In the coastal marine setting two data types are most 
commonly available; point source and remotely 
sensed. While point measurements are usually 
relatively accurate at the local scale, extending these 
data introduces uncertainties of scale. In contrast, 
remotely sensed data provide good spatial coverage, 
but only for a shallow surface layer at an instant in 
time, and are sensitive to atmospheric effects and 
errors in the algorithm used to relate the measurements 
to the physical state being observed. 
 
While an estimate of the spatial and temporal variation 
in water temperature can be made based on either 
model predictions or observations alone, both are 
affected by different types of uncertainty. 
Observations, although subject to errors may be 
accurate: models give temporal state estimates for the 
entire domain which observations can not. Sequential 
data assimilation combines the model predictions and 
observations to achieve an improved estimate of the 
physical state.  
 
The algorithm for sequential data assimilation is as 
follows. Starting from a ‘best estimate’ of the physical 
state, a model run predicts the physical state in the 
future. When an observation becomes available the 
model is stopped. The model state at this point 
becomes the ‘forecast’, or background field. Based on 
the relative uncertainty in and the difference between 
the observation and the forecast; and the covariances 
between the forecast and observation errors, a 
correction is calculated for the model state. This 
correction is added to the forecast to give the 
‘analysis’. The model is then reinitialised using the 
analysis, and is run forward until another observation 
becomes available and the process repeated. As the 
name suggests, the observations are sequentially 
assimilated into the model. 
 

The most well known sequential data assimilation 
technique is the standard Kalman Filter (Evensen 
2003) given by 
 
 )( ffa HxdKxx −+= , (1) 
 
where x  is a vector of the model predictions, with 
superscripts a  and f  denoting analysis and forecast 
respectively, d  is a vector of observations and H  is a 
matrix that maps the model state x  to the observations 
d ; K  is a weighting matrix known as the Kalman gain 
given by  
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where P  is the forecast error covariance matrix that 
quantifies the covariances of the uncertainties of the 
model state, and R  is the observation error covariance 
matrix that quantifies the covariances of the 
uncertainties associated with the observations. The 
influence of the Kalman gain on the analysis can be 
seen by considering an example where P  and R  are 
scalars. If the uncertainty associated with the model is 
less than the uncertainty associated with the 
observations, P << R , then following equation (2) K  
approaches zero and in equation (1) more reliance is 
placed on the model forecast. Conversely, if the 
observations are more certain than the model forecast, 
R << P , K  approaches unity and more reliance is 
placed on the observations.   
 
An advantage of the Kalman Filter over other 
sequential data assimilation techniques, such as direct 
insertion, is that the statistical relationship between 
state elements enables the filter to update not just those 
state elements that are observed, but also other 
unobserved state elements that may be different 
variables and at different locations. For instance, 
satellites typically measure SST, however using the 
Kalman Filter SST observations can be used to modify 
all other state elements, including temperature at 
depth, salinity, sea-level and currents. 
  
Because the Kalman Filter is linear it does not deal 
satisfactorily with highly nonlinear models. In an 
attempt to overcome this limitation, Evensen (2003) 
introduced the Ensemble Kalman Filter (EnKF), 
whereby covariance error statistics were obtained 
through the use of an ensemble of model forecasts. 
Thus rather than one model run being propagated 
through time an ensemble of model runs are made. 
Each run starts from a slightly different position, 
reflecting the uncertainty associated with the model 
initial conditions and each model is forced by slightly 
different forcing data reflecting the uncertainty 
associated with the forcing data. Model error is 
incorporated too. The result is that when an 
observation becomes available for analysis the 
ensemble of forecasts will have spread representing 
the uncertainty associated with the forecast. This is 
illustrated in Figure 2 where each solid dot represents 



 

one ensemble member and in combination represent 
the uncertainty associated with a particular model 
state. Each ensemble member is propagated through 
time by the model to give a forecast (open dot) when 
an observation becomes available. Due to the 
uncertainties in the model and forcing conditions the 
uncertainty of the forecast has spread. The assimilation 
reduces the spread of the ensemble members (solid 
dots) indicating a reduction in uncertainty associated 
with the analysed state. The analysed values are used 
to initiate the next forecast and the process repeats 
itself.  
 
In ensemble form equation (1) becomes  
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where X  is an ensemble matrix of n  model state 
realisations, ],...,,,[ 321 nxxxxX = ; and D  is an 
ensemble matrix of observations. This ensemble is 
created by adding n  realisations of random 
perturbations to the vector of observations d . The 
forecast error covariance matrix is approximated for 
the model of ensemble predictions by 
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where 'X  is a matrix of the ensemble perturbations of 
X  about a mean x . An ensemble approximation of 
observation error covariances is also possible, but has 
well understood problems (Kepert 2004), and is not 
employed here.  
 
Because of sampling error introduced through the use 
of perturbed observations in D , the EnKF formulation 
is expected to be less accurate than one that does not 
require perturbed observations (Whitaker and Hamill, 
2002). In response to this Whitaker and Hamill (2002) 
proposed the Ensemble Square Root Filter, which is in 

most respects similar to the EnKF, but does not require 
perturbed observations.  
 
After the analysis of observations the analysis error 
covariance should be  
 
 TT)()( KRKKHIPKHIP +−−= fa , (4) 
 
where fP is the pre-analysis forecast error covariance. 
If the observations in equation (3) are not perturbed 
the post-analysis forecast error covariance aP  will be 
underestimated, as the last term of equation (4) 
disappears (Whitaker and Hamill, 2002). While the 
EnSRF does not use perturbed observations it avoids 
underestimating the post-analysis forecast error 
covariance, aP , by updating the perturbation matrix 

'X  and the ensemble mean x  separately. The 
ensemble mean is updated by the usual Kalman gain 
K  given in equation (2), while the perturbations are 
updated by a new gain matrix 
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In this paper we consider the sequential assimilation 
application in both the one and three dimensional 
forms. In the one dimensional form, each observation 
is assimilated independently modifying the 
temperature of the water column directly beneath it. 
Only the ensemble perturbations from the model cells 
beneath the observation are used to generate the 
forecast error covariance matrix.  
 
The advantage of the one dimensional approach is that 
by using single observations the R  and THHP f  
matrices collapse to scalars. This means that the 
computational cost of this assimilation form is 
significantly less than the three dimensional 
assimilation form. In contrast, the three dimensional 
form assimilates all the observations together to derive 
a correction to water temperature throughout the entire 
model domain. Solving this requires matrix inversions 
of large matrices (2000+ elements) but has the 
advantage that all the error covariance information is 
shared throughout the domain. 
  
3 Experimental Setup 
The data assimilation experiments described in this 
paper are illustrated through their application to a case 
study. The case study location is Port Phillip Bay, a 
shallow (~20m depth) highly enclosed basin located in 
south eastern Australia. 
 
There are three sources of heating and cooling for the 
bay. These are the tidal exchange of water with the 
open sea through ‘the heads’, atmospheric heat fluxes, 
and riverine inputs of water. Of these the riverine 
influence is minimal and the atmospheric heat fluxes 
are the predominant heating and cooling mechanism. 

 
Figure 2 Graphic representation of sequential 
assimilation. Dots represent ensemble members, both 
initial/analysed values (solid) and forecast values 
(open). The relative spread of an ensemble indicates 
its uncertainty. 



 

Tidal exchange is limited by the narrow entrance at 
‘the heads’. 
 
The synthetic data assimilation experiments conducted 
here use a twin experiment technique to examine the 
improvement in prediction capability. The basis of this 
technique is to compare how close a degraded model 
approaches its ‘true’ twin when observations are 
assimilated. 
 
The following set-up is used. An initial ‘truth’ model 
run was undertaken using atmospheric data collected 
predominantly at Point Wilson (see Figure 3). Data at 
Laverton were used for data types not collected at 
Point Wilson. Snapshots of the surface (top 1m) layer 
were extracted at an interval of two days to create a set 
of ‘satellite’ observations. These were degraded 
through the addition of spatially uncorrelated noise 
with a standard deviation of 0.3°C, which is in the 
range of the error associated with satellite observed 
SST (Brown and Minnett, 1999).  
 
A second model run was set up using atmospheric 
forcing predominantly from Frankston (Figure 3) with 
data from Moorabbin for data types not collected at 
Frankston. Evaporation data was common to both 
model runs as only one station collected it. This 
different atmospheric forcing data was used to 
represent the typical uncertainty associated with model 
forcing data. The initial water temperature was set 1°C 
warmer to represent the uncertainty associated with 
specifying model initial conditions. This second model 
run, termed the ‘open loop’ run, indicates what 
prediction performance would be expected if there was 
no assimilation. 
 
Four data assimilation runs were performed based on 
the second model set-up, with each run differing by the 
data assimilation technique and form used. The 
ensemble initialisation and propagation followed the 
procedure outlined in Turner et al (2005). In all cases 
14 ensemble members were used as a trade-off 
between accuracy and computational time.  In both the 
truth and open loop runs an initial 10 day model spin-
up was undertaken to produce realistic current fields 

from initially calm conditions, and the models run for 
a period of 40 days. 
 
The hydrodynamic modelling was undertaken using 
the CSIRO Model for Estuaries and Coastal Oceans 
(MECO). MECO is a finite difference hydrodynamic 
model based on the three dimensional equations of 
momentum, continuity, and conservation of heat and 
salt, utilising the hydrostatic and Boussinesq 
assumptions (Walker et al, 2002).  
 
The ‘original’ MECO thermodynamics formulation 
was used in all simulations. This formulation computes 
bulk values of the components of the energy balance. 
The net heat flux due to longwave and shortwave 
radiation together with sensible and latent heat flux is 
used to adjust the surface layer temperature in this 
formulation. Heating effects due to shortwave 
radiation absorption through the water column are also 
included.  
 
An example of model output indicating currents 
superimposed over water elevation is presented in 
Figure 4. This figure shows some of the characteristics 
of Port Phillip Bay which initiated this study. The 
narrow entrance to the bay constricts the flow, as 
illustrated by the high velocities at the entrance. This 
limits exchange between Port Phillip Bay and Bass 
Strait to the southern portion of the bay; approximately 
the area in Figure 4 covered by the dense 
concentration of flow arrows.  
 
While MECO allows for the use of spatially varying 
atmospheric inputs, spatially uniform inputs have been 
used throughout this paper. The justification for this is 
that the spatial extent is not so large as to warrant the 
complications of generating spatially varying wind 
fields, and other atmospheric inputs are not expected 
to vary significantly.  
 
4 Results 
To illustrate the experiment results, time series of 
water temperature have been extracted from three 
comparison sites (see Figure 3) at different locations 
within the water column in each case (Figure 4). These 
figures demonstrate that the data assimilation is able to 
positively impact the deeper unobserved layers of the 
water column in addition to the observed surface layer. 
Each figure compares the open loop and ensemble 
mean predicted by the different data assimilation 
techniques with the truth.  
 
Consider first the difference between the truth and the 
open loop in each of the three cases.  
The initial difference in water temperature prediction 
is due to the 1°C rise made to the degraded model 
initial condition. Over time the graphs mirror each 
other and. move closer. This is an effect of the initial 
condition error being diminished as a result of little or 
no error in the open boundary and atmospheric 
forcing, and the same model physics (heating and 
cooling) used for both scenarios. While atmospheric 
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Figure 3: Location of monitoring sites (circles) and 
weather stations (triangles) used in the modelling. 



 

data sets are taken from different locations they are not 
so different to produce wildly differing predictions.  
 
For all three comparison locations the introduction of 
observations through data assimilation significantly 
improves the model water temperature forecast. Any 
initial discrepancy between the open loop and the 
ensemble mean is due to the ensemble generation 
technique. The initial assimilation generates significant 
improvements in prediction with subsequent 
assimilation times resulting in smaller corrections. As 
the observation error is constant throughout the 
assimilation period, the amount of improvement made 
by the assimilation is dependent upon the uncertainty 
associated with the model prediction. This in turn is a 
function of the spread of the ensemble members about 
the ensemble mean and is calculated using equation 
(3).  
 
A comparison between the different filtering 
techniques and open loop run is made by contrasting 
the root mean squared (RMS) difference between the 
ensemble mean forecast and the truth for the entire 
model domain (Figure 5). This shows that the initial 
average forecast error is about 0.8°C; significantly 
worse than the prescribed observation error of 0.3°C; 
the initial 1°C initial condition difference was reduced 
during the spin-up period. Moreover, assimilation 
significantly improved the model predictions both in 
terms of absolute RMS and relative to the open loop.  
 
Contrasting the one dimensional examples; the EnSRF 
performed significantly better than the EnKF. The 
poor performance of the one dimensional EnKF is due 
to sampling error in the perturbed observations, which 
is magnified by the one dimensional form. Using a 
three dimensional assimilation form gave significantly 
better results than the one dimensional assimilation 
form, a consequence of more information being 
available to the three dimensional form. Both 
techniques appeared equally as effective in the three 
dimensional form, although the EnSRF performed 
slightly better over the first 10 days of the assimilation 
period. Sampling error in the EnKF appears to be 
reduced by averaging over time.  
 
The improvements in prediction can be calculated 
relative to the open loop prediction (Figure 5) by 

dividing the difference between the RMS error of the 
assimilation and the RMS error of the open loop by the 
RMS error of the open loop prediction. Both three 
dimensional assimilation techniques reached 90% 
improvement over the assimilation period, while the 
one dimensional EnSRF averaged 80-90% and the one 
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Figure 4: Time series of predicted water temperature 
for the open loop and assimilated model runs as 
compared to the truth run for (a) Long Reef 
monitoring location for the surface (depth 1m); (b) 
Hobsons Bay monitoring location for the middle 
(depth 5m); and (c) Central monitoring location for the 
bottom (depth 23m). 
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Figure 4: Sample of output from MECO model. 
Shading indicates water elevation, while arrows 
indicate surface currents during an ebb tide.  



 

dimensional EnKF averaged 60-70% over the 
assimilation period. 
 
5 Discussions 
The results obtained through the twin experiments 
show that the three dimensional form performed 
significantly better than the one dimensional form. 
This result is not unexpected. By using a three 
dimensional form the filter is able use the spatial 
relationships inherent in the model forecast to produce 
an improved update.   
 
Although both filter types performed well in the three 
dimensional form, the EnSRF performed slightly 
better. It had a better prediction for the first 10 days of 
the assimilation period and as good prediction for the 
remainder of the period. Moreover, it predicted the 
estimate of RMS error slightly better than the EnKF. 
This is due to the small number of ensembles (14 in 
this application), which in combination with the 
sampling error inherent in the EnKF reduces its 
performance. With a longer assimilation run or more 
ensemble members the EnKF and EnSRF are expected 
to give equivalent results, which was shown with the 
three dimensional EnKF approaching the EnSRF over 
time (Figure 5). However, the number of ensemble 
members is the variable which most significantly 
influences computational costs, with the assimilation 
step being relatively inexpensive. Still, these tests 
cannot be considered thorough enough to state with 
certainty that the EnSRF is the better choice.  
 
The experiments have shown that significant 
improvements to model predictions of water 
temperature are possible through the assimilation of 
surface layer observations. These experiments 
however, have been performed in an artificial 
environment and the same level of performance cannot 
be expected in a real case. One of the main limitations 
of this study is that the same model equations were 
used to create the observations and truth data as for the 
assimilation and open loop forecasts. This means the 
model was conditioned to perform well relative to the 
truth. In reality, the physical process occurring cannot 

be modelled exactly and in a real case more errors will 
be introduced in this way.  
 
6 Conclusions 
Two sequential data assimilation techniques have been 
compared in both one and three dimensional forms. 
While the three dimensional form is superior to the 
one dimensional form, the EnSRF performs only 
slightly better than the EnKF and the EnSRF is less 
affected by dimensionality. While the performance of 
both filters is admirable, an application using real 
observations is necessary to better appreciate the 
improvements actually realised from data assimilation.  
 
This paper has demonstrated the significant potential 
of data assimilation techniques to improve the 
reliability and accuracy of a model prediction. All of 
the assimilation techniques used gave significant 
improvement over the control without assimilation. 
The techniques described are, more generally, 
applicable to other coastal marine modelling settings 
and will improve any coastal forecasting system.  
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Figure 5: RMS difference between ensemble mean 
prediction and truth for the entire model domain. 



 

 
 


