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and surface temperature and wetness conditions
affect and are affected by numerous climatologi-
cal, meteorological, ecological, and geophysical

phenomena. Therefore, accurate, high-resolution es-
timates of terrestrial water and energy storages are

valuable for predicting climate change, weather, bio-
logical and agricultural productivity, and flooding,
and for performing a wide array of studies in the
broader biogeosciences. In particular, terrestrial
stores of energy and water modulate fluxes between
the land and atmosphere and exhibit persistence on
diurnal, seasonal, and interannual time scales.
Furthermore, because soil moisture, temperature, and
snow are integrated states, biases in land surface forc-
ing data and parameterizations accumulate as errors
in the representations of these states in operational
numerical weather forecast and climate models and
their associated coupled data assimilation systems.
That leads to incorrect surface water and energy par-
titioning, and, hence, inaccurate predictions.
Reinitialization of land surface states would mollify
this problem if the land surface fields were reliable and
available globally, at high spatial resolution, and in
near–real time.

A Global Land Data Assimilation System
(GLDAS) has been developed jointly by scientists at
the National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (GSFC) and
the National Oceanic and Atmospheric Administra-
tion (NOAA) National Centers for Environmental
Prediction (NCEP) in order to produce such fields.
GLDAS makes use of the new generation of ground-
and space-based observation systems, which provide
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data to constrain the modeled land surface states.
Constraints are applied in two ways. First, by forcing
the land surface models (LSMs) with observation-
based meteorological fields, biases in atmospheric
model-based forcing can be avoided. Second, by em-
ploying data assimilation techniques, observations of
land surface states can be used to curb unrealistic
model states.

Through innovation and an ever-improving
conceptualization of the physics underlying earth sys-
tem processes, LSMs have continued to evolve and to
display an improved ability to simulate complex phe-
nomena. Concurrently, increases in computing power
and affordability are allowing global simulations to be
run more routinely and with less processing time, at
spatial resolutions that could only be simulated using
supercomputers five years ago. GLDAS harnesses this
low-cost computing power to integrate observation-
based data products from multiple sources within a
sophisticated, global, high-resolution land surface
modeling framework.

What makes GLDAS unique is the union of all of
these qualities: it is a global, high-resolution, offline
(uncoupled to the atmosphere) terrestrial modeling
system that incorporates satellite- and ground-based
observations in order to produce optimal fields of land
surface states and fluxes in near–real time. This ar-
ticle describes the major aspects of GLDAS and in-
cludes a sample of the output products. Subsequent
scientific papers will present the results of several
studies (now in various stages of completion) that are
focusing on the data assimilation, validation, weather
and climate model initialization, and other aspects of
the project, in more detail than could be included in
a single article.

BACKGROUND. Modeling of the land surface.
Spurred by advances in the understanding of soil–
water dynamics, plant physiology, micrometeorol-
ogy, and the controls on atmosphere–biosphere–
hydrosphere interactions, several LSMs have been
developed in the past two decades with the goal of
realistically simulating the transfer of mass, energy,
and momentum between the soil and vegetation sur-
faces and the atmosphere. Currently, GLDAS drives
three land surface models: Mosaic, Noah, and the
Community Land Model (CLM). Additional models
are slated for future incorporation, including the
Variable Infiltration Capacity model (VIC; Liang
et al. 1994) and the Catchment Land Surface Model
(Koster et al. 2000). For a comparison of these and
other LSMs, see results from the Project for
Intercomparison of Land Surface Parameterization

Schemes (PILPS; Henderson-Sellers et al. 1995;
Bowling et al. 2003) and the Global Soil Wetness
Project (GSWP; Dirmeyer et al. 1999).

MOSAIC. Mosaic (Koster and Suarez 1996) is a well-es-
tablished and theoretically sound LSM with roots in
the Simple Biosphere model (SiB) of Sellers et al.
(1986). The primary innovation of Mosaic was its
treatment of subgrid-scale variability. It divides each
model grid cell into a mosaic of tiles (after Avissar and
Pielke 1989) based on the distribution of vegetation
types within the cell. Surface flux calculations are
similar to those described by Sellers et al. (1986).

CLM. The CLM is being developed by a grassroots
collaboration of scientists who have an interest in
making a general land surface model available for
public use (Dai et al. 2003). The project is not con-
trolled by any single organization or scientist, rather,
the science is steered by the community. CLM in-
cludes superior components from each of three con-
tributing models: the NCAR Land Surface Model
(Bonan 1998), the Biosphere–Atmosphere Transfer
Scheme (BATS; Dickinson et al. 1986), and the LSM
of the Institute of Atmospheric Physics of the Chinese
Academy of Sciences (Dai and Zeng 1997). Both of
the first two “frozen” versions of CLM are included
in the GLDAS.

NOAH. Since 1993, as a core project within the Global
and Energy Water Cycle Experiment (GEWEX) Con-
tinental-Scale International Project (GCIP), NCEP
has spearheaded a continuing collaboration of GCIP
and other investigators from both public and private
institutions to develop a modern LSM to be used for
operations and research in NCEP weather and climate
prediction models and their data assimilation systems,
and also to be supported and distributed for commu-
nity usage. The Noah LSM (Chen et al. 1996; Koren
et al. 1999) was borne of that effort. Noah has been
used operationally in NCEP models since 1996, and
it continues to benefit from a steady progression of
improvements (Betts et al. 1997; Ek et al. 2003).

Land data assimilation. Model predictions and obser-
vations are imperfect, and they contain different types
of information. Observations may be highly accurate
at discrete points in space and time, but they are sub-
ject to instrument failures, measurement drift, data
stream interruptions, questions of spatial representa-
tiveness, and flaws in the algorithms used to derive
useful quantities from measured signals. Models syn-
thesize all of our knowledge of physical processes and
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perform the thousands of calculations necessary to
simulate a piece of the earth system, but they are lim-
ited by oversimplifications and misunderstandings of
the myriad processes and feedback mechanisms that
are active in the real world, as well as by errors in the
data used to force the models. Data assimilation
merges measurements with model predictions, with
the goal of maximizing spatial and temporal cover-
age, consistency, resolution, and accuracy. Several
data assimilation approaches are being tested for in-
clusion in GLDAS, including both the ensemble and
the extended Kalman filters (Kalman 1960; Walker
and Houser 2001), optimal interpolation, and hybrid
insertion techniques.

North American LDAS. GLDAS has its basis in the
North American Land Data Assimilation System
(NLDAS) project (Mitchell et al. 1999; Cosgrove et al.
2003). NLDAS was initiated in 1998 as a multiinsti-
tution collaboration led by NCEP, with the goal of
producing land surface states and fluxes via an un-
coupled land-only system that relied as much as pos-
sible on observation-based forcing fields, in order to
avoid known biases in atmospheric model–based forc-
ing fields. The study region for NLDAS encompasses
the conterminous United States and parts of Mexico
and Canada. Four LSMs are run by the contributing
groups at 0.125° resolution and are subject to the same
forcing fields, thus enabling unambiguous intercom-
parison of the LSM simulations. NLDAS models ex-
ecute in real time at NCEP and, retrospectively, at
NASA GSFC, Princeton University, the University of
Washington, and NOAA’s Office of Hydrologic De-
velopment. NLDAS states, fluxes, and forcings are
being validated by researchers at Rutgers University
and the University of Maryland as well as the afore-
mentioned institutions. Much of
the GLDAS driver code was de-
rived from GSFC’s NLDAS driver
code, and many of the project
goals are similar, albeit over dif-
ferent spatial domains.

METHODS AND SPECIFI-
CATIONS. One of the primary
objectives of the GLDAS project
was to develop a driver that allows
users to run multiple LSMs with-
out specific knowledge of the
models’ architectures or physics.
Designing a simulation with any
of the models only requires modi-
fication of a single, simple inter-

face file. GLDAS routines adapt the forcing data to the
individual input requirements of each LSM. Run-time
options are provided in the GLDAS user interface file
(these are summarized in Table 1). One is the forc-
ing data source, as described in the section titled “Sur-
face forcing fields.” Another is the method of LSM
state variable initialization: 1) the user can declare a
globally uniform value for each variable; 2) the val-
ues can be taken from a restart file produced by a prior
run; 3) GLDAS can input the surface state variable
fields produced by the land model coupled to the at-
mospheric forecast and analysis system that produced
the baseline forcing data (forcing data initialization
option). Although time to spin up a model to a self-
consistent state is still required with the third ap-
proach, it is greatly reduced. GLDAS static parameter
fields, subgrid-scale variability, and data assimilation
options are described below.

Land surface parameters. VEGETATION. A high-quality
vegetation classification map is critical to GLDAS for
three reasons. First, the Mosaic, CLM, and Noah
models incorporate soil–vegetation–atmosphere
transfer schemes  (SVATS), so that the fluxes and
storages of energy and water at the land surface are
strongly tied to the properties of the vegetation.
Second, the vegetation type dictates other parameters
such as albedo and roughness height. Third, GLDAS
simulates subgrid-scale variability based on vegeta-
tion, as described in the section titled “Subgrid-scale
variability.” GLDAS uses a static, 1-km resolution,
global dataset of land cover class that was produced
at the University of Maryland (UMD) based on ob-
servations from the Advanced Very High Resolution
Radiometer (AVHRR) aboard the NOAA-15 satellite
(Hansen et al. 2000). As shown in Fig. 1, the UMD

Spatial resolution 0.25°; 0.5°; 1.0°; 2.0° × 2.5°

Temporal resolution Adjustable model time step and output interval

Land surface model Mosaic; CLM; Noah

Forcing Various analysis- and observation-based products

Initialization None (constant value); restart file; forcing data

Subgrid variability 1–13 tiles per grid cell (constant or fractional cutoff)

Elevation adjustment Temperature; pressure; humidity; longwave radiation

Data assimilation Surface temperature; snow cover

Soil classification Lookup table; Reynolds et al. (1999)

Leaf area index Lookup table; AVHRR derived

TABLE 1. Basic options available in the GLDAS user interface.
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classification includes 11 vegetation types in addition
to water, bare ground, and urban covers.

GLDAS also ingests a satellite-based, 1-km reso-
lution time series (when available) or climatology of
leaf area index (LAI). These were generated using
three information sources (Gottschalck et al. 2002):
1) a 16-km resolution time series of LAI (currently
spanning July 1981–July 2001), which was derived by
scientists at Boston University (BU; Myneni et al.
1997) from AVHRR measurements of normalized
difference vegetation index (NDVI) and other satel-
lite observations; 2) a climatology based on the 16-km
time series, in which LAI is indexed by 10° latitude
zones, month of the year, and vegetation type; and 3)
the 1-km UMD vegetation-type classification. The in-
formation is blended so that the resulting 1-km pixel
values vary by vegetation type while the BU 16-km
average LAIs are maintained. GLDAS scales the 1-km
data to the selected model resolution and adjusts for
fractional vegetation cover.

SOILS. The soil parameter maps used in GLDAS were
derived from the 5¢ resolution global soils dataset of
Reynolds et al. (2000). Porosity and the percentages
of sand, silt, and clay were horizontally resampled to
the 0.25° GLDAS grid and linearly interpolated to 0–
2-, 2–150-, and 150–350-cm depths from the origi-
nal 0–30- and 30–100-cm depths. Those depths were
chosen to match the set of depths most commonly as-
signed in the original version of Mosaic and to facili-

tate future assimilation of surface soil moisture fields
derived from Advanced Microwave Scanning Radi-
ometer (AMSR) satellite measurements. Certain pa-
rameters employed by the LSMs are indexed to the
U.S. Department of Agriculture (USDA) soil texture
class. Therefore, GLDAS includes a routine to clas-
sify the texture based on the percentages of sand, silt,
and clay in a given grid cell, resulting in the map
shown in Fig. 2. CLM also employs soil color as a pa-
rameter. GLDAS soil colors are interpolated from a
2° × 2.5° global map produced at NCAR.

ELEVATION AND SLOPE. GLDAS uses a global 30-arc-s
resolution topographic map (GTOPO30; Verdin and
Greenlee 1996) as its standard. GTOPO30 elevations
were averaged onto the 0.25° GLDAS grid. By default,
GLDAS corrects the modeled temperature, pressure,
humidity, and longwave radiation forcing fields based
on the difference between the GLDAS elevation defi-
nition and the elevation definition of the model that
created the forcing data, following Cosgrove et al.
(2003). Because some LSMs, including Mosaic, ingest
surface or bedrock slope as a parameter, geographic
information systems software was used to assess the
slope at each GTOPO30 pixel, and from those values
the mean slope within each GLDAS grid cell was
computed.

Subgrid-scale variability. The standard operational
GLDAS model runs are performed on a 0.25° × 0.25°

FIG. 1. Predominant UMD vegetation type in each 0.25° grid cell. Key: 1 = water, 2 = evergreen needleleaf
forest, 3 = evergreen broadleaf forest, 4 = deciduous needleleaf forest, 5 = deciduous broadleaf forest, 6
= mixed cover, 7 = woodland, 8 = wooded grassland, 9 = closed shrubland, 10 = open shrubland, 11 =
grassland, 12 = cropland, 13 = bare ground, 14 = urban and build-up.
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grid, which is nearly global, covering all of the land
north of 60°S latitude. GLDAS also is able to run on
0.5° × 0.5°, 1.0° × 1.0°, and 2.0° × 2.5° global grids.
Following Koster and Suarez (1992), subgrid variabil-
ity is simulated by running the LSMs on a series of
independent soil columns, or tiles, where each tile
represents one vegetation class within a grid cell.
Gridded output is returned by weighting each tile by
its fractional coverage within the cell. The aim of this
approach is to encapsulate subgrid-scale water and
energy flux variability, which may be significant at
model scales (e.g., Vukovich et al. 1997). Users select
a maximum whole number of tiles to be defined per
grid cell. This can be as many as 13, which is the num-
ber of land cover types in the UMD vegetation classi-
fication. In addition, users select the smallest percent-
age of a cell for which to create a tile. For example,
given settings of three tiles and 12%, a tile would be
created for any vegetation type that covers at least 12%

of a grid cell, for up to three tiles per cell. Any veg-
etation type that covers less than 12% of the cell or is
not among the three most common types would be
omitted, and the resulting tile areas would be normal-
ized to 100%. Figure 3 illustrates this example. Tests
have shown that constraining the number of tiles per
grid using the percentage cutoff is more efficient (i.e.,
the sum of all the subgrid areas containing a vegeta-
tion type that was omitted is smaller given the same
global-total number of tiles) than setting a maximum

FIG. 3. The spatial coverage of five vegetation types (A–
E) within a fictional grid cell is shown. Given this infor-
mation along with user-defined cutoffs, e.g., 3 = maxi-
mum tiles per grid and 12% = minimum grid coverage
to define a tile, GLDAS would 1) eliminate vegetation-
type E (less than 12%), 2) eliminate vegetation-type B
(not among three predominant vegetation types), and
3) normalize the weights of the three remaining tiles
to 100%, resulting in three tiles: A (17%), C (57%), D
(26%).

FIG. 2. USDA soil texture class in each 0.25° grid cell, derived from Reynolds et al. (1999). Key: 1 = clay,
2 = silty clay, 3 = sandy clay, 4 = clay loam, 5 = silty clay loam, 6 = sandy clay loam, 7 = loam, 8 = silty
loam, 9 = sandy loam, 10 = loamy sand, 11 = sand.
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number of tiles per grid (Toll et al. 2001). Based on
these tests, the standard for GLDAS operational runs
is to set 10% as the minimum tile area percentage and
13 (i.e., no constraint) as the maximum tiles per grid.
This results in 505,680 tiles at 0.25° grid resolution,
or an average of just over two tiles per cell.

Data assimilation. GLDAS includes an algorithm for
assimilating remotely sensed, 6-hourly skin tempera-
ture observations (Ottle and Vidalmadjar 1992) from
the Television Infrared Observation Satellite (TIROS)
Operational Vertical Sounder (TOVS) instrument.
The algorithm relies on an optimal interpolation rou-
tine to calculate an analysis increment, which is used
to perform an incremental, semidaily, or daily skin
temperature bias correction. The bias correction con-
tinually steers the modeled state toward the observa-
tion. The observed-minus-forecast value for the skin
temperature is first calculated by GLDAS and passed
into the optimal interpolator to retrieve the analysis
increment. This is then relayed, along with a bias cor-
rection term, to the LSM code for proper energy bud-
get considerations. Testing has shown that this tech-
nique effectively constrains the modeled surface
temperature (Radakovich et al. 2001), though the re-
sults are limited by the temporal sparseness of the
TOVS data. The same technique could potentially be
applied using 3-hourly skin temperature data from the
International Satellite Cloud Climatology Project
(ISCCP).

Methods for assimilating surface soil moisture data
using forms of the ensemble and extended Kalman
filters have been designed and tested by members of
the GLDAS science team (Walker and Houser 2001;
Zhan et al. 2002), but these have not yet been imple-
mented in GLDAS due to a lack of global observations
of soil moisture. The AMSR instrument, aboard
NASA’s Earth Observing System (EOS) Aqua satel-
lite, has begun to deliver global C-band microwave
observations. Under certain land cover conditions
these may soon be used to derive near-surface (0–2
cm) soil moisture (Owe et al. 2001).

GLDAS can assimilate snow cover information
derived from measurements made by the Moderate
Resolution Imaging Spectroradiometer (MODIS)
aboard NASA’s Terra satellite (Rodell et al. 2002). The
MODIS science team at GSFC provides a daily, 0.05°
gridded global snow cover dataset (D. K. Hall et al.
2002). For each grid cell over land, this product re-
ports the percentages of snow-covered, non-snow-
covered, and nonvisible (i.e., obscured by cloud cover,
night, or otherwise) subgrid pixels. The GLDAS snow
correction algorithm determines the snow-cover state

(snow covered or bare) at each model grid cell based
on the ratio of snow-covered pixels to visible pixels
and uses the number of visible pixels as a measure of
observation reliability. If the observation is deemed
unreliable or if the observation and model agree on
the snow-cover state in a grid cell, the modeled snow
condition is not changed. Otherwise, if MODIS indi-
cates that the grid cell is bare but the model shows
snow, then the model’s snow is removed. If MODIS
reveals snow but the model shows no snow, then a
thin cover of snow is added to the model grid cell. The
albedo changes automatically. Testing is currently
under way to improve the technique by adjusting
near-surface temperature, soil moisture, and/or the
precipitation type (rain or snow) of prior events to
reflect the observed snow-cover state, and hence to
minimize unintended effects on the water balance.

SURFACE FORCING FIELDS. Users of GLDAS
select, as the baseline land surface forcing, output
from the atmospheric data assimilation system
(ADAS) component of a weather forecast and analy-
sis system, or, for long-term retrospective runs, from
a reanalysis product (next section). Observation-
derived fields, including precipitation and longwave
and shortwave radiation, are optionally specified to
replace the corresponding ADAS forcing fields when
and where possible. This capability reduces reliance
on forcing fields that are largely model generated,
while ensuring continuity of forcing. However, in
choosing a forcing option, the strengths and weak-
nesses of the analysis and observation-based fields
should be weighed, in particular, the lower biases of
the observation-based field against the consistency
and quality control inherent to the analysis fields.
Variables required to force the LSMs are listed in
Table 2.

Operational meteorological forecast and data assimila-
tion system output. GEOS. The Goddard Earth Ob-
serving System (GEOS) Data Assimilation System
(Pfaendtner et al. 1995) supports level-4 (model
analysis) product generation for the NASA Terra sat-
ellite (Atlas and Lucchesi 2000). GEOS “first look”
output is obtained for operational GLDAS simula-
tions and then replaced later in the forcing archive
with “late look” output as available, in order to
improve the quality of GLDAS retrospective forcing.
GEOS uses the physical-space statistical analysis
system (Cohn et al. 1998) to assimilate NCEP’s raw-
insonde reports, TOVS retrievals, and SSM/I total
precipitable water retrievals. It utilizes NCEP’s op-
erational sea surface temperature (SST) and sea
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ice boundary conditions.
GEOS 3-hourly fields are
produced on a 1° × 1.25°
global grid.

GDAS. The Global Data As-
similation System (GDAS) is
the operational global atmo-
spheric data assimilation
system of NCEP (Derber
et al. 1991). GDAS executes
on a thinned Gaussian grid
with 768 grid points in the
zonal direction and 364
grid points in the meridi-
onal direction (about 0.47°
resolution). There are 64
model atmospheric levels.
GDAS assimilates a variety
of conventional data (ra-
diosonde, buoy, ship, and
airborne) and satellite-de-
rived observations, using a
four-dimensional multi-
variate approach, and pro-
duces operational, global
analyses for four synoptic
hours: 0000, 0600, 1200,
and 1800 UTC. GLDAS makes use of the latter analy-
ses, as well as the GDAS 3-h and (as needed) 6-h back-
ground forecast from each analysis.

ECMWF. The European Centre for Medium-Range
Weather Forecasts (ECMWF) also produces opera-
tional, global analyses and forecasts for four synoptic
hours: 0000, 0600, 1200, and 1800 UTC (Persson
2001). Their atmospheric assimilation system is run
on a linear reduced Gaussian grid that has 553,384
surface grid points (approximately 39-km resolution).
It includes 60 model atmospheric levels. The analysis
also incorporates both conventional and satellite-
derived data using a four-dimensional multivariate as-
similation approach (Klinker et al. 2000).

Observation-derived data. DOWNWARD SOLAR RADIATION.
GLDAS estimates global, downward shortwave and
longwave radiation fluxes at the land surface using a
procedure and cloud and snow products from the Air
Force Weather Agency’s (AFWA) Agricultural Me-
teorology modeling system (AGRMET). The snow
product is the AFWA daily, 48-km global snow depth
analysis (Kopp and Kiess 1996). Prior to July 2002,
the cloud product was the AFWA Real Time Nepha-

nalysis (RTNEPH) 3-hourly, 48-km global cloud
analysis (Hamill et al. 1992), thereafter replaced by
AFWA’s new hourly, 24-km World Wide Merged
Cloud Analysis (WWMCA). The cloud and snow
products are used to calculate surface downward
shortwave radiation and longwave radiation based,
respectively, on the AFWA-supplied algorithms of
Shapiro (1987) and Idso (1981), which implement the
shortwave and longwave procedures on a three-layer
(high, middle, and low) plane-parallel atmosphere.
For each layer, atmospheric transmissivity and
reflectivity, with respect to shortwave radiation, and
longwave radiation emitted by clouds are calculated
as functions of cloud type and amount. The cloud and
snow products are derived primarily from observa-
tions made by Defense Meteorological Satellite Pro-
gram and NOAA satellites. RTNEPH incorporated
only polar-orbiting observations, while WWMCA
incorporates both geostationary and polar-orbiting
observations. The strength of the resulting radiation
fields is their use of satellite-derived cloud cover, as
opposed to the model-based cloud cover used in the
radiation calculations of the atmospheric data assimi-
lation systems.

Precipitation Soil moisture in each layer

Downward shortwave radiation Snow depth, fractional coverage, and water
equivalent

Plant canopy surface water storage

Soil temperature in each layer

Average surface temperature

Surface and subsurface runoff

Bare soil, snow, and canopy surface water
evaporation

Canopy transpiration

Latent, sensible, and ground heat flux

Snow phase change heat flux

Snowmelt

Snowfall and rainfall

Net surface shortwave and longwave radiation

Aerodynamic conductance

Canopy conductance

Surface albedo

TABLE 2. GLDAS forcing and output fields.

Required forcing fields Summary of output fields

Downward longwave radiation

Near-surface air temperature

Near-surface specific humidity

Near-surface U wind

Near-surface V wind

Surface pressure
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PRECIPITATION. Near-real-time satellite-derived precipi-
tation data are obtained from groups at the U.S. Na-
val Research Laboratory (NRL) and at GSFC for forc-
ing GLDAS. NRL produces precipitation fields based
on geostationary satellite infrared (IR) cloud-top tem-
perature measurements and microwave observation
techniques (Turk et al. 2000). The microwave prod-
uct merges data from the Special Sensor Microwave/
Imager (SSM/I), NASA–NASDA’s Tropical Rainfall
Measuring Mission (TRMM), and the Advanced Mi-
crowave Sounding Unit (AMSU) instruments. Both
NRL products have a spatial resolution of 0.25° and a
temporal resolution of 6 h and both cover an area
from 60°S to 60°N. Archiving of those data for GLDAS
began in April 2001. Scientists at GSFC began to pro-
vide near-real-time precipitation fields based on the
optimal merging of the more accurate microwave data
with the more frequent IR data in February 2002
(Huffman et al. 2003). When the satellite-derived
precipitation forcing option is chosen, GLDAS over-
lays the baseline ADAS field with one of these two
products as available. Another precipitation forcing
option is being tested that makes use of the NOAA
Climate Prediction Center’s (CPC’s) operational glo-
bal 2.5° 5-day Merged Analysis of Precipitation
(CMAP), which is a blending of satellite (IR and mi-
crowave) and gauge observations. GDAS modeled
precipitation fields are used to disaggregate the
CMAP fields spatially and temporally to match the
GLDAS resolutions.

OPERATIONAL SIMULATION RESULTS.
Daily, parallel Mosaic and Noah model simulations
began on 1 January 2001, initialized by GDAS land
surface states. Currently, GEOS is set as the baseline
forcing source, and the precipitation and radiation
fields are overwritten with the observation-derived
fields described in the section titled “Surface forcing
fields,” when and where these are available. The
model spatial resolution is 0.25°, and 10% is set as the
minimum tile area percentage, as described in the sec-
tion titled “Subgrid-scale variability.” The model time
step is 15 min, and output is 3-hourly. Typically the
daily runs are complete within 36–48 h of real time.

Results are presented from two of the operational
Mosaic simulations: a control run and a derived forc-
ing run. The control run relied on GEOS forcing ex-
clusively. The derived forcing run used the NRL (prior
to 30 June 2002) and GSFC observation-based pre-
cipitation fields and the AGRMET observation-based
downward shortwave and longwave radiation fields.
Figure 4 compares the root zone soil moisture out-
put from the two simulations at the end of each sea-

son from spring 2002 to winter 2002/03. The broad
seasonal patterns of wetness generally match, al-
though some regional differences are apparent. The
deserts of North Africa are more extensive in the con-
trol run. Central North America is wetter in the de-
rived forcing run, while Southeast Asia tends to be
wetter in the control run. (The effects of the latter two
differences on modeled evapotranspiration can be
seen in Fig. 6, described below.) Discrepancies be-
tween the modeled and satellite-derived precipitation
forcing (Fig. 5) correspond to the differences in soil
moisture. The sparseness of in situ observations of soil
moisture will complicate the task of validating these
results and choosing the better product, but AMSR-
derived soil moisture fields may provide some guid-
ance in the near future. Results over Greenland should
be ignored, as the LSMs do not include ice sheet mod-
els and reliable forcing data and soil parameter infor-
mation are not available.

The greater finescale variability of the observation-
based precipitation (Fig. 5) is reflected in the finescale
patterns of soil moisture in the derived forcing run
(Fig. 4). Because soil moisture shows a high degree
of variability at all scales (e.g., Famiglietti et al. 1999),
the finescale soil moisture variability evident in the
derived forcing run results are more realistic in re-
gard to spatial variability. This may be preferable from
a weather forecasting perspective, in that overly ho-
mogenous surface conditions can deter the develop-
ment of atmospheric instabilities. However, the
broader patterns of soil moisture are not necessarily
more accurate in the derived forcing run. Adler et al.
(2001) found that the GSFC satellite-based precipi-
tation product had a smaller bias and smaller root-
mean-square error (rmse) than GDAS and GEOS
over land between 30°S and 30°N, but a larger bias and
rmse over land between 30° and 60°N. Prior to March
2003 when controls were instituted, problems with
the satellite algorithm over snow caused overestima-
tion of precipitation (G. Huffman 2003, personal
communication), as seen in the satellite-derived
December–February (DJF) plot (bottom right) in
Fig. 5 over central Asia. The CMAP satellite-gauge
product described in the subsection titled “Precipi-
tation,” a disaggregated version of which is being
tested as an additional forcing option, had a smaller
bias and rmse than all of the modeled and satellite-
only products over land in both zones.

Due to the high quality of the cloud observations
that contribute to the AGRMET radiation fields
(Hamill et al. 1992), their finescale patterns are likely
to be realistic. Meng et al. (2003) has demonstrated
that AGRMET shortwave radiation estimates are typi-
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cally more consistent with station observations than
ADAS results. Using these data as forcing should have
a positive impact on the GLDAS simulations. Figure 6
zooms in on North America and Southeast Asia so
that the small-scale patterns of input shortwave radia-
tion and output evapotranspiration can be discerned.
The greater finescale variability of the AGRMET than
the GEOS shortwave radiation fields is apparent,
while the broadscale patterns and quantities generally
agree. Inspection of GOES-8 and GOES-10 visible
imagery (not shown) for 1800 UTC 31 July 2002 re-
veals patterns of cloud cover over the southeastern,
southwestern, and northwestern United States that
are more consistent with the AGRMET shortwave
radiation field. Evapotranspiration rates over the

western United States are lower in the control run
than in the derived forcing run, which reflect the drier
soils (Fig. 4). The opposite is true over India.

VALIDATION AND SCIENCE. Development of
GLDAS is ongoing, but the emphasis of the project is
shifting toward validation, scientific studies, and ap-
plications. Results from simulations using various
combinations of LSMs, modeled and observation-
derived forcing fields, data assimilation, and other
options listed in Table 1, are being compared and
analyzed. Participation in the Global Soil Wetness
Project phase 2 will enable comparisons with results
from tens of other land surface modeling groups.
GLDAS output over North America also will be com-

FIG. 4. Daily mean volumetric soil water content (%) in the root zone from two operational GLDAS
simulations: (left) control run; (right) derived forcing run; (from top to bottom) 31 May 2002, 31 Aug
2002, 30 Nov 2002, 28 Feb 2003.
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pared with 0.125° output from NLDAS, which makes
use of several high-quality data sources that are not
available globally. A study is under way to use assimi-
lation techniques to validate modeled soil moisture
using data from AMSR (Zhan et al. 2002). Data from
ground-based monitoring stations, including those
archived at the Global Soil Moisture Data Bank
(Robock et al. 2000), and field experiments, includ-
ing Soil Moisture Experiments (SMEX) in 2002 and
2003, the Cold Land Processes Experiment (CLPX)
series, and others affiliated with the Coordinated En-
hanced Observing Period initiative, will be compared
with model location time series (MOLTS) from
GLDAS. The MOLTS will be generated using the
subgrid tile results, so that the vegetation type can be
chosen to match that of the measurement location.

Validation and intercomparison of the various forc-
ing data options will also be important.

Numerous sensitivity and scaling studies are pos-
sible given all of the options available in GLDAS, such
as the effect of improved soil and vegetation param-
eterizations on model output. Initialization of weather
and climate prediction models with GLDAS land sur-
face fields is being tested in order to assess the effect
on prediction skill. Preliminary results indicate that
seasonal precipitation forecasts improve when
GLDAS soil moisture conditions are used to initialize
NASA’s Seasonal to Interannual Prediction Project
climate model (R. D. Koster et al. 2003, unpublished
manuscript). Preparations are being made for simi-
lar testing with NCEP’s seasonal and weather forecast
systems. GLDAS also will provide a priori knowledge

FIG. 5. Total precipitation (mm) forcing from two operational GLDAS simulations; (left) control run:
GEOS-modeled precipitation; (right) derived forcing run: satellite-derived precipitation; (from top to
bottom) Mar–Apr–May 2002, Jun–Jul–Aug 2002, Sep–Oct–Nov 2002, Dec–Jan–Feb 2002/03.
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of variations in the global distribution of terrestrial
water mass, which will contribute to the optimization
of global gravity field solutions based on observations
from NASA’s Gravity Recovery and Climate Experi-
ment (GRACE). GRACE gravity observations will be
used to estimate monthly changes in terrestrial wa-
ter storage over regions larger than 200,000 km2

(Rodell and Famiglietti 1999). Innovative data assimi-
lation techniques to make use of these estimates in
GLDAS are being explored.

DATA DISTRIBUTION. One of the most ambi-
tious activities of the GLDAS project has been the
assemblage of an archive of global, operational ADAS

output and observation-based data fields for param-
eterizing and forcing LSMs. Most of the time series
begin around January 2001 and continue in the
present. The most recent fields are downloaded daily
from forecast centers and groups that process satel-
lite data. Many of these fields become inaccessible
through their providers not long after initial release,
being archived to tape or not saved at all. However,
the GLDAS active archive is public to the extent al-
lowed by the providers, so that these data, once lost
for all intents and purposes, are preserved for scien-
tific usage. The parameter fields, including vegetation,
soils, and elevation fields, are also accessible.

Output fields of land surface states and fluxes from

FIG. 6. (left) Downward shortwave radiation forcing (W m-----2) and (right) output total evapotranspira-
tion rate (mm day-----1) from two operational GLDAS simulations: (from top to bottom) control run 1800–
2100 UTC 31 Jul 2002, derived forcing run 1800–2100 UTC 31 Jul 2002, control run 0600–0900 UTC 31
Jan 2003, derived forcing run 0600–0900 UTC 31 Jan 2003; (top four) central North America; (bottom
four) Southeast Asia.
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GLDAS model simulations, including those described
in the section titled “Operational simulation results,”
likewise are freely available to the public. The GLDAS
Web site includes a real-time image generator that
allows users to view the most recent output fields.
Time series are currently available by request and will
soon be available through an automated data server.
In addition to the operational simulations, multiyear
retrospective simulations are ongoing at lower reso-
lutions (0.5° × 0.5° and 2.0° × 2.5°) using bias-cor-
rected atmospheric reanalysis data (Berg et al. 2003)
and data from the International Satellite Land Surface
Climatology Project, Initiative II (F. G. Hall et al.
2002). Broad use of GLDAS results is encouraged for
education, policy making, and social, agricultural, and
natural hazards planning, as well as for scientific re-
search. (More details on data availability are provided
at http://ldas.gsfc.nasa.gov.)

ACKNOWLEDGMENTS. This work was supported by
NASA’s Earth Observing System (EOS) Interdisciplinary
Science Program. The authors wish to thank the Air Force
Weather Agency for 1) supplying the global daily snow
depth analysis and the global hourly USAF Worldwide
Merged Cloud Analysis (WWMCA, formerly known as
“RTNEPH”) in real time; and 2) providing, through the
support of George Gayno, the surface radiation algorithms.
We are also grateful for data products and advice provided
by Joe Turk at NRL, Pedro Viterbo and many others at
ECMWF, Ranga Myneni at BU, the PERSIANN precipi-
tation group at The University of Arizona, and George
Huffman and Randy Koster at NASA GSFC.

REFERENCES
Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M.

Goodman, 2001: Intercomparison of global precipi-
tation products: The third precipitation
intercomparison project (PIP-3). Bull. Amer. Meteor.
Soc., 82, 1377–1396.

Atlas, R. M., and R. Lucchesi, 2000: File Specification for
GEOS-DAS Gridded Output. DAO-1001v4.3, 41 pp.
[Available online at http://gmao.gsfc.nasa.gov/opera-
tions/filespec4.3.pdf.]

Avissar, R., and R. Pielke, 1989: A parameterization of
heterogeneous land surfaces for atmospheric nu-
merical models and its impact on regional meteorol-
ogy. Mon. Wea. Rev., 117, 2113–2136.

Berg, A. A., J. S. Famiglietti, J. P. Walker, and P. R.
Houser, 2003: Impact of bias correction to reanaly-
sis products on simulations of North American soil
moisture and hydrological fluxes. J. Geophys. Res.,
108, 4490, doi:10.1029/2002JD003334.

Betts, A., F. Chen, K. Mitchell, and Z. Janjic, 1997: As-
sessment of the land surface and boundary layer
models in two operational versions of the NCEP Eta
model using FIFE data. Mon. Wea. Rev., 125, 2896–
2916.

Bonan, G. B., 1998: The land surface climatology of the
NCAR Land Surface Model coupled to the NCAR
Community Climate Model. J. Climate, 11, 1307–
1326.

Bowling, L. C., and Coauthors, 2003: Simulation of high
latitude hydrological processes in the Torne-Kalix
basin: PILPS Phase 2e. 1: Experimental description
and summary intercomparisons. Global Planet.
Change, 38, 1–30.

Chen, F., and Coauthors, 1996: Modeling of land-sur-
face evaporation by four schemes and comparison
with FIFE observations. J. Geophys. Res., 101 (D3),
7251–7268.

Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D.
Lamich, 1998: Assessing the effects of data selection
with the DAO Physical-space Statistical Analysis
System. Mon. Wea. Rev., 126, 2913–2926.

Cosgrove, B. A., and Coauthors, 2003: Real-time and
retrospective forcing in the North American Land
Data Assimilation System (NLDAS) project. J.
Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

Dai, Y., and Q. Zeng, 1997: A land surface model
(IAP94) for climate studies. Part I: Formulation and
validation in off-line experiments. Adv. Atmos. Sci.,
14, 443–460.

——, and Coauthors, 2003: The Common Land Model
(CLM). Bull. Amer. Meteor. Soc., 84, 1013–1023.

Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new
global operational analysis system at the National
Meteorological Center. Wea. Forecasting, 6, 538–
547.

Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy,
and M. F. Wilson, 1986: Biosphere–Atmosphere
Transfer Scheme (BATS) for the NCAR Community
Climate Model. NCAR Tech. Note NCAR/TN-
275+STR, 69 pp.

Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The
Global Soil Wetness Project: A pilot project for glo-
bal land surface modeling and validation. Bull. Amer.
Meteor. Soc., 80, 851–878.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann,
V. Koren, G. Gayno, and J. D. Tarpley, 2003: Imple-
mentation of the upgraded Noah land-surface model
in the NCEP operational mesoscale Eta model. J.
Geophys. Res., 108 (D22), 8851, doi: 10.1029/
2002JD003296.

Famiglietti, J. S., and Coauthors, 1999: Ground-based
investigation of soil moisture variability within re-



393MARCH 2004AMERICAN METEOROLOGICAL SOCIETY |

mote sensing footprints during the Southern Great
Plains 1997 (SGP97) Hydrology Experiment. Water
Resour. Res., 35, 1839–1851.

Gottschalck, J., P. Houser, and X. Zeng, 2002: Impact of
remotely sensed leaf area index on a global land data
assimilation system. Preprints, 16th Conf. on Hydrol-
ogy, Orlando, FL, Amer. Meteor. Soc., J1.15.

Hall, D. K., G. A. Riggs, V. V. Salomonson, N.
DiGiromamo, and K. J. Bayr, 2002: MODIS snow-
cover products. Remote Sens. Environ., 83, 181–194.

Hall, F. G., B. Meeson, S. Los, L. Steyaert, E. de Colstoun,
and D. Landis, Eds., 2002: ISLSCP Initiative II. NASA,
DVD/CD-ROM. [Available online at http://
is lscp2.sesda.com/ISLSCP2_1/html_pages/
islscp2_home.html.]

Hamill, T. M., R. P. d’Entremont, and J. T. Bunting,
1992: A description of the Air Force real-time nepha-
nalysis model. Wea. Forecasting, 7, 288–306.

Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and
R. Sohlberg, 2000: Global land cover classification at
1km spatial resolution using a classification tree ap-
proach. Int. J. Remote Sens., 21, 1331–1364.

Henderson-Sellers, A., A. J. Pitman, P. K. Love, P.
Irannejad, and T. Chen, 1995: The Project for
Intercomparison of Land Surface Parameterization
Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor.
Soc., 76, 489–503.

Huffman, G. J., R. F. Adler, E. F. Stocker, D. T. Bolvin,
and E. J. Nelkin, 2003: Analysis of TRMM 3-hourly
multi-satellite precipitation estimates computed in
both real and post-real time. Preprints, 12th Conf. on
Satellite Meteorology and Oceanography, Long Beach,
CA, Amer. Meteor. Soc., P4.11.

Idso, S., 1981: A set of equations for the full spectrum
and 8- and 14-micron and 10.5- to 12.5 thermal ra-
diation from cloudless skies. Water Resour. Res., 17,
295–304.

Kalman, R. E., 1960: A new approach to linear filtering
and prediction problems. Trans. ASME, Ser. D, J.
Basic Eng., 82, 35–45.

Klinker, E., F. Rabier, G. Kelly, and J. F. Mahfouf, 2000:
The ECMWF operational implementation of four
dimensional variational assimilation. Part III: Ex-
perimental results and diagnostics with operational
configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–
1215.

Kopp, T. J., and R. B. Kiess, 1996: The Air Force Global
Weather Central cloud analysis model. Preprints,
15th Conf. on Weather Analysis and Forecasting,
Norfolk, VA, Amer. Meteor. Soc., 220–222.

Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen,
and J. M. Baker, 1999: A parameterization of snow-
pack and frozen ground intended for NCEP weather

and climate models. J. Geophys. Res., 104, 19 569–
19 585.

Koster, R. D., and M. J. Suarez, 1992: Modeling the land
surface boundary in climate models as a composite
of independent vegetation stands. J. Geophys. Res., 97,
2697–2715.

——, and ——, 1996: Energy and water balance calcula-
tions in the Mosaic LSM. NASA Tech. Memo.
104606, Vol. 9, 76 pp.

——, ——, A. Ducharne, M. Stiglitz, and P. Kumar, 2000:
A catchment-based approach to modeling land sur-
face processes in a GCM. Part 1: Model structure. J.
Geophys. Res., 105 (D20), 24 809–24 822.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges,
1994: A simple hydrologically based model of land
surface water and energy fluxes for GSMs. J. Geophys.
Res., 99 (D7), 14 415–14 428.

Meng, C. J., and Coauthors, 2003: Global land surface
radiation budget and its impact on water and energy
cycles. Preprints, 17th Conf. on Hydrology, Long
Beach, CA, Amer. Meteor. Soc., 2.8–2.9.

Mitchell, K., and Coauthors, 1999: GCIP Land Data
Assimilation System (LDAS) project now underway.
GEWEX News, 9 (4), 3–6.

Myneni, R. B., R. R. Nemani, and S. W. Running, 1997:
Algorithm for the estimation of global land cover,
LAI and FPAR based on radiative transfer models.
IEEE Trans. Geosci. Remote Sens., 35, 1380–1393.

Ottle, C., and D. Vidalmadjar, 1992: Estimation of land
surface temperature with NOAA9 data. Remote Sens.
Environ., 40, 27–41.

Owe, M., R. De Jeu, and J. P. Walker, 2001: A method-
ology for surface soil moisture and optical depth re-
trieval using the microwave polarization difference
index. IEEE Trans. Geosci. Remote Sens., 39, 1643–
1654.

Persson, A., 2001: User guide to ECMWF forecast prod-
ucts. Meteorological Bull. M3.2, ECMWF, Reading,
United Kingdom, 115 pp.

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M.
Sienkiewicz, J. Stobie, and A. da Silva, 1995: Docu-
mentation of the Goddard Earth Observing System
(GEOS) Data Assimilation System—Version 1.
NASA Tech. Memo. 104606, Vol. 4, 44 pp.

Radakovich, J. D., P. R. Houser, A. da Silva, and M. G.
Bosilovich, 2001: Results from global land-surface
data assimilation methods. Preprints, Fifth Symp. on
Integrated Observing Systems, Albuquerque, NM,
Amer. Meteor. Soc., 132–134.

Reynolds, C. A., T. J. Jackson, and W. J. Rawls, 2000: Es-
timating soil water-holding capacities by linking the
Food and Agriculture Organization soil map of the
world with global pedon databases and continuous



394 MARCH 2004|

pedotransfer functions. Water Resour. Res., 36, 3653–
3662.

Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin,
S. E. Hollinger, N. A. Speranskaya, S. Liu, and A.
Namkhai, 2000: The Global Soil Moisture Data Bank.
Bull. Amer. Meteor. Soc., 81, 1281–1299.

Rodell, M., and J. S. Famiglietti, 1999: Detectability of
variations in continental water storage from satellite
observations of the time dependent gravity field.
Water Resour. Res., 35, 2705–2723.

——, P. R. Houser, U. Jambor, J. Gottschalck, C.-J. Meng,
K. Arsenault, N. DiGirolamo, and D. Hall, 2002: Use
of MODIS-derived snow fields in the Global Land
Data Assimilation System. GAPP Mississippi River
Climate and Hydrology Conf., New Orleans, LA,
GAPP and AMS, 118.

Sellers, P. J., Y. Mintz, and A. Dalcher, 1986: A simple
biosphere model (SiB) for use within general circu-
lation models. J. Atmos. Sci., 43, 505–531.

Shapiro, R., 1987: A simple model for the calculation of
the flux of direct and diffuse solar radiation through
the atmosphere. Air Force Geophysics Lab, AFGL-
TR-87-0200, Hanscom AFB, MA, 40 pp.

Toll, D. L., J. Entin, and P. Houser, 2001: Land surface
heterogeneity on surface energy and water fluxes.
SPIE 2001, Eighth Int. Symp. on Remote Sensing,
Vol. 452, Toulouse, France, SPIE, 267–270.

Turk, F. J., G. Rohaly, J. D. Hawkins, E. A. Smith, A.
Grose, F. S. Marzano, A. Mugnai, and V. Levizzani,
2000: Analysis and assimilation of rainfall from
blended SSM/I, TRMM and geostationary satellite
data. Preprints, 10th Conf. on Satellite Meteorology
and Oceanography, Long Beach, CA, Amer. Meteor.
Soc., 66–69.

Verdin, K. L., and S. K. Greenlee, 1996: Development of
continental scale digital elevation models and extrac-
tion of hydrographic features. Proc. Third Int. Conf./
Workshop on Integrating GIS and Environmental
Modeling, Santa Fe, NM, National Center for Geo-
graphic Information and Analysis, CD-ROM, 8.2.

Vukovich, F. M., R. Wayland, and D. L. Toll, 1997: The
surface heat flux as a function of ground cover for
climate models. Mon. Wea. Rev., 125, 572–586.

Walker, J. P., and P. R. Houser, 2001: A methodology
for initializing soil moisture in a global climate
model: Assimilation of near-surface soil moisture
observations. J. Geophys. Res., 106 (D11), 11 761–11
774.

Zhan, X., J. K. Entin, P. R. Houser, J. P. Walker, and R. H.
Reichle, 2002: Application of Kalman filtering for soil
moisture data validation with NASA’s Land Data
Assimilation System. Amer. Geophys. Union, Eos,
Trans. 83 (Suppl.), S194.


