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a b s t r a c t 

The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forc- 

ing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are 

strongly tied to the overall makeup of the model, but the input forcing data set is independent with its 

accuracy usually defined by the monitoring or the observation system. The impact of input forcing data 

on model estimation accuracy has been collectively acknowledged to be significant, yet its quantifica- 

tion and the level of uncertainty that is acceptable in the context of the land surface model to obtain 

a competitive estimation remain mostly unknown. A better understanding is needed about how mod- 

els respond to input forcing data and what changes in these forcing variables can be accommodated 

without deteriorating optimal estimation of the model. As a result, this study determines the level of 

forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to com- 

petitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro 

genomic mapping to examine the temporal evolution of model decision variables from an archive of val- 

ues obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the 

advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant 

impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% 

in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the signifi- 

cance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway 

has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil mois- 

ture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the 

model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land 

surface and hydrological model estimation. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The estimation of soil moisture through land surface models

ainly incorporates a combination of model physics, initial states,

arameters, and forcing data. The majority of these components

re inherent to the overall makeup of the model, defining how the

odel handles input forcing data. The model components are fun-

amental to the evaluation of land surface states in response to

eteorological forcing. However, the overall uncertainty in model

utput is associated with uncertainties of the various model in-

uts and components, which interact and are strongly linked such

hat their respective uncertainties are difficult to separate. The in-

ut forcing data set is independent from the overall model makeup
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nd has separate uncertainty levels for each variable as defined

y their respective observation systems. While the impact of the

orcing data on the accuracy of model estimation is universally

ecognized to be significant ( Beven and Binley, 1992; De Lannoy

t al., 2006; Durand and Margulis, 2008; He et al., 2011; Mantovan

nd Todini, 2006; Moradkhani and Hsu, 2005; Raleigh, 2013; Sala-

on and Feyen, 2009; Seibert, 1997; Steinschneider et al., 2012;

hlenbrook et al., 1999; Vrugt et al., 2002; Zehe et al., 2005 ), its

uantification remains largely unknown in most modeling proce-

ures. That is, the majority of modeling procedures have limited

nowledge about how much of a model’s estimation accuracy is

ttributable to its forcing data uncertainty. Consequently, it is dif-

cult to determine the level of uncertainty in forcing data that is

cceptable, in the context of the model, to provide an optimal es-

imate of soil moisture. 

The acceptable level of forcing data uncertainty, while specific

o a particular model, will provide for a given model a threshold

http://dx.doi.org/10.1016/j.advwatres.2017.01.001
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of uncertainty bound beyond which deterioration of the model es-

timation accuracy will occur. An estimate of the acceptable level

of uncertainty in forcing data will separate the inaccuracies in

model prediction into two categories: those that are inherent in

the model, and those from the forcing data. Note that by ac-

ceptable level of uncertainty in forcing data, we are referring to

the amount of uncertainty from the forcing data that is admissi-

ble/appropriate in the context of the model without deteriorating

the model estimation accuracy. 

An increased knowledge of forcing data uncertainty will have

a crucial impact on water and climate predictions. In particular, an

estimate of forcing data uncertainty will provide an important con-

tribution, which is usually missing, to error specification in data

assimilation (DA) procedures. Ensemble distributions (i.e., spread)

in DA are usually generated through perturbation of input forcing

data ( Alemohammad et al., 2015; Clark et al., 2006; Wojcik et al.,

2014 ), mostly with limited knowledge of the impact of forcing er-

ror on model ensemble spread. Forcing data uncertainty is also

critical in climate change studies and forecasting systems ( Nagler

et al., 2008; Raleigh, 2013; Schär et al., 2004; Steinschneider et al.,

2012; Troch et al., 2009 ), to provide an estimate of the changes

(and uncertainties) in model output in response to variability in

forcing data. An understanding of the impact of forcing data un-

certainty on model prediction will therefore provide the capability

to estimate the level of variability that is required in weather sys-

tems and forecasts to initiate triggers in water resource systems. 

Few studies including Liu and Gupta (2007) ; Vrugt and Robin-

son (2007) ; Wagener et al. (2003) ; and He et al. (2012) have

examined uncertainty in model components, and even fewer

( Alemohammad et al., 2015; Maggioni et al., 2011 ) have actually

examined uncertainty in forcing data in relation to the model out-

put. Consequently, this study quantifies the uncertainty threshold

in forcing data that can be incorporated into the Joint UK Envi-

ronment Simulator (JULES) model in the context of soil moisture

estimation without a significant deterioration in model estimation

accuracy, for the Yanco area in southeast Australia. It also pro-

vides a methodology to estimate an acceptable threshold of forc-

ing data uncertainty in the JULES model through three modeling

approaches. These modeling approaches are model calibration, data

assimilation, and multi-dimensional clustering which is used to as-

sess values in model decision space (i.e., the interval defined by

both model parameters and input forcing variables). The calibra-

tion and data assimilation procedures employ computational tech-

niques from the state-of-the-art multi-objective evolutionary strat-

egy. Specifically, the calibration is based on the Non-dominated

Sorting Genetic Algorithm - II (NSGA-II) developed by Deb et al.

(2002) , whereas the DA method uses the evolutionary data as-

similation (EDA) scheme demonstrated in Dumedah and Walker

(2014b ); Dumedah et al. (2015) ; and Dumedah (2015) . 

The three modeling approaches: calibration, data assimilation,

and multi-dimensional clustering used in this study provide unique

roles toward the overall goal of quantifying forcing data uncer-

tainty in land surface modeling. Calibration, though subject to a

specific time period of observation data, has an important role in

determining optimized values in model decision space to generate

model outputs which best match observed data. It is noted that the

calibration procedure is supplementary and represents an interme-

diate step to the data assimilation procedure. Data assimilation has

been widely credited for its ability to update model predictions

through time, and to account for uncertainties in model and ob-

servation data. However, the temporal changes in model decision

space resulting from data assimilation holds the potential for as-

sessing model behavior under changing hydro-meteorological con-

ditions. The temporal characteristic of DA is crucial in this study

in order to assess the temporal evolution of the impact of forcing

data uncertainty on the JULES model at different uncertainty lev-
ls across time. Consequently, this study uses data assimilation to

rovide an archive of updated ensemble members in model deci-

ion space through several assimilation time periods. The role of

he multi-dimensional clustering is to determine commonalities in

odel decision space for the calibration output and the updated

nsemble members. 

.1. Study area, data sets, and the land surface model 

The case study demonstration is for soil moisture estimation in

he Yanco area in southeast Australia. The study location is at one

tation (i.e., Y10) out of thirteen OzNet soil moisture monitoring

tations in the Yanco area ( Smith et al., 2012 ). The Y10 location has

at topography, along with grassland, scattered trees and loamy

extured soil. The study location has extensive soil moisture and

eteorological instrumentation, and has provided almost continu-

us time series of data for validation. 

The land cover data set was obtained through the Australian

ational Dynamic Land Cover Dataset (DLCD) ( Lymburner et al.,

011 ), which was generated from the 16-day Enhanced Vegeta-

ion Index composite collected at 250 m spatial resolution from

he Moderate Resolution Imaging Spectroradiometer. The soil prop-

rties information including texture, bulk density, saturated hy-

raulic conductivity, and soil layer thicknesses for horizons A and

 were obtained from the Digital Atlas of Australian Soils, through

he Australian Soil Resource Information System ( McKenzie et al.,

0 0 0 ). The meteorological forcing data including incoming short

nd long wave radiations, air temperature, precipitation, wind

peed, pressure, and specific humidity were obtained from the me-

eorological record at the study location. 

The soil moisture estimation model used is JULES, a tiled model

f sub-grid heterogeneity for simulating water and energy fluxes

etween a vertical profile of variable soil layers, land surface, vege-

ation, and the atmosphere ( Best et al., 2011 ). JULES allows specifi-

ation of numerous soil layers and variable thickness of soil layers,

ogether with nine land surface types including broadleaf, needle-

eaf, grass (temperate and tropical), shrub, urban, inland water,

are soil, and ice-covered surfaces. The JULES model requires ini-

ialization for variables including the temperatures and the mois-

ure contents of the soil layers; temperature, density, and albedo

f the snowpack if present; the temperature and intercepted rain

nd snow on the vegetation canopy; the temperature and depth

f ponded water on the soil surface, and an empirical vegetation

rowth index. 

The JULES model parameters and forcing variables together

ith their descriptions and intervals are presented in Table 1 . The

odel parameters and forcing variables were allowed to be varied

ithin ± 10% of their original values through a relative measure.

t is noteworthy that the ± 10% interval is based on the soil tex-

ure variability as obtained from McKenzie et al. (20 0 0) , and does

ot represent the actual variability for model parameters and forc-

ng variables. The original values of model parameters and forcing

ariables were based on the soil, land cover, and meteorological

orcing data such that they are physically meaningful for the study

ocation in the context of the JULES model. The soil moisture data

et used to drive the calibration and assimilation was the surface

cm depth of in-situ soil moisture at the Y10 location. 

. Methods 

The framework used to assess the acceptable forcing data un-

ertainty in this study comprises of a number of modeling pro-

edures. Specifically, four procedures were used including: (i) a

alibration procedure to estimate model parameters, (ii) a data

ssimilation procedure using both model parameters and forc-

ng variables, (iii) a data assimilation procedure using perturbed
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Table 1 

Description of model parameters and forcing data variables for the JULES model. 

Parameter Description Interval 

Model Parameters 

b Exponent in soil hydraulic characteristics curve ± 10% 

sathh Absolute value of the soil matric suction at saturation (m) ± 10% 

hsatcon Hydraulic conductivity at saturation ( kgm 

−2 s −1 ) ± 10% 

sm-sat Volumetric soil moisture content at saturation ( m 

3 water per m 

3 soil) ± 10% 

sm-crit Volumetric soil moisture content at critical point ( m 

3 water per m 

3 soil) ± 10% 

sm-wilt Volumetric soil moisture content at wilting point ( m 

3 water per m 

3 soil) ± 10% 

hcap Dry heat capacity ( Jm 

−3 K −1 ) ± 10% 

hcon Dry thermal conductivity ( W m 

−1 K −1 ) ± 10% 

albsoil Soil albedo ± 10% 

Meteorological Forcing Variables 

SWR Downward component of shortwave radiation at the surface ( W m 

−2 ) ± 10% 

LWR Downward component of longwave radiation at the surface ( W m 

−2 ) ± 10% 

rain Rainfall ( kgm 

−2 s −1 ) ± 10% 

tempr Atmospheric temperature ( K ) ± 10% 

wind Wind speed ( ms −1 ) ± 10% 

press Surface Pressure ( Pa ) ± 10% 

spHum Atmospheric specific humidity ( kgkg −1 ) ± 10% 

Initial State Variables 

canopy Amount of intercepted water that is held on each tile ( kgm 

−2 ) updated 

tstar-t Surface or skin temperature of each tile (K) updated 

t-soil Temperature of each soil layer (K) updated 

sthuf Soil wetness for each soil layer; mass of soil water expressed as a fraction of water content at saturation updated 
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orcing variables with calibrated model parameters held con-

tant, and (iv) a multi-dimensional clustering procedure to deter-

ine temporally persistent values in model decision space. The

ections below describe these modeling procedures in greater

etail. 

.1. Evolutionary strategy 

The overall modeling method is based on the concept of evolu-

ionary algorithm. Evolutionary algorithm is a powerful computa-

ional procedure which uses the concept of biological evolution to

olve mathematical optimization problems. Essentially, the evolu-

ionary algorithm defines a mathematical problem into a popula-

ion of candidate members where the members compete for lim-

ted resources under several environmental conditions for survival

nd subsequent breeding of child members. By competition, the

embers are evaluated based on objectives such as the proxim-

ty of modeled soil moisture to in-situ data. The high performing

embers are chosen to reproduce for future populations whereas

ow performing members are discarded. A candidate member is

efined by its internal properties called a genotype and its ex-

ressed behavior called a phenotype. When applied to hydrology,

he genotype represents model decision variables which are made

p of a vector string of values for model parameters and forcing

ariables, whereas the phenotype is equivalent to the model out-

ut such as soil moisture. 

The genotype information for several candidate members rep-

esent a biological genome-like data, upon which several genome

appings can be undertaken. Two of those mapping methods are

ene expression and genome-wide association ( Dear, 1997, 2001 ),

hich were used to evaluate the model behavior. Gene expression

xamines how changes in individual genes (such as soil hydraulic

onductivity) affect the model response (e.g. the overall soil mois-

ure output) in phenotype space. Genome-wide association focuses

n the relationships between genes in genotype space and how

hey interact to trigger particular expressions in phenotype space. 

.2. Calibration procedure 

The role of calibration in this study is to provide an ensemble

f optimized model parameter values subject to a fixed time pe-
iod of soil moisture observation. The study encourages the use of

nsemble members instead of a single member because of their

apability to provide different pathways to matching the observa-

ion data. It is acknowledged that calibration is generally limited to

 specific time period of observation data, and that improved per-

ormance of the model is not guaranteed outside the observation

ime period ( Beven, 2001; Dumedah et al., 2012a; 2012b; Fenicia

t al., 2008 ). It should be noted that the model parameter values

btained from model calibration were only used for the observa-

ion time period in this study. 

The calibration method used is based on the NSGA-II procedure

hown in Fig. 1 . The NSGA-II is an advanced multi-objective evolu-

ionary algorithm and has been applied in several sources includ-

ng Bekele and Nicklow (2007) ; Confesor and Whittaker (2007) ;

umedah et al. (2010) ; Khu and Madsen (2005) ; and Dumedah

nd Coulibaly (2012b) . In the NSGA-II procedure, an initial popu-

ation P r of size 2 n was generated through Latin hypercube sam-

ling to ensure even sampling of the entire model decision space.

he members in subsequent populations were generated based on

he evolutionary operators including tournament selection, muta-

ion and crossover. A tournament selection is a multi-objective op-

imization approach which ranks candidate members in a popula-

ion by allowing two members to compete in terms of their perfor-

ance on multiple evaluation objectives. This ranking procedure,

sually referred to as nondominance sorting, provides a nondomi-

ance level which indicates how many members a chosen member

ominates (i.e., the number of members the given member per-

ormed better than), and how many members dominate the mem-

er under consideration (i.e., the number of members which per-

ormed better than the chosen member). Mutation is an evolution-

ry variation operator which makes changes to a candidate mem-

er in terms of its genomic makeup. A crossover is a breeding op-

rator which produces a child member by combining the genotype

nformation from two parent members. 

The P r members were applied into the land surface model

o generate soil moisture predictions, where they were evaluated

gainst perturbed soil moisture observation data using root mean

quare error (RMSE) in Eq. (1) and bias in Eq. (2) . The RMSE and

ias evaluate different aspects of the model as they are indepen-

ent over the calibration time period. The rationale to perturb the

bservation data was to match the model output against an inter-
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Fig. 1. Computational procedure of the calibration approach based on the NSGA-II method. 
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val of the observation data (i.e., observation with error distribu-

tion) instead of a fixed value. 

RMSE = 

√ ∑ n 

t=1 
( y s,t − y o,t ) 

2 

n 

(1)

where: y s,t is the simulated output for time t, y o,t is the perturbed

observation value for time t , and n is the calibration time period.

Bias = 

∑ n 
t=1 ( y s,t − y o,t ) 

n 

(2)

Using values from the evaluation objectives (RMSE and bias),

non-dominated sorting (based on tournament selection) was per-

formed on the members in P r after which n high performing mem-

bers were selected through tournament selection. The remaining

less performing members were discarded. The n high perform-

ing members were used to reproduce a new population P r of size

2 n through variation operators including crossover and mutation.

This cycle of creating a new population of members, their evalua-

tion, sorting and selection represents a complete evolutionary cy-

cle called a generation. The population P r was evolved over sev-

eral generations whereas the members in P r undergo variation at

each stage of evolution to generate the final Pareto-optimal set.

The Pareto-optimal set comprising of several model scenarios were

retained as the optimal calibrated values for the model. 

2.3. Overall data assimilation procedure 

The DA approach used in this study is the EDA method, shown

in Fig. 2 . The EDA procedure unifies temporal updating from tra-

ditional DA with the multi-objective evolutionary strategy, to con-

currently explore the internal dynamics of a prediction model in an

adaptive and temporal manner. The EDA is unique in its approach

because its updated members have model outputs and values in

model decision space, where this inherent link preserves water

and energy balance in model outputs. Several investigations have

been undertaken with the EDA including soil moisture ( Dumedah

and Walker, 2014b ), brightness temperature ( Dumedah et al., 2011 ),
treamflow ( Dumedah and Coulibaly, 2012a ), and its comparison

o the ensemble Kalman filter and particle filter ( Dumedah and

oulibaly, 2013 ). 

The multi-objective evolutionary strategy used in the EDA in

his study is the NSGA-II. It is notable that the EDA approach

s flexible to accommodate other evolutionary algorithms such

s Strength Pareto Evolutionary Algorithm ( Zitzler et al., 2004;

001; Zitzler and Thiele, 1999 ), Pareto Archived Evolution Strat-

gy ( Knowles and Corne, 20 0 0 ), or Pareto Envelope based Selection

I ( Corne et al., 2001 ). The EDA procedure incorporates the NSGA-

I procedure described at the calibration stage, except that some

hanges were included to account for temporal updating of the

odel, observation and model uncertainties, and sequential update

f population members. The NSGA-II’s role in the EDA procedure

s limited to evolution of population members over several gener-

tions, their evaluation using multiple objectives, selection of high

erforming members to reproduce new members, and variation of

embers using evolutionary operators. 

The EDA begins the initial assimilation time step with the cre-

tion of an initial population, P r as in the NSGA-II procedure.

he members in P r were evaluated using absolute difference in

q. (3) and cost function in Eq. (4) to account for model and ob-

ervation uncertainties. The high performing members were se-

ected based on the estimated values of absolute difference and

he cost function. The selected members were then used to cre-

te new members, after which the evolutionary cycle was repeated

ver several generations. After the last generation, the high per-

orming members which remain competitive across all the genera-

ions were chosen as the updated ensemble members for the cur-

ent assimilation time step. The updated members were then used

o make a forecast for the next assimilation time step and to esti-

ate the model background error. The assimilation time step was

ncremented to a new time step, with the current updated mem-

ers used as the seed population. The evolutionary cycle includ-

ng evaluation, selection and variation were repeated for the new

opulation to determine the updated ensemble for the new assim-

lation time step. The evolutionary procedure, the update and the

orecasting steps were repeated to generate the updated ensem-
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Fig. 2. Computational procedure of the EDA method (adapted from Dumedah (2012) ). 
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le for each assimilation time step. It is noteworthy that the up-

ated members for each assimilation time step were selected from

mong several populations of members that have been evaluated

ver numerous generations. 

bsDi f f = | y s,i − y o,i | (3)

 = 

k ∑ 

i =1 

J(y i ) = 

k ∑ 

i =1 

{ (
y s,i − y b,i 

)2 

σb 
2 

+ 

( y s,i − y o,i ) 
2 

σo 
2 

} 

(4)

y s, i = the analysis (i.e., the searched) value for i th data point

hich minimizes J ( y i ). 

y b, i = background value for i th data point. 

y o, i = perturbed observed value for i th data point. 

σ 2 
b 
= variance for background soil moisture error. 

σ 2 
o = variance for observed soil moisture error. 

k = number of data points (k is set to 1 for sequential data

ssimilation). 

.3.1. Data assimilation using both model parameters and forcing 

ariables 

Data assimilation has been widely recognized in the literature

 Dumedah, 2015; Evensen, 2003; Houtekamer and Mitchell, 2005;

eichle, 2008; Weerts et al., 2010 ), for its ability to account for

ncertainties in model and observation, along with its forecast-

ng and temporal updating capabilities. Nonetheless, an underes-

imated property of DA is its temporal changes in model decision

pace for initial states, parameters, and forcing variables to pro-

uce the updated output. An assessment of this temporal evolu-

ion in model decision space has been shown to provide valuable

nformation about model behavior ( Dumedah, 2015; Dumedah and

alker, 2014a ). This section therefore draws upon the hydrologic

enome mapping in Dumedah (2015) to assess model behavior in

elation to model parameters and forcing variables. 
The EDA procedure was used to perform assimilation into the

ULES model through perturbation of both model parameters and

orcing variables. The contribution of EDA in this section is to

rovide genome-like data for model parameters and forcing vari-

bles across all assimilation time periods, and subsequent gene

xpression and genome-wide evaluation. The EDA procedure with

ariable model parameters and forcing data across assimilation

ime steps was used to provide a large archive of updated val-

es in model decision space. These updated values in model de-

ision space were evaluated using the multi-dimensional cluster-

ng method described in Section 2.4 (also employed in Dumedah

2015) ) to determine unique mappings in the genotype space for

oth model parameters and forcing variables. 

.3.2. Data assimilation using forcing variables only 

The EDA procedure in this section was designed to provide forc-

ng data uncertainty evolution through time, while the model pa-

ameters were held constant at the optimal ensemble values ob-

ained from the calibration procedure. The rationale for this ap-

roach is to minimize the influence of model parameters while

enerating the genome-like data for forcing variables only. The EDA

ith changing values of only forcing variables across several as-

imilation time steps provide a large archive of updated values in

odel decision space. Similarly, the ensemble archive was evalu-

ted using the multi-dimensional clustering method described in

ection 2.4 in order to determine the unique mappings in the

enotype space for forcing variables only. 

.4. Assessment of values in model decision space 

The updated ensemble members obtained from the EDA proce-

ure have model outputs in terms of soil moisture and values in

odel decision space. This section focuses on the assessment of

he updated values in model decision space (i.e., genotype space).
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It is noted that all subsequent descriptions are in reference to the

genotype space. The updated values in model decision space are

equivalent to a biological genome-like data which can be used to

develop a hydrologic genomic map ( Dumedah, 2015 ). As a genome-

like data, different knowledge discovery methods can be used to

examine unique properties such as gene expression for micro-array

analysis, feature selection for unique role of features, genome-wide

associations for interaction between genes, or sequence analysis for

gene signal analysis ( Dear, 2001 ). 

One kind of hydrologic genomic map is the dominant pathway;

dominant because it determines temporally stable/persistent loca-

tions across several time periods, and pathway because it connects

unique locations for different model components. By location in

reference to genome-like data, a specific subset in the model de-

cision space is implied. The temporally stable locations signify a

commonality in values that persist for a model decision variable

when evaluated across several assimilation time periods. Given

that these locations are in genotype space, they represent unique

sub-regions of individual genes which persist or survived across

multiple time periods. It is worth noting that the pathway char-

acteristic encompasses genome-wide association as it explores the

interaction between model decision variables. The temporal persis-

tence property exemplifies gene expression as it provides the capa-

bility to evaluate temporally stable genes and their impact or ex-

pression on soil moisture (in phenotype space). 

The dominant pathway was determined by performing a multi-

dimensional hierarchical clustering on the archive of updated

members in model decision space. Clustering is an exploratory

approach that is well suited for this kind of analysis, because it

requires limited assumptions about the distribution of the data

set. The clustering performed on updated members ensured the

determination of temporally stable locations, while the multi-

dimensional aspect of the clustering performed ensured that in-

teractions between model decision variables were preserved. 

To measure the distribution of updated members, each model

decision variable was normalized and a Euclidean metric was used

to estimate the distance between the normalized vectors. Sev-

eral numbers of cluster groupings were explored through the knee

method ( Thorndike, 1953 ), to determine the appropriate number

of clusters which best identified the distinct groups in the data

set. After determining the suitable number of clusters, the cluster

group with the largest ensemble membership was chosen to rep-

resent the dominant pathway. 

3. Setup of model, calibration and data assimilation runs 

The model was setup in a way that both calibration and as-

similation procedures were undertaken for the JULES model over

a three year time period from 2012 to 2015. The same modeling

periods for calibration and assimilation ensured that values can

be compared in model decision space. The NSGA-II procedure was

used to calibrate the JULES model leading to an ensemble esti-

mate of values for both model parameters and forcing variables

which produce soil moisture output from JULES to best match

the observation in-situ soil moisture. The initial population in the

NSGA-II was generated from Latin hypercube sampling by using

the intervals for model parameters and forcing variables in Table 1 .

The observation in-situ soil moisture was perturbed to within ±
0.03 m 

3 /m 

3 of their original values, based on outcomes from Smith

et al. (2012) . Based on the standard NSGA-II procedure ( Deb et al.,

2002 ), a crossover probability of 0.8 and a mutation probability of
1 
n (where n is the number of variables) were used. In the calibra-

tion, a population of 40 members was evolved through 250 gen-

erations, leading to an optimized ensemble of 20 members. Given

the number of generations used, the population size was deemed
uitable as it is more than two times the number of variables un-

er consideration. 

Two independent assimilation procedures were undertaken,

oth run across the same time period as in the calibration pro-

edure. The first assimilation, denoted full DA, applied the EDA

ethod in concert with the procedure outlined in Section 2.3.1 to

enerate an updated archive of model parameters and forcing vari-

bles through assimilation of in-situ soil moisture observation into

he JULES model. The second assimilation, denoted forcing DA,

sed the EDA method in concert with the procedure presented in

ection 2.3.2 to generate an updated archive of forcing variables

nly, through assimilation of in-situ soil moisture observation into

he JULES model. In the forcing DA procedure, the model parame-

ers were held constant at the optimized ensemble model param-

ters values obtained at the calibration stage. 

The soil moisture observation error in both EDA procedures was

et to ± 0.03 m 

3 /m 

3 , whereas the model error was derived from

he ensemble members which evolve between and at each assim-

lation time step, with the background error estimated from the

eed population between assimilation time steps. The initial popu-

ation in the full DA was created through Latin hypercube sampling

y using the intervals for model parameters and forcing variables

n Table 1 . Similarly, the initial population in the forcing DA ap-

roach used the same procedure except that only forcing variables

ere used to generate the initial population. The probabilities for

rossover and mutation in both EDA procedures were set using the

ame procedure as in the calibration stage. In both EDA procedures,

 population of 40 members was evolved over 10 generations, to

roduce an updated ensemble of 20 members for each assimila-

ion time step. The updated ensembles were archived for subse-

uent evaluation using multi-dimensional clustering procedure. 

. Results and discussion 

.1. Evaluation in phenotype space - soil moisture output 

The resulting outcomes of the model runs include the updated

oil moisture in phenotype space and an archive of values for

odel decision variables in genotype space. The key focus of this

tudy is examination of the results in genotype space, however a

rovisional evaluation of the estimated soil moisture against in-

itu data is an important initial step. The updated soil moisture

rom the full DA and forcing DA are evaluated by their comparison

gainst in-situ soil moisture at 5 cm soil depth, in Fig. 3 . 

The evaluation is based on two numerical measures: root mean

quare error (RMSE) and coefficient of determination (R), together

ith a graphical one-to-one plot. The RMSE measures the overall

loseness of the soil moisture estimate to the observed in-situ data,

nd R accounts for the overall temporal association between the

stimation and observation. The graphical one-to-one plot provides

 visual departure of the soil moisture estimate from observed val-

es, with perfectly matched values lying on the diagonal line. Over-

ll, the forcing DA output closely matches the in-situ soil moisture

nd has better accuracy values than the full DA output based on

he evaluation measures. Specifically, the forcing DA method im-

roved the accuracy of the full DA output by 35% in terms of RMSE

nd about 7% for R. 

Additionally, the root-zone soil moisture estimates from both

ull and forcing DA methods are compared against root-zone in-

itu data at soil depths of 15 cm and 45 cm in Fig. 4 . The soil mois-

ure estimation accuracy generally decreased with increasing soil

epth, such that, the highest estimation accuracy was obtained at

he surface 5 cm soil depth with the lowest accuracy at the deeper

5 cm soil depth. The soil moisture estimation accuracy at the

5 cm soil depth is almost similar to those obtained for the surface

 cm soil depth. Similarly, the forcing DA output at the 15 cm soil
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Fig. 3. Evaluation of updated near surface soil moisture (based on RMSE in m 

3 / m 

s and coefficient of determination) of the full DA and forcing DA against in-situ soil moisture 

at 5 cm soil depth. 

Fig. 4. Evaluation of root-zone soil moisture (based on RMSE in m 

3 / m 

s and coefficient of determination) of the full DA and forcing DA against in-situ soil moisture at 15 cm 

and 45 cm soil depths. 
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depth performed better than the full DA output based on the eval-

uation measures. At the 15 cm soil depth, the forcing DA method

improved the estimation accuracy of the full DA method by 15%

in terms of RMSE and about 4% for R. However, there is little dis-

cernible difference in the evaluation values between the full and

forcing DA outputs for the 45 cm soil depth. The impact of the

differences between the two assimilation approaches is limited to

the 5 cm and 15 cm outputs, with negligible impact at the deeper

45 cm soil depth. That is, the forcing DA has a positive impact on

the soil moisture estimation accuracy at the upper soil layers, and

no observable impact at the deeper 45 cm soil depth. 

4.2. Evaluation in genotype space - model decision variables 

Two types of evaluation were undertaken to assess the model

outputs in genotype space. The two types of evaluation include

gene expression with a focus on one model decision variable at

a time, and genome-wide association with a focus on interactions

between all model decision variables. These evaluations are pre-

sented in greater detail in the sections below. 

4.2.1. Gene expression - dominant cluster 

Ideally, the goal of gene expression is to determine how dif-

ferent values of an individual model decision variable trigger a re-

sponse or an expression in phenotype space, soil moisture estimate

in this case. However, in this assimilation procedure, the optimal

estimate of soil moisture has been determined to best account

for uncertainties in both soil moisture observation and model es-

timation. That is, the soil moisture estimate in phenotype space

is definitive based on the operating uncertainties. To achieve this

definitive estimate of soil moisture, changes were made in geno-

type space for individual model decision variables. As a result, the

gene expression in this case is focused on assessing the changes

that were made by each model decision variable across several

time periods, in order to obtain competitive soil moisture estima-

tion. In other words, the objective is on temporal evolution of in-

dividual model decision variables and subsequent determination of

a subset of the genotype space that is deemed to be temporally

stable. 

The procedure employed to assess gene expression examined

individual genes (that is, each model decision variable) and their

response across time, which were used to generate the competi-

tive soil moisture estimates in phenotype space. That is, this sec-

tion focuses on the assessment of independent response from each

model decision variable with no influence from other model de-

cision variables. To do this, the analysis procedure outlined in

Section 2.4 was employed on each model decision variable, to de-

termine the dominant cluster together with its coverage of the de-

cision space. For each variable, the dominant cluster represents a

subset of the model decision space where values were persistently

chosen (i.e. temporally stable) to produce competitive soil mois-

ture across several time periods. The corresponding coverage of

the dominant cluster indicates the weight or level of dominance

in model decision space in terms of frequency of occurrence. The

coverage is expressed as percentage, with 0% indicating no weight

and 100% indicating the maximum weight. 

The dominant cluster and its corresponding coverage were de-

termined from an archive of values for each model decision vari-

able obtained from both the full DA and forcing DA outputs. For

the full DA output, the dominant cluster and its coverage for each

model decision variable are presented in Fig. 5 . The dominant clus-

ter is equivalent to a subset of the model decision space, with

its coverage representing the level of temporal persistence or sta-

bility. In the context of genomic mapping, the dominance cluster

represents a unique feature in model decision space which has

survived several changes in hydro-meteorological conditions. It is
oted that, in the dominant cluster plot, the lines connecting the

odel decision variables are imaginary and do not signify an inter-

ction between the variables. The number of clusters used in the

lustering of individual model decision variables range from two to

ix, meaning that the dominant cluster is determined from among

everal clusters ranging from two to six. This range of clustering is

mportant to better understand the significance of the coverage of

ach dominant cluster. 

From the full DA output, it was found that the range between

he minimum and maximum values of the dominant cluster in re-

ation to the model ensemble range is about 50% across all model

ecision variables. That is, the dominance clustering procedure

ave reduced the entire model decision space by half. The signifi-

ance of this reduction is measured by the overall coverage, which

as determined to be about 60% across all model decision vari-

bles. This demonstrates that the overall dominant cluster repre-

enting a subset of the genotype space are temporally stable for

0% of the time to provide competitive soil moisture estimates. 

For the forcing DA output, the dominant cluster and its cov-

rage for each model decision variable are presented in Fig. 6 . It

s noted that only forcing model decision variables are considered

ere since model parameter decision variables were predetermined

nd assigned to ensemble values obtained from calibration pro-

edure outlined in Section 2.2 . From the forcing DA output, it is

ound that the range between the minimum and maximum val-

es of the dominant cluster in relation to the model ensemble

ange is about 45% across all model decision variables. That is, the

ominance clustering procedure reduced the entire model decision

pace by 55%. The significance of this reduction is measured by the

verall coverage, which is determined to be about 60% across all

orcing model variables. This demonstrates that the overall domi-

ant cluster representing a subset of the genotype space for forc-

ng variables are temporally stable for 60% of the time to provide

ptimal soil moisture estimation. 

In the context of gene expression, the resulting dominant clus-

ers for the individual input forcing variables represent the accept-

ble uncertainty bound needed in the JULES model to provide op-

imal estimates of soil moisture. It is notable that this acceptable

ncertainty bound is in the context of individual forcing variables;

he interaction between variables is accounted for under genome-

ide evaluation. This estimate of acceptable uncertainty bounds,

ased on gene expression, need validation to verify their robust-

ess and reliability to other hydro-meteorological situations. Using

he dominant clusters from both full and forcing DA outcomes, the

cceptable level of uncertainty for the input forcing variables are

alidated by finding the overlapping decision space between the

wo sets of dominant clusters. 

The validation of the acceptable uncertainty bound is presented

n Fig. 7 , showing the overlapping decision space for input forcing

ariables. The degree of overlap between the two sets of dominant

lusters indicates the level of validity for the individual variables,

ith 100% overlap meaning the highest validity and 0% indicating

he lowest validity. A variable with an invalid uncertainty bound

eans that no consistent subset of the model decision space has

een found and that random subsets are equally capable of hav-

ng the most influence on the output soil moisture. Shortwave and

ongwave radiations have 100% validity, with the lowest overlap

rea obtained in air pressure with 4% validity. Among all seven in-

ut forcing variables, only air pressure and specific humidity were

eemed invalid based on their overlapping area in decision space.

he remaining five forcing variables have an overlapping area of

bout 85% and were satisfactorily deemed valid. Overall, the valida-

ion results show that the acceptable uncertainty bound estimated

or the five forcing variables are considered reliable for the JULES

odel in this study area. 
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Fig. 5. Dominant cluster and its corresponding coverage for individual model decision variables obtained from full DA output. 
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.2.2. Genome-wide association - dominant pathway 

By definition, genome-wide association examines the interac-

ions and relationships between model decision variables and their

ollective response in phenotype space. A similar approach is em-

loyed here with some modifications. To determine optimal soil

oisture in phenotype space across several time periods, changes

ere made in genotype space by evaluating several pathways in

odel decision space. Given the operating uncertainties in obser-

ation and model estimation, the optimal soil moisture is mostly

efinitive and was achieved by finding distinct pathways in model
ecision space. As a result, the objective here was to find those

odel decision pathways that are persistent across several time

eriods. The genome-wide evaluation focuses on the interactions

etween model decision variables, their temporal evolution, and

etermination of temporally stable pathways in genotype space.

he genome-wide association was examined by using the proce-

ure in Section 2.4 to determine the dominant pathway for model

ecision variables. The dominant pathway is the persistent path-

ay frequently chosen in model decision space to produce com-

etitive soil moisture across several time periods. 
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Fig. 6. Dominant cluster and its corresponding coverage for individual model decision variables obtained from forcing DA output. 

Fig. 7. Validation of acceptable uncertainty bound based on gene expression showing the overlapping decision space for input forcing variables. 
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Fig. 8. Dominant pathway model decision variables obtained independently for full DA and forcing DA outputs. 
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The dominant pathways obtained independently for the full

A and forcing DA outputs are presented in Fig. 8 . In the full

A output, the range between the minimum and maximum val-

es of the dominant pathway in relation to the model ensemble

s about 22%. That is, the dominant pathway reduced the entire

odel decision space by 78%. The corresponding coverage of the

ominant pathway was determined to be 30%, based on an op-

imal number of seven cluster groups. From the forcing DA out-

ut, it was found that the range between the minimum and max-

mum values of the dominant pathway in relation to the model

nsemble range was about 30%, representing a 70% reduction of

he entire model decision space. The significance of this reduc-

ion was measured by the overall coverage, which was deter-

ined to be about 30%, based on an optimal number of 8 cluster

roups. 
The dominant pathway obtained from the forcing DA output is

he acceptable forcing data uncertainty, representing the minimum

naccuracy within which to obtain competitive soil moisture es-

imation without a significant deterioration in accuracy from the

ULES model. This acceptable uncertainty bound was validated by

omparison against the dominant pathway obtained from the full

A output. The validation of the acceptable uncertainty bound is

resented in Fig. 9 , showing the overlapping decision space for in-

ut forcing variables. Rainfall and air temperature have 100% valid-

ty (i.e., full overlap area), with the lowest overlap area obtained in

pecific humidity with 56% validity. All the forcing variables have

n overlapping area of about 82% and were satisfactorily deemed

alid. Overall, the validation results show that the acceptable un-

ertainty bound estimated for all forcing variables are reliable for

he JULES model in this study area. 
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Fig. 9. Validation of acceptable uncertainty bound based on genome-wide association showing the overlapping decision space for input forcing variables. 
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5. Implication of findings and conclusion 

This study has quantified the acceptable uncertainty needed in

the JULES model to provide optimal soil moisture without a sig-

nificant deterioration in the model estimation accuracy. To achieve

this, two assimilation approaches were undertaken: full DA which

used both model parameters and forcing variables, and forcing

DA which used only forcing variables in the assimilation pro-

cedure with the model parameter values obtained through cal-

ibration. Both full DA and forcing DA were used to assimilate

soil moisture into the JULES model. When model outputs from

full DA and forcing DA were evaluated against surface and root-

zone in-situ soil moisture, the forcing DA output was found to

be superior at the surface but had similar accuracy as those

from the full DA output at the root-zone. That is, the advan-

tages of the forcing DA output were limited to the surface soil

moisture at 5 cm and 15 cm soil depths. It is noteworthy that

the high performance of the forcing DA does not suggest that

changing of model parameter values is unnecessary. Rather, it

reinforces the impact of having an adequate model parameter

space, which was predetermined through the model calibration

procedure. 

The acceptable uncertainty was determined through a hydro

genomic mapping, with the objective to find persistent common-

alities in model decision space across several time periods. The

evaluation focused on individual model decision variables to de-

termine the dominant cluster, and the interaction between model

decision variables to determine the dominant pathway. From the

model viewpoint, the interaction between the model decision vari-

ables is the major influence on soil moisture estimation. That is,

the dominant pathway is more meaningful to the model in repli-

cating the soil moisture output. Nevertheless, the dominant clus-

ter for each variable is crucial to better understand the subset of

the model decision space which bears the most influence on the

output soil moisture. As a result, the acceptable uncertainty bound

was determined using both dominant cluster and dominant path-

way procedures, with the later being more consequential in terms

of the model and the output soil moisture. 

The acceptable uncertainty determined from the forcing DA

output were validated with outputs from the full DA. Based on re-

sults from the dominant cluster, five out of seven forcing variables

were valid with only two variables not valid; air pressure and spe-
ific humidity. The condition of validity was based on the persis-

ence of a subset of the model decision space across several time

eriods. A variable with an invalid uncertainty bound means that

he representation of the variable in the model is not consistent in

he context of the area and time period of study. In the dominant

athway, the findings from the validation showed that all the forc-

ng variables are reliable and are considered temporally stable to

rovide optimal soil moisture estimate. 

These findings have important implications on soil moisture as-

imilation and general environmental estimation from land surface

nd hydrological models. The findings show that the input forc-

ng data have significant impact on model output, 35% in RMSE

or 5 cm depth of soil moisture and 15% in RMSE for 15 cm depth

f soil moisture. While the impact of input forcing data on model

utput has been widely recognized, this specific quantification is

ost crucial to illustrate its exact significance. In terms of assimila-

ion procedures, the exact bound of acceptable uncertainty demon-

trate the limits in model decision space beyond which ensemble

embers should be generated to be considered unique. That is,

nsemble members which are generated within the limits of ac-

eptable uncertainty cannot be considered differentiable based on

his knowledge of inaccuracies in model decision space. This is cru-

ial in DA in order to account for uncertainties that are meaningful

rom the model standpoint. 

The acceptable uncertainty has practical significance in all types

f environmental modeling. Knowledge of the acceptable uncer-

ainty gives confidence about the reliability of the model in terms

f its performance under different hydro-meteorological conditions

nd time periods. Because no output from a model is free from er-

or, the knowledge of acceptable uncertainty will lead to a better

nterpretation of model outcomes. Notably in environmental fore-

asting it is crucial to know the level of changes in individual forc-

ng variables that can trigger a rapid response/change in the model

rediction. For operational prediction, the derived acceptable un-

ertainty for a specific model can be applied to model predictions

n the future. That is, the acceptable uncertainty will help model

sers and forecasters to account for known model behavior and to

etter interpret their model outputs. Being a consequence of model

ehavior, the acceptable uncertainty points to specific parts of the

odel that need verification to ensure that their intended behavior

re satisfactory under different modeling conditions. As a result,

he acceptable uncertainty will provide invaluable information to
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odel developers in their effort to fine-tune the inaccurate parts

f the model. 

It is also important to emphasize the novelty in our model-

ng paradigm. To study the model behavior, this approach took

he land surface model as a whole with no assumption of its er-

oneous parts. The resulting genomic-like data were examined to

e-construct the model decision space through gene expression

nd genome-wide association. As a result, the modeling approach

ccommodates different model configurations including the con-

eptual physical structure or the conceptual process structure, de-

erministic, stochastic, and empirical model structures. This proce-

ure of de-construction of the model decision space is suitable for

odel inter-comparison studies and for the examination of alter-

ative modeling procedures, for example, the evaluation of wa-

er infiltration rate by either Richards’ equation ( Richards, 1931 )

r Green-Ampt method ( Green and Ampt, 1911 ) in different wa-

ersheds. 

It is important to highlight the implication of the modeling

pproach used in this study and the findings. The study exam-

ned the behavior of the JULES model under soil moisture estima-

ion scenario by analyzing genomic-like data using gene expres-

ion and genome-wide association methods. The genomic-like data

ere generated through the EDA approach, which can be under-

aken for any land surface or hydrological model. As a result, the

ntire modeling approach can be adapted to any land surface and

ydrological models for any given study area. However, the find-

ngs obtained in this study are specific to the JULES model, the

tudy area, and the time period of study. The behavior of the JULES

odel in relation to its inputs and outputs found in this study will

eed to be examined in other study areas in order to generalize

hese findings. Nevertheless, this study points to a definitive ap-

roach to assess model behavior by evaluating different parts of

he model, their individual expression, their interaction, and sub-

equent contribution to the model output. 

Moreover, the findings illustrate the potential of the hydro ge-

omic mapping, with this study demonstrating two of its deriva-

ives; dominant cluster and dominant pathway, employed to deter-

ine the acceptable uncertainty for input forcing variables. The hy-

ro genomic mapping has been undertaken through gene expres-

ion and genome-wide association analysis, which together provide

ew insight into the behavior of the JULES model. The demon-

trated approach provides a definitive framework to assess the spe-

ific impact from different model components in general land sur-

ace and hydrological model estimation. The hydro genomic ap-

roach focus on mappings in model decision space from which a

etter understanding of the model, and its inputs and outputs can

e made. Consequently, there is a need to find other derivatives

f the hydro genomic mapping in order to construct a more thor-

ugh understanding of the land surface model, and its inputs and

utputs. 
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