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Numerous land surface models exist for predicting water and energy fluxes in the terrestrial environ-
ment. These land surface models have different conceptualizations (i.e., process or physics based),
together with structural differences in representing spatial variability, alternate empirical methods,
mathematical formulations and computational approach. These inherent differences in modeling
approach, and associated variations in outputs make it difficult to compare and contrast land surface
models in a straight-forward manner. While model intercomparison studies have been undertaken in
the past, leading to significant progress on the improvement of land surface models, additional frame-
work towards identification of model weakness is needed. Given that land surface models are increas-
ingly being integrated with satellite based estimates to improve their prediction skill, it is practical to
undertake model intercomparison on the basis of soil moisture data assimilation. Consequently, this
study compares two land surface models: the Joint UK Land Environment Simulator (JULES) and the Com-
munity Atmosphere Biosphere Land Exchange (CABLE) for soil moisture estimation and associated
assessment of model uncertainty. A retrieved soil moisture data set from the Soil Moisture and Ocean
Salinity (SMOS) mission was assimilated into both models, with their updated estimates validated
against in-situ soil moisture in the Yanco area, Australia. The findings show that the updated estimates
from both models generally provided a more accurate estimate of soil moisture than the open loop
estimate based on calibration alone. Moreover, the JULES output was found to provide a slightly better
estimate of soil moisture than the CABLE output at both near-surface and deeper soil layers. An assess-
ment of the updated membership in decision space also showed that the JULES model had a relatively
stable, less sensitive, and more highly convergent internal dynamics than the CABLE model.

Crown Copyright � 2014 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Land surface models play a crucial role in the estimation and
monitoring of terrestrial state variables such as soil moisture. Land
surface models use physiographic properties of the landscape,
together with meteorological forcing data to simulate the water
and energy fluxes between a vertical profile of soil, vegetation,
and the atmosphere [2,31,47]. The monitoring of land surface soil
moisture can be undertaken in three major ways: (i) through
in-situ soil moisture observations, (ii) by remotely sensed observa-
tions from satellites and aircraft, and (iii) through land surface
modeling. Among these three methods of acquiring soil moisture,
only land surface models have the capability to evolve soil mois-
ture forward in time – an essential requirement for planning and
management purposes.
The forward estimations from land surface models are usually
updated in time with satellite observations of soil moisture
[7,18,36,46], through data assimilation (DA) procedures. Primarily,
the DA approach improves upon the simulated output from the
land surface model by updating the model state trajectories
through time. This means that improved soil moisture estimates
from land surface models will ultimately lead to efficient planning
outcomes. Improved land surface estimates can be achieved by
continued refinement of models [23,24], through changes in their
structure, and direct learning from observations to enhance their
reliability. An important step towards refining land surface model
physics, leading to more accurate state estimates and identification
of weaknesses in the model is to compare and contrast their per-
formance against in-situ soil moisture.

Consequently, this study compares the soil moisture estimation
skill of two land surface models: (i) the Joint UK Land Environment
Simulator (JULES) [2], and (ii) the Community Atmosphere Bio-
sphere Land Exchange (CABLE) model [31,47], and assesses their
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uncertainty. This study assimilates retrieved soil moisture from the
Soil Moisture and Ocean Salinity (SMOS) satellite into the JULES
and CABLE models, for estimation of soil moisture in the Yanco
area located in southeast Australia. The Yanco area is monitored
by an extensive in-situ data set (OzNet data – www.oznet.org.au)
from [44], which enables subsequent validation of the updated soil
moisture from both models.

Currently, the Australian Bureau of Meteorology uses the JULES
model to estimate the land surface state components for its
numerical weather prediction model, the Australian Community
Climate and Earth-System Simulator (ACCESS). However, there is
growing interest to replace the JULES model with CABLE in the near
future. The CABLE model is providing the land surface component
for the ACCESS version 1.3 in a test phase. An assessment of the
estimated soil moisture from these models, validated with in-situ
soil moisture, will provide crucial information for implementation
purposes including the possibility of identifying limitations in the
model structure.

This paper undertakes soil moisture assimilation into both
models using the evolutionary data assimilation (EDA) procedure
[17,21]. The EDA is a synthesis between the stochastic and adap-
tive capabilities of a computational evolutionary strategy, and
the concept of temporal state updating into a unified DA proce-
dure. The EDA has been compared against advanced DA methods
such as the ensemble Kalman filter and particle filter [19,21], to
illustrate its unique contributions on merging simulated model
outputs with observations. As will be illustrated in the results sec-
tion, an evaluation of updated members obtained from the EDA
approach has the capability to quantify uncertainties for model
parameters, states, input forcing data, and the spatial variation of
the landscape.

It is noted that, land surface model intercomparison has been
undertaken in numerous studies in the past, including
[3,13,15,22,26,28,32,34,40,43]. The Project for the Intercomparison
of Land-Surface Parameterization Schemes (PILPS) [25–27,40]
assessed over 30 land surface models, leading to considerable
improvements and better understanding of land surface models.
The models in PILPS were generally evaluated in off-line experi-
ments (i.e., driven by prescribed meteorological forcing data), with
subsequent simulated outputs compared against observed fluxes.
The Global Soil Wetness Project (GSWP) 1 and 2 [13–15] assessed
13 land surface models, through the examination of model
sensitivity, the impact of model parameter and forcing variable
uncertainty on simulated fluxes, and the provision of global land
surface fluxes. The AMMA Land Surface Model Intercomparison
Project (ALMIP) [3] employed about 11 land surface models,
together with field campaign data, to better understand the
connections between terrestrial processes and the West African
monsoon. Additionally, [32] examined the sensitivity of 12 of the
PILPS models, assessing the response of four model outputs
(evapotranspiration, runoff, sensible heat flux, and soil moisture)
to changes in five model parameters (maximum soil moisture
content, effective available water content, Clapp–Hornberger b
parameter [6], leaf area index, and minimum stomatal resistance).
At annual scale, they found that the models have different sensitiv-
ities under different hydroclimatic conditions, and that model
parameter interactions were inconsistent, with some models hav-
ing high response to changes in a single model parameter.

While significant progress has been made in land surface
intercomparison studies, few studies including [22] have actually
intercompared several models whereby, the land surface model
estimates have been updated with retrieved satellite soil moisture,
and the updated estimates validated against in-situ soil moisture.
It is acknowledged that other soil moisture assimilation studies
have been undertaken including [1,8,12,16,35], but these studies
have not intercompared multiple land surface models. This study
evaluates two widely applied land surface models (JULES and
CABLE), investigating their temporal changes in decision space
comprising model parameters, states, and forcing data uncertain-
ties. Moreover, the high density nature of the in-situ soil moisture
stations within the study site is important, providing comprehen-
sive space–time coverage to validate the updated soil moisture
estimates at both near-surface and deeper soil layers.
2. Materials and methods

2.1. Study area, data sets, and the land surface models

This model intercomparison study was undertaken in the Yanco
area located in the western plains of New South Wales, Australia
with an area coverage of about 7056-km2. The land cover in the
Yanco area (shown in Fig. 1) is mainly grassland, with sparse pas-
ture and irrigated crops. The topography is fairly flat with scattered
domes, lunettes, swampy depressions, and discontinuous low river
ridges associated with prior stream systems [37]. The soil is mainly
loam textured, together with traces of sand and clay textured
loams.

The Yanco area is highly instrumented, having a combination of
Campbell water content reflectometers CS615 and CS616, and T-
107 thermistors, for monitoring soil moisture and temperature
conditions. The area comprises 13 monitoring stations with half-
hourly soil moisture observations made at four soil layer thick-
nesses: 0–8 cm, 0–30 cm, 30–60 cm, and 60–90 cm. The Yanco soil
moisture network is a subset of the OzNet monitoring system [44],
which has been in operation since 2001.

The JULES is a tiled model with sub-grid heterogeneity for sim-
ulating the water and energy fluxes for nine surface types includ-
ing: broadleaf, needleleaf, C3 (temperate) grass, C4 (tropical)
grass, shrubs, urban, inland water, bare soil, and land-ice [2]. The
energy budget in JULES accounts for the following components:
(i) surface energy, mainly fluxes of sensible heat and moisture,
and latent heat of vaporization for snow-free tiles or sublimation
for snow-covered tiles, together with ground heat flux which com-
bines radiative fluxes below vegetation canopies and conductive
fluxes for the non-vegetation fraction as a function of the thickness
and temperature of the surface soil layer; (ii) conductances for sen-
sible and latent heat fluxes between the land surface and the atmo-
sphere; (iii) canopy heat capacity; and (iv) surface evaporation
drawn from saturated surfaces (e.g., lakes), soil, canopy and snow
moisture stores.

The hydrology is determined for each tile by partitioning pre-
cipitation, which is distributed exponentially across the area, into
interception, throughfall, runoff and infiltration. The soil hydrol-
ogy, accounting for the movement of water between soil layers is
based on a finite difference approximation to the Richards’ equa-
tion [42]. The soil moisture extraction by vegetation is determined
by root density, which is assumed to follow an exponential distri-
bution with depth [2]. JULES represents vegetation cover through
leaf area index (LAI), which is represented by maximum and
minimum values for each of the 5 plant functional types, together
with a ‘full leaf’ LAI. The LAI accounts for the available energy par-
titioning between soil and vegetation surfaces, and facilitates the
estimation of water use by vegetation. The JULES’s meteorological
forcing variables and prognostic variables essential to this study
are presented in Table 1.

The CABLE model is also tiled with sub-grid heterogeneity,
comprising five main modules: (i) radiation, (ii) canopy microme-
teorology, (iii) surface flux, (iv) soil, and (v) ecosystem carbon. The
radiation accounts for the transfer and absorption of radiation by
the sunlit and shaded leaves [47]. The canopy micrometeorology
encompasses the surface roughness length, zero-plane
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Fig. 1. The Yanco area in south-east Australia, showing the soil texture, the 15-km SMOS Disrete Global Grid (DGG), the 12-km model grid from ACCESS-A, and the in-situ
OzNet soil moisture monitoring stations.

Table 1
Description of selected model parameters, states and input forcing variables for the
JULES model. These model parameter intervals were estimated in concert with land
cover, soil properties and meteorological forcing data in the Yanco area.

Parameter Description Interval

Model parameters
b Exponent in soil hydraulic characteristics curve �10%

sathh Absolute value of the soil matric suction at
saturation (m)

�10%

hsatcon Hydraulic conductivity at saturation
(kg m�2 s�1)

�10%

sm-sat Soil moisture content at saturation (m3 water
per m3 soil)

�10%

sm-crit Soil moisture content at critical point (m3

water per m3 soil)
�10%

sm-wilt Soil moisture content at wilting point (m3

water per m3 soil)
�10%

hcap Dry heat capacity (J m�3 K�1) �10%

hcon Dry thermal conductivity (W m�1 K�1) �10%

albsoil Soil albedo �10%

Meteorological forcing variables
SWR Downward shortwave radiation at the surface

(W/m2)
�10%

LWR Downward longwave radiation at the surface
(W/m2)

�10%

rain Rainfall (kg m�2 s�1) �10%

snow Snowfall (kg m�2 s�1) �10%

tempr Atmospheric temperature (K) �10%

wind Wind speed (m s�1) �10%

press Surface pressure (Pa) �10%

spHum Atmospheric specific humidity (kg kg�1) �10%

Model state variables
canopy Amount of intercepted water that is held on

each tile (kg m�2)
Updated

tstar-t Surface or skin temperature of each tile (K) Updated
t-soil Temperature of each soil layer (K) Updated
sthuf Soil wetness for each soil layer; mass of soil

water expressed as a fraction of water content
at saturation

Updated
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displacement height, and aerodynamic conductance from the ref-
erence height to the air within canopy or to the soil surface. The
surface flux includes the surface energy budget, transpiration,
stomatal conductance, and photosynthesis of sunlit and shaded
leaves. The soil module accounts for the water and energy fluxes
at the soil surface and within the soil layers, whereas the ecosys-
tem carbon component includes estimates for the respiration of
stem, root and soil organic carbon decomposition [47]. The main
surface types used in CABLE include: evergreen needleleaf and
broadleaf, deciduous needleleaf and broadleaf, shrub, temperate
and tropical grass, Tundra, crop, wetland, bare ground, lake,
and ice. The soil layers in CABLE are fixed to six soil thicknesses:
2.2-cm, 5.8-cm, 15.4-cm, 40.9-cm, 108.5-cm and 287.2-cm, respec-
tively from top to bottom, with the movement of water between
layers estimated using the Richards equation [31,47]. CABLE uses
the Penman–Monteith calculation to estimate evaporation from
bare soils, which in turn is weighted by soil moisture in the top soil
layer [31,47]. The meteorological forcing variables and prognostic
variables essential for soil moisture estimation in CABLE are pre-
sented in Table 2.

The input landscape properties data including soil and land
cover data sets are similar for both the JULES and CABLE models.
The soil properties data set was obtained from the Digital Atlas
of Australian Soils [37], comprising information on soil texture
classes, along with proportion of clay content, bulk density, and
saturated hydraulic conductivity [37,38]. The LAI data set was
obtained from the MYD15A2 Moderate Resolution Imaging Spect-
roradiometer (MODIS) data at 8-day time scale and 1-km spatial
resolution. The land cover information was obtained from the
Australian National Dynamic Land Cover Data set [33], which
was derived from the 250-m bands of MODIS.

The meteorological forcing data was obtained from the
Australian Community Climate Earth-System Simulator – Australia
(ACCESS-A) at hourly time scale with about �12-km spatial resolu-
tion [4]. The ACCESS-A precipitation data was bias corrected using
the daily 5-km gridded raingauge precipitation data, obtained from
the Australian Water Availability Project (AWAP) through the
Bureau of Meteorology [29,30]. The precipitation bias correction
is conducted by matching the mean precipitation from the
ACCESS-A to the average AWAP precipitation. The soil, LAI, and land
cover data are mapped onto the 12-km ACCESS-A grids through a
spatial overlap, and subsequent estimation of the percent coverage



Table 2
Description of selected model parameters, states and input forcing variables for the
CABLE model. These model parameter intervals were estimated in concert with land
cover, soil properties and meteorological forcing data in the Yanco area.

Parameter Description Interval

Model parameters
clay Fraction of soil which is clay (–) �10%

sand Fraction of soil which is sand (–) �10%

silt Fraction of soil which is silt (–) �10%

froot Fraction of roots in each soil layer (–) �10%

albsoil Snow free shortwave soil reflectance fraction (–) �10%

bch Parameter b, Campbell eqn 1985 (–) �10%

css Heat capacity of soil minerals (J/kg/C) �10%

hyds Hydraulic conductivity at saturation (m/s) �10%

rhosoil Density of soil minerals (kg/m3) �10%

sucs Suction at saturation (m) �10%

sfc Fraction of soil volume which is water at field
capacity (–)

�10%

ssat Fraction of soil volume which is water at
saturation (–)

�10%

swilt Fraction of soil volume which is water at wilting
point (–)

�10%

LAI Leaf area index (m2/m2) �10%

Meteorological forcing variables
SWdown Downward shortwave radiation (W/m2) �10%

LWdown Downward longwave radiation (W/m2) �10%

Tair Near surface air temperature (K) �10%

Qair Near surface specific humidity (kg/kg) �10%

Rainf Rainfall rate (mm/s) �10%

Wind Surface wind speed (m/s) �10%

Model state variables
SoilMoist Average layer soil moisture (m3/m3) Updated
SoilTemp Average layer soil temperature (K) Updated
CanopInt Canopy intercepted water storage (kg/m2) Updated
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of each land cover and soil category within each 12-km grid. That is,
the area-based soil and land cover data are spatially weighted for
each 12-km modeling grid, whereas the grid-based 1-km LAI data
set was spatially averaged for each underlying 12-km modeling
grid. The forcing data together with the LAI, land cover and soil data
were incorporated into the JULES and CABLE models independently,
to simulate the temporal evolution of soil moisture. The model grid
in both JULES and CABLE was 12-km, with each run at an hourly
time step.

The soil moisture observation data used to drive the CABLE and
JULES assimilation was the SMOS Level 2 soil moisture, which is
reported at the 15-km Discrete Global Grid (DGG). The specific
SMOS Level 2 data set used was the Soil Moisture Level 2 v.4.0 User
Data Product (SMUDP2), obtained for the period from January to
December 2010. It is notable that the SMOS Level 2 v.4.0 soil mois-
ture was retrieved using the Mironov model [39]. In the CABLE and
JULES assimilation runs, the SMOS data set was used at the 15-km
DGG in accordance with findings from [20], which showed that the
error involved in representing the 42-km SMOS observations at the
15-km DGG is not expected to be worse than the noise that cur-
rently exists in the original SMOS data [21].

Moreover, the SMOS Level 2 soil moisture was re-scaled to the
simulated soil moisture independently for CABLE and JULES, to
remove the bias between the observation and model output in line
with other studies including [10,11,41,48]. The re-scaling proce-
dure matched the mean and standard deviation of the SMOS soil
moisture to the simulated surface soil moisture from the model,
according to Eq. (1).

hr
obs ¼ have

sim þ
rsim

robs

� �
� hobs � have

obs

� �
ð1Þ

where hr
obs is the re-scaled SMOS soil moisture, hobs is the original

SMOS soil moisture, and have
obs and robs represent the average and

standard deviation of the SMOS soil moisture respectively. The
have
sim and rsim indicate the average and standard deviation respec-

tively for the simulated soil moisture from the model.

2.2. The evolutionary data assimilation

The EDA procedure applied in this study to assimilate soil
moisture into the JULES and CABLE models follows the modeling
strategy in [21]. The EDA shown in Fig. 2, is an applied evolutionary
strategy which evolves a population of competing members under
one or more evaluation objectives through several cycles of evolu-
tion. A candidate member in the population is defined by two
properties: (i) genotype, representing the internal properties of a
member; and (ii) phenotype, being the expressed behavior of a
member. The genotype is equivalent to a vector string of values
connecting model parameters, initial states, and input forcing data,
which make up the internal dynamics of a land surface model,
whereas the simulated output (e.g., soil moisture) from the model
represents the phenotype. The candidate members in the popula-
tion undergo competition and natural selection based on the eval-
uation objectives in phenotype space, while the members evolve in
genotype space through variation and reproduction of new
members. The variation of members is achieved through mutation
operation, which perturbs the genotype string of individual mem-
bers. The reproduction of members (or crossover operation) com-
bines high performing members to generate new members with
the potential to retain quality elements of their genotype string.

The EDA procedure is based on the Non-dominated Sorting
Genetic Algorithm – II (NSGA-II), developed by [9]. In the EDA pro-
cedure, the initial evolutionary cycle involves the creation of a ran-
dom population of members, the assessment of the members
based on evaluation objectives, and the selection of half of the
population members for reproduction. For subsequent cycles of
evolution, the selected high performing members are combined
with the new members to form a new population which undergoes
another evaluation, selection, and reproduction. Each cycle of the
evolution of the population members is called a generation. The
initial genotype for population members is generated using the
minimum and maximum bounds for model parameters, states,
and forcing variables as shown in Table 1 for JULES, and Table 2
for CABLE. This initial population is generated using the Latin
hypercube sampling, which provides values over the entire length
of the variable distributions. Subsequent populations were gener-
ated based on the evolutionary operators including tournament
selection, mutation and crossover. The evaluation of members in
phenotype space is based on the absolute difference in Eq. (2),
and the cost function in Eq. (3).

AbsDiff ¼ jyi � yo;ij ð2Þ

where yi is the simulated soil moisture from a population member,
yo;i is the observed soil moisture from an observation ensemble
member.

J ¼
Xt

i¼1

JðyiÞ ¼
Xt

i¼1

yi � yb;i

� �2

r2
b

þ
yi � yo;i

� �2

r2
o

( )
ð3Þ

where yb;i is the background (i.e., forecast) soil moisture for the ith
data point, r2

b is the variance for the background soil moisture, r2
o is

the variance for the observation soil moisture, yi represents the
analysis (i.e., the searched) soil moisture for ith data point which
minimizes JðŷiÞ, and t is the number of data points or the time (note
that t ¼ 1 in this case for sequential assimilation).

At the referenced (or the last) generation, the final evolved
members are chosen as the updated members for the current
assimilation time step. The updated members are used to deter-
mine the forward estimation, and seeded as the initial population
for the next assimilation time step. The above procedure is



Fig. 2. Computational procedure of the EDA approach, showing the evaluation, selection and reproduction of the population and its update through time (adapted from [17]).
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repeated for each assimilation time step to: (i) evolve a population
of competing members through several generations, (ii) select and
archive the final evolved members as updated members, (iii) use
the updated members to determine background (or forward) esti-
mates for future time steps, and (iv) seed the updated members as
initial population members for subsequent time periods. Hence,
several competing members are evaluated to determine the
updated members for each assimilation time step.

2.3. Assessment of uncertainty for model components

The updated ensemble members obtained for each assimilation
time step using the EDA approach have unique properties, with the
capability to assess model uncertainty due to landscape spatial
variability (embedded in model parameters and states), and input
forcing data. These sources of uncertainty are embedded in the
genotype of updated members. To explore the genotype, it is
important to emphasize the unique properties of the updated
members obtained from the EDA approach. The updated members
are equally accurate (i.e., incomparable based on the evaluation
measures) in a way that each member provides a unique compro-
mise between the simulated output and the observation data in
phenotype space. Accordingly, the associated genotype accounts
for the landscape spatial heterogeneity, through the ensemble
model parameters, state variables and meteorological forcing
needed to obtain the optimal compromise in phenotype space. As
a result, the monitoring of the genotype of updated members
through time provides an estimate of the expected landscape
spatial variability from the model standpoint, needed to obtain a
consistently optimal compromise in phenotype space. The estima-
tion of the landscape spatial variation also follows the procedure
outlined in [21].

Given that the updated genotype is a function of the optimal
compromise between the simulated output and the observation,
an examination of the changes in model parameters, initial states,
and input forcing data and their interactions are important to
estimate their shared uncertainty. The multi-dimensional monitor-
ing of these three model components (parameters, initial states,
and input forcing) across the assimilation time steps provides an
estimate of the expected uncertainty for the individual model com-
ponents. The monitoring in genotype space is conducted using
clustering analysis, with one-dimensional clustering applied to
determine the minimum landscape spatial variation, and multi-
dimensional clustering employed to determine the individual
uncertainties for model parameters, states, and input forcing data.

2.4. Setup of model and data assimilation runs

The EDA procedure is applied to assimilate the SMOS soil mois-
ture separately into the JULES and CABLE models at a daily time
step from January to December, 2010. A population of 40 members
were evolved across 5 generations, with 20 updated members
selected for each assimilation time step. That is, for each assimila-
tion time step an ensemble of 200 (i.e. 40� 5) members was eval-
uated, after which 20 optimal ones were selected as the updated
members. The initial population members were generated based
on the uncertainty intervals for model parameters, states, and
input forcing variables in Table 1 for the JULES model, and Table 2
for the CABLE model using the Latin hypercube sampling. For sub-
sequent population members and assimilation time steps, the
uncertainty values for model parameters, states, and forcing
variables were derived from the population members, with the
uncertainties constrained to the lower and upper bounds found
in Table 1 for the JULES model, and Table 2 for the CABLE model.
It is noted that the original values for model parameters and states
were determined by soil and land cover data in concert with the
JULES and CABLE models. Based on these original values, the model
parameters were perturbed using a relative measure, such that an
ensemble value for a model parameter was always relative to the
original model parameter value determined from the landscape
properties data. Similarly, the input forcing variables were per-
turbed using a relative measure; the state variables were also per-
turbed using a relative measure from their updated values.

Given the spatial mismatch between the SMOS 15-km DGG and
the 12-km model grid, the 15-km SMOS soil moisture was con-
verted to the 12-km model grid by using the overlapping areas
between the 15-km DGG and the respective 12-km model grid as
weighting factors. According to [20], soil moisture retrieval and



236 G. Dumedah, J.P. Walker / Advances in Water Resources 74 (2014) 231–244
data assimilation applications can use the 15-km SMOS data at the
12-km model grid without downscaling because the estimated
errors between the two spatial resolutions are smaller than the
standard error of the current SMOS data. The observation uncer-
tainty was based on the soil moisture error which comes along
with the SMOS Level 2 soil moisture, with this error being only
the model inversion error and not the sensor error. The simulated
soil moisture uncertainty was derived adaptively from the updated
population members. The simulated soil moisture for the surface
layer (i.e., top 3-cm in JULES, and top 2.2-cm in CABLE) were used
in the evaluation against the observed SMOS soil moisture, since
the SMOS observation is equivalent to the top �2-cm soil moisture.
Following the standard NSGA-II implementation, the EDA uses a
crossover probability of 0.8 and a mutation probability of 1/m
(where m is the number of variables) to perturb and reproduce
new members.

Additionally, a calibration procedure was undertaken to evalu-
ate the updated estimates from both models. The CABLE and JULES
models were calibrated to the SMOS soil moisture over the same
assimilation time period. The NSGA-II was used to calibrate both
models, with 40 members evolved over 250 generations. It is noted
that the calibration runs are independent from the data assimila-
tion runs, such that the model calibration results were not used
in the assimilation runs. The rationale for the calibration is to pro-
vide a robust evaluation of the updated output, instead of using
randomly chosen values for model parameters, initial states to
generate the open loop estimate.

To assess the soil moisture estimates, three evaluation mea-
sures: root mean square error (RMSE) in Eq. (4), bias in Eq. (5),
Fig. 3. Evaluation of the open loop (top row) and the updated (bottom row) soil moistu
moisture for all model grids.
and the normalized error reduction (NER) [5] according to Eq. (6)
were used.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 yi � yo;i

� �2

k

s
ð4Þ

where: yo;i is the observed soil moisture for ith time step, yi is the
simulated soil moisture for ith time step, k is the duration of time
period.

Bias ¼
Pk

i¼1ðyi � yo;iÞ
k

ð5Þ

NER ¼ 1� RMSEu

RMSEo
ð6Þ

where: RMSEo and RMSEu are the RMSE for the open loop and the
updated outputs respectively. The NER varies between negative
infinity and 1.0, with a negative NER indicating a deterioration of
the updated output in comparison to the open loop. A value of
NER closer to 1.0 means that the updated output has a greater
improvement over the open loop [5].

3. Results and discussion

3.1. Evaluation of the updated soil moisture estimates against SMOS

To assess the soil moisture estimation from CABLE and JULES,
we begin with a comparison of open loop estimates at the near-
surface soil layer from both models against the SMOS soil moisture.
re estimates from CABLE (left panel) and JULES (right panel) against the SMOS soil
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The comparison of the open loop near-surface estimates for all
model grids against the SMOS soil moisture, using two evaluation
measures: RMSE and bias is presented in Fig. 3(a). It is noted that
the open loop estimate from each model represent their corre-
sponding model calibrated estimates. The JULES estimate is biased
for extreme wet and dry moisture conditions, but its RMSE is supe-
rior to the CABLE output. The small bias from the CABLE open loop
Table 3
Summary evaluation measure values for CABLE and JULES soil moisture outputs
evaluated against SMOS (for all model grids), and in-situ OzNet soil moisture (for all
13 monitoring stations) at the near-surface and deeper soil layers.

Evaluation Output RMSE
(m3/m3)

Bias
(m3/m3)

NER

SMOS Open loop – CABLE 0.118 �0.015
Open loop – JULES 0.098 �0.045
Updated – CABLE 0.111 �0.012 0.059
Updated – JULES 0.083 �0.016 0.153

OzNet – 8 cm Open loop – CABLE 0.122 0.042
Open loop – JULES 0.121 0.043
SMOS 0.111 0.049
Updated – CABLE 0.102 �0.005 0.164
Updated – JULES 0.100 �0.005 0.174

OzNet – 30 cm Open loop – CABLE 0.121 0.075
Open loop – JULES 0.107 0.052
Updated – CABLE 0.109 0.001 0.099
Updated – JULES 0.102 �0.000 0.047

Fig. 4. Spatial plot of the evaluation measures: RMSE and bias for the 12-km model grid
soil moisture estimates from CABLE and JULES against the SMOS soil moisture.
is compromised by large deviations in its near-surface soil mois-
ture from the SMOS data. Given that the JULES output has a smaller
RMSE, and that its bias is reasonably close to the soil moisture
error (about 0.03 m3/m3) from in-situ measurements, the JULES
open loop is preferred to the CABLE output. Hereafter the JULES
open loop is used in the remainder of the analysis, and is implicitly
referred to when discussing the open loop unless the CABLE open
loop is specifically referred to.

Additionally, the updated soil moisture estimates from CABLE
and JULES are compared against the SMOS soil moisture for all
model grids in Fig. 3(b). The three evaluation measures are sum-
marized in Table 3. The updated estimates from CABLE and JULES
have each improved upon their respective open loop estimates.
Based on the evaluation measures, the JULES updated estimate
has a slightly more accurate estimate of the SMOS soil moisture
than both open loop outputs and the CABLE updated estimate.
The bias estimate for the CABLE updated output is the smallest
(i.e., most accurate) but its RMSE value is higher (i.e., less accurate)
and is comparable to that obtained from the JULES open loop.

Further, spatial plots of the RMSE and bias values at the 12-km
model grid for the open loop and the updated estimates from
CABLE and JULES are shown in Fig. 4. Across all model grids, the
CABLE output is least biased in comparison to the JULES output,
whereas the RMSE values from JULES are superior to those
obtained from CABLE. It is noted that the updated CABLE output
has the least accurate values of RMSE in the spatial plot, but they
are better than its open loop estimate as demonstrated in Fig. 3.
based on the evaluation of the open loop (from JULES) and the updated near-surface
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Finally, a time series comparison of the open loop and updated
estimates from CABLE and JULES against the SMOS soil moisture is
presented in Fig. 5 for model grids overlapping OzNet monitoring
stations Y6 and Y10. There is no preference for the two chosen sta-
tions but as will be demonstrated, these same stations are also
used at the OzNet evaluation stage. At the Y6 and Y10 model grids,
the CABLE open loop shows very little dynamic to capture the wet
and dry soil moisture conditions. The JULES open loop has a soil
moisture dynamic that is similar to the observed SMOS data but
with a mismatched temporal agreement. The updated estimates
from CABLE and JULES have improved upon both open loop out-
puts in terms of dynamics and temporal agreement. The updated
CABLE and JULES outputs capture both the peak and troughs of
the SMOS soil moisture dynamic. While the updated CABLE esti-
mate has some instances of temporal mismatch, the updated JULES
Fig. 5. Time series comparison of open loop and updated near-surface soil moisture from
and Y10.
output is wetter (over-estimate) at some extreme wet (peak) con-
ditions, and drier (under-estimate) at some extreme dry (trough)
conditions. Overall, the updated JULES output is clearly superior
to the CABLE output, capturing the peaks and troughs at the right
time periods.

3.2. Evaluation of the updated soil moisture estimates against in-situ
OzNet

To begin the evaluation against the in-situ OzNet data, the open
loop outputs from CABLE and JULES are first compared against the
OzNet soil moisture for all 13 monitoring stations for the near-sur-
face soil layer (0–8 cm) in Fig. 6. The results show that both open
loop outputs have almost the same RMSE and bias values, indicat-
ing similar performance. Second, the updated estimates from
CABLE (left panel) and JULES (right panel) against SMOS soil moisture at stations Y6
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CABLE and JULES along with the SMOS soil moisture are evaluated
against the near-surface (0–8 cm) in-situ OzNet soil moisture in
Fig. 7. The rationale to include the SMOS data in this comparison
is to illustrate that there are significant differences between these
two data sets: the SMOS and in-situ point-based data. The updated
CABLE and JULES outputs and the SMOS data have improved upon
the evaluation measures obtained from both open loop estimates.
The overall comparison based on RMSE and bias shows that the
updated estimate from JULES provides the most accurate estimate
Fig. 6. Evaluation of the open loop soil moisture estimates from CABLE (left panel) and JU
13 monitoring stations.

Fig. 7. Evaluation of the SMOS, open loop, and the updated CABLE and JULES estimates o
monitoring stations.

Fig. 8. Evaluation of the open loop (from JULES), and the updated CABLE and JULES estim
stations.
of the in-situ observation, with the SMOS being the least accurate.
It is noted that the updated estimates from both CABLE and JULES
have almost the same accuracy based on the RMSE and bias values.

Third, the updated root-zone estimates from CABLE and JULES
and the open loop (from JULES) are evaluated against the deeper
(0–30 cm) in-situ OzNet soil moisture in Fig. 8. The estimated eval-
uation measures for both the surface and deeper soil layers are
summarized in Table 3. While the soil moisture updates in CABLE
had the largest RMSE, the updated estimates from CABLE and JULES
LES (right panel) against the OzNet soil moisture at the near-surface soil layer for all

f near-surface soil moisture against the 0–8 cm in-situ OzNet soil moisture for all 13

ates against the deeper (0–30 cm) in-situ OzNet soil moisture for all 13 monitoring
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both had a lower (i.e., more accurate) bias values than the open
loop (JULES) when compared to in-situ data, with JULES having a
slightly superior estimate of soil moisture than those obtained
from CABLE.

A time series comparison of the open loop and updated
estimates from CABLE and JULES against the in-situ OzNet soil
moisture for the near-surface layer is presented in Fig. 9 for model
grids overlapping OzNet monitoring stations Y6 and Y10. The
CABLE output for both open loop and updated estimate show very
little dynamic with respect to the OzNet soil moisture, whereas the
JULES outputs are highly dynamic, but with some instances of a
temporal mismatch. The updated estimates from CABLE and JULES
have improved upon both open loop outputs in terms of RMSE
Fig. 9. Time series comparison of open loop and updated estimates of near-surface soil
OzNet soil moisture at stations Y6 and Y10.
evaluation. The updated JULES output provides a superior estimate
of the OzNet data in terms of soil moisture dynamics, temporal
agreement and RMSE evaluation. It is noted that the updated JULES
output is wetter at some peaks and drier at some troughs, but its
overall soil moisture dynamics is more in agreement with the in-
situ OzNet than the CABLE outputs.

Finally, the seasonality of soil moisture estimation is examined
for the updated CABLE and JULES outputs using the in-situ OzNet
data for both the surface and deeper soil layers. The OzNet and
the updated soil moisture are divided into four seasons, namely
Season 1 comprising December, January, and February (DJF),
Season 2 comprising March, April, and May (MAM), Season 3 com-
prising June, July, and August (JJA), and September, October, and
moisture from CABLE (left panel) and JULES (right panel) against the 0–8 cm in-situ



G. Dumedah, J.P. Walker / Advances in Water Resources 74 (2014) 231–244 241
November (SON) making up Season 4. The RMSE and bias values
are determined using data from each season. The evaluation of
the updated CABLE and JULES outputs against the in-situ OzNet soil
moisture for all 13 monitoring stations for both surface and deeper
soil layers in each season is presented in Table 4. Soil moisture is
most accurately estimated in the MAM season, with the wet JJA
season having the least accuracy. Overall, accurate estimation of
soil moisture favor the dry (DJF) and dry-to-wet (MAM) seasons
than the wet (JJA) and wet-to-dry (SON) seasons. Both CABLE and
JULES outputs have similar RMSE and bias values across the 4 sea-
sons for both near-surface and deeper soil depths.

Overall, the assessment of the updated soil moisture in all the
experiments show that the JULES output has consistently
performed slightly better than the CABLE estimate based on the
evaluation measures. While the accuracy difference is negligible
between CABLE and JULES based on the OzNet near-surface soil
moisture, the JULES model provided a significantly improved soil
moisture estimate at the deeper soil layer.
3.3. Assessment of model component uncertainties

The intercomparison between the updated soil moisture esti-
mates from CABLE and JULES is important. But equally important
is the assessment of how the models respond to changes in deci-
sion space. For land surface models, the changes in decision space
encompass crucial uncertainties for model components which
have direct impact on the simulated output from the models.
As a result, the updated ensemble members from both CABLE
and JULES were analyzed to determine the commonality of model
Table 4
Seasonal variations of soil moisture estimation based on the evaluation of updated
estimates from CABLE and JULES against in-situ OzNet soil moisture across all 13
monitoring stations for the near-surface and deeper soil layers.

Season Model RMSE (m3/m3) Bias (m3/m3)

0–8 cm 0–30 cm 0–8 cm 0–30 cm

DJF CABLE 0.093 0.082 �0.006 0.016
JULES 0.104 0.095 �0.019 0.008

MAM CABLE 0.082 0.095 �0.009 0.043
JULES 0.076 0.086 �0.020 0.009

JJA CABLE 0.095 0.143 0.057 0.104
JULES 0.091 0.138 0.046 0.097

SON CABLE 0.100 0.130 0.048 0.094
JULES 0.103 0.127 0.038 0.087

Fig. 10. Comparison of the scaled intervals of CABLE model parameters/variables for t
dominant cluster obtained through clustering analysis of the updated members.
parameter values which remain persistent across assimilation
time periods. The assessment of the updated members was
undertaken using clustering analysis, which is suited to deter-
mining persistent values of model parameters/variables across
several assimilation time steps. The clustering analysis was per-
formed for each model parameter/variable, and the frequency
based dominant cluster determined as the persistent interval
within which the model mostly finds the updated estimate for
each assimilation time period. It is noted that for each model
parameter/variable, a test of clustering has been performed
according to the knee method [45]. The knee method has also
been used to determine the appropriate number of groups
needed to cluster each variable. Overall, the number of clusters
ranged from 5 to 9.

The original intervals of the model parameters/variables,
together with the updated bound and the dominant cluster, are
shown in Fig. 10 for the CABLE model and in Fig. 11 for the JULES
model. The updated bound is represented by the minimum and
maximum values of the updated ensemble members obtained
across all assimilation time steps. As the intervals for different
model parameters/variables vary, they have been re-scaled to a
unit scale (0.0–1.0) for presentation purposes. For the CABLE out-
put, the area covered by the updated bound as a fraction of the ori-
ginal interval is about 82%, representing a 12% reduction of the
original bound. The dominant cluster has covered about 35% of
the original bound, representing a 65% reduction of the original
interval. The clustering analysis performed on the updated mem-
bers has reduced the coverage of its searched area by 57%, as the
area covered by the dominant clusters with respect to the updated
bound is 43%.

For the updated JULES output, the area covered by the updated
bound as a fraction of the original interval is 68%, representing a
32% reduction of the original bound. The dominant cluster has cov-
ered 45% of the original bound, which amounts to a 55% reduction
of the original interval. The clustering analysis performed on the
updated members has reduced the coverage of its searched area
by 34%, as the area covered by the dominant clusters with respect
to the updated bound is 66%.

These findings point to crucial differences in the internal dynam-
ics of both models. The update bound in the CABLE output is large in
comparison to the JULES output, but the assessment of the updated
members showed that there is a high level of instability in the
CABLE output. The high reduction of the updated bound by the
dominant cluster in the CABLE output means that the temporally
persistent members are sensitive. This is because the updated
members which were found to be persistent across assimilation
he original bound, the updated bound obtained from the EDA procedure, and the



Fig. 11. Comparison of the scaled intervals of JULES model parameters/variables for the original bound, the updated bound obtained from the EDA procedure, and the
dominant cluster obtained through clustering analysis of the updated members.

Fig. 12. Level of convergence indicated by frequency based coverage of the updated bound for model parameters/variables of CABLE and JULES models.
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time periods are located in smaller regions of the updated bound,
such that small changes around these regions will cause significant
changes in the soil moisture model response. It is noted that the
high reduction of the updated bound is advantageous for generating
a small number of ensemble members leading to a manageable
number of prediction scenarios.
The updated JULES output and its associated dominant cluster
are relatively stable in comparison to the updated CABLE output.
The temporally persistent members in the dominant cluster cover
a large (i.e., 66%) portion of the updated bound, such that small
changes around the dominant clusters will not lead to significant
changes in the model soil moisture response. While the JULES
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dominant clusters are not sensitive, a large number of ensemble
members are needed to cover the wide range of its model param-
eters/variables. Additionally, it is important to point out that both
models respond differently to the common forcing variables,
including precipitation, air temperature, wind speed, and incoming
short and long wave radiation, and specific humidity. Notable
among these variables for the CABLE dominant clusters is wind
speed, incoming short and long wave radiation. The CABLE output
requires higher increments consistently on the original values of
these three variables, whereas the JULES output has characteristi-
cally broad range with instances of both high and low increments.

Additionally, the frequency based coverage of each model
parameter/variable in the dominant clusters for the CABLE and
JULES outputs are shown in Fig. 12. The frequency based coverage
is equivalent to the level of convergence for each model parame-
ter/variable. Overall, the JULES dominant clusters show a relatively
higher level of convergence than the CABLE output. The high level of
convergence in the JULES output is partly due to a wider range for
its dominant clusters, which generally incorporate more updated
members. High convergence levels usually signify a less sensitive
model parameter/variable, meaning that the dominant cluster
found is also located at the most populated region frequency-wise.
This is evident in the results presented, with less sensitive and sta-
ble dominant clusters in Fig. 11, supported by high convergent
model parameters/variables in the JULES output. Conversely, the
relatively sensitive dominant clusters in Fig. 10 are associated with
a less convergent model parameters/variables in the CABLE output.
4. Summary and conclusion

This study has undertaken an intercomparison between the
CABLE and JULES models in terms of daily soil moisture estima-
tion in the Yanco area, southeast Australia. The intercomparison
involved an examination of the differences and similarities of soil
moisture estimation for both near-surface and deeper soil layers,
together with an assessment of the internal dynamics of both
models. The SMOS Level 2 soil moisture was assimilated into both
models to determine the updated ensemble estimate. An evalua-
tion of the updated estimate showed that, in general, the SMOS
assimilation into both models provided an improved estimate of
soil moisture when compared to the open loop estimate for both
surface and deeper soil layers. Overall, the updated JULES soil
moisture output was found to be slightly more accurate than
those from the CABLE model at both near-surface and deeper soil
layers.

The updated members from both models were also analyzed in
decision space using clustering analysis to determine temporally
persistent members with the highest level of commonality across
assimilation time periods. The updated ensemble membership in
decision space is equivalent to the internal dynamics of the model,
since it encompasses crucial model components including model
parameters, states, and input forcing variables. The assessment of
the internal dynamics of the models showed that the updated
membership from both models have a similar coverage of the ori-
ginal bound for their respective model parameters and variables.
However, their temporally persistent memberships were different,
with the CABLE output being relatively more sensitive than that
from the JULES output in terms of soil moisture estimation. The
dominant clusters from the CABLE output were also found to be
less convergent, whereas the JULES output showed higher levels
of convergence.

An important finding of this study was that while satellite
remote sensing data are usually assimilated into land surface
models to improve their prediction skill, these data sets also pro-
vide a unique avenue to learn about the model performance under
different meteorological conditions. As demonstrated in this study,
both CABLE and JULES were found to respond to some parameters/
variables in a persistent way by biasing either positively or
negatively their original values under changing meteorological
conditions. Across the assimilation time periods, CABLE was found
to be sensitive in a way that the updated members were found
persistently within small fractions of the entire search space, thus
providing the opportunity to isolate model response to specific
variables. These findings provide a further diagnostic framework
for examining model behavior under changing environment condi-
tions, together with unique pathways towards examination of
weaknesses in model structure. It is noted that these findings are
subject to the Yanco area for soil moisture estimation only, and
that additional investigations are needed to uncover more infor-
mation for each model and for other catchments. The interpreta-
tion of these findings is also constrained by the limited modeling
time period, mainly due to the scarcity of consistent forcing and
observation data sets. However, the key finding is the provision a
model diagnostic framework to intercompare land surface models
on the basis of their temporal stability in model decision space.

The findings in the study point to additional questions for con-
sideration. While this study has shown that the models respond
differently to some input forcing variables, there is the need for
further investigation to determine landmarks in decision space
which will correspond to specific model response. That is, a meth-
odology is needed to map the decision space in a way that: (i)
model structural weaknesses can be quickly identified, (ii) changes
in landscape and meteorological fluctuations can be accounted for
and mapped onto decision space, and (iii) subsets of the decision
space can be attributed to specific model response(s).
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