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Abstract

The current practice for assessing spatial predictions from distributed hydrological models is simplistic, with visual inspection

and occasional point observations generally used for model assessment. With the increasing availability of spatial observations from

remote sensing and intensive field studies, the current methods for assessing the spatial component of model predictions need to

advance. This paper emphasises the role that spatial field comparisons can play in model assessment. A review of the current meth-

ods used in hydrology, and other disciplines where spatial field comparisons are widely used, reveals some promising methods for

quantitatively comparing spatial fields. These promising approaches––segmentation, importance maps, fuzzy comparison and mul-

tiscale comparison––are for local comparison of spatial fields. They address some of the weaknesses with the current approaches to

spatial field comparison used in hydrological modelling and, in doing so, emulate some aspects of human visual comparison. The

potential of these approaches for assessing spatial predictions and understanding model performance is illustrated with a simple

example.
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1. Introduction

Distributed hydrological models produce spatially ex-

plicit predictions that allow more detailed analysis in

decision-making than lumped models. Managers in the

environmental field can now not only query the magni-

tude of a hydrological attribute, they can also query the
spatial distribution of the attribute and ask �where� type
questions. The presence of spatial predictions has grown

out of the increased availability of spatial data sets and

cheaper computing power required to process these data
0309-1708/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.advwatres.2004.10.001

* Corresponding author. Address: Cooperative Research Centre for

Catchment Hydrology, Department of Civil and Environmental

Engineering, The University of Melbourne, Melbourne, Vic. 3010,

Australia.

E-mail address: srweal@civenv.unimelb.edu.au (S.R. Wealands).
[20]. However, there are issues relating to the uncer-

tainty in such predictions due to uncertainty in model

inputs and structure. Quantifying the uncertainty in

these predictions has been the subject of continued re-

search and debate, due to the large number of degrees

of freedom inherent in these models [5,36,51]. Recogni-

tion of the limitations with distributed hydrological
modelling has resulted in several general methodologies

for assessing uncertainty being proposed. Methodolo-

gies such as generalised likelihood uncertainty estima-

tion (GLUE) [4] and the �alternative blueprint� [3],

which can address the limitations while still utilising

the strengths of distributed hydrological models, focus

on trying to quantify the uncertainty in the predictions

made [37,59]. These methods use many models and
parameter sets that could represent �reality� to make pre-

dictions. Model and parameter combinations that do
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not �fit� the observations are termed �non-behavioural�
and are rejected. The �more likely� parameter sets (and/

or models) remain and are used to provide the measure

of uncertainty.

Grayson et al. [22] point out that in response to these

methodologies for assessing uncertainty and numerous
calls for data collection, spatial observations for assess-

ing distributed hydrological models are becoming

increasingly available. Furthermore, advances in remote

sensing are providing improved spatial and temporal

measurements of hydrological attributes that are of

increasing value [54]. Spatial fields of hydrological attri-

butes––for example, soil moisture [40,69], snow cover

[46,58], saturated area [18,24], runoff [67], erosion [57],
precipitation [17,50] and ocean suspended sediment

[62]––have been observed and predicted for various

study sites. These studies have provided insights about

the hydrological processes involved and their function

under different conditions, but the tools required to uti-

lise such data have not developed accordingly. As such,

spatially-distributed models are still being assessed using

the more readily available point measurements (which
often represent an integrated response of a larger area).

These point measurements can be replicated using many

different spatial fields, which makes them poor for con-

straining the distributed predictions [23].

At present, the value of observed spatial fields for dis-

tributed hydrological modelling has been recognised and

the use of data from remote sensing and improved field

measurements continues to grow. To fully realise the po-
tential of spatial fields for model assessment, the absence

of appropriate comparison methods must be addressed

[20,22,35]. This paper defines spatial fields as used in

hydrology and then reviews the common ways that they

have been used in assessing model predictions. Where

comparisons of observed and predicted spatial fields

are undertaken, we focus on the methods used for com-

parison and the information thus garnered. The domi-
nant characteristics of human visual comparisons are

identified, with a view to emulating these with quantita-

tive comparison methods. Approaches to comparison

from the broader image- and pattern-related literature

shows how other disciplines approach the problem of

comparison. Drawing from these disciplines, some

promising methods for quantifying the comparison of

spatial fields are detailed. The potential of these methods
for providing quantitative measures useful for hydro-

logic interpretation are illustrated with a simple example

and discussed in reference to their use in hydrological

model assessment.
2. Observed spatial fields in hydrology

Spatial fields are being increasingly generated in

hydrological studies, via both observation and model
simulation. Spatial fields are primarily used for model

input, but with increasing data availability, they are also

being used for model assessment. Spatial observations

are usually made at variably spaced points and then

interpolated onto a regular grid to produce a complete

spatial field. Both the density of the observations and
the interpolation method used contribute to how repre-

sentative the observed spatial field is of reality. Where

sufficient point samples are made to represent the spatial

field of interest, then the interpolation step can be

avoided. For example, if a spatial observation is made

for every model element, then this spatial data may be

sufficient for assessing the model. When spatial observa-

tions are obtained via remote sensing, the spatial field is
represented with a regular grid, having a resolution (or

pixel size) that defines the density of observation points.

Spatial models in hydrology can be based on both regu-

lar grids and unstructured networks. In all cases, the

model domain is discretised into model elements that

have a spatial link to neighbouring elements. When

comparing observed and predicted spatial fields, it is

desirable for them to be commonly discretised (i.e. have
the same structure and resolution). This allows any pro-

cessing to be applied similarly to both data sets and en-

sures that spatially coincident values are compared.

Throughout this paper, the spatial fields used in the dis-

cussion and demonstrations are regular grids. This is

due to them being both computationally simple and

common, thus making them ideal for presenting the

methods.
Spatial observations are usually based on measure-

ments of categorical data (e.g. presence/absence of snow

cover [58], low/medium/high level of rill erosion [35]) or

continuous data (e.g. soil moisture [69]). The data type is

controlled by both the measurement method and logisti-

cal factors (e.g. time, personnel). In all spatial analysis

tasks (including comparison), the data type determines

the methods that can subsequently be applied for analy-
sis [12], although a higher level data type can always be

converted into a lower level data type (i.e. a continuous

field can be categorised). In this paper, the methods dis-

cussed vary in their applicability, although we have at-

tempted to focus on methods for continuous spatial

fields (i.e. the higher level data type).

Hydrological spatial observations are obtained in dif-

ferent ways and encompass varied levels of processing
(to produce the spatial fields from the raw measure-

ments). In general, observed spatial fields are produced

from exhaustive field measurements, remote sensing

(such as satellites or ground-based radar) and/or surro-

gate data (that have correlation with the attribute of

interest). Strictly speaking, all measurements are surro-

gates of some kind, yet those specifically referred to here

have low correlations with the hydrological attribute
being represented [22]. One of the most common surro-

gates used in hydrology is terrain, which can be used as a
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surrogate for soil wetness, solar radiation exposure, pre-

cipitation gradients and soil properties [70]. These varied

sources all require some level of processing to produce a

spatial field in a form that is useful for model input or

assessment. This can involve interpolation from points

to spatial fields, the reduction of sensor noise, applica-
tion of retrieval algorithms requiring multiple input

data, or deriving the relationship with a surrogate attri-

bute. The processing alters the effective spacing and sup-

port of the raw information, acting as a kind of filter.

This is discussed more fully by Blöschl and Grayson

[6], but it is usual for there to be a tradeoff between

the accuracy of a single point observation, the total

number of points (i.e. spatial detail) observed and the
number (or the extent) of the observations made.

Several case studies from hydrology that involve

spatial fields exist and they illustrate the state-of-the-

art for comparing spatial fields in hydrological applica-

tions [21,22]. Visual comparison is recognised as the

most common and useful method, even though it

cannot provide a quantitative measure of similarity

and is labour-intensive. For quantitative methods, there
are two general approaches used––characterisation

followed by comparison (i.e. global comparison); and

comparison followed by characterisation (i.e. local

comparison). In the first approach, the information in

the spatial field is characterised into a number or graph

(e.g. summary statistics, geostatistical measures, land-

scape indices) and then the summary measures are com-

pared numerically (to compute the global similarity).
The second approach uses numerical comparison at

every location (e.g. the residual between spatially coin-

cident pixels) to produce an intermediate spatial field

(that reflects the local similarity), from which the over-

all measure of similarity is then computed (e.g. the

mean similarity).

There are many common methods used for global

comparison, such as comparing the mean values, the
correlation lengths or other indices that characterise

the spatial field (for examples see [24,25,52]). In con-

trast, there are only limited methods used for local com-

parison. Most methods calculate residuals between

spatially coincident pixels and then summarise them

(as in a root mean squared error (RMSE) calculation).

The other common local comparisons measure the cor-

relation between all spatially coincident pixel values.
More advanced local comparison methods are yet to

be used in hydrology and are the methods of interest

in this paper. In addition to these approaches to com-

parison (i.e. global and local), the type of similarity mea-

sure produced can be either absolute or relative.

Absolute measures compare the actual values and are

often used to provide a measure of the error (e.g.

RMSE). Relative measures ignore the magnitude of
the values, instead describing the �fit� between the data

sets (thus ignoring any bias) (e.g. correlation). Both of
these types of similarity measures are useful, but need

to be used together to fully interpret the comparison.

In most hydrological studies where observed spatial

fields are being used, both global and local comparisons

are computed. Global comparison is the first step, usu-

ally encompassing comparison of the means and vari-
ances of the spatial fields. After this, local comparison

is commonly done by calculating the root mean squared

error (i.e. a summary of the residuals for each data point

in the spatial field). These methods are applied to the

spatial fields just as they are applied with temporal data

(i.e. hydrological time series), with a comparison occur-

ring between each pair of data points. As has been

recognised with the comparison of temporal data in
hydrology, there are many different aspects to compare

that may provide more useful information for assessing

similarity (e.g. looking at neighbouring data points to

recognise shifts, comparing regions of the time series

rather than each point individually, assessing both abso-

lute and relative similarity). Boyle et al. [9] have pre-

sented some specialised methods for comparing

hydrological time series. In the same way, specialised
methods to address aspects of spatial comparison could

be developed, although they are not currently used in

hydrology.

There have been some attempts to make more specia-

lised comparisons with spatial fields in hydrology. Tran-

sects have been extracted through important parts of a

spatial field. These can be useful for visual interpretation

of lateral shifts in one-dimension, although they are
hard to quantitatively compare. Another method called

optimal local alignment [22], allows the investigation of

lateral shifts between spatial fields. This is done by com-

puting the correlation between patches within the ob-

served and predicted fields for two-dimensional shifts.

The vectors for the ‘‘optimal shift’’ (i.e. that resulting

in the highest correlation) are then displayed, allowing

the user to visually assess areas with consistent shifts
and make inferences about the model (or data) deficien-

cies leading to consistent errors in particular locations.

Again, this method lacks a metric to enable quantifica-

tion of the comparison and use in automatic optimisa-

tion schemes. The promising methods discussed

throughout the rest of this paper are all for local com-

parison and produce different similarity measures

(including both absolute and relative).
3. Understanding and emulating human visual comparison

Human vision is widely regarded as the most power-

ful and comprehensive method for comparing spatial

fields [22,26]. All modelling studies in which observed

and predicted spatial fields are available use this ap-
proach. It is also used where only predicted fields are

available, as a qualitative check on the plausibility of
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the predictions. In this situation, the comparison is

made against the background knowledge and expecta-

tions of the observer. A visual comparison has a number

of strengths and weaknesses. The most obvious strength

is the simplicity with which a comparison is completed.

Humans can observe, recognise and interpret spatial
fields automatically, integrating their background

knowledge and understanding of the spatial field being

viewed. They can then compare two spatial fields and

make a qualitative assessment of their similarity,

exploiting the outstanding ability of the human brain

to synthesise disparate information. The comparison

will involve looking at overall similarity, the similarity

of specific features and even the possible similarity of
features if they were shifted or altered slightly. Yet,

amongst all these strengths emerge the weaknesses with

this approach. While the spatial field can be interpreted

and observed, the observer can personally bias the inter-

pretation and there are limits to the capacity of the brain

to assess multiple images or large spatial extents. For

example, a modeller who believes that there should be

a connected, linear flow path in a particular study catch-
ment would tend to weight such a feature highly in com-

parisons (i.e. by focussing on it more), while other

components of the field such as distribution of moisture

on a hillslope may be just as important in an assessment

of model performance, yet not as obviously apparent.

Visual comparison also takes a more general view of

the spatial fields, disregarding individual model elements

and focussing more on the relative differences within re-
gions. These variable interpretations make visual com-

parisons difficult to replicate, impossible to quantify

and relatively slow. As a result, there is only limited

application of visual approaches for comparing multiple

spatial fields (as would be required for rejecting �non-
behavioural� models from a large ensemble of model

runs, or in an optimisation procedure). If we can obtain

a better understanding of the processes being under-
taken by the human visual system, it may be possible

to emulate these computationally and address some of

the weaknesses. While it is unrealistic to expect to emu-

late the human approach exactly, we can benefit from

exploring the general methods used.

We take the ability to view and interpret for granted

yet it involves remarkable computation and processing.

Research into eye movement and visual attention has
investigated the process occurring when humans view

images, which are analogous to spatial fields in this case

[33,41]. Humans are able to interpret complex scenes

and then select a subset of the available sensory infor-

mation for further processing. This process of simplify-

ing the scene is useful to understand the way humans

analyse images. Saccadic eye movements, where the

eye jumps between different points of interest in the im-
age, have been studied to identify characteristics of

images that draw visual attention [15]. Using the charac-
teristics of visual attention, a measure of the areas of an

image that are of most interest to the human vision sys-

tem is then produced [33,41]. This is commonly called an

importance map, which can then be used to prioritise

further processing.

Osberger and Maeder [41] synthesised research on vi-
sual attention to come up with a number of low-level (or

simplistic) factors that determine the visual importance

of regions in an image. After initially segmenting an im-

age into homogeneous regions, the following factors

were found to be instrumental in determining the per-

ceptual importance of the individual regions––contrast

of a region and its neighbours; region size; region shape;

and the location of a region within the image. Other
researchers have identified that the �uniqueness of pixel
values� is a powerful way to determine importance.

Tompa et al. [60] used this approach with Shannon�s self
information measure which is detailed later in this pa-

per. Itti et al. [33] have also used the approach with

low-level (or simple) image features that were calculated

for multiple spatial scales to help decide on the features

of highest visual importance. It is evident that the hu-
man visual system works predominantly with features

that command attention due to their intensity, size,

shape, location or value. These aspects of visual impor-

tance are also expected to be dominant when visually

comparing spatial fields in hydrology. As such, they will

be useful approaches to emulate in automated compar-

isons methods.

Some methods for emulating visual comparisons with
spatial fields use image features, while others work with

pixel values. Depending on the process being emulated,

the fundamental entity varies. Hay et al. [29] identifies

that the concept of objects (or features) within the anal-

ysis is innate to humans and is something often lacking

in approaches to emulate the way humans interpret

images. From this we obtain the notion of �image-ob-

jects�, which are individual entities in an image that
are generated from pixel groups [29]. Most existing

methods in hydrology work only with pixels and per-

form limited analysis with objects, despite their obvious

importance to visual processing. These objects may be

thought of as ‘‘homogeneous regions’’ in hydrological

spatial fields.

Once the features of interest in a spatial field are iden-

tified, whether these are pixels or objects, the task of
comparison is then undertaken. Power et al. [48]

acknowledge that humans intuitively identify a hierar-

chy of similarities between two images, by firstly notic-

ing global similarity, then focussing on the finer details

or local similarities. For example, an overall similarity

in intensity (i.e. the mean value) is an initial global com-

parison, while the similarity of the high and low regions

in both spatial fields (i.e. correlation) comprises local
comparison. When comparing spatial fields, human

imagination permits the objects identified to shift or
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change slightly to obtain a better match, focussing atten-

tion on the basic spatial structure and patchiness, rather

than precise co-location of feature boundaries. This is

captured by the idea of �fuzziness� in the comparison

and it is particularly powerful for making qualitative

statements about how the spatial fields are different.
Methods for emulating �fuzziness� during comparison

exist [26], with one approach being investigated later

in this paper.

The ability to interpret and compare a spatial field at

varying scales is innate to human vision. It involves intu-

itive recognition of the �correct� scale at which to inter-

pret an object, a task that requires extensive

background information. For example, visual assess-
ment of a spring snow cover field may involve looking

at the broad scale for snow cover having some relation-

ship to elevation, while at smaller scale expecting some

effects on patchiness due to topographic aspect, while

at still smaller scale expecting variations due to vegeta-

tion effects on wind/drift fields or albedo effects on snow

melt. A multiple scale approach for image processing is

used in [30,33] to perform analysis at a range of scales.
Features (or measures) are derived from a set of low-

er-resolution versions of an original image. By conduct-

ing spatial field comparisons at multiple scales, the

approach performed by humans can be emulated to

some extent. Such a multiple scale approach is discussed

later for use with the comparison methods presented in

this paper.
4. Approaches to comparison in other disciplines

The task of producing a quantitative measure of sim-

ilarity between two images (or spatial fields) is also

encountered in other disciplines, ranging from image

processing and pattern recognition to landscape ecology

and multimedia. These other disciplines rely on a num-
ber of fundamental methods for processing images and

conducting comparisons, some of which show promise

for use in hydrological applications. However, the nat-

ure of the spatial fields present in hydrology must be

considered when looking at other disciplines, as this is

often the limiting factor in the application of their meth-

ods. Spatial fields in hydrology do not always have obvi-

ous features, they often have high levels of noise, they
are representations of things that humans cannot imme-

diately recognise and often contain only one band of

data (making them synonymous with greyscale rather

than colour images).

In other disciplines, the major comparison task is to

find the images within a large database that are most

similar to a query image. This task, which has applica-

tions in multimedia, criminology, art, engineering and
science, relies on rapid comparison of the query image

to the database images. There are numerous ways to
achieve this task, which fall into the active area of re-

search known as content-based image retrieval. This

area demands fast processing and different types of com-

parisons, which has led to ongoing refinement of many

common methods. These common methods have devel-

oped through the application of fundamental image pro-
cessing operations to new areas.

4.1. Image processing for comparisons

The field of image processing encompasses many fun-

damental methods that are used in disciplines like con-

tent-based image retrieval. The major steps undertaken

for image recognition and comparison problems are
identified by Haralick and Shapiro [28]. Processing usu-

ally begins by conditioning the image, which includes

normalisation, histogram operations and various types

of filtering (for noise reduction or smoothing). The im-

age histogram describes the frequency of pixel values

occurring in the image. It is sometimes modified with

conditioning methods, although more commonly, neigh-

bourhood operators (or �moving windows�) are used to
condition the pixel values (based on their neighbouring

pixels). Noise reduction is a common task, in which indi-

vidual pixels that are dramatically different from their

neighbours are replaced by a value calculated from the

neighbourhood (such as the average). Mastin [39] pro-

vides a review of various noise reduction methods using

neighbourhood operators. For some comparisons, con-

ditioning may be the only processing needed before
computing the similarity measure (such as with a RMSE

calculation). In other instances, the comparison may re-

quire structural features to be identified in the image.

Structural features can sometimes be defined by

edges. Edge detectors identify the change in pixel values

in certain directions within a neighbourhood. The edges

can be calculated using many different approaches

[8,28], although they are very sensitive to image noise
and are rarely used with natural scenes (due to lack of

clearly defined edges). One example in which edge detec-

tors are used is for delineating flood inundation areas

from synthetic aperture radar (SAR) imagery [31]. A

more common approach for detecting structural fea-

tures or regions (which ideally represent objects) is im-

age segmentation. This is the process of partitioning

an entire image into a set of non-overlapping regions.
Segmentation can be achieved using knowledge-driven

or data-driven approaches. In knowledge-driven

approaches, the image is segmented to extract a prede-

termined type of target object, like finding individual

tree crowns in a satellite image of a forest. In data-dri-

ven approaches, the image is segmented into regions

(or image-objects) based on some additional informa-

tion. Some of the common methods used for data-driven
segmentation are thresholding, clustering, region grow-

ing and region merging. These, and other, methods are
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covered in reviews about segmentation and its various

uses in different applications (see [10,34,42,63]). One of

the important points from the broader literature on

comparisons and segmentation is that there is no single

‘‘best method’’ [44,55], although some are more applica-

ble to hydrological applications than others and these
are described more fully below.

One of the most common segmentation methods is

thresholding [28]. Thresholding involves defining a

threshold value that is then used to classify each individ-

ual pixel as high or low. Fig. 1A shows a spatial field of

soil moisture that has been grouped using a threshold of

38% volumetric soil moisture. These data are from the

Tarrawarra data set presented in Western et al. [69].
The threshold used was manually selected to identify

the wet gully areas of the image, whereas other ap-

proaches exist that adaptively compute the threshold

from the image histogram (e.g. the threshold can be

computed such that particular percentages of pixels fall

between threshold values). Thresholding is useful for

separating the pixels of interest from the background.

Pal and Pal [42] provide a comprehensive review of
thresholding. Thresholding can also be applied during

the data observation phase. In this case, the observa-

tions made are binary (e.g. snow or no snow, wet or

dry) and thus produce a spatial field of binary values.

Thresholds have been used to produce binary fields in

a number of hydrological studies (e.g. [1,18]). Simple

categorisation, of which thresholding is a subset, is an

approach that will continue to be useful in hydrology
due to its simplicity. Categorisation segments by group-

ing pixel values into pre-determined ranges, assigning

pixels to categories using information from measure-
Fig. 1. Identification of regions within a spatial field of soil moisture using

slicing; and (C) region merging.
ment (or feature) space. Subsequently, the pixels are

grouped into connected regions using some form of con-

nected components labelling [28]. For automated cate-

gorisation, the histogram of the spatial field is usually

analysed and the category ranges are calculated based

on the characteristics of the histogram. Fig. 1B shows
a spatial field of soil moisture after being categorised

into four groups. Notice that the regions representing

some categories have �holes� in them, thus producing a

noisy looking categorisation. As this method works en-

tirely on the pixel values, the resultant regions are not

always spatially contiguous or without holes.

Another popular approach to segmentation, that also

relies more on the pixel values (i.e. measurement space)
and less on their spatial location (i.e. image space), is

clustering. Clustering maps the pixel values from multi-

ple bands of data into a feature space. From the feature

space, clustering algorithms are used to identify groups

of pixels with features that are compactly grouped and

isolated from other features [34,43]. The most common

clustering method is K-means clustering, in which the

feature space is broken up into K clusters of data points
(i.e. pixels). Each data point can then be moved around

into other clusters if needed, until it remains in the clus-

ter with the most similar mean value. Eventually, every

data point in each cluster is closest to its cluster than to

any other cluster, thus producing the optimal segmenta-

tion into K regions. Generally, the number of clusters to

be detected has to be specified prior to the clustering.

Depending on the method used, the resulting segmenta-
tion may be strong (with logical regions being grouped

in the image) or weak (with many small, disjointed re-

gions). Multi-spectral images provide a large number
three alternate methods: (A) histogram thresholding; (B) histogram
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of features (i.e. different image bands) and so are well

suited to clustering approaches. With many spatial fields

in hydrology, there are often only a small number of

attributes predicted or observed and so fewer features

can be identified for clustering and other approaches

are preferred.
The most promising segmentation methods for spa-

tial fields are those that work predominantly in image

space and are data-driven. These methods then use mea-

surement space to calculate the homogeneity criteria

when determining regions. Region growing is one exam-

ple, in which initial �seed pixels� are chosen and then iter-

atively grown (say based on joining pixels that differ in

value less than a specified amount) until the entire image
is segmented [10]. This method is sensitive to the choice

of seeds and is not widely used. However, by considering

every pixel as a seed (or splitting the entire image into

small regions which become seed regions [10]), the meth-

od of region merging has evolved and become popular.

Region merging tries to find the best possible merge be-

tween neighbouring regions (i.e. closest in value) at each

iteration through the image [2,71]. Eventually, there are
no more merges that pass the merge criteria and the seg-

mentation is complete. Region merging is dependant on

the criteria for homogeneity (which determines which

merges are acceptable) and the order of processing

(which determines which acceptable merges are done).

Other criteria can also be used, which control the size

or shape of the resultant segmented regions [2]. Region

merging appears suited to a wider range of images than
other segmentation methods, having proved successful

with simple grey level images (which have limited mea-

surement space data on which to base segmentations)

as well as multispectral images. Fig. 1C shows a seg-

mented spatial field of soil moisture, using the region

merging method in Baatz and Schäpe [2]. This result is

visually the most logical grouping of all examples shown

in Fig. 1. It is also the most complex and requires more
processing than the other methods, which is disadvanta-

geous when analysing many spatial fields. The thres-

holding and categorisation methods shown in Fig. 1

are simple to process, although they are only useful

when the processing is supervised (as automatic usage

can produce highly unsuitable results).

4.2. Content-based image retrieval

Fast and accurate image comparisons are essential in

content-based image retrieval (CBIR). One typical

application is facial recognition, in which a single query

image is provided (i.e. the face being photographed) and

then a large database is searched for images with similar

features. Facial recognition has to deal with changes in

the illumination of the face, different expressions and
changes due to ageing, so approaches that detect struc-

tural features in the facial image must be robust to these
varied conditions. Pujol et al. [49] used a �valley detector�
(a type of moving window operation) on facial images to

reduce the greyscale images down to a set of pixels rep-

resenting locations that have high local curvature (calcu-

lated from pixel intensity values). A similar approach is

used for palmprint matching, in which the interesting
features of the palm (e.g. intersections of fold lines)

are identified using image processing operations and

subsequently compared [72]. This refined set of pixels

(often called the �interesting� or �salient� features in pat-

tern literature) is computed using some knowledge of

the image context, which is not generally so clearly de-

fined in hydrological spatial fields. In analysing terrain

models (which is closely related to many hydrological
processes), Peucker and Douglas [45] developed meth-

ods for detecting salient points in elevation models. This

work enables the detection of characteristic features (i.e.

ridges, streams, peaks and pits) in a terrain surface and

could possibly be applied to other hydrological spatial

fields, provided that they also have obvious characteris-

tic features.

The comparison stage requires the �interesting fea-
tures� from the query image to be compared against

the sets of interesting features stored in the database,

using a similarity metric. A common metric used in pat-

tern matching research is the Hausdorff distance [32,66],

which is basically a minimum distance fit between the

two sets. There are numerous metrics for comparing

two sets of features extracted from images, designed to

maximise robustness to noise, shifts, scale changes and
rotation [65]. These comparison methods are specifically

for structural features defined in the images, so they are

only useful for spatial fields with identifiable structural

features (e.g. predicted river networks).

With images where the context is not known (such as

large photo or art databases on the Internet), meaning-

ful structural features are difficult to define. This lack of

useful image structures means that segmentation is used
for identifying �homogeneous regions� or �image objects�.
Using these regions to represent the content of the im-

age, the similarity of regions between a query and the

catalogued images can be computed. Chen and Wang

[11] used a �clustering in feature space� approach to seg-

ment a set of general images. A number of fuzzy features

(reflecting the colour, texture and shape properties) were

then calculated to characterise each region. The fuzzy
features provide �blurry boundaries� for the regions,

which help to handle some of the uncertainties intro-

duced with segmentation. To do the comparison, the

fuzzy features for coincident regions are summarised

into a similarity measure. This approach shows how seg-

mentation can be used to divide an image up into re-

gions that can then be characterised from the pixel

values in that region. Subsequently, the comparison uses
the regions to compute a measure of similarity (as op-

posed to using the individual pixels). This idea is
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expanded upon in the discussion in application to

hydrology.

4.3. Approaches from landscape ecology

Landscape ecology is a field allied to hydrology, in
that it is concerned with the relationship between pro-

cesses and patterns in the landscape. Both landscape

ecology and hydrology use technologies such as geo-

graphic information systems (GIS) and remote sensing.

However, work in landscape ecology deals with model-

ling and understanding landscape change and planning

[61]. Through this work, there have been ongoing and

recent developments that address some issues faced in
hydrology when comparing spatial fields. Foody [16]

provides a review of accuracy assessment for classified

land cover maps. In this application area, the task is

to provide a measure of how well a categorised map

matches ground observations. While early attempts used

visual approaches and were unable to quantify the accu-

racy, in recent times the confusion matrix is commonly

used. This is a cross-tabulation of the mapped class label
against the class label measured at particular locations

(the ground truth). For each class X, the matrix contains

the number of pixels correctly classified as X, as well as

the number of pixels incorrectly classified into each

other class. The confusion matrix provides a starting

point from which classification accuracy can be calcu-

lated, as well as providing some evidence of which clas-

ses have the most error. From this, the percentage of
pixels correctly classified can be measured. While there

is no standard approach for accuracy assessment in

landscape ecology, the kappa coefficient of agreement

[13] is increasingly recognised as the type of measure

needed [56]. This measure is derived from the confusion

matrix, but accounts for the possibility of chance agree-

ment between classes and produces a similarity measure

adjusted for such agreements. Until recently, these mea-
sures had been used only for accuracy assessment using

discrete samples. The kappa statistic is used to compare

two categorical maps, effectively using every pixel as a

sample point for the assessment. Some variations on

the standard kappa statistic have been developed to

quantify how much of the error is due to categorical dif-

ferences and locational errors [47].

Power et al. [48] further developed the methods from
accuracy assessment for the comparison of land use

maps. The standard approach for assessing land use

change is to conduct a pixel-by-pixel comparison and

produce a confusion matrix. Power et al. [48] recognise

that this is prone to showing registration errors as land

use change, when in reality the spatial fields are the same

(but they are displaced). To adjust for this, they use a

fuzzy areal intersection approach, in which the similarity
between overlapping areas is calculated based on the

overlap and fuzzy relationships between different catego-
ries. Hagen [26] provides an extension to this approach

that allows for fuzziness of both location and category.

A variant of this method has been used by Güntner

et al. [24] in hydrology and is discussed in more detail

later. The ideas from landscape ecology (and related dis-

ciplines) have many similarities to those faced in hydrol-
ogy, although the map comparisons all deal with

categorical spatial fields. Many spatial fields in hydrol-

ogy contain continuous values, and while these can be

categorised (e.g. high, medium, low values), adapting

these methods for continuous values may prove useful.
5. Promising comparison approaches for hydrological
spatial fields

The approaches used in other disciplines for image

processing and comparison provide useful ideas for

application with hydrological spatial fields. Some of

the approaches focus specifically on pre-processing the

fields to be in a �more comparable� form (e.g. by identi-

fying regions or important features), while other ap-
proaches focus on new ways of conducting a local

comparison between spatial fields (by doing fuzzy or

multiscale comparisons). Individually these methods

do not address the objective of this research, which is

to quantitatively compare spatial fields. However, when

used together and with existing methods, they offer ap-

proaches that can compare new and different aspects

of spatial fields, thus providing additional information
when assessing overall similarity. The combination of

methods is expanded on later, while in the next section

we focus on the individual components.

5.1. Identifying homogeneous regions

Identifying regions (or image-objects) within spatial

fields provides a way of representing the fields as a col-
lection of regions rather than pixels. Each pixel usually

has only a single value, whereas a region has a range

of values and the associated distribution and statistics.

This additional information is useful for characterising

a large area and is more closely related to the way hu-

mans visually interpret spatial fields. Haralick and Shap-

iro [27] introduce many segmentation methods that have

seen further development in recent years. The approach
that seems most suited for hydrological fields, due to

their similarity with single-band remotely sensed images,

is region merging. The following description of segmen-

tation via region merging is a combination of two simi-

lar methods [2,71]. The major differences between these

two methods are the way they control the merging order

and the homogeneity criteria used.

Region merging is generally done by initially consid-
ering every pixel within a spatial field as an individual

one-pixel region. Larger starting regions can also be
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used, but this often results in �artificial looking� segmen-

tation results. A distance metric is required as the mea-

sure of difference between the measurement spaces of

two regions (e.g. the difference between the mean value

of each region and the pixel under consideration for

merging). This metric, which is used to assess possible
merges, is calculated using the intensity of the values

in the region. Woodcock and Harward [71] also include

a size criterion to produce merged regions that are not

too small or large. This ensures that multiple regions

are formed in areas with low variance, as well as elimi-

nating undesirable small regions in areas with high local

variance. Baatz and Schäpe [2] use additional criteria

relating to the shape of the merged regions. The shape
criteria are composed of compactness and smoothness,

each of which is calculated as some ratio of the region

border length against the region size (a circle being the

most compact shape). Baatz and Schäpe [2] also enforce

a �scale parameter� on their segmentation, which deter-

mines when merging will stop, therefore controlling

the size of the segmented regions. This overall scale

parameter is similar to the size criteria used by Wood-
cock and Harward [71] and is a control on region size

(and shape) rather than the number of regions. The pur-

pose of size and shape criteria is to make the resulting

segmentation more visually appealing and more suited

to the needs of the user.

Once the criteria are defined, region merging works

through the spatial field, selecting one region and com-

paring it to its adjacent regions to decide on which
merges should take place. Adjacency has been defined

using a 4- or 8-neighbourhood approach. Woodcock

and Harward [71] found that the 4-neighbourhood ap-

proach produced better segmentation results. Both the

order in which regions are treated and the decision heu-

ristics (i.e. the rules determining which merges take

place) influence the resulting segmentation. To handle

this, they work through the entire image and produce
a list of the differences between all adjacent regions.

The pair of regions with the lowest difference is then se-

lected and merged, but only if the difference is below a

global threshold. Once no adjacent regions pass the glo-

bal threshold, then the segmentation is complete. This

approach ensures that only the most similar regions

are merged on each pass through the field. For large spa-

tial fields (e.g. remotely sensed imagery), this type of seg-
mentation is quite slow as there is only one merge for

each pass through the image. Baatz and Schäpe [2] call

this approach �global mutual best fitting�, but point

out that it tends to produce very large regions in areas

of low local variance and subsequently, small regions

in areas of high local variance. Woodcock and Harward

[71] eliminate this effect with their minimum and maxi-

mum region size thresholds.
Baatz and Schäpe [2] use a �local mutual best fitting�

for deciding on the most suitable merge. For a region
A, this finds the most similar neighbouring region B.

Before doing the merge, the most similar neighbour to

region B is also found. If both tests decide that region

A and region B are most similar then they are merged.

If not, then the method searches again, this time with re-

gion B as the starting point. This was found to produce
negligible quantitative differences to the global mutual

best fitting, yet allows regions to grow equally in areas

of high or low variance [2]. To control the order in

which regions are assessed, a treatment order is created

that first treats the region that is located furthest from

all other treated regions. Both the treatment order and

the merge criteria allow regions to grow in all areas of

the spatial field at equal rates.
The approaches presented here describe the general

methods and considerations when using region merging

for segmentation. The data-driven approach can pro-

vide strong segmentations without the need for large

number of parameters (and therefore large levels of user

input). For example, the approach of Baatz and Schäpe

[2] was used to segment the soil moisture spatial field in

Fig. 1. The only segmentation parameters were the scale
parameter (arbitrarily set to a unitless value of 25 to lim-

it the maximum size of the regions) and the weighting

for different merge criteria (set to 1 for intensity criteria

and 0 for shape criteria to ensure segmentation based on

intensity only). This segmentation shows logical regions

without holes, unlike the spatial field categorised using

only measurement space.

5.2. Characterising important features

When comparing spatial fields, we need to be careful

that the entities being compared are those of most

hydrological importance (as opposed to those that are

the easiest to compute). The standard mean squared er-

ror (MSE) calculated in a pixel-by-pixel comparison is

often used in hydrology and weights every pixel in the
comparison equally. This can result in differences in pix-

els of lesser hydrological interest (e.g. ridge cells in a

map of runoff producing areas) influencing the error

measure in a negative way, while the areas of impor-

tance (e.g. the valleys in this same example) were actu-

ally quite good. This can be overcome by weighting

pixels in the comparison using some criteria for impor-

tance. Two methods that deal with pixel and region
weightings are detailed here. The first is based on infor-

mation theory and calculates a measure of importance

(or interest) for each pixel. The second models visual

attention in images and looks at the characteristics of re-

gions that make them visually important.

Tompa et al. [60] present a simple modification to the

standard MSE statistic that takes into account the

importance of pixels. This work was developed for com-
paring original and distorted images, with an aim to as-

sess whether there was a perceptual loss of image
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information. First, an �event� is chosen from the image

that is the �event of importance�. This is usually the pixel

value (which must be categorised), but can also be a

measure like local variance (which is calculated using a

neighbourhood operation). For each event, the informa-

tion content is then computed using a formula from
information theory for information content [53]––equal

to the logarithm of the inverse of the probability of the

event occurring in the image. As such, infrequent events

have high information content, while common events

contain less information content. Using the logarithm

ensures that the situations where the probability is equal

to either one or zero are handled correctly. An informa-

tion content map is then produced, which is used to
weight the original pixel values during the standard

MSE calculation. Fig. 2 shows examples of information

content maps produced from a spatial field of soil mois-

ture. In Fig. 2A, the pixel value is used as the event of

interest, with the resultant weighted spatial field (ob-

tained by multiplying the observed field by the impor-

tance map) highlighting the less common values and

reducing the background detail. In Fig. 2B, the local
variance of pixel values (within a 3 · 3 cell window) is

used as the event. This approach favours the more var-

iable areas in the spatial field, which is quite evident in

the weighted result. Tompa et al. [60] calls the pixel-

by-pixel MSE calculation based on the weighted maps

the �information� mean squared error (IMSE). The

IMSE statistic provides a quantitative measure of simi-

larity between compared fields. The relative nature of
this measure makes it suited to ranking similarity be-
Fig. 2. Creating importance maps and weighted spatial fields using three d

(within a 3 · 3 pixel neighbourhood); and (C) region attributes.
tween pairs of images, rather than providing an absolute

measure of error (as the MSE does). Tompa et al. [60]

found this quantitative method of comparison to agree

better with subjective comparisons of distorted images

than the standard MSE approach. For hydrological spa-

tial fields, this approach may improve pixel-by-pixel
comparisons that have previously produced poor re-

sults. For application to hydrology, it is important to

consider the event of importance carefully, as this

changes the context of the comparison. Further experi-

ence using this approach will identify the most suitable

events for different hydrological spatial fields.

The approach used in Osberger and Maeder [41] uses

the characteristics of regions in an image to characterise
importance. The previous section highlights a way to

obtain regions using segmentation. The regions pro-

duced, while representing the spatial field in an alternate

way, do not have a specific category label. They do have

characteristics such as mean pixel value, variance, cen-

troid location, region size and distributional parameters.

Osberger and Maeder [41] use some of these low level

characteristics to define perceptual importance (i.e. the
characteristics that make a region visually important).

They found the major characteristics of perceptual

importance to be:

• the contrast of the region against its neighbours (high

contrast regions attract attention);

• the size of the region (larger regions, up to some sat-

uration point beyond which they are ignored, attract
more attention than smaller ones);
istinct events: (A) pixel value (i.e. the observation); (B) local variance
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• the location of the region in the overall image (focus

is more on regions in the centre 25% of the image);

and

• the shape of the region (regions that are long and thin

are visual attractors).

For each of these characteristics, a measure between

zero and one was produced. These measures were then

squared (to enhance highly important characteristics)

and summed to produce a final importance value, which

was then scaled so the maximum importance was one.

The importance values were calculated for each region,

producing an importance map. Fig. 2C presents an

importance map made for the segmented spatial field
shown previously (Fig. 1). The importance map pro-

duced for these regions gives minimal weighting to the

valley in the spatial field, while it weights the region

along the top more heavily (due to the long, thin shape).

Osberger and Maeder [41] produced these importance

criteria as a model of perceptual importance of regions.

By combining this with the weighting approach of [60],

the importance map can be used for conducting a
MSE calculation to produce a comparison measure of

perceptual importance. Fig. 2F weights the regions very

differently to Fig. 2D and Fig. 2E as it is based on a

model of visual perceptual importance rather than infor-

mation content. For characterising hydrological impor-

tance (as opposed to perceptual importance), other

measures such as slope, aspect or elevation derived from

a digital elevation model (DEM) may be more useful.
While this idea is not taken further in this paper, ongo-

ing research is addressing the use of surrogate hydrolog-

ical data to help define importance.

5.3. Fuzzy map comparison

When comparing spatial fields containing categorical

data, some tolerance for locational or categorical errors
is desirable. Locational tolerance allows slight shifts of

pixel locations to occur without denoting them as a total

disagreement. Similarly, categorical tolerance allows

similar categories to be related and any mismatches be-

tween those categories to be judged more similar than

total mismatches. When continuous maps have been cat-

egorised using histogram classes (thus producing or-

dered categories), tolerance for values in the slightly
wrong category is particularly beneficial (a common

occurrence in hydrological spatial fields). Research into

fuzzy comparison methods, incorporating these ideas,

have been suggested and developed by Power et al.

[48] and more recently by Hagen [26]. Hagen [26] inves-

tigated two sources of fuzziness for categorical maps––

fuzziness of location and fuzziness of category. This

addresses both the spatial and thematic aspects of a
comparison, facilitating fuzzy boundaries to be included

in both cases. This approach implements fuzzy set the-
ory, by representing each pixel in the spatial field as a

fuzzy vector (containing the membership values for all

possible categories). From the fuzzy representations of

two spatial fields, the fuzzy vectors for coincident pixels

are used to calculate the similarity metric (which has a

value between zero and one, indicating the level of
agreement between the fuzzy vectors). Calculating this

metric in a pixel-by-pixel manner produces a fuzzy com-

parison map. Hagen [26] reduces the fuzzy comparison

map down to two different summary statistics, which

provide the quantitative measure of the comparison.

The following explains how Hagen [26] represents fuzz-

iness of location and category for each pixel in a spatial

field (i.e. how the fuzzy vector is produced). It then
looks at how the vectors are compared and introduces

the summary statistics.

For representing fuzziness of category and location,

each pixel is represented by a vector. The fuzziness vec-

tor for a pixel represents the membership that pixel has

with all other categories in the map. Membership refers

to how one category relates to the other categories. For

example, values categorised as �medium� could have
some degree of membership with categories labelled

�low� or �high�. These memberships are assigned subjec-

tively, based on an understanding of the relationship

between categories. Membership values are specified be-

tween zero and one, with one denoting complete mem-

bership (i.e. a pixel categorised as �medium� has

membership value of one for the �medium� category,
while having partial or no membership of other catego-
ries). Incorporating a measure of locational fuzziness is

then achieved using a distance decay function to define

the penalty that is given to matching categories located

some distance from the pixel of interest (the central pixel

in the neighbourhood). This is also chosen subjectively,

depending on the level of tolerance allowed or expected.

The result of adding fuzziness is that each pixel that pre-

viously had a single category value (e.g. �medium�), now
has a vector stating the likely membership of all the cat-

egories (e.g. [0.2,1.0, 0.3] for high, medium and low

respectively) accounting for categorical and locational

fuzziness. Once the spatial fields are represented using

fuzzy vectors (as opposed to individual pixel values),

two fields can be compared. On a pixel-by-pixel basis,

the fuzzy vectors for common locations (which hold

information about the neighbourhood of the pixel) are
compared. The best match between the vectors repre-

sents the similarity of the pixels and is put into the fuzzy

output map. The complete formulation of the fuzzy vec-

tors and the similarity measure between two vectors is

explained fully in the paper by Hagen [26].

The result of this local fuzzy comparison is an inter-

mediate spatial field showing the degree of similarity

between the categories assigned to each pixel, with one
representing complete agreement and zero representing

no agreement. The examples in Fig. 3 show fuzzy



Fig. 3. Fuzzy comparison of observed and predicted spatial fields using four approaches: (A) category comparison; (B) fuzzy comparison with

locational tolerance; (C) fuzzy comparison with categorical tolerance; (D) fuzzy comparison with both locational and categorical tolerance.
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comparison maps that compare an observed and pre-
dicted spatial field of soil moisture. These fields, which

originally had continuous values, have been categorised

into four categories for comparison using this method.

The four examples given in Fig. 3 show comparisons

that represent (A) no fuzziness, (B) fuzziness of location

only, (C) fuzziness of categories (in which each category

has slight membership of the categories either side) and

(D) fuzziness of both location and categories. From
these fuzzy comparison maps, a summary statistic (in
this case the average similarity value for all pixels in

the map) is used to express the level of similarity be-

tween all the pixels and provide an overall quantitative

measure of similarity. From the example given, we can

see that as we build in more tolerance (or fuzziness),

the similarity measure increases from 0.229 up to 0.550

(i.e. the spatial fields are being judged to be more simi-

lar). Using this approach to make many comparisons



Fig. 4. Multiscale comparisons of the spatial field in Fig. 3 using two

different measures: mean squared error (MSE); and information mean

squared error (IMSE) using pixel values as the event.
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allows ranking of the most similar results. Hagen [26]

has developed a measure that is similar to the kappa

coefficient of agreement that was described earlier. This

measure, called KFUZ in Fig. 3, represents the observed

similarity against an expected similarity, thus showing

how much better the match is than with a randomly gen-
erated map (of categories with the same histograms).

This measure is greater than zero where the match is bet-

ter than expected, and less than zero when below what is

expected. In Fig. 3, all KFUZ values are negative, sug-

gesting that the match is worse than would be expected

when compared to a randomly generated map with the

same categorical distribution. Hagen [26] recognises that

evaluating the expected similarity is difficult with a fuzzy
representation of categories and location. Several prob-

lems with the KFUZ statistic are identified and improve-

ments must be made for its use as a measure of

comparison.

5.4. Multiscale comparisons

The implementation of methods for comparing ob-
served and predicted spatial fields is usually undertaken

at the finest resolution available (i.e. the resolution of

the spatial field). However, as was identified earlier, hu-

mans usually observe global and local aspects of spatial

fields when comparing them visually. Conducting com-

parisons at multiple scales of observation will allow a

measure of similarity that varies with scale to be com-

puted. In hydrological modelling, scaling of measure-
ments to different time and space scales is the subject

of ongoing research [7,68]. Approaches to changing

the spatial scale of a spatial field vary, with certain meth-

ods more suitable for certain hydrological attributes. In

image processing the multiple scales are just different

resolution representations on the original image. Hay

et al. [30] explains an approach to object detection in

images where there is no prior knowledge of the scale
of the objects. This approach, called �linear scale-space�,
uses a set of smoothed versions of the original image to

help identify image-objects, where the smoothing is sim-

ulating a change of scale (support) of the original image.

By analysing the set of multiscale images and how they

change with scale, the image-objects that are persistent

across many scales can be extracted. In hydrology, some

recent work by Gallant and Dowling [19] has used mul-
tiple scale versions of an elevation model to detect valley

bottoms at multiple scales, while in flood hydrology,

Horritt and Bates [31] have investigated the effect of

scale on calibrating flood flow models. Despite these

examples, there is generally limited use of multiscale

analysis, and no use of multiscale comparison, in

hydrology.

Successful analysis of images in other application
areas using multiscale representations suggests that this

should also be useful for spatial fields from hydrological
models. Using scaling rules (e.g. aggregation into aver-

age values), resampling or image processing like convo-

lution, a set of coarser resolution spatial fields can be

created. Convolution involves passing a kernel (or �mov-

ing window�) over an image to create a new image,

where each pixel is a function of the original pixels
and the kernel. After producing coarser scale representa-

tions of the observed and predicted spatial fields, the

comparison methods discussed earlier can be applied

for each scale. With some methods, like mean squared

error or direct correlation, this is simply a matter of

computing the similarity measure. With others, it may

involve computing importance weights or segmentations

for each spatial field. The result of such a multiscale ap-
proach is a measure of similarity that changes with scale.

Fig. 4 shows a multiscale comparison of the continuous

value spatial fields used in Fig. 3. The fields have been

resampled to coarser cell sizes using a bilinear interpola-

tion to assign the resampled cell values. At each resolu-

tion, the standard MSE and the IMSE were calculated.

This basic example shows that the similarity measure

changes with the scale of observation. In this case, there
is greater agreement between the spatial fields at the

coarser cell sizes of 20m and 60m (using two different

similarity measures), which may relate to some charac-

teristic of the attribute being modelled or observed (or

may be an artefact of the resampling process). An alter-

native to using smoothed versions of the original field

was presented by Costanza [14]. In this case, the size

of the areas being compared between two spatial fields
was increased until the area covered the entire field. At

each size, a summary value of the area being compared

was used to produce the similarity measure. As with Fig.

4, the similarity measure also changes over scale (with

the largest scale being a global comparison), allowing

an overall measure of similarity to be derived. Multi-

scale comparisons go some way to emulating the global

and local comparisons done visually by humans.
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6. Discussion

The comparison methods used for spatial fields from

hydrological models have been very limited to date.

While many papers present simulated or predicted spa-

tial fields, and more recently some have shown observed
spatial fields, only in the last few years have the weak-

nesses in comparison methods been stated [22,35]. Until

a suite of quantitative comparison methods can be

developed, calibration, optimisation and uncertainty

analysis of distributed models will remain limited to

point time series or weak spatial comparisons that pro-

vide only limited tests of spatial field similarity. The

methods that have been presented in this paper address
some issues of comparison that are necessary to improve

model testing and interpretation. The inspiration for

these methods draws from approaches used by human

visual comparison, applications using image processing

and the broad area of computer vision. While the back-

ground and current uses of these approaches suggests

their flexibility and suitability for hydrological spatial

fields, ongoing research is required to fully assess their
application in this area. The following discussion specu-

lates on how the promising and existing methods might

work together to overcome the limitations of current

comparisons (i.e. repeatability, quantification, recogni-

tion of features, tolerance for minor shifts, multiscale

comparisons). It identifies some of the benefits of multi-

ple approaches to comparison and suggests what these

methods may infer about the spatial field similarity.
Fig. 5 is a conceptual diagram of comparison meth-

ods to indicate how these can work together to achieve

the overall task of comparing spatial fields. Processing

begins with a range of methods for preparing the raw

observations and predictions into a suitable form for

making comparisons (i.e. having equivalent resolutions,

extents, type of values). This involves methods such as

conditioning, segmentation, resampling (for multiscale
comparisons) and the calculation of important features

(such as homogeneous regions). The pre-processing pro-

duces a set of comparable spatial fields, which can also

be generated at multiple scales. These processed inputs

can be used with the comparison methods. The standard

feature-by-feature, weighted feature-by-feature and fuz-

zy comparisons can be used to produce intermediate

spatial fields. These are the measures often used in man-
ual analyses, but for automated comparison or process-

ing large number of spatial fields, the reduction of these

measures down to quantitative comparison measures is

necessary. Where a multiscale representation of the

input spatial fields has been created, the comparison

measures can be computed for the multiple scales. Fig.

5 also lists the type of fields suited to each method. In

many cases, the methods work with both continuous
and categorical fields, although some methods work

with only one type. Continuous value spatial fields can
readily be placed into categories, making the fuzzy com-

parison method (which requires categorical inputs) ver-

satile to both data types.

The comparison measures in Fig. 5 all produce a

quantitative measure of similarity. These measures

sometimes have a direct meaning, such as MSE, which
represents the mean of the squared differences between

pixel values (in the same units as the pixel values). In

other comparisons, such as IMSE, the original values

are weighted by a unitless measure, thus making the

exact meaning of the measure somewhat unclear and

requiring further interpretation (the measure is relative).

For example, the correlation coefficient is a unitless

measure computed from the available data points and
thus biased when there is little spread in the data. Simi-

larly, the weightings assigned in an IMSE calculation

are controlled by the homogeneity of the spatial field.

As such, care must be taken when using these methods

for inter-comparison. For example, comparing two sets

of observed and predicted fields of soil moisture (one set

from spring and one from winter) could produce com-

parison measures with vastly different ranges using
IMSE. The relatively homogeneous winter spatial fields

(nearly all wet) would receive lesser weightings than the

heterogeneous spring spatial fields (showing dry hill-

slopes and wet gullies), making the similarity between

the observed and predicted fields in each set difficult to

compare.

The methods that have emerged from image and

computer vision research are not concerned with inter-
comparison. They are designed to produce a comparison

measure that is powerful for comparing a single tem-

plate (i.e. an observation) with a database of possible

matches (i.e. a set of predictions). This is similar to some

uncertainty frameworks discussed in hydrology [3], in

which the simulated spatial fields from many models

and parameter sets (e.g. an ensemble of outputs at a

point in time) are compared to a single observation, with
poor matching predictions being rejected. There is a key

role for spatial observations in the rejection of non-

behavioural models and parameter sets, thus limiting

the possible model realisations and acceptable model

parameter sets. As Beven [3] points out, ‘‘the real chal-

lenge is to find creative ways of using observations to

limit those possibilities.’’ The methods presented here

offer the potential to increase the utility of observations
at this model assessment stage.

All of the pre-processing methods listed in Fig. 5 re-

quire some subjective judgement in the choice of param-

eter values. For example:

• Categorising a continuous spatial field requires the

number of output categories to be chosen.

• Segmentation, while often being data driven, requires
parameters to be set to control the form of the seg-

mented regions––such as thresholds, the number of
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clusters, region merging tolerances (relating to the

size and shape of regions).

• Identification of important features requires defini-
tion of the �event of interest� and how the importance

of the event is defined (e.g. with Shannon�s self-infor-
mation measure).

• Importance maps (which are used to weight a stan-

dard comparison) must be chosen such that they

are strong tests of model performance and do not
�undervalue� other features of the spatial fields that

could also be important.

• Fuzzy comparisons (which can tolerate locational
and categorical errors between spatial fields) require

subjective definition of the memberships for each cat-

egory and the amount of locational tolerance.

In each case, the choices made are an explicit state-

ment of what the user believes is important in the spatial
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fields and the system being studied. These choices need

to exploit the user�s knowledge about the characteristics
of the model output and observations. For example,

interpolation involves a change in support that may re-

move some small-scale variability critical to testing

model performance. Resampling involves a change in
spacing. These interpolation or resampling steps should

be aimed at matching the scale triplet of the observa-

tions and simulations so comparisons are not biased

[6]. Similarly, the �event of interest� (or important fea-

tures) can end up being the primary part of a spatial

field that most affects the final comparison metrics, as

other important features may be under weighted and

therefore ignored in the metric. For example, an �event
of interest� in a snow model comparison might be the

presence of snow on particular topographic aspects,

thus testing the components of the model related to

wind drift or radiation exposure, but testing little about

elevation or lapse-rate components. Comprehensive

comparison approaches will require application of mul-

tiple methods to capture multiple features of the spatial

fields. These choices are no different in concept to the
choice of the objective functions commonly used with

time series comparisons (such as catchment runoff)––

some emphasise high flows, some emphasise volume

matching, some emphasise timing shifts (e.g. [38,64]).

However, in the case of spatial fields, there is much less

experience to draw on as to the best parameters to use.

As the availability of observed spatial fields increases,

the existence of observed spatial fields that vary with
time (dynamic spatial fields) will arise. Spatial models

already produce fields that change at each time step

and there will become a need for comparison methods

when we have dynamic spatial observations. The meth-

ods applied here can be readily used with multiple time

steps of comparable spatial fields. They would produce

time-varying measures of similarity (just like the scale-

varying measure in Fig. 4) and could be extended to
incorporate fuzziness in time (by comparing against spa-

tial fields from previous or subsequent time steps). Fur-

ther work with data of this type would be possible in

meteorology, where simulated rainfall fields and ob-

served radar rainfall fields are available. At present we

are not dealing with dynamic spatial fields, although

the methods described here could potentially be used.

At present, the state-of-the-art for assessing spatial
predictions from models is limited. This paper has fo-

cussed on describing and demonstrating some methods

used in other disciplines that show promise for applica-

tion to comparing spatial fields of hydrological phenom-

ena. The methods discussed in this paper are largely

steps for pre-processing the spatial fields. Through the

pre-processing, different aspects of the spatial fields are

recognised and are then used in the subsequent compar-
ison step. Depending on the approach used, the actual

comparison step could be a standard pixel-by-pixel pro-
cess, or it could be an alternative procedure like fuzzy

comparison. All of the approaches presented here pro-

vide alternatives that can address different aspects of

comparison. They are applied to different types of fea-

tures and different scales, with a view to providing richer

quantitative measures of comparison. Future work will
focus on application of these methods to a range of spa-

tial fields from hydrology, to reveal their true value for

distributed hydrological model calibration, assessment,

development and uncertainty estimation.
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