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Abstract

This paper investigates the ability to retrieve the true soil moisture and temperature pro®les by assimilating near-surface soil

moisture and surface temperature data into a soil moisture and heat transfer model. The direct insertion and Kalman ®lter as-

similation schemes have been used most frequently in assimilation studies, but no comparisons of these schemes have been made.

This study investigates which of these approaches is able to retrieve the soil moisture and temperature pro®les the fastest, over what

depth soil moisture observations are required, and the e�ect of update interval on pro®le retrieval. These questions are addressed by

a desktop study using synthetic data. The study shows that the Kalman ®lter assimilation scheme is superior to the direct insertion

assimilation scheme, with retrieval of the soil moisture pro®le being achieved in 12 h as compared to 8 days or more, depending on

observation depth, for hourly observations. It was also found that pro®le retrieval could not be realised for direct insertion of the

surface node alone, and that observation depth does not have a signi®cant e�ect on pro®le retrieval time for the Kalman ®lter. The

observation interval was found to be unimportant for pro®le retrieval with the Kalman ®lter when the forcing data is accurate,

whilst for direct insertion the continuous Dirichlet boundary condition was required for an increasingly longer period of time. It was

also found that the Kalman ®lter assimilation scheme was less susceptible to unstable updates if volumetric soil moisture was

modelled as the dependent state rather than matric head, because the volumetric soil moisture state is more linear in the forecasting

model. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The role of soil moisture in the shallow layers known
as the root zone is widely recognised as a key parameter
in numerous environmental studies, including: (i) mete-
orology; (ii) hydrology; and (iii) agriculture. The sig-
ni®cance of soil moisture in these ®elds of study is its
role in the partitioning of available energy at the ground
surface into sensible and latent heat exchange with the
atmosphere (thus controlling evapotranspiration) and in
partitioning of precipitation into in®ltration and runo�
[13,18,24]. Furthermore, soil moisture is one of the few
directly observable hydrological variables that plays an
important part in the water and energy budgets neces-
sary for climate studies [22]. Adequate knowledge of the
soil moisture as well as the evapotranspiration rate at
the land surface, which is dependent on the moisture

state below the shallow depth that controls the instan-
taneous response [12], is essential to the understanding
and prediction of the reciprocal in¯uences between land
surface processes, weather and climate [40]. In agricul-
ture, accurate assessment of soil moisture conditions is
necessary for good water management, allowing rational
planning of irrigation scheduling [21,25] and increased
crop yields [23,38,41]. In addition, many insects and
diseases are soil moisture dependent in hatching and
spreading [10]. Therefore a detailed knowledge of soil
moisture values over an area will allow pesticides to be
applied selectively with obvious economic and environ-
mental bene®ts [10]. It has also been noted that the
denitri®cation rate of soil is related to soil moisture [1],
and that areas of high sediment transport are related to
runo� producing zones [3].

Soil moisture can be estimated from: (i) point mea-
surements; (ii) hydrologic models; and (iii) remote
sensing. The traditional point measurement techniques
for soil moisture estimation do not always represent the
spatial distribution [25] as there is a limited area that can
be satisfactorily monitored with an acceptable temporal
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resolution. Moreover, soil moisture is highly variable
with a very low spatial correlation [9,18]. The alternative
has been to estimate the spatial distribution of soil
moisture using a distributed hydrologic model [14,30].
However, estimates with such models are generally
poor, because soil moisture exhibits large spatial and
temporal variation [11] as a result of inhomogeniety of
soil properties, vegetation and precipitation [29]. As
remote sensing can be used to collect spatial data over
large areas on a routine basis, it provides a capability to
make frequent and spatially comprehensive measure-
ments of the near-surface soil moisture [11,23]. How-
ever, major limitations with current satellite data are: (i)
the number of days between overpasses of the same
point on the ground; and (ii) the depth of the soil
moisture measurement, being limited typically to the top
few centimetres [11,24,39]. These upper few centimetres
of the soil are the most exposed to the atmosphere, and
their soil moisture varies rapidly in response to rainfall
and evaporation [22]. Thus to be useful for hydrologic,
climatic and agricultural studies, these observations of
near-surface soil moisture must be related to the com-
plete soil moisture pro®le in the unsaturated zone
[20,31,34].

Given the inherent problems and complimentary
nature of point measurements, hydrological modelling
and remote sensing in determining the spatial distribu-
tion and temporal variation of soil moisture pro®les, an
e�ective soil moisture monitoring program should
combine these three approaches. Point measurements,
which are the most accurate, would be used sparingly
for calibration and evaluation of the hydrologic model,
which yields information on both the spatial (horizontal
and vertical) distribution and temporal variation of soil
moisture content. Remote sensing observations, which
provide a measurement of the near-surface soil moisture
content, would be used for updating of the hydrologic
model by data assimilation, to minimise the e�ects of
errors in the model physics and input data (model pa-
rameters and atmospheric forcing).

Only a small number of studies have attempted to use
remotely sensed near-surface soil moisture measure-
ments as either input to a hydrologic model, or as ver-
i®cation data [4]. The reasons for this are: (i) remote
sensing data is just beginning to gain acceptance in the
hydrologic community as an operational tool for mea-
suring the near-surface soil moisture; and (ii) assimila-
tion of remote sensing data requires the development of
hydrological models that simulate soil moisture for a
thin near- surface layer that is compatible with the na-
ture of the remote sensing observations [28]. In addition,
techniques for assimilating the remote sensing data into
the hydrologic model require investigation, and the
near-surface soil moisture observations must be proven
useful when used with hydrologic models [16].

With the exception of only a few studies, previous
studies have assimilated near-surface soil moisture ob-
servations into a hydrologic model with the objective to
improve predictions of evapotranspiration or runo�, or
have estimated the soil moisture pro®le for a one-di-
mensional soil column using synthetic data and a very
short (i.e. 1 h) update interval [13]. Furthermore, with
one exception [19], there has been no assessment of the
various assimilation schemes available for updating the
hydrologic model. Moreover, there has been no study on
the e�ect of observation depth and update interval. This
paper explores the e�ects of observation depth and up-
date interval on soil moisture pro®le retrieval and makes
a comparison of two commonly used assimilation
techniques (direct insertion and Kalman ®lter) in a
desktop study using synthetic data, and provides a result
in that respect. As this is a synthetic study, the implicit
assumption is a perfect model with perfect parameters,
perfect forcing and perfect observations, the only un-
certainty being the initial condition. However, in a ``real
world'' application there is uncertainty associated with
all aspects of the assimilation system.

In the recent studies of Entekhabi et al. [12,13], a
brightness temperature model and coupled soil moisture
and heat transfer model have been combined in the
context of a Kalman ®lter for a one-dimensional soil
column. The Kalman ®lter is a statistical assimilation
scheme that updates the model state values based on the
relative magnitudes of the covariances of both the model
state and the observation. The model update was made
using infra-red and low frequency vertical and hori-
zontal polarisation passive microwave observations. The
algorithm was tested using synthetic data from a drying
period, with ``true'' soil moisture and temperature pro-
®les generated from the same coupled heat and moisture
transfer model as used in the Kalman ®lter. Remote
sensing observations were then generated from these
pro®les, and used to update the system state equations
each hour. Starting from a poor initial guess of the soil
moisture pro®le, the Kalman ®lter estimate of the soil
moisture pro®le was found to correspond with the true
pro®le after approximately 5 days. This approach was
recently tested for an 8-day ®eld experiment with daily
updation and a 4-month synthetic study with updation
every 3 days [15].

The feasibility of updating the three-layer TOPLATS
model using several alternative assimilation schemes has
been investigated by Houser et al. [19] in a ®eld study.
The schemes investigated were: (i) direct insertion; (ii)
statistical correction; (iii) Newtonian nudging; and (iv)
statistical interpolation. Direct insertion replaces the
model state values with the observed values directly,
while the other schemes use a statistical technique to
make the update. In the statistical correction scheme the
modelled state mean and standard deviation are ad-
justed to match the observed mean and standard devi-

2 J.P. Walker et al. / Advances in Water Resources 00 (2000) 000±000

ADWR 356



UNCORRECTED
PROOF

ation, while Newtonian nudging (a special and typically
pathological case of the Kalman ®lter) relaxes the model
state towards the observed state by adding a term to the
prognostic equation that is proportional to the di�er-
ence between the two states, and statistical interpolation
is a minimum variance method that is closely related to
kriging. It was found that none of these schemes pro-
duced time series that matched the root zone observa-
tions. However, Newtonian nudging made the largest
impact on root zone soil moisture while statistical in-
terpolation had a relatively strong in¯uence on root
zone soil moisture.

2. Microwave remote sensing

The fundamental basis of microwave remote sensing
for soil moisture is the relationship between soil dielec-
tric properties and volumetric soil moisture content [24].
In addition to its strong dependence on volumetric soil
moisture, the magnitude of the dielectric constant is a
function of the observation frequency, soil temperature,
soil texture and soil bulk density. However, the depen-
dence on soil temperature is often ignored. To highlight
the importance of soil temperature on the dielectric
constant, the dielectric mixing model of Peplinski et al.
[35] has been evaluated for two soil moisture conditions
and several soil temperatures over a range of observa-
tion frequencies, with the results given in Fig. 1.

Soil temperature in the near surface layer can have a
diurnal variation of more than 30±40°C in some parts of
the world. Fig. 1 indicates that temperature variations of
this magnitude have a signi®cant e�ect on the magnitude
of both the real and imaginary components of the soil
dielectric constant, especially at high soil moisture. This
emphasises the need for an estimate of soil temperature
in the surface layer if remote sensing observations are to
be used for measuring near-surface soil moisture. As
current generation microwave remote sensing platforms
do not carry a thermal infra-red sensor, estimation of

surface soil temperature is required from alternate
means. In this paper, it is suggested that soil tempera-
ture be estimated from the temperature component of a
coupled soil moisture and heat transfer model, which is
updated with thermal infra-red observations from an-
other remote sensing platform.

3. Retrieval algorithms

3.1. Direct insertion

The direct insertion assimilation is performed by di-
rectly substituting observed values for the simulated
values of soil moisture and temperature as they become
available (Fig. 2(a)). Infra-red remote sensing observa-
tions only provide information on the soil skin tem-
perature, so only the soil temperature of the surface
node in the soil discretisation may be updated. In con-
trast, microwave remote sensing observations of soil
moisture are related to the soil moisture in a layer as
thick as a few tenths of the wavelength [11,24,39]. The
thickness of this layer is referred to as the observation
depth [43].

The governing equations for ¯ow of heat and mois-
ture through unsaturated soil, and the theoretical
equations relating microwave observations to soil
moisture, are highly nonlinear. Therefore the direct in-
sertion assimilation scheme is simpler than the Kalman
®lter algorithm below, as it allows the nonlinear prob-
lem to be solved directly. However, the only way in
which this surface information is transferred to deeper
layers is through the in®ltration and ex®ltration pro-
cesses described by the physics of the soil moisture
model. Moreover, the soil moisture pro®le is only
changed by the di�erence between the observed and
simulated soil moisture, limiting the ability of the direct
insertion to correct an erroneous mass balance.
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Fig. 1. Temperature dependence of dielectric constant number: (a) low soil moisture and (b) high soil moisture.
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3.2. The (extended) Kalman ®lter

The Kalman ®lter is a statistical assimilation tech-
nique that updates the pro®le based on the relative
magnitudes of the covariances of both the observations
and the model pro®le estimate. The principal advantage
of the Kalman ®lter is that the entire pro®le may be
modi®ed (Fig. 2(b)) because of the correlation between
the soil moisture near the surface and at deeper depths.
The disadvantages of this approach are that the gov-
erning equations require linearisation and that it is
computationally intensive when large systems are in-
volved.

The Kalman ®lter algorithm tracks the conditional
mean of a statistically optimal estimate of a state vector
X, through a series of propagation and update steps [5].
For this application, the state vector de®nes the system
state of the soil as X � fw1;w2; . . . ;wN : T1; T2; . . . ; TNgT

,
where wj is the soil matric head at node j and Tj is the
soil temperature at node j. To apply the Kalman ®lter
approach, the nonlinear equations governing soil mois-
ture and heat transfer must be written as in the linear
state space equation form of Eq. (1), termed the ex-
tended Kalman ®lter. During the forecasting period, the
covariances of the system states are also estimated, using
Eq. (2). The forecasting equations are:

X̂n�1=n � An � X̂n=n �Un � wn; �1�

Rn�1=n
x � An � Rn=n

x � AnT �Q; �2�
where A is a matrix relating the system states at time
n� 1 to the system state at time n, U a vector of forcing,
w the model error, Rx the covariance matrix of the sys-
tem states and Q is the covariance matrix of the system
noise (i.e. E�w � wT ]).

Given the initial state vector X̂0=0 and its covariance
matrix R0=0

x , the soil states may be forecast (denoted by
the time superscript �n� 1�=n) using Eqs. (1) and (2)
until a set of observations become available, at which

stage a system update may be made (denoted by the time
superscript �n� 1�=�n� 1�).

For the update step, the observation equation is
written such that observation vector Z is a linear func-
tion of the state vector X

Z � H � X� v; �3a�
where v is the observation error with covariance matrix
R. Since microwave remote sensing observations are
nonlinearly related to the soil moisture content, the
simplest way to make the update is to invert the obser-
vations for soil moisture down to the observation depth
d. This reduces the need for linearisation of the dielectric
and backscattering/brightness temperature models,
eliminating errors introduced through linearisation.
Subsequently the observation equation becomes

�3b�

where T1 is the surface soil temperature estimated from
infra-red observations and wd is the soil matric suction
at the observation depth d. This form of the observation
equation allows the updating to be performed using ei-
ther direct measurements of near-surface soil moisture
or by inverting any algorithm that relates soil moisture
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Fig. 2. Illustration of data assimilation techniques: (a) direct insertion and (b) Kalman ®lter.
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to remote sensing observations. This is a key di�erence
between the present study and the Kalman ®lter studies
of Entekhabi et al. [13] and Galantowicz et al. [15].

Updating of the system state vector X̂ with the ob-
servations Z is performed by

X̂n�1=n�1 � X̂n�1=n � Kn�1 Zn�1
�

ÿHn�1 � X̂n�1=n
�
; �4�

Rn�1=n�1
x � I

ÿ ÿ Kn�1 �Hn�1
� � Rn�1=n

x ; �5�
where I is the identity matrix. The Kalman gain matrix
Kn�1 weights the observation against the model forecast
by the relative magnitudes of model covariances (Rn�1=n

x )
and the observation covariances (Rn�1). The Kalman
gain is

Kn�1 � Rn�1=n
x �Hn�1T � Rn�1

�
�Hn�1 � Rn�1=n

x �Hn�1T
�ÿ1

:

�6�
The derivation of these expressions are given by Bras
and Rodriguez-Iturbe [5].

The key assumptions of the Kalman ®lter are that: (i)
the model error w is Gaussian white noise with a mean
vector equal to zero and covariance matrix equal to Q;
(ii) the observation error v is Gaussian white noise with
mean equal to zero and variance equal to R; and (iii) the
initial state vector X̂0=0 is Gaussian with mean X̂0=0 and
covariance R0=0

x .
Model errors result from: (i) inaccurate speci®cation

of the model structure; (ii) linearisation of the model
physics; (iii) estimation errors in the values of model
parameters; and (iv) measurement errors in model in-
puts (precipitation and evapotranspiration). Degree-of-
belief estimates of the errors in initial states and pa-
rameters can be used to specify the diagonal elements of
these covariance parameter vectors with the o�-diagonal
elements set to zero. The observation variance R can be
identi®ed reliably in most cases, since it depends on the
characteristics of the measuring device [17].

4. Soil moisture and heat transfer equations

The coupled ¯ow of heat and moisture in a vertical
soil column occurs in both vapour and liquid phases.
The relative magnitudes of vapour versus liquid ¯uxes
and the e�ects of temperature versus hydraulic gradients
are not well understood [27]. While some authors (e.g.
Cary and Taylor [6]) consider temperature e�ects very
important over a wide range of soil wetness, others (e.g.
Philip [36]) indicate that thermally driven ¯ow in the
evaporative drying may be of minor importance until
the soil becomes very dry. Kimball et al. [26] conclude,
based on a comparison study of ®eld measured and
calculated soil heat ¯uxes, that both soil water and heat
¯ux can be better predicted by ignoring thermal vapour
movement at high and low water contents. At interme-

diate water contents, soil water ¯ux prediction is better
if thermal vapour ¯ux is included. The vapour phase is
mainly critical in modelling the thermal regime due to
the relatively large magnitude of heat exchange during
phase change. For moisture ¯ow, however, the vapour
term is orders of magnitude smaller than the liquid ¯ux
and may thus be neglected [13]. As the soil temperature
pro®le is only of secondary importance here, we con-
sider the liquid phase only. The coupling between the
heat and moisture equations will be solely through the
heat capacity of the soil and through the in¯uence of
moisture on thermal conductivity.

4.1. Moisture equation

The conservation of water mass in a porous medium
can be expressed by the continuity equation for one-
dimensional simultaneous saturated-unsaturated ¯ow as

oSh

ot
� ÿrqm; �7�

where qm is the total mass ¯ux of water given by
qm � ql � qv where ql is the mass ¯ux of liquid water and
qv is the mass ¯ux of water vapour and Sh is the mass of
water storage per unit bulk volume [2]

Sh � ql�hl � hv� � qlh �8a�
or

Sh � ql/Sw; �8b�
where ql is the density of liquid water, hl the volumetric
liquid water content, hv the volumetric water vapour
content, / is the soil porosity and Sw is the water satu-
ration equal to h=/.

Di�erentiating Eq. (8b) with respect to time yields [2]

oSh

ot
� ql SwS0w

ow
ot

�
� oh

ot

�
; �9�

where w is the soil water matric potential, otherwise
known as the capillary potential. S0w is the speci®c
storativity with respect to soil matric potential given by

S0w � a�1ÿ /� � b/: �10�
Following Philip and de Vries [37] and de Vries [7], the
respective equations for liquid and vapour ¯ux densities
are:

ql

ql

� ÿDwlr�w� z� ÿ DTlrT ; �11a�
qv

ql

� ÿDwvrwÿ DTvrT ; �11b�

for elevation z positive upward. The dependent variables
are the soil water matric potential w and the soil tem-
perature T. The transport coe�cients are the isothermal
liquid hydraulic conductivity Dwl, the thermal liquid
di�usivity DTl, the isothermal vapour conductivity Dwv

and the thermal vapour di�usivity DTv. Substitution of
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Eqs. (9), (11a) and (11b) into Eq. (7) and assuming that
rql

is zero yields the mixed form of the governing
equation for ¯ow of soil moisture in both the liquid and
vapour phases under both moisture and temperature
gradients

SwS0w
ow
ot
� oh

ot
� r�Dwrw� DTrT � Dwl�; �12�

where the transport coe�cients are the isothermal
moisture conductivity Dw � Dwl � Dwv and the thermal
moisture di�usivity DT � DTl � DTv.

In order to satisfy the required form of the linear state
space equation, the moisture equation must be in either
the h-based or w-based form, which may be obtained by
inclusion of the soil capillary capacity factor
Cw � oh=ow. One important advantage of the h-based
form of the governing equation is that the mass balance
of the system is guaranteed during the moisture fore-
casting period, regardless of discretisation and time step
size, with only its distribution throughout the pro®le
being a�ected [33]. However, the h-based form cannot
be used to model multi-layered soils. The reason for this
is that the soil's hydraulic potential must be continuous
across the interface between each layer, while the
moisture content can vary. Furthermore, the w-based
form facilitates modelling of soil systems that are locally
saturated [33]. Thus, it is desirable to write the soil
moisture equation in the w-based form.

By neglecting the vapour ¯ux and considering a
purely isothermal situation, the following relationship
for one-dimensional saturated±unsaturated ¯ow
through porous media is obtained

�SwS0w � Cw� ow
ot
� r�Dwlrw� Dwl�; �13�

where the isothermal liquid hydraulic conductivity Dwl is
simply the unsaturated hydraulic conductivity. Writing
Eq. (13) in explicit ®nite di�erence form for node j at
time step n� 1 and vectorising yields:

fwjgn�1

�

�tn�1ÿtn� Dn
wljÿ1

�Dn
wlj

� �
Sn

wj
Sn

0wj
�Cn

wj

� �
�zjÿ1ÿzj�1��zjÿ1ÿzj�

1ÿ �tn�1ÿtn�

Sn
wj

Sn
0wj
�Cn

wj

� �
�zjÿ1ÿzj�1�

Dn
wljÿ1

�Dn
wlj

zjÿ1ÿzj
�

Dn
wlj
�Dn

wlj�1

zjÿzj�1

� �
�tn�1ÿtn� Dn

wlj
�Dn

wlj�1

� �
Sn

wj
Sn

0wj
�Cn

wj

� �
�zjÿ1ÿzj�1��zjÿzj�1�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

T

�
wjÿ1

wj

wj�1

8><>:
9>=>;

n

� tn�1 ÿ tn

Sn
wj

Sn
0wj
� Cn

wj

 !
Dn

wljÿ1
ÿ Dwlj�1

zjÿ1 ÿ zj�1

� �( )
:

�14�

4.2. Temperature equation

The conservation of heat content in a porous medium
can be expressed by the continuity equation for one-
dimensional heat transfer as

oSh

ot
� ÿrqh; �15�

where qh is the heat ¯ux density. Sh is the total heat
content per unit bulk volume and has been expressed by
de Vries [7] as

Sh � �Cd � clqlhl � cpqlhv��T ÿ Tref�

� Lrefqlhv ÿ ql

Z hl

0

W dhl; �16�

where Cd is the volumetric heat capacity of the dry soil,
cl and cp the speci®c heat capacity of liquid water and
water vapour, respectively (at constant pressure), Tref an
arbitrary reference temperature, Lref the latent heat of
vaporisation at temperature Tref , and W is the di�eren-
tial heat of wetting.

Ignoring the contribution to heat storage from the
di�erential heat of wetting, the rate of change of heat
storage with time can be written as:

oSh

ot
� �Cd � clqlhl � cpqlhv� oT

ot

� clql

ohl

ot

�
� cpql

ohv

ot

�
�T ÿ Tref�

� Lrefql

ohv

ot
: �17�

Following de Vries [7], the total heat ¯ux density for
both sensible and latent heat in a porous medium is

qh � ÿ�kÿ LqlDTv�rT � Lqv � cl�T ÿ Tref�qm; �18�
where L is the latent heat of vaporisation of water at
temperature T and k is the thermal conductivity.

Therefore, substitution of Eqs. (17) and (18) into Eq.
(15) yields the governing equation for heat transfer in a
one-dimensional soil column

CT
oT
ot
�r �k� ÿ qlDTvL�rT ÿ Lqv ÿ cl�T ÿ Tref�qm�

ÿ clql

ohl

ot

�
� cpql

ohv

ot

�
�T ÿ Tref�

ÿ Lrefql

ohv

ot
; �19�

where CT � Cd � clqlhl � cpqlhv is the volumetric heat
capacity of the bulk soil medium [8]. By neglecting the
vapour ¯ux, the governing equation for heat transport
in a porous medium may be reduced to

CT
oT
ot
� r�krT ÿ cl�T ÿ Tref�ql� ÿ clql�T ÿ Tref� ohl

ot
:

�20�
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Writing Eq. (20) in explicit ®nite di�erence form for
node j at time step n� 1 and vectorising yields:

fTjgn�1 �

�tn�1ÿtn� kn
jÿ1
�kn

j� �
Cn

Tj
�zjÿ1ÿzj�1��zjÿ1ÿzj� ÿ

�tn�1ÿtn�clqn
ljÿ1

Cn
Tj
�zjÿ1ÿzj�1�

1ÿ
�tn�1ÿtn�

Cn
Tj
�zjÿ1ÿzj�1�

kn
jÿ1
�kn

j

zjÿ1ÿzj
� kn

j�kn
j�1

zjÿzj�1

h i
ÿ �tn�1ÿtn�clql

Cn
Tj

hn
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5. Synthetic study

In order to explore the relative merits of the two data
assimilation schemes and the e�ect of observation depth
and frequency, a desktop study is presented using syn-
thetic data. Synthetic data sets were generated using the
same soil moisture and heat transfer model used to re-
trieve the pro®le data from surface observations. This
eliminated experimental errors in measuring the soil
moisture and temperature pro®les, as well as in esti-
mating the soil properties and surface ¯uxes. Further-
more, using the same model for generation and retrieval
of pro®le data eliminated model errors due to the neglect
of hysteresis, thermally induced moisture transport, heat
of wetting and vapour components of the soil heat and
moisture balance.

From a theoretical view point, more comprehensive
models accounting for simultaneous heat and water
transport could be used, but it would not markedly
change the demonstration, as we use the same model to
produce the simulated data and to process these data.
However, the complexity of such models, the di�culty
to obtain proper soil parameters for vapour ¯ux, and the
lack of knowledge about their spatial variability would
probably make illusory the increase in accuracy ex-
pected by using such comprehensive models in the ap-
plication we are dealing with. In the same way,
hysteresis of the unsaturated hydraulic conductivity re-
lationship has been neglected because of its small in-
¯uence on the water transfer compared to the e�ect of
the ®eld variability of soil water characteristics.

5.1. Synthetic data

The soil moisture and heat transfer model described
above was used to generate 40 days of true soil moisture
and temperature pro®les using the van Genuchten [42]
moisture retention and hydraulic conductivity relation-

ships. The true soil moisture and temperature pro®les
were generated using the soil properties, initial condi-
tions, and boundary conditions of Entekhabi et al. [13]
to facilitate comparison with their retrieval algorithm.
The soil parameters used by the model are given in
Table 1. Initial conditions were ÿ50 cm matric head and
20°C, uniform throughout the 1 m deep soil pro®le. The
time series of true pro®les were generated by forcing the
model with 0.5 cm dayÿ1 evaporation and a sinusoidal
diurnal soil heat ¯ux of 200 W mÿ2 amplitude at the soil
surface. The boundary condition at the base of the soil
column was zero soil moisture and heat ¯ux. To test the
two assimilation schemes, the model was initialised with
the same poor initial guess as used by Entekhabi et al.
[13], that is, a uniform matric head of ÿ300 cm and soil
temperature of 15°C throughout the pro®le.

5.2. Numerical experiments

In this study, both the direct insertion and Kalman
®lter assimilation schemes have been applied with a
range of observation depths and update intervals,
ranging from a continuously prescribed near-surface
boundary condition (continuous Dirichlet boundary
condition) to updating once every 5 days. When model
updates are made at the soil surface using the direct
insertion and Kalman ®lter approaches, the surface
node(s) of the model are replaced with the observations,
and the information contained in these observations is
transferred to deeper depths through the physics of the
model. Thus, these updating approaches are in some
degree similar to the continuous Dirichlet boundary
condition, at least for the period during which the up-
dated surface node(s) remain close to the observation.
For the soil moisture equation, the observation depths
were taken to be 0 (surface node), 1, 4 and 10 cm, while
for the temperature equation, the observation depth was
taken as the surface node. The ``observations'' are the
values from the true pro®les for that time and depth. A
summary of the simulations undertaken and the time for
retrieval of the true pro®le for these simulations is given

Table 1

Soil parameters used in validation

Total soil depth 100 cm

Number of nodes 31

Soil thermal and hydrau-

lic parameters

Clay loam

Ks � 25 cm/day

/ � 0:54

hr � 0:2
g � 0:008

n � 1:8

Proportion quartz � 0.03

Proportion other minerals � 0.41

Proportion organic matter � 0.02

Initial conditions 20°C;ÿ50 cm matric head
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in Table 2. While simulations were undertaken for daily
observations, these results are not discussed, as they are
qualitatively similar to the results below.

5.3. Updating once every hour

In the initial testing, and to allow for comparison
with the simulations of Entekhabi et al. [13], both the
direct insertion and Kalman ®lter assimilation schemes
were applied once every hour. The results from these
simulations are given in Figs. 3 and 4 for direct inser-
tion, and Figs. 5 and 6 for the Kalman ®lter. The true
pro®les are compared with the retrieved pro®les as well
as the open loop. Open loop is where no observations
are used and the system is simply propagated from the
initial conditions using the known surface ¯uxes.

For direct insertion, retrieved soil temperature pro-
®les were found to di�er only slightly for the various soil
moisture observation depths (a result of heat capacity
and thermal conductivity moisture dependence), while
there were signi®cant di�erences in the retrieved tem-
perature pro®les using the Kalman ®lter. Hence, the
results for temperature pro®le retrieval using direct in-
sertion are given for only the 4-cm soil moisture obser-
vation depth, for sake of clarity, while retrieved
temperature pro®les using the Kalman ®lter are given
for all corresponding soil moisture observation depths.
In addition, the retrieved pro®les presented for direct
insertion are for the timestep immediately prior to the
update, whilst the retrieved pro®les for the Kalman ®lter
are immediately after the Kalman ®lter update. This is
the situation for all direct insertion and Kalman ®lter
simulations presented.

5.3.1. Direct insertion
The direct insertion assimilation scheme performs an

instantaneous replacement of the model estimate with
the true soil moisture and temperature values over the
observation depth every hour. Thus, the only way in
which extra mass can be added to or removed from the
system is through the observations at the surface nodes.
It can be seen from both Fig. 3 for moisture retrieval
using observations of the surface node and Fig. 4 for
temperature retrieval, that if this information is pro-
vided for the surface node alone, then there is no pro®le
retrieval and the system continues in the same fashion as
the open loop. The reason for this is most likely that the
model is driven by gradients, and the gradients at nodes
below the surface node over-ride the update, rapidly
replacing the update value with its original value.
However, if the timestep size of the very ®rst timestep
after the update was increased by three orders of mag-
nitude (10 s), then some of the updating information at
the surface node was passed to deeper depths. The slight
variation in the temperature pro®le from the open loop
pro®le is a result of retrieval in soil moisture pro®les, as
soil heat capacity and soil thermal conductivity are a
function of soil moisture. In addition, the soil temper-
ature equation is a function of soil moisture and mois-
ture ¯ux.

The results from direct insertion of observations for
depths greater than just the surface node indicate that
pro®le retrieval proceeds more quickly as the observa-
tion depth is increased. This was also observed for a
continuous Dirichlet boundary condition. However, the
e�ect is much more pronounced in this instance. The
reason for this may be that the continuous Dirichlet

Table 2

Summary of pro®le retrieval simulations

Direct insertion (days) Kalman ®lter (days)

Soil moisture Soil

temperature

Soil moisture Soil

temperature

Observation

depth (cm)

0 1 4 10 Surface 0 1 4 10 Surface

Update interval Pro®le retrieval time (days)

Continuous 8 8 7 5 > 20

1 h > 20 12 8 ± ± 0.5 0.5 0.5 0.5 2

1 ha ± > 20 16 10 ± 0.7 0.7 0.7 0.7 2

1 dayb > 20 > 20 > 20 > 20

1 day 3 3 3 3 6

5 daysc > 40 > 40 40 40

5 daysd 10 10 10 10 15

5 dayse ± 10 ± ±

5 daysf ± 15 15 10
a Gravity drainage and advection boundary condition at base of soil column.
b Dirichlet boundary condition at soil surface for 1 h after update.
c Dirichlet boundary condition at soil surface for 1 day after update.
d Quasi observations applied to remainder of pro®le.
e Log transformation.
f Moisture transformation.
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boundary condition essentially controls the rate of
moisture ¯ux near the surface, with the depth over
which the continuous Dirichlet boundary condition is
applied controlling the depth at which this ¯ux is ap-
plied. Thus for deeper depths, the ¯ux is applied deeper
within the soil column, resulting in a slightly reduced
distance for propagation of this boundary condition

into the pro®le and hence a slightly faster adjustment.
The direct insertion on the other hand is an instanta-
neous adjustment of the surface nodes, only controlling
the rate of ¯ux near the surface initially. This update
information is redistributed to deeper depths relatively
quickly, with the surface moisture and ¯uxes returning
closely to their original values. More importantly how-
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Fig. 3. Comparison of simulated soil moisture pro®les using direct insertion for observation depths of 0 (open circle), 1 (open square), 4 (open

triangle) and 10 cm (open diamond) with the true soil moisture pro®le (solid circle) and the open loop soil moisture pro®le (open circle with dot) for

hourly observations. Soil moisture with depth for times after the beginning of simulation: (a) time zero, (b) 1 day, (c) 2 days, (d) 5 days, (e) 10 days

and (f) 20 days.
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ever, the depth of update controls the amount of extra
mass that is added to the system for redistribution to
deeper depths. Thus, it is this limited supply of extra
mass which can be added to the system in the direct
insertion approach which makes the e�ect of observa-
tion depth so pronounced.

Full retrieval of the soil moisture pro®le using the
direct insertion algorithm is shown in Fig. 3 to take
more than 20 days for an observation depth of 1 cm,
approximately 12 days for an observation depth of 4 cm
and approximately 8 days for an observation depth of
10 cm. These retrieval times are signi®cantly greater
than those for the continuous Dirichlet boundary con-
dition (see Table 2), especially for shallower observation
depths, indicating that the extra mass being added to the
system through the depth of the update is more domi-
nant than the ``e�ective'' Dirichlet boundary condition
of the update. Fig. 3 also indicates that pro®le retrieval
occurs approximately twice as quickly for observations
over 4 cm compared to 1 cm and approximately twice as
quick again for observations over 10 cm.

5.3.2. Kalman ®lter
The Kalman ®lter assimilation scheme performs an

instantaneous update of the entire pro®le every hour,
based on the relative magnitudes of the covariances of
the observations and the model prediction. Thus, it has
the advantage over the direct insertion assimilation

scheme of being able to add or subtract mass from the
system from more than just the surface nodes. However,
the values assigned to the initial state covariance matrix,
observation noise and system noise can have a signi®-
cant e�ect on the pro®le retrieval.

In this study, the initial state covariance matrix was
given a value of (1000000 cm2; °C2) on the diagonal
elements and zero on the o�-diagonal elements, repre-
senting a large uncertainty in the initial pro®le values
and no correlation between nodes. The observation
variances were given a value of 2% of the observed state
(matric head or soil temperature) for the diagonal ele-
ments and zero for the o�-diagonal elements. The sys-
tem noise was given a value of 5% of the change in
system states for that particular timestep on the diago-
nal elements, rather than 5% of the actual state as in-
dicated by Entekhabi et al. [13], and zero for the o�-
diagonal elements. The reason for this was that adding
5% of the state to the diagonal element of the system
covariance matrix at each timestep, independently of
timestep size and time between observations, results in
extremely large and unrealistic covariances.

Fig. 5 indicates that pro®le retrieval proceeds more
quickly as the observation depth is increased. However,
there is only a small time di�erence between complete
soil moisture pro®le retrieval for observations at the
surface node and an observation depth of 10 cm. The
updated moisture pro®le for the very ®rst update at time
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Fig. 4. Comparison of simulated soil temperature pro®les using direct insertion for the surface node (open circle) with the true soil temperature

pro®le (solid circle) and the open loop soil temperature pro®le (open circle with dot) for hourly observations. Soil temperature with depth for times

after the beginning of simulation: (a) time zero, (b) 2 days and (c) 20 days.
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1 h contains some artifacts, which are not present in
later updates. These artifacts are likely to be a result of
the initial state covariances and the poor initial guess.
However, as the retrieval algorithm proceeds, the state
covariance matrix is ``warmed up'' and the di�erence
between the forecast surface states and observations
becomes less, so that a more uniform and systematic

progression towards the true pro®le is achieved. As the
updating progresses, the Kalman ®lter continues to
make adjustments to the pro®le at deeper depths until
the true pro®le has been retrieved, at which stage the
retrieval algorithm continues to track the true pro®le.

Full soil moisture pro®le retrieval using the Kalman
®lter required approximately 12 h, independent of ob-

(a)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Hour 0.0

(b)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Hour 1.0

(c)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Hour 4.0

(d)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Hour 8.0

(e)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Hour 12.0

(f)

-600 -500 -400 -300 -200 -100 0
-100

-80

-60

-40

-20

0

Matric Head (cm)

D
ep

th
 (

cm
)

Day 2.0

Fig. 5. Comparison of simulated soil moisture pro®les using the Kalman ®lter for observation depths of 0 (open circle), 1 (open square), 4 (open

triangle) and 10 cm (open diamond) with the true soil moisture pro®le (solid circle) and the open loop soil moisture pro®le (open circle with dot) for

hourly observations; initial state variances 1000000 cm2, observation variances 2% of observations and system noise 5% of change in states. Soil

moisture with depth for times after the beginning of simulation: (a) time zero, (b) 1 h, (c) 4 h, (d) 8 h, (e) 12 h and (f) 2 days.
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servation depth (including observations at only the
surface node). This is compared to 8 days for the direct
insertion algorithm with observations over a depth of 10
cm, and no retrieval for observations at the surface
node. Full retrieval of the soil temperature pro®le using
the Kalman ®lter required approximately 2 days com-

pared with no retrieval for the direct insertion. These
simulations show that pro®le retrieval using the Kalman
®lter is a result of pro®le updating over depths greater
than the observation depth, and is not due to the ``ef-
fective'' Dirichlet boundary condition.
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Fig. 6. Comparison of simulated soil temperature pro®les using the Kalman ®lter for observations of the surface node (open symbols) with the true

soil temperature pro®le (solid circle) and the open loop soil temperature pro®le (open circle with dot) for hourly observations. Retrieved pro®les

correspond with moisture pro®le retrieval for observation depths of 0 (open circle), 1 (open square), 4 (open triangle) and 10 cm (open square); initial

state variances 1 000 000°C2, observation variances 2% of observations and system noise 5% of change in states. Soil temperature with depth for times

after the beginning of simulation: (a) time zero, (b) 1 h, (c) 4 h, (d) 12 h, (e) 1 day and (f) 2 days.
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Comparing these results with those of Entekhabi et
al. [13], their soil moisture pro®les have dried much
more quickly than the simulations here, presumably as a
result of di�erences in application of the boundary
conditions. In addition, convergence of our retrieved
pro®le towards the true pro®le progressed from the
surface down, rather than from the bottom of the pro®le
up, as seen in Entekhabi et al. [13]. An upward con-
vergence is counter intuitive as the updating is made
using observations of the near-surface, meaning that this
near-surface information should be passed down the
pro®le. Downward convergence is also seen in the re-
sults of Galantowicz et al. [15]. Moreover, Kalman ®lter
retrieval of moisture pro®les in this study was achieved
more quickly than by Entekhabi et al. [13], approxi-
mately 5 days as compared to our 12 h.

As the observations used by Entekhabi et al. [13] for
pro®le retrieval were simulated brightness and thermal
infra-red temperatures, and the observations used here
were the system states (matric head and soil tempera-
ture) for a given observation depth, the observation
noise for these two situations are di�erent. In addition,
it is unclear how Entekhabi et al. [13] applied their
system noise, and what value was assigned to the initial
pro®le variances. These three factors contribute to the
di�erences observed between the results here and of
Entekhabi et al. [13].

5.4. Updating once every 5 days

An observation frequency of once every hour is un-
realistic for any practical application of pro®le retrieval
from remote sensing observations. At best we may ex-
pect a repeat coverage of once every day. However, a
repeat coverage of once every 5 days or greater is more
probable, at least for the near future. Therefore the di-
rect insertion and Kalman ®lter assimilation schemes
were investigated for their ability to retrieve moisture
and temperature pro®les with observations once every 5
days.

5.4.1. Direct insertion
It was shown in the previous simulations that a mass/

heat balance problem existed with the direct insertion
assimilation scheme, particularly for observations at the
surface node alone. To alleviate this mass/heat balance
problem, a continuous Dirichlet boundary condition
was applied for a period of 1 day after the direct inser-
tion update. In applying this boundary condition, the
soil moisture observation was held ®xed over the 24-h
period while the temperature observation was altered for
each hour of the 24-h period. The justi®cation for this is
that soil moisture does not generally change by more
than a few percent during the course of the day, unless it
is raining. However, soil surface temperature presents a
strong diurnal variation, which needs to be accounted

for. Thus, the assumption made is that the diurnal soil
surface temperature variation can be modelled
throughout the course of the day, based on the one time-
of-day measurement. It was not necessary to be able to
model this diurnal variation in such a way for the pre-
liminary investigations given here, as we were primarily
interested in testing the idea. Hence, the true surface soil
temperature values were used for adjusting the contin-
uous Dirichlet boundary condition each hour.

Simulation results from the direct insertion algorithm
are given in Fig. 7 (soil moisture) and Fig. 8 (soil tem-
perature). These results assert the obvious advantage of
knowing the true surface soil moisture and temperature
values for a greater period of time (compare with Figs. 3
and 4). As indicated previously, the observation depth is
not as signi®cant for the direct insertion retrieval algo-
rithm with a continuous Dirichlet boundary condition,
due to the mass change being more dependent on the
length of time for which the Dirichlet boundary condi-
tion is applied than on the depth over which it is applied.
Thus, only minimal di�erences are observed in the re-
trieved moisture pro®les, with full pro®le retrieval tak-
ing approximately 40 days for an observation depth of
10 cm. The soil temperature pro®le is also fully retrieved
after approximately 40 days, with true and retrieved
pro®les di�ering by approximately 0.5°C at depth.

As the e�ectiveness of pro®le retrieval using the direct
insertion retrieval algorithm is determined by the length
of time over which a continuous Dirichlet boundary
condition is applied after the update, especially as the
time between observations is increased, it was felt to be
advantageous to identify if there was a simple relation-
ship between update interval and length of time for
Dirichlet boundary condition, in order to achieve the
same rate of pro®le retrieval. To investigate this, the
Dirichlet boundary condition was applied for a ®xed
proportion of the update interval. Thus, updates were
made every day, 2 and 4 days, with a continuous Di-
richlet boundary condition for 1, 2 and 4 h, respectively.
The results from these simulations showed conclusively
that the relationship between update interval and the
proportion of update interval for which a Dirichlet
boundary condition must be applied in order to achieve
the same pro®le retrieval rate with the direct insertion
retrieval algorithm is not constant. In fact, it was found
that as the interval between observations was increased,
knowledge of the true surface soil moisture and tem-
perature was required for a greater proportion of the
update interval. This highlights the greater importance
of more frequent observations, than of the length of
time for which knowledge of the true surface states are
available.

5.4.2. Kalman ®lter
Pro®le retrieval simulations using the Kalman ®lter

retrieval algorithm were initially commenced with the
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same initial state variance and noise as used in hourly
updating simulations. This however yielded very poor
updates of the moisture pro®le, due to poor forecasting
of the model covariance matrix and consequently di�-
culty updating the states. This was a result of lineari-
sation of an extremely nonlinear model.

In order to achieve a stable update of the moisture
pro®le, it was necessary to reduce the initial state co-
variance to 10, 5 and 15 cm2 for observation depths of 1,
4 and 10 cm, respectively. Reduction of the initial state
variances to such low values forced the Kalman ®lter to
weight to the model estimate more than the observation.
Thus, full retrieval was achieved after approximately 30
days for the 10 cm observation depth, with the retrieval
for shallower observation depths proceeding more
slowly. Such small values for the initial state variance
indicated a unrealistically high con®dence in the poor
initial estimate. Furthermore, satisfactory pro®le re-
trieval was strongly dependent on the initial state vari-
ance, with large di�erences in the soil moisture pro®le
retrieved for slight changes in the initial state variance.

5.5. Improved heuristics for the Kalman ®lter

In view of these stability issues, improvements in the
Kalman ®lter assimilation scheme were explored: (i) use
of quasi observations to constrain the update of deeper
depths; (ii) log transformation to reduce the di�erence
between the observations and the model forecast; and
(iii) volumetric soil moisture transformation to reduce
the nonlinearity of the soil moisture pro®le, particularly
near the soil surface, and to reduce the di�erence be-
tween observation and model forecast.

5.5.1. Quasi observations
Near-surface observations of soil moisture are indi-

cative of the soil moisture at depth. Thus, it was pro-
posed to apply the actual observations over the
observation depth, and ``quasi'' observations to the re-
mainder of the moisture pro®le, as illustrated in Fig. 9.
The quasi observations could either be: (i) the observed
soil moisture at the observation depth; or (ii) an ex-
trapolation of the soil moisture observation at the ob-
servation depth by the steady-state assumption. We
chose to apply the steady-state assumption, as this has
been shown to be a reasonable approximation under low
¯ux conditions [20]. To account for the greater uncer-
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Fig. 7. Comparison of simulated soil moisture pro®les using direct insertion with a Dirichlet boundary condition for 1 day over observation depths

of 1 (open circle), 4 (open square) and 10 cm (open triangle) with the true soil moisture pro®le (solid circle) and the open loop soil moisture pro®le

(open circle with dot) for observations each ®ve days. Soil moisture with depth for times after the beginning of simulation: (a) 10 days, (b) 20 days

and (c) 40 days.
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tainty associated with the quasi observations, there was
a quantile jump applied to the variance of the quasi
observation immediately below the observation depth,
relative to the variance of the actual observations. An
increasing quasi observation variance with depth was
then applied (see Fig. 9).

Results using the quasi observations are given in Fig.
10 (soil moisture) and Fig. 11 (soil temperature). These
results show that full retrieval of the soil moisture pro®le
is realised after 10 days (two updates) whilst full re-

trieval of the soil temperature pro®le is realised after 15
days. This is compared with 40 days for soil moisture
and temperature retrieval using direct insertion with an
observation depth of 10 cm and Dirichlet boundary
condition for 1 day. This again shows the advantage of
the Kalman ®lter. However, the quasi observation
Kalman ®lter still has problems. Once full pro®le re-
trieval is achieved, the Kalman ®lter retrieval lgorithm
continues to track the true pro®les until day 30, when
the retrieved soil moisture pro®le drifts from the true
pro®le. This is caused by the departure of the true pro®le
from steady state with largely negative matric heads
near the surface. Under ®eld conditions the situation
would be unlikely, as evaporation would not occur at a
constant rate, so allowing capillary rise during periods
of low evaporation. Thus, this departure from the true
pro®le at later updates does not warrant major concern.

5.5.2. Log transformation
Whilst application of quasi observations to the re-

mainder of the un-observed moisture pro®le was re-
quired in order to provide stability to the Kalman ®lter
update for the 5-day observation period, temperature
pro®les could still be easily retrieved with only the sur-
face observation. It would appear from this, that so long
as the observations are not too far from the forecast
system states, the Kalman ®lter could provide a stable
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Fig. 9. Illustration of the Kalman ®lter using quasi observations.
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Fig. 8. Comparison of simulated soil temperature pro®les using direct insertion with a Dirichlet boundary condition for 1 day at the surface node

(open circle) with the true soil temperature pro®le (solid circle) and the open loop soil temperature pro®le (open circle with dot) for observations each

®ve days. Soil temperature with depth for times after the beginning of simulation: (a) 10 days, (b) 20 days and (c) 40 days.
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update. Thus, if the di�erence between the observed and
forecast moisture values could be reduced, it may be
possible to retrieve the moisture pro®le using only the
moisture observations down to the observation depth.
One way in which this di�erence can be achieved is
through a log transformation of the matric head (Fig.
12). Both observations and forecast system states and
their covariances were transformed into log space. After
the update, the updated system states and their covari-
ances were transformed back into the original system [5].

Using the log transformation, it was possible to
achieve stable pro®le retrieval using the 1-cm observa-
tion depth without quasi observations, for an initial
state variance of 1000000 cm2 , system state noise of
15% of the states per hour, and observation noise of 2%
of the observations. Full pro®le retrieval was achieved
after 10 days. However, the ®rst update (day 5) was very
sensitive to the initial state variance and the system state
noise, with other values providing unstable updates as
before.

5.5.3. Volumetric moisture transformation
Whilst the log transformation reduced the di�erence

between the observations and model predictions, the
transformed pro®le maintained the large gradient of

matric head with depth near the surface. However, the
corresponding volumetric soil moisture pro®le does not
exhibit this same feature, as soil moisture is constrained
by the residual soil moisture and porosity. Thus, a soil
moisture transformation reduces the di�erence between
observations and model predictions, as well as the
nonlinearity of the pro®le, particularly in the vicinity of
the near-surface observations.

The problem associated with transforming matric
head into volumetric soil moisture is the assumption of
normality. That is, when the soil moisture approaches
the residual soil moisture or the porosity, the transfor-
mation of the covariances from matric head to volu-
metric soil moisture [32] predicts that the standard
deviation should be small, as volumetric soil moisture
cannot be less than the residual soil moisture or greater
than the porosity. What is not recognised is that the
forecast soil moisture may be much wetter in the dry
case or much drier in the wet case. The problem that this
creates is that the Kalman ®lter interprets these small
standard deviations as a high degree of certainty in the
model prediction and ignores the observation. To
overcome this, a limit was placed on the minimum value
for oh=ow to ensure that reasonably large standard de-
viations were maintained for the transformed system
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Fig. 10. Comparison of simulated soil moisture pro®les using the Kalman ®lter for observation depths of 0 (open circle), 1 (open square), 4 (open

triangle) and 10 cm (open diamond) with the true soil moisture pro®le (solid circle) and the open loop soil moisture pro®le (open circle with dot) for

observations every 5 days; quasi observations over remainder of pro®le with variances varying from 20% to 400% of observations. Initial state

variances of 1000000 cm2, observation variances 2% of observations and system noise 5% of states per hour. Soil moisture with depth for times after

the beginning of simulation: (a) 5 days, (b) 10 days and (c) 30 days.
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states near the soil surface, while ensuring that the
standard deviation was not greater than the porosity.

Using this moisture transformation, stable pro®le
retrieval was obtained for all observation depths apart
from the case of the surface node alone. The reason for
not being able to obtain retrieval for surface node ob-
servations was that the transformation process resulted
in a low correlation with forecast soil moisture at deeper
depths. The results from these simulations (Fig. 13)

show that full retrieval of the soil moisture pro®le was
realised after 10 days for the 10-cm observation depth
and 15 days for 1 and 4 cm observation depths. A larger
initial state variance was used for the 1-cm observation
depth (1000000 cm2) than for the 4 and 10 cm obser-
vation depths (10000 cm2) to ensure comparable stan-
dard deviations were obtained for surface nodes after
the transformation. Retrieval rates were slightly slower
than the quasi observation retrieval, which required 10
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Fig. 12. Illustration of log normal transformation of the matric head: (a) pre-transformation and (b) post-transformation.
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Fig. 11. Comparison of simulated soil temperature pro®les using the Kalman ®lter for observations of the surface node (open symbols) with the true

soil temperature pro®le (solid circle) and the open loop soil temperature pro®le (open circle with dot) for updates every 5 days. Retrieved pro®les

correspond with moisture pro®le retrieval for observations of 0 (open circle), 1 (open square), 4 (open triangle) and 10 cm (open diamond); initial

state variances of 1000000°C2, observation variances 2% of observations and system noise 5% of states per hour. Soil temperature with depth for

times after the beginning of simulation: (a) 5 days, (b) 10 days and (c) 20 days.
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days. Hence, only one extra update was required using
the moisture transformation. Furthermore, had soil
moisture been the dependent state in the model, pro®le
retrieval may have been achieved more rapidly, as the
transformation of covariances and its associated prob-
lems and assumptions would be eliminated. Thus, while
the w-based form of the moisture equation is a better
representation of the soil moisture pro®le and its dy-
namics, the h-based form is required for stable updating
with the Kalman ®lter when the soil becomes dry or
observations and model predictions are very di�erent.
Finally, the retrieved pro®le converged towards the true
pro®le at depth rather than at the surface. This was a
result of the covariance transformation.

6. Conclusions

It has been shown that the Kalman ®lter assimilation
scheme is superior to the direct insertion assimilation
scheme. Pro®le retrieval was unsuccessful for direct in-
sertion using the surface node alone, with observations
over some non-zero depth being required. The superi-
ority of the Kalman ®lter lies in its ability to adjust the
entire pro®le, whilst direct insertion can only directly

alter the pro®le within the observation depth. However,
the Kalman ®lter can only do this if there is a high
correlation between the soil moisture of adjacent depths.
Thus, the unsaturated soil moisture model used for this
purpose must be a function of the soil moisture of ad-
jacent nodes, so that correlations between adjacent
layers will be evolved by the covariance forecasting
equation.

Being unable to directly alter more than the observed
soil moisture values means that mass/heat imbalance
cannot be readily corrected by direct insertion, as the
mass/heat added during an instantaneous direct inser-
tion update is restricted by the depth of the observation.
Thus, an increased observation depth is an advantage
for the direct insertion assimilation scheme. As the ob-
servations become less frequent, the direct insertion re-
trieval algorithm requires a continuous Dirichlet
boundary condition, which must be applied for an in-
creasingly longer proportion of the update interval.
Again, this results from the mass/heat balance. This
would indicate that more frequent observations are
more useful for pro®le retrieval than knowledge of the
surface observations for a greater period of time. The
mass added during a continuous Dirichlet boundary
condition is constrained by the physical rate at which
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Fig. 13. Comparison of simulated soil moisture pro®les using the Kalman ®lter for observation depths of 1 (open circle), 4 (open square), and 10 cm

(open triangle) with the true soil moisture pro®le (solid circle) and the open loop soil moisture pro®le (open circle with dot) for updates every 5 days;

moisture transformation of states and state covariances. Initial state variances of 1 000 000, 10 000 and 10000 cm2, observation variances 2% of

observations and system noise 5% of states per hour. Soil moisture with depth for times after the beginning of simulation: (a) 5 days, (b) 10 days,

(c)15 days and (d) 30 days.
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moisture can be transferred through the pro®le, and the
length of time for which the continuous Dirichlet
boundary condition is maintained. Thus, the observa-
tion depth has a reduced in¯uence on the retrieval time
when the Dirichlet boundary condition is applied.

It has been shown that observation depth does not
have a signi®cant e�ect on the pro®le retrieval time for
the Kalman ®lter assimilation scheme. This is because
the Kalman ®lter is able to modify the soil moisture
below the observation depth due to the correlation be-
tween soil moisture states at depth. However, it has been
observed that unrealistic updating of the pro®le can
occur when observations become less frequent, the ob-
served and modelled pro®les are far apart, there is a
large uncertainty in the modelled pro®les, and the model
state pro®le is extremely nonlinear in the vicinity of the
observation. This again highlights the importance of
frequent observations, and suggests that for the Kalman
®lter assimilation scheme, repeat coverage frequency is
more important than observation depth. It has also been
shown that the Kalman ®lter retrieval algorithm is less
susceptible to unstable updates if volumetric soil mois-
ture is modelled as the dependent state.

This desktop study has shown that surface soil
moisture data is useful for correcting errors in simulated
soil moisture pro®les as a result of poor initialisation.
Moreover, future studies should concentrate their e�orts
on the use of statistical assimilation schemes such as the
Kalman ®lter, which have the ability to make correc-
tions to the unobserved portion of the soil pro®le di-
rectly. However, the soil moisture model used for
application of the Kalman ®lter should be as linear a
representation of the soil physical processes as possible,
such as the h-based Richards' equation. Having shown
the usefulness of assimilating surface soil moisture, the
advantages of the Kalman ®lter over direct insertion and
the potential problems that may be encountered with the
Kalman ®lter, this study has paved the way for a ®eld
application of the Kalman ®lter assimilation scheme,
which will be discussed in a forthcoming paper.
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