
1536-1225 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2021.3068393, IEEE
Antennas and Wireless Propagation Letters

1

Probabilistic attenuation nowcasting for the 5G
telecommunication networks

Jayaram Pudashine, Carlos Velasco-Forero, Mark Curtis, Adrien Guyot, Valentijn R.N. Pauwels, Jeffrey P. Walker,
and Alan Seed

Abstract—In this paper, we propose a novel approach to
produce attenuation forecasts for microwave links using a prob-
abilistic approach. It uses ensembles of forecast rainfall fields to
easily derive attenuation forecasts for specific frequencies. The
proposed approach uses the Short Term Ensemble Prediction
System (STEPS) to generate ensembles of high, spatial and
temporal, resolution forecast rainfall fields based on observed
weather radar fields with lead times of 15 to 90 minutes. Atten-
uation forecasts could eventually be used by telecommunication
operators to drive the operation of wireless networks and ensure
their maintenance during severe and extreme rainfall events. This
study used 109 microwave links ranging from 15 to 40 GHz
to verify the results of this probabilistic attenuation forecast.
Results suggest that the STEPS-based attenuation forecasts were
within the narrow span of the 90 percent confidence region for
all microwave links tested up to 30-minute lead time, decreasing
for longer lead times. Examples of how the proposed approach
can be used to derive detailed probabilistic attenuation forecast
for multiple lead times within a domain of few kilometers, as well
as probability of attenuation maps for large areas are shown.

Index Terms— attenuation, 5G mobile communication, wireless
communication.

I. INTRODUCTION

W IRELESS communication providers are currently fac-
ing an unprecedented challenge to meet the user

demand for high-speed data transfer [1]. This is putting
significant pressure on the available spectrum allocations of
telecommunication operators and to its existing backhaul net-
works. Currently, mobile carriers are relying on frequencies
from 700 MHz to 8 GHz which are almost at saturation level
[2]; thus the wireless providers have been rolling out the
fifth-generation (5G) wireless communication in recent years.
Studies have showed that millimetre wave (1 mm to 10 mm)
frequencies ranging from 30 to 300 GHz could be used to
supplement the saturated spectrum bands for wireless com-
munication [1]. However, these millimetre wave frequencies
suffer more signal attenuation when the electromagnetic wave
propagates through the air than at the longer wavelengths,
mostly due to oxygen absorption and liquid precipitation.
Precipitation or rainfall is a flux of water measured in kilogram
per square meter which is derived based on the drop size
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distribution and the fall velocity of the rain drops. Also,
the attenuation due to this flux is a function of the size
and distribution of rain droplets [3]. This poses additional
challenges to the telecommunication engineers who must
design efficient and reliable networks to meet user demands.
Moreover, the existing backhaul networks need to be upgraded
to higher frequencies to handle the greater data volumes,
whereby rainfall will again have a significant impact on signal
attenuation, particularly during heavy rainfall events.

To overcome the impact of rainfall, 5G networks are likely
to be deployed in a dense cell with a radius of few hundreds
of meters. The International Telecommunication Union (ITU)
developed a model to compute the probability of rain rates
at various geographical locations using historical data [3].
However, extreme rainfall is inevitable and predicted to be
more frequent in a changing climate [4], so the ITU model
may not represent future or current conditions. Accordingly,
innovative ideas have been proposed to address these issues
so as to ensure the resiliency of an operational network during
extreme weather conditions [5, 6]. One of the propositions is to
periodically update the network topology [7–9] and other is to
use rain-related link states to improve the routing mechanism
[10, 11]. Both of these ideas used a priori information on
the attenuation of the future conditions of the links which
were based on the radar echoes of rainfall. Thus, having a
reliable and timely short-term rainfall prediction (also known
as nowcast) could be helpful for designing a more resilient
wireless network during extreme weather conditions. Thanks
to the well-described and robust power relationship between
rainfall and attenuation [3, 12, 13], predicted rainfall can easily
be converted to attenuation for a given frequency.

The term nowcast is commonly used for providing early
warnings of extreme events like floods and landslides [14].
Usually, this term refers to the forecast of precipitation or other
weather variables like wind or temperature, at high spatial
and temporal resolutions (1-10 min and 100-1000 m) with
short lead times (minutes to a few hours) which can provide
sufficient time and information for rapid response during
hazardous weather events. Examples of operational rainfall
nowcasting systems are the Short-Term Ensemble Prediction
System (STEPS) [15], RADVOR [16], and SWIRLS [17]. A
python-based open-source probabilistic nowcasting tool called
pySTEPS is also available and used essentially in research
setups [18]. These probabilistic nowcast rainfall products have
mainly been used for hydrological forecasting [19–21] to
predict and warn about flash and riverine flooding, and there
has been some topical usage in the aviation industry [22, 23].
However, rainfall nowcast data has never been used or tested

Authorized licensed use limited to: Monash University. Downloaded on March 30,2021 at 02:41:38 UTC from IEEE Xplore.  Restrictions apply. 



1536-1225 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2021.3068393, IEEE
Antennas and Wireless Propagation Letters

2

N

Km

0 10 20 30 40

S-band radar
15-20 GHz MW links (76)
20-30 GHz MW links (23)
30-40 GHz MW links (10)

Fig. 1. Microwave links from one operator for Greater Melbourne. The sub-
panel on the top-right shows microwave links above 30 GHz which are located
mainly around the Melbourne CBD. The Melbourne operational (S-band)
radar is located at Laverton (-37.852°, 144.752°) (Source of the background
map: OpenStreetMap).

for designing the topology of microwave links or their real-
time operation as a wireless communication network. This
paper provides for the very first time a spatial probabilistic
attenuation forecast, which could be used by telecommunica-
tion operators for designing and real-time decision making
of their networks. Consequently, the primary objective is
to demonstrate the potential of using short-term attenuation
forecast data by mobile network operators in operating and
maintaining wireless networks.

II. STUDY AREA AND DATASETS

The study site covered the Greater Melbourne area in the
Australian state of Victoria. The dataset used here contains
minimum, maximum and average Received signal level (RSL)
data over 15-minute intervals, from one of the cellular com-
munication operators within a radius of 200 km around the
City of Melbourne. A total of 109 microwave links (including
duplex links, lengths from 0.2 to 22 km) with a frequency > 15
GHz were selected for this study, as shown in Fig. 1. Among
the 109 links, 98 links were duplex, and 11 links were single-
channel links with a total of 60 unique links. These links were
grouped into three distinct frequency ranges, 15-20 GHz (76
links), 20-30 GHz (23 links), and > 30 GHz (10 links). The
rainfall dataset used here contains 10 rainfall events (including
both convective and stratiform rainfall) between October 2019
and April 2020. The detail of these events and selection
criteria are described in [24]. The 5-minute, 500-meter, rainfall
fields named Rainfields [25] were produced using weather
radar data from the Australian Bureau of Meteorology S-
Band operational weather radar located at Laverton (-37.852°,
144.752°) as shown in Fig. 1; refer to [25] for the detail quality
control of these products. For this study, the reference path
averaged rainfall was obtained by taking the average of the
overlaying cells of the rain field data along the path segment.

III. METHODS

A. Rainfall Nowcasting: Short Term Ensemble Prediction Sys-
tem (STEPS)

STEPS uses a multiplicative cascade scale decomposition
approach to generate high-resolution ensembles of rainfall

forecasts from weather radar rainfall observations for a short
period (usually up to 60 to 90 minutes ahead) [15, 26]. The
main goal of STEPS is that any predicted rainfall field exhibits
similar space-time structures to those of observed rainfall fields
over a range of space and time scales. STEPS was formulated
to blend an advection forecast from radar observations with a
noise model possessing the space-time properties of observed
rain fields [15, 27, 28]. In this study, the STEPS method was
used to predict ensembles of rainfall fields up to 90 minutes
ahead. For a deeper review of the history of rainfall nowcasting
and its evolution to the probabilistic framework used in this
study, please refer to [28].

B. Estimating attenuation from rainfall

Fundamental studies of rain-induced attenuation on mi-
crowave signals have shown that at any given microwave fre-
quency, the rainfall-attenuation relationship [3, 12, 13] can be
accurately approximated as a power law following k = αRβ ,
where, α and β are the coefficients dependent on the frequency
and polarisation of the microwave signal. Here, rain-induced
attenuation, also known as specific attenuation, is denoted by
k and typically expressed in logarithmic units of decibels
per kilometre (dB km−1) with rainfall rate R expressed in
millimeters per hour (mm h−1). Default values of the two
parameters are provided by the ITU-Radiocommunication [3].
However, for this study local parameters were obtained based
on three years of continuous drop size distribution data, as
collected by disdrometers located within Greater Melbourne
[29]. Also, to note, that the impact of temperature on the signal
attenuation is very minimal compared with the attenuation due
to rain [9, 30], thus this has not been considered separately in
this analysis.

C. Estimating probabilistic forecast attenuation

The proposed approach in this paper is to use the Short Term
Ensemble Prediction System (STEPS) to generate ensembles
of high, spatial and temporal, resolution forecast rainfall fields
from the latest observed radar rainfall fields for lead times of
15 to 90 minutes. Then, forecast attenuation for the frequency
of interest can be derived from these predicted rainfall rates
simply by using the rainfall-attenuation relationship (III-B). As
each location has already multiple possible predicted values
of rainfall for each lead time, multiple possible attenuation
values can be derived at each location. As it is shown in
the results section, these ensembles of forecast attenuation
values can be processed to derive probabilistic products such
as expected forecast attenuation along microwave links, chance
of exceedance of a given attenuation threshold in a small area
and for each location across large regions, among others.

D. Attenuation retrieval from CML data

In order to verify the quality of the here-proposed forecast
attenuation technique, the algorithm proposed by [31] was
used to derive attenuation from observed 15-minute RSL
dataset from Commercial Microwave Links (CML). This al-
gorithm was developed for rainfall retrieval from commercial
microwave links. A brief description is given below:
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a) Wet/Dry classification was based on the gauge-adjusted
radar data. Time steps for which the rainfall rate from radar
was greater than or equal to 0.1 mm h−1 were considered as
wet, and the remaining time steps were considered as dry.

b) Baseline signal was obtained based on the moving
median of the received signal level for the previous 24-hour
dry period.

c) Attenuation was obtained by deducting the baseline signal
from the received signal level. The result obtained was the
specific attenuation which was then multiplied with the total
path length to obtain the total link attenuation.

E. Evaluation Metrics

i) Root Mean Square Error: The root mean
square error (RMSE) was calculated per lead-time as√∑N

i=1(Fi −Oi)2/N , where are forecast and observed
attenuation at a given grid cell, and N corresponds to the
number of forecasts with the lead time t. RMSE has the
same unit as the observation and forecast, with lower values
indicating better performance.

ii) Receiver Operating Characteristics : The receiver
operating characteristics (ROC) curve provides a measure of
the predictive ability of a certain attenuation threshold with
the probabilistic forecast. For any event, the ROC curve can
be plotted with the probability of detection vs false alarm rate
for a predefined probability. For a skillful forecast, the curve
passes above the 1:1 line. Also the area under the ROC curve
is used to determine the skill of the forecast; when the area is
above 0.8 is considered excellent and above 0.9 outstanding
[32].

IV. RESULTS

To show the feasibility of using high spatial and tempo-
ral resolution rainfall nowcast data (STEPS) for forecasting
attenuation at the individual link level, Fig. 2 illustrates one
typical example of probabilistic attenuation predictions with
90% confidence interval for a 37.61 GHz link (length of 1.38
km) during one of the rainfall events. For lead times of 30-
minutes, the confidence regions covered most of the observed
attenuation data well with a narrow span, indicating that the
forecast attenuation was both correct and useful. As expected,
as lead time increases to 60 and 90 minutes the confidence
interval (CI) range widened indicating less confidence in the
attenuation prediction.

Fig. 3 and 4 illustrate how an ensemble rainfall forecast
obtained from STEPS can be converted to probabilistic atten-
uation forecast that could be further utilised to derive the ex-
ceedance probability of attenuation within a cell size of a few
kilometres. Fig. 3a shows the forecast rainfall field from 2020-
01-15 06:15 with a lead time of 15 minutes with a fast-moving
convective system passing across the Melbourne central busi-
ness district during this time. A single member taken randomly
from the 96-member rainfall ensemble is shown. Fig. 3b shows
a zoomed-in area within which a strong spatial contrast in
the rainfall intensity within 50 km radius was observed. Here,
one section of 2 km x 2 km was selected for this analysis,
labeled as ’cell A’. Although, a similar approach can be
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Fig. 2. Example of a time series plot for a CML above 30 GHz (37.61 GHz
with link length of 1.38 km) showing (a) minimum (Pmin), maximum (Pmax)
and average (Pavg) observed RSL data (b) comparison of rainfall estimates
based on radar and CML attenuation. Observed vs forecast (mean) attenuation
for (c) 30 min lead time (d) 60 min lead time; and (e) 90 min lead time with
90 % confidence interval shaded in blue for event 10 (2020-04-03 00:00 to
14:00 UTC).

applied for regions of any sizes and shapes. Rainfall intensities
obtained within cell A were converted to specific attenuation
for 65 GHz. Since STEPS produced 96 ensemble members, a
probabilistic representation of attenuation could be represented
by an attenuation exceedance probability function. Figure 4a
shows the complementary cumulative distribution function for
the attenuation of all the grid points within the 2 km cell for
four different lead times, 15, 30, 45 and 60 minutes. Results
shown that for cell A there is a 30% chance of exceeding 20
dB of attenuation for 15-minute lead time that grew up to a
40% chance for a 30-minute lead time and then reduced back
to 20% chance for 60-minute lead time. As this was a fast-
moving convective system, these distributions in the expected
attenuation for different lead times are likely associated to the
uncertainty in the expected arrival time and the intensity of
heavy precipitation into the cell. This analysis for a single
cell can be extended to all locations in the area of study to
construct a map, with probability of attenuation exceeding a
given threshold between points which are for example 500
m apart. Fig. 4b shows the probability of exceedance of an
attenuation of 2 dB km−1 at 65 GHz for a lead time of 30
minutes at a spatial resolution of 500 meters. From the Fig.
4b, areas with a higher probability of occurrence of attenuation
can be easily distinguished for this lead time. This information
can be used to estimate the total expected attenuation of a link
connecting any two locations within the study area, with those
links using the highest frequency likely to be more attenuated.

To further understand the performance of the attenuation
forecast for all links and rainfall events in the dataset, root
mean square error (RMSE) for three frequency groups of the
microwave links are presented in Fig. 5 for lead times from
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Fig. 3. (a) Forecast rainfall field obtained from one of the ensemble members
at 2020-01-15 06:30 UTC (15-min lead time forecast from 2020-01-15 06:15).
Red arrow indicates the direction of rainfall field. (b) Zoomed section showing
the high variability of the rainfall field.
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Fig. 4. (a) Cumulative distribution function of attenuation for different lead
times for 65 GHz within a radius of 2km from the center of a cell. (b)
Probability of attenuation between points 500 m apart for a threshold of 2 dB
km-1 and lead time of 30 minutes for 65 GHz.

15 to 90 minutes. As expected, RMSE for all three groups
increased with the lead time, however the extent of the spread
of the 90 % confidence interval for frequency groups above
30 GHz was higher than for the two other groups. Indeed,
higher frequency links suffered more from attenuation and
presented more noise in the RSL data as compared to the
lower frequency microwave links. In addition, the magnitude
of the average RMSE was also higher for the higher frequency
groups.

As an example for all three frequency groups of microwave
links, Fig. 6 shows the ROC curve for a 2 dB km−1 attenuation
threshold for different lead times. For all frequency groups, the
ROC curves were closer to the top left corner of the diagram
showing the ability to detect the probability of occurrence of
an attenuation above 2 dB km−1. This can also be explained
by the fact that the area under the ROC curve for all groups
and all lead times were higher than 0.79 (in the range of
excellent skill). Moreover, microwave links with a frequency
above 30 GHz showed better performance with higher ROC
area compared to the two other groups (for lead times up to
60 minutes; areas under the curve are higher than 0.9 which
is an outstanding skill of forecast). This is because higher
frequency microwave links are subjected to higher attenuation
from rainfall and higher noise to signal ratio than lower
frequency links. Also based on [33], there are other factors
such as elevation of Fresnel zone above the ground, nature of
ground surface, atmospheric propagation conditions, antenna
heights can also have some impact on signal attenuation.
However, many of these factors are difficult to dissociate and
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the main contributing factor is mainly due to precipitation and
atmospheric propagation conditions.

V. CONCLUSIONS

The main aim of this study was to investigate the feasi-
bility of using high spatial and temporal resolution rainfall
nowcast data for forecasting attenuation at the individual link
level. This was achieved by verifying the forecast against the
observed attenuation obtained from 109 links based on 10
rainfall events. Results showed that proposed rainfall-based
attenuation nowcast was able to predict observed attenuation
within the narrow 90 percent confidence interval for all of the
microwave links for up to 30-minute lead time. Confidence in
attenuation forecast decreased for longer lead times, with some
variability across individual events and microwave links. This
study also provided an example of probabilistic attenuation
map within a domain of few kilometers (likely resolution of
interest for the 5G network) and for the entire radar coverage.
This analysis was based on 10 rainfall events with most of
the events occurring during the summer season, and so it does
not cover the seasonal variation. Shorter and high-frequency
links are likely to be more affected by high intensity fast-
moving convective cells than widespread low-intensity rainfall,
thus future research should focus on performing verification
of such probabilistic forecast on tropical areas. Although,
the primary use of the nowcast rainfall data is to provide
a reliable and timely prediction of extreme weather rainfall,
this study has shown that attenuation forecasts can be derived
as a by-product of that weather prediction with minimal
additional effort. As this methodology is solely based on
radar observation, this may not be feasible in the area where
there is no radar coverage and there are uncertainties in the
radar observation itself due to the ground clutter, anomalous
propagation and beam spreading [34] which will impact the
attenuation forecast.

Authorized licensed use limited to: Monash University. Downloaded on March 30,2021 at 02:41:38 UTC from IEEE Xplore.  Restrictions apply. 



1536-1225 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2021.3068393, IEEE
Antennas and Wireless Propagation Letters

5

REFERENCES

[1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5g cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, 2013.

[2] H. B. Hamid Dutty and M. M. Mowla, “Weather impact analysis
of mmwave channel modeling for aviation backhaul networks in 5g
communications,” in 2019 22nd International Conference on Computer
and Information Technology (ICCIT), 2019, pp. 1–6.

[3] ITU-R, Recommendation ITU-R P.838-3, 2005.
[4] M. Tippett, “Extreme weather and climate,” npj Climate and Atmo-

spheric Science, vol. 1, no. 1, p. 45, 2018.
[5] J. Rak, P. E. Heegaard, and B. E. Helvik, “Resilience of communication

networks to random failures and disasters: An optimization perspective,”
Networks, vol. 75, no. 4, pp. 337–339, June 2020. [Online]. Available:
https://doi.org/10.1002/net.21940
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