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1. INTRODUCTION

Defensible requirements of a remote sensing
mission for the measurement of surface soil moisture
are of vital importance to scientists planning such a
mission. In particular, mission planners need:
(i) justification for polarization, wavelength and look
angle requirements of the sensor; and (ii) accuracy,
temporal resolution and spatial resolution requirements
of the measurement. The requirements of (i) have been
fairly well defined, with horizontally polarized L-band
radiometer measurements at a look angle of less than
50º yielding the greatest sensitivity to soil moisture.
However, the requirements of (ii) have been less well
defined. This paper seeks to address the first of those
three issues; measurement accuracy requirements. The
remaining two issues will be addressed in forthcoming
papers.

2. MODELS

The measurement accuracy requirement is
addressed in this paper through a synthetic data
assimilation study. First, a land surface model is used to
generate a “truth” data set that provides both the surface
soil moisture “observations” and the evaluation data.
The land surface forcing data and initial conditions are
then degraded to simulate the uncertainties in these
data and a second simulation performed. Finally,
simulations are made where the observations, with
various levels of error imposed, are assimilated into the
simulation with degraded atmospheric forcing data and
initial conditions.

2.1 Land Surface Model

The land surface model used in this study is the
catchment-based land surface model of Koster et al.
(2000), illustrated schematically in Figure 1. It uses a
non-traditional land surface model framework that
includes an explicit treatment of sub-grid soil moisture
variability and its effect on runoff and evaporation. A key
innovation in this model is the shape of the land surface
element, the hydrologic watershed as defined by the
topography, rather than an arbitrary grid.

This land surface model uses TOPMODEL (Beven
and Kirkby, 1979) concepts to relate the water table
distribution to the topography. The consideration of both
the water table distribution and non-equilibrium
conditions in the root zone leads to the definition of
three bulk moisture prognostic variables (catchment
deficit, root zone excess and surface excess) and a
special treatment of moisture transfer between them.
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Using these three prognostic variables, the catchment
may be divided into regions of stressed, unstressed and
saturated soil moisture regimes. The soil moisture
prognostic variable forecasting equations of the
catchment-based land surface model are given by:

esisrflowsrfexcsrfexc nn −+−=+1 (1)

evrzflowsrflowrzexcrzexc nn −−+=+1 (2)

etbaseflowrzflowcatdefcatdef nn ++−=+  1 , (3)

where srfexc is the surface excess, rzexc is the root
zone excess and catdef is the catchment deficit. The
redistibution between the surface and root zone
excesses is given by srflow=f(srfexc,rzexc) and
between the root zone excess and catchment deficit is
given by rzflow=f(rzexc,catdef). The baseflow is given
by baseflow=f(catdef), soil infiltration i, bare soil evap-
oration es, transpiration ev, evapotranspiration et and
soil moisture in the surface layer (2 cm) are given by
non-linear functions f(srfexc,rzexc, catdef). A complete
description of this model is given in Koster et al. (2000).

2.2 Kalman Filter

The Kalman filter algorithm tracks the conditional
mean of a statistically optimal estimate of a state vector
X and its covariance matrix ∑∑X, through a series of
forecasting and update steps. The forecasting equations
are:
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Figure 1: Schematic of the catchment-based land surface model.



where A is the state propagation matrix relating the
system states at times n+1 and n, U is a vector of
forcing, w is the model error and Q is the covariance
matrix of the system noise (model error), defined as
E[w⋅⋅wT]. The notation n+1/n refers to the system state
estimate at time n+1 from a forecasting step, and n/n
refers to the system state estimate from either a
forecasting or updating step at time n. The update
equations can be found in Bras and Rodriguez-Iturbe
(1985).

In this study, we have used a one-dimensional
Kalman filter for updating the soil moisture prognostic
variables of the land surface model. A one-dimensional
Kalman filter was used because of its computational
efficiency and the fact that at the scale of catchments
used, correlation between the soil moisture prognostic
variables of adjacent catchments is only through the
large-scale correlation of atmospheric forcing. Moreover,
all calculations for soil moisture in the land surface
model are performed independent of the soil moisture in
adjacent catchments.

Forecasting of the soil moisture prognostic variables
covariance matrix was achieved through linearization of
the soil moisture forecasting equations. The linearization
was performed by a first order Taylor series expansion
of the non-linear forecasting equations (1-3). Using this
approach, the covariance forecasting matrix is given by
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For the initial covariance matrix, diagonal terms
were specified to have a standard deviation of the
maximum difference between the initial prognostic state
value and the upper and lower limits, with off diagonal
terms specified as zero. The diagonal terms of the
forecast model error covariance matrix Q were taken to
be the predefined values of 0.0025, 0.025 and
0.25 mm/min for srfexc, rzexc and catdef respectively,
with the off diagonal terms taken to be zero.

3. SYNTHETIC EXPERIMENTS

To demonstrate the effect of observation error on
retrieval of the soil moisture profile by assimilation, a set
of synthetic experiments have been undertaken for the
entire North American continent.

3.1 Model Input Data

In this study, atmospheric forcing data and soil and
vegetation properties from the first International Satellite
Land Surface Climatology Project (ISLSCP) initiative
(Sellers et al., 1996) have been used as model input for
the year 1987. Soil properties not defined by ISLSCP
were assumed uniform with the values in Table 1. Total
soil depth had a variation of 1 to 3.6 m. Initial model

states were derived by driving the model to equilibrium
at the beginning of 1987.

3.2 Observation and Evaluation Data

Using the catchment-based land surface model of
Koster et al. (2000), the initial conditions from spin-up
and the model input data described above, the temporal
and spatial variation of soil moisture across the North
American continent was forecast for 1987. The forecasts
of surface soil moisture were output once every 3 days
to represent the soil moisture that would be measured
by a remote sensing satellite. In addition to surface soil
moisture observation data, this simulation provided the
data for evaluation of degraded simulations.

3.3 Degraded Simulation

To represent the errors associated with forecast
land surface states in a typical land surface model
simulation as a result of poor initial conditions and errors
in atmospheric forcing data, both the initial conditions
and forcing data were degraded. The initial conditions
were degraded by applying zero mean normally
distributed random perturbations with the standard
deviations given in Table 2, to each of the three soil
moisture prognostic variables from the original spin-up
data. The forcing data were similarly degraded using the
standard deviations in Table 2 to represent the
uncertainty associated with atmospheric forcing data, as
a result of both measurement and interpolation error.

Applying perturbations to precipitation was more
difficult than other forcing parameters, as the occurrence
of precipitation is an intermittent process. Hence,
precipitation was perturbed by a fraction of the
precipitation rate to account for spatial variability. To
account for the fact that precipitation could have
occurred even when the data suggested there was
none, a perturbation to precipitation was added
whenever a randomly distributed zero mean number
greater than three times its standard deviation was
generated. Under this situation, the standard deviation

Table 1: Uniform soil properties specified for North America.

saturated surface hydraulic conductivity 2.2×10−3 m s−1

transmittivity decay factor 3.26 m−1

saturated soil matric potential −0.281 m
Clapp and Hornberger (1978) b 4
root zone depth 1 m
wilting point 14.8 % v/v

Table 2: Standard deviations used for applying a normally distributed
random perturbation to the initial conditions and atmospheric forcing
data.

srfex 1 mm
rzex 10 mm
catdef 100 mm
convective precipitation 50% or 0.1 to 8 mm hr−1

total precipitation 50% or 0.1 to 8 mm hr−1

2 m air temperature 5 ° C
2 m dewpoint temperature 5 ° C
downward longwave radiation 25 w m−2

downward shortwave radiation 50 w m−2

surface pressure 1 kPa
10 m wind speed 1 m s−1



for the perturbation was taken as 1 mm hr-1, multiplied
by the ratio of mean annual precipitation for the
catchment (55 mm to 4595 mm) to the average mean
annual precipitation (595 mm) for the North American
continent.

As wind speed, downward radiation and precip-
itation cannot be negative, negative values after
perturbation were truncated to zero. A time series
histogram of the error introduced into the precipitation is
given in Figure 2a and the error introduced in soil
moisture forecasts for the entire soil profile is given in
Figure 2b. Both of these figures indicate a small wet
bias in the degraded simulation during summer months.

In view of the fact that this study assumed a perfect
model, significant error in the degraded simulation was
ensured by degradation in both initial conditions and
atmospheric forcing, namely precipitation. Since the
catchment-based land surface model operated at the
dry end of the scale over much of the North American
continent in the evaluation simulation, any significant
error introduced in the model must be on the wet end of
the scale. Hence the degraded simulation resulted in a
wet bias, both in the initial condition and forecasts of the
pursuing summer months. Model error could have been
accounted for by generating the observation and
evaluation data from a different land surface model
scheme, but that would not have had a significant
influence on the resulting conclusions drawn from this
study.

3.4 Degraded Observations

The effect of error in surface soil moisture
observations is demonstrated by adding zero mean
normally distributed perturbations to the surface soil
moisture observation data set described above.
Standard deviations used for generating perturbations
were 1, 2, 3, 4, 5 and 10% v/v.

3.5 Effect of Observation Error

To demonstrate the effect of observation error on
soil moisture profile retrieval, individual simulations were
made where the degraded observation data were
assimilated into the degraded simulation described

above. The resulting time series histogram for errors in
the retrieved soil moisture for the entire soil profile is
given in Figure 2c for perfect observations, and
Figure 2d for observations with 4% v/v error. In both
situations the bias in the soil moisture forecast has been
improved, but the amount of error in the forecast has
increased for the latter.

The effect of observation error on soil moisture
profile retrieval can be seen further in Figure 3. This
figure shows that the root mean square (rms) error in
both soil moisture retrieval and evapotranspiration
forecasts increased with observation error, with an
observation error of less than 3% v/v required for soil
moisture retrieval to be better than the original degraded
simulation. However, the rms error in evapotranspiration
forecasts was always greater than for the original
degraded simulation, but provided the observation error
was less than 3% v/v there was an improvement in the
evapotranspiration bias. For soil moisture however,
provided the observation error was less than 5½% v/v
there was an improvement in the bias.

3.6 Effect of Forcing Bias

Figure 2 showed that soil moisture forecasts for the
entire soil profile had a wet bias in the original degraded
simulation, as a result of a wet bias in the precipitation
forcing. However, this switched to a dry bias in the
retrieved soil moisture profile for perfect observations,
while the simulation with greater observation error still
had a slight wet bias. This switching in the bias can be
seen more clearly in Figure 3b.

The bias in retrieved soil moisture for the entire soil
profile is the result of a violation of one of the key
assumptions of the Kalman filter; that the continuous
time error process w is a zero mean Gaussian white
noise stochastic process. Since the precipitation field
was wet biased, the surface soil moisture was always
wet biased. The Kalman filter recognized that the soil
moisture in the surface layer had a strong link with the
sub-surface, so a dry bias was introduced in the deep
layer to counteract this wet bias in the surface layer. As
the observation error was increased, the weight given to
observations relative to model forecasts was decreased,

Figure 2: Time series (vertical axis) histogram (% of catchments) of a) errors in precipitation (horizontal axis - mm/day); and errors in soil moisture for
the entire soil profile (horizontal axis - % v/v) for b) no assimilation, c) assimilation of perfect observations and d) assimilation of observations with
4% v/v error.

a b c d



meaning that the assimilation could not have as large an
impact on the sub-surface soil moisture.

To further illustrate the effect of forcing bias on soil
moisture retrieval and evapotranspiration forecasts,
additional simulations were made without any
information on precipitation and with a perturbation
standard deviation of 100% on precipitation. The effect
of this precipitation bias on soil moisture profile retrieval
can be seen in Figure 4. This figure shows that rms
errors in soil moisture and evapotranspiration forecasts
are improved irrelevant of precipitation bias when
perfect observations are assimilated. However, the best
results were obtained when the precipitation bias was a
minimum. The resulting bias in surface soil moisture and
evapotranspiration forecasts with assimilation were
largely unaffected by the bias in precipitation, but the
soil moisture forecasts for the root zone and entire soil
profile were heavily impacted. Moreover, these results
have shown that it is better to use poor information on
precipitation than to use no information on precipitation.

4. CONCLUSIONS

This study has shown that the observation error in
surface soil moisture must be less than the error
required in model forecasts of soil moisture, else a slight
degradation of the model forecasts may result. Typically,
observations of surface soil moisture must have an
accuracy better than 5% v/v. This study has also shown
the importance of unbiased forcing in an assimilation
framework. This is a result of assumptions made by the

assimilation algorithm. Bias in the observations would
likely have a similar effect on the resulting forecasts. A
forthcoming paper will discuss the impact of temporal
and spatial resolution.
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Figure 4: Effect of precipitation bias on: a) surface (circle), root zone (square) and profile (triangle) soil moisture rms error; b) surface (circle), root zone
(square) and profile (triangle) soil moisture mean error; and c) evapotranspiration rms (square) and mean (circle) error. Simulations with assimilation
(solid symbols) are compared with the simulation without assimilation (open symbols).
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Figure 3: Effect of observation error in surface soil moisture data on: a) surface (circle), root zone (square) and profile (triangle) soil moisture rms error;
b) surface (circle), root zone (square) and profile (triangle) soil moisture mean error; and c) evapotranspiration rms (square) and mean (circle) error.
Simulations with assimilation (solid symbols) are compared with the simulation without assimilation (open symbols).
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