
1.  Introduction
Accurate predictions of flood inundation are vital to the disaster risk management cycle, so as to trigger 
appropriate responses from humanitarian organizations, first responders, and end users alike (Alfieri 
et al., 2018; Trigg et al., 2016). Flooding alone accounted for almost half of all the hydrometeorological dis-
asters recorded over the last 2 decades, affecting approximately 2.3 billion people or one-third of the global 

Abstract  Accurate flood inundation forecasts have the potential to minimize socioeconomic losses, 
but uncertainties in inflows propagated from the precipitation forecasts result in large prediction errors. 
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Plain Language Summary  Accurate forecasts of flood inundation can minimize 
socioeconomic losses from the frequent and often disastrous flood events occurring world-wide. However, 
numerical models used to generate flood predictions are strongly dependent on the quality of inputs such 
as inflows and topography, which typically fail to meet the required accuracy standards. Recent studies 
suggest that integrating independent flood observations into these numerical models can mitigate some of 
the errors and increase the reliability of the resulting flood forecasts. Remotely sensed radar data, which 
has all-weather/all-day imaging capabilities, can thus accurately observe flooded areas. These flood extent 
observations can then be used to improve flood forecasts through model-data integration, but studies have 
struggled to develop an effective approach to combine these with numerical models, as the area under 
water only varies slightly with time. Consequently, this study proposed a novel model-data integration 
method, sensitive to slight variations in the flooded area, and verified its performance through synthetic 
experiments. At each time step shared information between the model predicted and the observed flooded 
area is quantified and used to combine their information content. This led to persistent improvements in 
predictions of flood extent, depth, and velocity, demonstrating the potential of the proposed integration 
method.
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population (CRED and UNISDR, 2015). Future flood risk is expected to increase as a function of population 
growth and unbridled urbanization of flood plains and coastal zones, leading to increased flood vulnerabili-
ty (CRED and UNISDR 2016; Dottori et al., 2020; Smith et al., 2019; Uhe et al., 2019). Therefore, operational 
flood forecasts need to provide precise information on runoff generation, runoff concentration, streamflow 
propagation, and floodplain inundation processes (Emerton et al., 2016; Grimaldi et al., 2016; Kauffeldt 
et al., 2016; Lavers et al., 2019). Consequently, typical flood forecasting systems comprise of hydrological 
models capable of describing the run-off generation from a given rainfall event, coupled with hydraulic 
models for predicting flooded zones, water depths and flow velocities within the channel network and flood 
plains (Grimaldi et  al.,  2018, 2019). However, uncertainty in inputs, parameters, process representation 
(e.g., model equations), numerical precision, and spatiotemporal discretization, strongly impacts the accu-
racy and reliability of flood forecasts, severely hampering effective decision-making during crises (Haile & 
Rientjes, 2007; Hostache et al., 2018; Ward et al., 2015).

In order to mitigate forecast uncertainties, the model cascade has historically been calibrated using in situ 
hydrometric measurements. However, an ongoing global decline in the number of gauging stations (Re-
villa-Romero et al., 2016), has urged developments in complementary directions such as remote sensing 
(Schumann & Domeneghetti, 2016) and crowdsourcing (Buytaert et al., 2016). Moreover, point measure-
ments (0-Dimension or 0D) of streamflow and water level (WL) are not commensurate with the now widely 
used 2D-models, and therefore cannot effectively constrain model predictions in the floodplain (Hostache 
et al., 2009; Pappenberger et al., 2007). Earth Observation (EO) data has thus become a popular and attrac-
tive alternative for model implementation, calibration, and validation, and to improve forecast skill through 
assimilation (Grimaldi et al., 2016). Synthetic Aperture Radar (SAR) sensors are particularly preferred for 
flood detection due to their all-weather all-day imaging capabilities (Dasgupta et al., 2018a). For example, 
García-Pintado et al. (2015) assimilated WLs derived from the intersection of SAR-based flood extent maps 
with high accuracy LiDAR elevation data; Wood et al. (2016) used SAR-derived flood extent maps for hy-
draulic model calibration; Hostache et al. (2018) assimilated flood extent maps; and Cooper et al. (2019) 
directly used backscatter values to reduce flood forecast uncertainty.

As evident from the comprehensive review of hydraulic data assimilation (DA) studies in Table 7 of Grimal-
di et  al.  (2016), most studies have focused on assimilating synthetic (Garambois et  al.,  2019; Giustarini 
et al., 2011; Matgen et al., 2010; Tuozzolo et al., 2019), in situ (Van Wesemael et al., 2019; Ziliani et al., 2019), 
or remote sensing-derived water levels (RSD-WLs) (Giustarini et al., 2012; Lai & Monnier, 2009). Unlike 
water depth, which is a state variable of hydraulic models, flood extents are derived prognostic variables (Lai 
et al., 2014). This makes the assimilation of RSD-WLs significantly more straightforward than the direct as-
similation of flood extents (Hostache et al., 2018). However, the accuracy of the retrieved WLs from remotely 
sensed flood extents is highly dependent on the digital elevation model (DEM) accuracy and resolution. 
Since the DEM is used as an input to the hydraulic model as well as for the retrieval of WLs, the assimilation 
of satellite-derived WLs may also introduce bias, because the observation and the model are no longer inde-
pendent from each other (Schumann et al., 2008). Even though the accuracy of Global DEMs is improving 
(Archer et al., 2018; Hawker et al., 2019; Yamazaki et al., 2017), the vertical accuracy is often insufficient 
for application at local scales (Schumann & Bates, 2018). Moreover, Hostache et al. (2018) argue that spatial 
flood information is lost during the interpretation of RSD-WLs, as the integration of flood extents and DEMs 
can only reliably deliver water heights at a few shoreline points (Mason et al., 2016, 2012; Shastry & Du-
rand, 2019). Since the derivation of RSD-WLs is neither straightforward nor automatic, incorporating such 
assimilation frameworks into operational forecasting systems remains a challenge (Hostache et al., 2018).

Given the limitations of WL assimilation, recent studies have focused on developing techniques to directly 
assimilate flood extents (Lai et al., 2014; Hostache et al., 2018; Revilla-Romero et al., 2015, 2016; Shastry & 
Durand, 2019). While both Lai et al. (2014) and Revilla-Romero et al. (2016) interpreted inundation extents 
as a function of the internal model states, to develop the cost function for assimilation (i.e., water depth 
and discharge), Hostache et al. (2018) directly utilized the flood extents. The study by Lai et al. (2014) was 
a proof of concept, using the 4D-Variational technique and a single flood extent map derived from Mod-
erate resolution Imaging Spectroradiometer (MODIS) images at 250 m resolution to optimize a lumped 
friction parameter. In contrast, Revilla-Romero et  al.  (2016) used the Ensemble Kalman Filter (EnKF) 
to assimilate surface water extent observations at 0.1  ×  0.1° from the Global Flood Detection System  
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(http://www.gdacs.org/flooddetection), to improve near real-time (NRT) global flood forecasts. In spite of 
its popularity in hydrological data assimilation literature (e.g., Patil & Ramsankaran, 2017, 2018), one of 
the key limitations of the EnKF is the assumption of Gaussianity for model and observation errors (Morad-
khani et al., 2005b, 2019). As this assumption does not hold for assimilation of SAR-derived flood observa-
tions (Matgen et al., 2010), some studies have recommended the use of a particle filter (PF) framework (Gi-
ustarini et al., 2011; Hostache et al., 2018; Matgen et al., 2011). For example, Hostache et al. (2018) used PFs 
to assimilate flood extents derived from ENVISAT ASAR images (spatial resolution of 150 m – resampled to 
75 m) into the hydraulic model LISFLOOD-FP and achieved improvements of up to 50% in simulated WLs 
at the assimilation time step.

Variations in modeled or observed flood extents are typically only limited to the boundary of the flooded area. 
Thus, developing a flood extent-based likelihood to isolate the best performing ensemble members which can 
efficiently drive the assimilation is a significant scientific challenge (Lai et al., 2014). For instance, Cooper 
et al. (2019) proposed the conversion of modeled binary flood extents into synthetic SAR observations, and 
inter compared the wet and dry backscatter observations at the flood boundary with actual SAR images. While 
directly utilizing backscatter values reduces the processing time, it discards any information contributed by 
the addition of texture (Dasgupta et al., 2018b) or coherence (Chini et al., 2019), which may reduce uncertain-
ties. Therefore, Hostache et al. (2018) proposed the assimilation of probabilistic flood maps from SAR images 
in their pioneering study, whereby forecasts were updated through direct flood extent comparisons. Accord-
ingly, local pixel-wise likelihoods were computed through a binomial comparison of the model and observa-
tion, while the joint probability density used as the global weight was computed as a product, by assuming 
negligible spatial correlation among observation errors (Hastie et al., 2009). This assumption is slightly unre-
alistic as speckle dominates SAR image errors, which is caused by backscatter interference among targets in 
the same or neighboring elementary resolution cells potentially resulting in spatial autocorrelation (Argenti 
& Alparone, 2002). During flood extent assimilation, the assumption of spatial independence of observation 
errors may underestimate the standard deviation and correlation length scale (Waller et al., 2016).

This study proposes a novel likelihood function based on mutual information (MI) for PF-based flood extent 
assimilation which accounts for spatial uncertainty correlations (Wellmann, 2013). Information theoretic 
cost metrics have been previously used as likelihood functions for PFs in sensor network control, target 
tracking, and autonomous robotics (Charrow et al., 2014; Hoffmann & Tomlin, 2010; Zhang et al., 2018), 
however they have not been applied in hydrology. Some studies have used MI as a diagnostic metric for 
performance evaluation and observation impact (e.g., Fowler & Van Leeuwen, 2012, 2013; A. M. Fowler 
et al., 2018; Nearing et al., 2018), but it has never been used within a sequential data assimilation framework 
as a cost or likelihood function to rank model ensembles. Conversely, MI has been used rather ubiquitously 
in remote sensing; specifically in intensity based image matching and registration studies (Chen et al., 2003; 
Hirschmüller, 2008; Horkaew & Puttinaovarat, 2017; Liu et al., 2018; Suri & Reinartz, 2010). An MI-based 
likelihood function is therefore introduced to flood data assimilation in this study. Importantly, MI provides 
a measure of the reduction in uncertainty about one random variable (observation) given the complete 
knowledge of another (model), yielding a single global weight value for each particle and eliminating the 
need for assuming spatial independence of observation errors (Horkaew & Puttinaovarat, 2017; Suri & Re-
inartz, 2010; Wellmann, 2013). As a SAR-image becomes available, it is converted to a flood probability map 
and the proposed MI-based likelihood function used to sequentially update the flood forecast (Giustarini 
et al., 2011; Hostache et al., 2018; Matgen et al., 2010, 2011; Wood, 2016). The proposed approach was eval-
uated in this paper using a controlled identical twin experiment, where the open loop only differed from the 
synthetic truth in terms of an erroneous upstream discharge. Performance of the assimilated forecast was 
evaluated against the “truth” model in terms of inundation extent, floodplain water depth, floodplain flow 
velocities, and channel flow and depth.

2.  Methods
This section outlines the methods used in this study, with Figure 1 illustrating the overall workflow fol-
lowed. The next sections describe the forward truth model, the synthetic satellite observation simulation, 
and the ensemble generation. This is followed by a detailed explanation of the proposed data assimilation 
framework, and finally the performance metrics used to evaluate the assimilation performance.
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2.1.  The Forward Truth Hydraulic Model

The 2D grid-based hydraulic model LISFLOOD-FP (Bates et al., 2010) was used in this study. This model 
was chosen for the easy integration of remotely sensed data with its grid-based spatial domain discretiza-
tion (P. D. Bates & De Roo 2000). Moreover, its inertial formulation has demonstrated better computation-
al efficiency than other diffusive models, while maintaining similar levels of forecast accuracy (Fewtrell 
et al., 2011; Horritt & Bates, 2001). Each floodplain spatial unit is modeled as a storage cell, where flows 
are computed using the inertial approximation of the Saint Venant equations; only convective acceleration 
is ignored (Andreadis & Schumann, 2014). A finite difference numerical scheme, explicit in time and first 
order in space with a semi implicit treatment of the friction term, is used for increased stability (Bates 
et al., 2010). Flow between the cells is computed as a function of local water acceleration, skin friction, and 
water surface slopes (de Almeida et al., 2012). For a full description of the model LISFLOOD-FP and version 
history, readers are referred to Bates et al. (2013).

The model was set up at a resolution of 90 m to maintain reasonable simulation times, with one model run 
taking from ∼8 to 12 h on a 2.20 GHz Intel(R) Xeon(R) CPU E5-2650 v4 with 64 GB of RAM. The exper-
imental configuration included 543,222 computational cells with hourly flow depth, velocity, and hazard 
outputs. This resolution is also compatible with vegetation and hydrologically corrected global DEMs like 
MERIT (Yamazaki et al., 2017), and is often considered as the preferred grid size for downscaling coarser 
resolution (1 km) global flood forecasts (G. J. P. Schumann et al., 2014, 2016). Maximum flooded area aver-
aged at around 63,000 pixels, covering about 12% of the domain.
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Figure 1.  Schematic of the synthetic assimilation experiment using an identical twin setup, where synthetic data were generated from flood extents produced 
by a truth run and subsequently assimilated within the same model.
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Hydraulic models require the specification of an inflow discharge hydrograph at the upstream boundary, initial 
conditions, detailed topographic and bathymetric data, surface roughness assessments, and outflow data at 
the downstream boundary. The upstream boundary condition was fixed at Lilydale where an inflow discharge 
hydrograph was specified, while tidal levels were used as the downstream boundary condition at Yamba (see 
Figure 3 for locations). This study used the inertial acceleration solver implemented in full-2D, with surveyed 
bathymetry, LiDAR topography, observed tidal levels, and calibrated channel roughness. The model was cali-
brated at 90 m grid resolution using crowdsourced high-water marks for the 2013 flood event in the Clarence 
Catchment. This implementation was chosen to develop and test the proposed flood extent assimilation frame-
work through synthetic experiments, to evaluate its efficacy independent of additional uncertainties.

Initial conditions were computed by running a steady state simulation with the median flow value at the 
inflow point gauge used to represent the inflow hydrograph. The resulting simulated water depths were 
used as a start file for the model. Based on manual trial and error exercises, a warm-up period of five weeks 
was found to be sufficient to ensure numerical stability. Distributed floodplain roughness values were as-
signed according to land-use classes identified from aerial photographs, based on the recommendations by 
Arcement and Schneider (1989). As the floodplain roughness is not a sensitive parameter for LISFLOOD-FP 
during a flood, this roughness map was kept constant throughout all the simulations (Wood et al., 2016). 
This choice allowed for a focused assessment of the impacts of channel roughness and inflows on the en-
semble forecasts.

Identical twin experiments common to data assimilation studies were setup for the 2011 flood event in the 
Clarence Catchment, with simulations including warm-up starting from December 1, 2010 and running up 
to January 23, 2011. The flood event which occurred between 8th to 16th January 2011, was mainly used 
to assess the performance of the flood extent assimilation procedures outlined here. A high intensity short 
duration (HISD) flood was simulated to evaluate assimilation performance during “flashy” events. These 
two synthetic flood events were used to evaluate the performance of the proposed flood extent algorithm 
in comparison to Hostache et al. (2018) in Section 4.5. Observed inflows were used to generate the “truth” 
model simulation, along with the calibrated channel friction parameter. Observed tidal levels were applied 
at the downstream boundary, and floodplain elevations were specified using the LiDAR DEM and the ob-
served channel bathymetry. Considering the observed inflows as the truth, forecast inflow uncertainties 
were synthetically generated (see Section 2.3), representing outputs generated by hydrological models run-
ning in forecast mode (García-Pintado et al., 2013).

2.2.  Synthetic Satellite Observation

Flood extents simulated by the “truth” model were used to generate the synthetic observations, at the time 
steps corresponding to actual SAR acquisitions, using the approach proposed by Cooper et al. (2019). Backs-
catter distributions of flood and nonflood classes were assumed to follow the form of Gaussian Mixture 
Models. Parameters for each Gaussian curve in the observed SAR image histograms were estimated using 
nonlinear curve fitting. For each pixel in the modeled flood and nonflood classes, a backscatter value was 
sampled from the corresponding normal distribution, defined based on the observed mean and standard 
deviation to generate the synthetic SAR images. To emulate a realistic scenario, synthetic images at each as-
similation time step were generated for the 2011 event by estimating the corresponding backscatter statistics 
from real SAR images. In a second synthetic event considered herein, the statistics from available images 
were averaged and synthetic images generated at various times, corresponding to the early rising limb, 
pre-peak, peak, post-peak, and late falling limb. Model grid cells with water depths >1 cm were considered 
flooded and the rest nonflooded following Hostache et al. (2018).

SAR-derived flood extents are inherently uncertain (see Dasgupta et al., 2018a) for an in depth discussion), 
and probabilistic maps are one way to characterize this uncertainty. Moreover, correct representation of 
observation uncertainty is vital to the assimilation process, and probabilistic flood maps allow taking advan-
tage of complementary information layers in addition to backscatter. Therefore, the synthetic satellite-based 
flood observations were converted to probabilistic flood maps, using the algorithm developed by Giustarini 
et al. (2016). The algorithm converts backscatter values into flood probabilities, based on Bayesian condi-
tional probabilities 0( | )p F   calculated according to
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where   0 |p F  is the conditional probability for flood class F of observing a specific backscatter value  0 

given that the pixel is flooded, and   0p  is the marginal probability distribution of backscatter values at a 

given pixel (the image histogram). The term p(F) denotes the prior probability of observing a flooded pixel; 
assumed to be 0.5 in the absence of any ancillary information (Schlaffer et al., 2017). Since, this is a syn-
thetic study with controlled errors, advanced algorithms such as the Neuro-Fuzzy algorithm proposed by 
Dasgupta et al. (2018b), which allow incorporating information from additional layers were not considered. 
While for real-world applications the observation accuracy would influence assimilation performance, for 
synthetic experiments such as the one described here, the assimilation framework is independent of the 
method chosen for the assignment of flood probabilities.

2.3.  Ensemble Generation

The success of any assimilation experiment is driven by the perturbation technique chosen and the skill 
of the ensemble spread (De Lannoy et al., 2006). In this study, the upstream boundary condition, supplied 
in the form of hourly observed discharge values, was assumed to be the only source of uncertainty. Uncer-
tainties generated through incorrectly specified inflows were independently considered, to better under-
stand the impact of the proposed likelihood function on the flood extent assimilation. In order to emulate 
discharge forecasts produced by hydrological models, temporally correlated heteroscedastic errors were 
synthetically generated with a positive mean bias (Gobeyn et al., 2017). As the uncertainty of the rainfall 
forecasts from weather prediction models are propagated down the modeling chain, the nature of hydro-
logical streamflow forecast errors is often rather complex with significant temporal correlation and hetero-
scedasticity. The forecast discharge errors were therefore simulated by considering a temporally correlated 
time-varying error variance. Temporal correlation of errors was simulated following the approach of Even-
sen (2003), while the heteroscedasticity was incorporated using the methods outlined by García-Pintado 
et al. (2013). The 2011 event simulation additionally included a positive multiplicative mean bias of 20% 
following earlier studies (e.g., García-Pintado et al., 2013; Matgen et al., 2010). This allowed emulating the 
uncertainty of a typical hydrological streamflow forecast and lends insights into the mean error evolution 
on the forecast. Since the assimilation problem was approached with no knowledge of the true mean error, 
the potential of data assimilation to partially solve for it could be tested.

In order to evaluate the generalizability of the results presented herein, the assimilation approach was also 
implemented to an HISD event, where forecast improvements are harder to gain and retain over time. For 
this, the 2011 hydrograph shape was scaled to 200 h, ensuring a ∼30 h time-to-peak and the same peak 
and base flows. This was achieved by down-sampling the 2011 hydrograph to 200 h, with the median flow 
value observed at the upstream boundary gauge added as baseflow before the flood hydrograph, to emulate 
a short warm-up period of approximately ∼112 h. The down-sampling was controlled such that the average 
∼30 h time to peak (Farr & Huxley, 2013), typically observed for the Clarence Catchment was retained. This 
implied that the HISD event was statistically identical (same shape and max/min flows) to the 2011 event 
but flashier since the longer duration flood flow dynamics were compressed within a short time window 
through the scaling. The 2011 event has an Annual Recurrence Interval (ARI) of ∼27 years, and thus, the 
25 year tidal levels were used as the downstream boundary. While the inflow ensemble generation method 
used in this case is identical to the 2011 event, no positive multiplicative bias was imposed on the flows, to 
evaluate assimilation impacts independent of bias. This implied that for the HISD event the open loop mean 
was already very close to the truth.

The time-dependent change in variance for both events was imposed through the coefficient of variation 
(cv) of discharge, estimated from the historical rating curves at Grafton, Prince Street gauge (Farr & Hux-
ley, 2013). This cv value was transferred to Lilydale because published historical rating curves only exist-
ed for this particular gauge on the Clarence River, despite the fact that the geometric properties of the 

DASGUPTA ET AL.

10.1029/2020WR027859

6 of 28

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
027859 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

cross-section could be starkly different from Grafton. As the average value of cv was observed to be close 
to ∼0.2, a slightly higher value (cv = 0.25) was used to impose the heteroscedasticity as recommended by 
García-Pintado et al. (2013). Since operational global flood forecasting systems currently provide discharge 
forecasts at a daily time step (Dottori et al., 2016), a decay time of 3 days was assumed for the temporal cor-
relation, following the work of García-Pintado et al. (2013). Figures 2a and 2b show the open loop inflow 
ensembles for both events used in this study, along with the observed (with or without scaling) inflows used 
to generate them and the open loop mean. For a detailed description of the inflow ensemble generation 
techniques described here and for all the equations, readers are referred to Evensen (2003) and García-Pin-
tado et al. (2013). The inflow error generation equations have been omitted in this study for brevity as the 
approach is identical to García-Pintado et al. (2013).

An ensemble of 128 simulations was used in this study. While this ensemble size is small with respect to 
the domain size and the size of the state vector, given the results shown in Hostache et al. (2018) this was 
considered an appropriate trade-off for computational speed. Even though studies show that increasing 
the ensemble size may result in improved assimilation performance (e.g., Ziliani et al., 2019), using large 
ensemble sizes remains challenging even with current generation computationally efficient hydraulic mod-
els and computing power. In theory, the ideal ensemble size for particle filtering should exceed the length 
of the state vector by several orders of magnitude, which for this study (∼63,500 wet cells) would mean 
an ensemble size >106 (Banister & Nichols, 2010). Not only is this computationally infeasible for research 
applications, even doubling or quadrupling the ensemble size (e.g., from 128 to 256 or even 528), results in 
only marginal performance improvements for PFs (Plaza Guingla et al., 2013). Since, ensemble skill is a 
function of the ensemble size and the perturbation technique chosen, the ensemble generation parameters 
were tuned to ensure sensible spread as suggested by Moradkhani et al. (2005).

Forecast skill was evaluated based on the upstream discharge, using the Normalized RMSE Ratio (NRR) 
proposed by Moradkhani et al. (2005), where an NRR value of ∼1 is considered ideal. Values of NRR >>1 
indicate inadequate ensemble spread while NRR <<1 represents too much spread (Matgen et al., 2010). 
NRR was estimated according to


  

,RaNRR
E Ra� (2)

where Ra is the ratio of the time-averaged RMSE of the ensemble mean, and the mean RMSE of the ensem-
ble members. If the observation is statistically indistinguishable from the ensemble, the expectation of Ra 
is given by

 
   

1
,

2
n

E Ra
n

� (3)

where n is the ensemble size. For an in-depth description of the forecast evaluation methods used in this 
study, readers are referred to Moradkhani et al. (2005) and Matgen et al. (2010). The value of NRR for the 
forecast inflow ensemble was ∼0.99, being almost equal to the ideal value of unity, indicating sufficient en-
semble spread and skill (Moradkhani et al., 2005). The resulting inflow ensembles were propagated through 
LISFLOOD-FP to generate water depth maps, subsequently converted to binary flood extents using the 1 cm 
threshold to avoid noncontiguous negligible water depths. This ensemble of simulated binary flood extents 
was then compared against the synthetically generated SAR-derived flood extents, using the proposed like-
lihood function at the assimilation time steps.

2.4.  Data Assimilation Framework

PFs are based on sequential Monte Carlo simulations as discussed in the previous section, enabling a 
nonparametric representation of the continuous posterior probability distribution function (pdf). By ran-
domly selecting a large number of discrete and independent samples from a distribution, the posterior 
pdf was iteratively estimated by sequentially assimilating observations (Arulampalam et al., 2002). Each  
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Water Resources Research

ensemble member, or in other terms a particular model realization, represented a distinct particle with 
unique associated inflows. At each assimilation time step, the Bayesian conditional probability of the par-
ticular model trajectory given the observation was individually evaluated and used as the particle weight 
(Kantas et al., 2015). In the sequential importance sampling (SIS) algorithm, the weighted ensemble mean 
(or the expectation) was subsequently calculated, being representative of the total information content of 
the model and the observations (Plaza et al., 2012). The SIS algorithm generated particles based on a prede-
termined importance density, as sampling from the unknown nonGaussian posterior distribution was not 
possible (Moradkhani et al., 2005a). Typically, a uniform distribution is assumed when no other knowledge 
is available, and the initial importance weight of each particle is assigned as the reciprocal of the number of 
particles for example 1/128 in this case (Li et al., 2013; Plaza Guingla et al., 2013).

The SIS algorithm provides the unique advantage of avoiding hydrostatic initialization shock, which often 
occurs in state updating data assimilation filters applied to hydrodynamic models (Hostache et al., 2018). 
As data assimilation is essentially a statistical recombination procedure, the momentum across the domain 
is not conserved when states are updated and the model is restarted from the updated states (García-Pinta-
do et al., 2015). This is because flow fluxes drop to zero when the model is stopped mid-simulation where 
conserving the momentum of large volumes of water becomes impossible. Consequently, the SIS algorithm 
perfectly suits the problem of hydraulic data assimilation as it only alters the ensemble statistics without 
disturbing the delicate model dynamics (Hostache et al., 2018).

After identifying the particular PF implementation best suited to the problem, an appropriate likelihood 
function needs to be defined to compute the conditional probability of the observations given the model 
state. When dealing with a large number of measurements, which might have correlated errors, the pro-
posed likelihood distribution should ideally be the joint pdf of all these measurements (van Leeuwen, 2017). 
This implies that in SAR-based flood extent assimilation, where the pixel-wise flood inundation values 
constitute separate measurements and the images are often characterized by a multimodal histogram, a 
nonparametric approach to estimating the likelihood function must be chosen. MI was therefore chosen as 
the likelihood function for the SIS-based PF implementation used here (Shannon & Weaver, 1964).

MI is a measure of the amount of information one random variable contains about another (Cover & Thom-
as, 2005). MI has previously been used in hydrology to establish the causality of changes in flood occur-
rences with respect to mean precipitation patterns (Perdigão & Blöschl, 2014), and to estimate epistemic 
and aleatory uncertainties in hydrologic modeling (Gong et al., 2013). The following adapts the MI based 
likelihood function for remote sensing based hydraulic data assimilation, following the work of Hoffmann 
and Tomlin (2010). Note that the subscripts for time have not been included to maintain simplicity of the 
notations in Equations 4–14 which derive the likelihood function for PFs.

The data assimilation problem can simply be formulated as finding the best possible estimates of the 
system states from uncertain observations, given an uncertain model of the system dynamics (Walker &  
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Figure 2.  The inflow ensemble with 128 members generated for (a) the high intensity short duration event and (b) the 2011 real-world flood event in the 
Clarence Catchment.
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Water Resources Research

Houser, 2005). In the information theory context, this can be interpreted as reducing the uncertainty about 

the system states  Nxx , using the information contained in the observations  Nyy . The prior pdf of 
the state is given by p(x) while observing the true state of the system yields measurements according to

   ,truey h x � (4)

where h(.) maps the model state x to the observation space and  is the measurement error. Representing the 
prior state pdf as N discrete particles by

  


 
1

1 ,
N

xii
p x

N
� (5)

and using them within the Bayes' Theorem,

     
   



|
| ,

|
p y x p x

p x y
p y x p x dx

� (6)

the true state posterior can be estimated through

  


 
1

| ,
N

i xii
p x y w� (7)

where likelihood weights are given by

 
 


 1

|
,

|
i

i N
j j

p y x
L

p y x
� (8)
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Figure 3.  Geographical location of the Clarence Catchment, Australia shown in (a), with important towns marked relative to the Clarence River catchment in 
(b). The extent of the model domain from Lilydale to Yamba is shown as (c), with inflow and outflow boundary conditions marked in red and available gauges 
marked in green.
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Water Resources Research

with  | ip y x  being the pdf of the observations y given the model prediction xi, also known as the likelihood 
(Arulampalam et al., 2002). Taking the log-likelihood of the posterior distribution given by Equation 6 and 
expanding the joint state-measurement pdf according to Bayes' rule as    , ( | )p y x p y x p x  yields

      | ; ,H x y H x I y x� (9)

where

        log ,H x p x p x dx� (10)

       | , log | ,H x y p x y p x y dxdy� (11)

     
    

,
; , log .

p x y
I x y p x y dxdy

p x p y
� (12)

Here H(x) is the entropy of the state distribution, I(x;y) is the MI between the model state and the observa-
tion distributions, and  |H x y  is the conditional entropy of the distribution or the expected entropy of the 
state given the measurements (Cover & Thomas, 2005). Entropy can be defined as a measure of uncertainty 
of a random variable (Hirschmüller, 2008), while MI measures the divergence (Kullback-Liebler) between 
the independent and joint distributions of x and y. This implies that MI quantifies the degree of interde-
pendence between two distributions, that is MI is maximum if the modeled and observed flood extents are 
exactly aligned.

For a system exhibiting discrete time dynamics for the ith particle as

  1 , ,i i i i
t t t tx f x u� (13)

where ut is the set of control inputs, the expected posterior state pdf uncertainty can only be minimized 
when the observation information is maximized with respect to the control inputs (Hoffmann & Tom-
lin, 2010). This can be achieved through the MI likelihood function which measures this shared information 
(Zhang et al., 2018), defined as

       ; | .iL I y x H x H x y� (14)

While all of the above equations are defined for continuous random variables, they can be extended to dis-
crete variables by replacing the integrals with summations. In order to compare discrete model outputs and 
continuous probabilistic observations as in the present case, continuous variables can be quantized into a 
large but finite number of bins by assuming that the density is continuous within each bin. Here, 256 bins 
have been used after testing for the sensitivity of up to 1,024 bins, as increasing beyond 256 yielded no nota-
ble impact on the calculation of MI. MI is usually calculated using log with a base of 2 as introduced by the 
computational information theorists and is measured in bits (Souza et al., 2018; Woo et al., 2015). This was 
retained in the present study as the concept of bits to measure information also suits remote sensing images 
(Horkaew & Puttinaovarat, 2017; Liang et al., 2014; Ossadtchi et al., 2014).

The MI based likelihood function proposed here allowed for an efficient ranking of particles. However, an 
additional rescaling factor needed to be introduced to improve the selection of well-performing particles 
at each assimilation time step (Herbst & Schorfheide, 2019). When comparing flood extents using binary 
pattern matching measures, the coverage of the hits that is the flooded area common to the model and the 
observations, is typically larger than the misses or false alarms (Stephens et al., 2014). This means that it is 
increasingly difficult to discriminate between models using standard likelihood functions (e.g., the common 
Critical Success Index), since sensitivity to the differences in the predicted inundation extent is low. More-
over for PFs, the ideal proposal distribution from which prior weights are sampled, must be different from 
the posterior to allow effective estimation (Godsill & Clapp, 2001). However, if this difference is too large 
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then the importance weights will be close to zero for frequent outcomes and close to one for rare values (Jo-
hansen, 2015). Consequently, the state estimates obtained will be dominated by a small subset of the Mark-
ov chain (Woodhead,  2007). Diversifying the prior particle population in the importance-sampling step 
of the particle filtering is a viable option to address this issue. Studies have attempted to use evolutionary 
algorithms to optimize the prior distribution during the importance sampling step (Abbaszadeh et al., 2018; 
Kwok et al., 2005; Yin & Zhu, 2015).

Evolutionary algorithms use the principles of genetics, such as crossover and mutation, to focus the prior 
populations into optimal state-parameter sub-spaces (Dumedah, 2012, 2015; Dumedah & Coulibaly, 2013, 
2014). However, depending on the magnitude of uncertainty in the proposal distribution, the particles 
should evolve over several generations to achieve the ideal sub-space. While the strength of genetic algo-
rithms is the ability to deliver accurate results with smaller ensemble sizes, the estimation of optimal initial 
states is necessary to leverage this. Since the population evolves over several generations, models need to be 
rerun with the updated states each time, implying that for an ensemble size of 50 evolving over 5 genera-
tions 250 model runs are required (Dumedah & Coulibaly, 2013). Abbaszadeh et al. (2019) suggest using the 
4D-variational method for this initial state optimization, but for the case of hydraulic models developing the 
adjoint model is a major scientific challenge. Moreover, selecting among several well-performing models 
is incredibly difficult using binary flood extents. Due to the inherent positive bias in all pattern matching 
measures, distinguishing between different ensemble members is especially challenging for over-predicting 
models in large catchments (Stephens et al., 2014).

While the use of a weight rescaling parameter to inflate the posterior weight variance is common in PFs 
(e.g., Fearnhead & Künsch, 2017; Herbst & Schorfheide, 2019; Woodhead, 2007), it was necessary in this 
study due to the nature of the flood extent assimilation problem. Particle resampling can also be used to 
iteratively improve the quality of the particles (e.g., the Sequential Importance Resampling algorithm). 
However, this necessarily involves stopping and restarting the model, driven by the resampled particle 
trajectories. For hydraulic data assimilation applications, this could lead to spurious inundation patterns 
in momentum-conserving hydrodynamic models, since it cannot be preserved during the resampling step. 
Even though E. S. Cooper et al. (2018) showed that applying pre-assimilation velocities to the updated 
water depths is a potential solution, the method still requires further testing for real case studies. There-
fore, a rescaling factor to inflate the posterior variance was chosen for this study, providing a simple and 
elegant solution to the problem of weight sensitivity. The ratio between the likelihood of the particle and 
the maximum likelihood value was enhanced through an exponent  and used as the rescaling factor. 
This was designed to lower the weights of poorly performing models while increasing the well-performing 
model weights. At each time step the value of the exponent  in Equation 15 is optimized, to ensure that 
the maximum normalized particle weight in the posterior is not below 0.25 so that the best performing 
particles can be selected. The exponent  typically varies based on flooded area coverage, which deter-
mines the sensitivity of the likelihood function and consequently, the magnitude of inflation necessary 
to discriminate between several well-performing models. The weights for each particle were therefore 
calculated using

 
 

  
      

min
.

maxmax min
i i i

i
ii i

L L Lw
LL L

� (15)

The first part of the multiplier normalizes the values of Li, while the second part is the rescaling factor in-
troduced to heighten discriminatory power of the weights. Finally, the particle weights are normalized to 
calculate the conditional probabilities of a particular particle given the observation, and to ensure that the 
posterior probability distribution function sums to unity according to




 1

,i
i N

i i

wW
w� (16)

where Wi denotes the global weight assigned to a particle for a given observation. Typically for the assimila-
tion of multiple images, the posterior estimated from the assimilation of the preceding image is used as the 
prior. Weights are accordingly multiplied forward in time to yield cumulative weights according to
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
 cum

1
,

M
j

i i
j

W W� (17)

where M is the total number of available observations. Note that this step may also be avoided when the 
observations are too far apart in time, or when no additional information (i.e., observations) about the 
posterior exists (Wood, 2016). This study showcases the distributed impacts of both cases, with “Image I” 
and “Image II” referring to the use of uniform priors while “Image I and II” refers to the use of cumulative 
weights that is using the assimilated forecast from “Image I” as the prior for the assimilation of “Image II." 
When all the observations have been processed and their information content extracted in the form of the 
importance weights, the expectation of any state variable gives the assimilated forecast. This can be comput-
ed as the weighted mean of the state vector ensemble given by


     

cum

1
.

N

i i
i

E X W x� (18)

This formula was used to compute the expectation of streamflow, flow velocities, and water depth. The 
expectation of WL and flood extent was derived from the expectation of water depth (Hostache et al., 2018).

2.5.  Performance Evaluation Framework

A comprehensive framework for the evaluation of assimilation performance is developed in this paper, 
to improve the understanding of spatiotemporal error evolution following flood extent assimilation. This 
is particularly critical, as flood extent is a diagnostic model state, and so updating model trajectories 
based on an instantaneous extent might even degrade the forecast. Assimilation results were therefore 
evaluated against the benchmark “truth” model in a distributed fashion for the simulated floodplain 
states, in addition to the point gauge locations for the channel. Assimilation performance was evaluated 
for the assimilation time step and lead times of 1, 3, and 7 days, to assess the spatiotemporal evolution of 
errors in the forecast. The impact on simulated flood extent was quantified through contingency maps 
and contingency matrix-based statistics. Simulated WLs were evaluated spatially through water depth 
difference (WDD) maps, and a spatial root mean squared error (RMSE) statistic used to quantify overall 
performance. The spatially distributed impact of the assimilation on flow velocities was then evaluated 
throughflow velocity difference maps, while the percentage improvement in RMSE was used to compare 
the relative impact of the two assimilated images. The relative performance of the assimilation with 
respect to the open loop was examined through the Brier Skill Score (BSS), using hydrographs from the 
truth model at river gauging sites. Absolute errors in the channel performance were evaluated using 
RMSE and hydrograph plots. Finally, the impact on inflow uncertainties was quantified through hydro-
graph comparisons.

The flood extents were evaluated using the Critical Success Index (CSI), calculated based on the contingen-
cy matrix illustrated in Table 1 (which also explains the meaning of the symbols) using


 

CSI .A
A B C

� (19)

According to the above equation, CSI ignores the correctly simulated nonflooded areas to eliminate the 
disproportionate impacts of the typically larger nonflooded areas in the model domain. Spatial compari-
sons were also included through contingency maps, which illustrate the locations of the classes in Table 1. 
For the modeled water depth assessment, a global measure of error was required to quantify the overall 
model performance in absolute terms. The RMSE statistic was chosen due to its ubiquity in hydraulic data 
assimilation literature. Therefore, it can facilitate benchmarking vis-à-vis other studies (Cooper et al., 2018; 
García-Pintado et al., 2015, 2013). In the context of the present research, the RMSE was calculated between 
the weighted ensemble mean   kE WD , and the water depths simulated by the truth model truth

kWD , at select 
time steps according to
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     


2truth
1

RMSE ,
P
i k kE WD WD

WD
P

� (20)

where P is the total number of model grid cells. In order to better understand the spatial evolution of fore-
cast errors, the WDD between the forecast ensemble mean and the truth at each grid was calculated. As 
Cooper et al. (2018) have shown using synthetic topography, WDD maps can provide valuable insights into 
spatiotemporal error propagation through the model domain, which lumped statistics like the RMSE are 
unable to detect. For each pixel, the WDD map contains the deviation of the ensemble mean from the true 
water depth at the corresponding location, given by

   
truthWDD E WD – WD .k k k� (21)

Flow velocities were evaluated in the exact same way as water depths. Both absolute errors and their spatial 
distribution were considered, through RMSE and FVD maps. Metrics were computed for the cell flow veloc-
ities, by changing the variable from water depth to flow velocity in Equations 20 and 21. These assessments 
are only possible for synthetic experiments such as the one detailed in this study, as spatially distributed 
observations of water depth and flow velocity are unavailable in practice.

The model performance within the channel was evaluated using hydrometric gauges. River gauges record-
ing water depth and discharge were considered at the locations where real gauges along the Clarence River 
already exist. Synthetic gauges (SG1-4) were also added at a few locations to enable a more comprehensive 
gauge-based evaluation. The relative skill of the assimilated ensemble with respect to the open loop was 
quantified through the BSS, calculated according to

  
  

 
 

 

. .
BSS 1 ,

T

T

Assim Truth Assim Truth

OL Truth OL Truth
� (22)

where the variables in bold denote state vectors for the assimilated (Assim.), open loop (OL), and truth 
(Truth) forecasts while the overbar denotes an average. Values of    ,1BSS , where  0BSS  indicates 
no change in forecast skill with respect to the open loop while  1BSS  is the ideal score. Note that the re-
sults were interpreted by comparing objective function values obtained by evaluating the open loop and the 
assimilated ensemble against the synthetic truth model.

3.  Study Area and Data
3.1.  Study Area

The Clarence Catchment is situated in New South Wales, Australia, as shown in Figure 3, and drains a 
total of 22,700 km2. The Clarence River is 394 km long of which a stretch of ∼160 km, between Lilydale 
and Yamba, was used for the hydraulic model set up. This catchment has most recently experienced flood-
ing in February 2020 with the flood in 2013 being the highest on record, when the river reached WLs of 
8.09 m Australian Height Datum (AHD) at the Prince Street Gauge, Grafton (Huxley & Beaman, 2014). 
Floods in this catchment move fast and take about 30 h to peak on average, generating a relatively flashy  
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Contingency matrix

Modeled

Flooded Nonflooded

Observed Flooded (A) Correct Flooded (Hits) (C) Under-prediction (Misses)

Non-flooded (B) Over-prediction (False Alarms) (D) Correct Nonflooded (Correct Rejects)

The bold specifies where the model and observation are in agreement, while the italic and bold italic refer to under- and over-prediction respectively.

Table 1 
Contingency Matrix Used for the Calculation of Binary Pattern Matching Based Flood Extent Performance Measures
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catchment response (Rogencamp,  2004). Low-intensity, long duration rainfall events are the dominant 
cause of flooding in the area, closely followed by the back propagation of ocean storm tides. Indeed, the 
ocean tides control the inundation dynamics up until Ulmarra, and slight tidal oscillations are visible as 
far upstream as Rogan's Bridge during low-flow conditions. Tidal oscillations are evident from both the 
observed and simulated hydrographs, with tidal levels providing the downstream boundary condition at 
Yamba. The catchment is characterized by largely variable flow velocities, ranging from 2 to 5 m/s in the 
channel and along the levees, to almost zero in the backwaters (Sinclair Knight Merz and Roads and Traffic 
Authority of NSW 2011).

3.2.  Datasets Used

Remotely sensed data in the form of SAR imagery and LiDAR elevations, as well as field-recorded hydromet-
ric data were used in this study. Bathymetric data was collected during a field campaign in 2015 (Grimaldi 
et al., 2017), described extensively in Grimaldi et al. (2018), and supplemented with pre-existing bathym-
etric datasets Farr and Huxley (2013), forming a rich database. Topographic information was available in 
the form of a 1 m Light Detection And Ranging (LiDAR) bare earth DEM, acquired in 2010 with a vertical 
accuracy of ±30 cm at 95% confidence (1.96 × RMSE) and horizontal accuracy of ±80 cm at 95% confidence 
(1.73 × RMSE) (New South Wales Land and Property Management Authority, 2010). The vertical accuracy 
was assessed by comparing LiDAR point returns against survey check points as per the ICSM Guidelines 
for Digital Elevation Data (Intergovernmental Committee On Surveying & Mapping 2008). This data set is 
freely available under a Creative Commons Attribution 4.0 license, for commercial and noncommercial ap-
plications at https://elevation.fsdf.org.au/, provided by Geoscience Australia. The channel bathymetry was 
reconstructed by interpolating between field observed cross-sections and incorporated within the LiDAR 
DEM, for the part of the domain where it was available. The area upstream of Copmanhurst where LiDAR 
coverage was unavailable, was infilled with the SRTM-derived 30 m product enhanced by Geoscience Aus-
tralia (DEM-H), described in the next paragraph. For a detailed description of this combined topographic 
data set, field data collection, and bathymetry generation, readers are referred to Grimaldi et al. (2018). The 
bathymetric data set is freely available at https://figshare.com/articles/Bathymetric_survey_of_the_Upper_
Clarence/5648251 (Grimaldi et al., 2017).

The SRTM-derived DEM-H (Gallant et al., 2011), a 1 arc second (∼30 m) gridded DEM corrected for hydro-
logical applications produced for the Australian continent by Geoscience Australia, was used in this study 
to represent the “best available” global topography for the region (Jarihani et al., 2015). The DEM-H is con-
sidered superior to the globally available SRTM product for hydraulic modeling, as drainages were enforced 
using 1:250,000 scale watercourse lines and smoothed using ANUDEM software (Hutchinson, 2011; Zheng 
et al., 2016), to ensure seamless hydraulic connectivity (Dowling et al., 2011). As coarse resolution SRTM 
products are often unable to accurately capture flow lines, which lead to erroneous inundation forecasts, the 
DEM-H with region specific hydrological enhancements was considered an appropriate choice (Mukherjee 
et al., 2013). The accuracy of DEM-H is similar to the raw SRTM 1-arc second product with geolocation 
errors <12.6 m and 90% of tested heights within 9.8 m for Australia (Gallant et al., 2011). This data set is 
available for free, downloadable from http://elevation.fsdf.org.au/.

Two COSMO-SkyMed (CSK) X-band (9.6 GHz with a wavelength of 3.1 cm) HH-Polarized images, acquired 
by the CSK-3 satellite, were available for this study. The data were acquired in Stripmap HIMAGE mode at 
3 m resolution on January 12, 2011 at 18:03 h and January 13, 2011 at 07:33 h Australian Eastern Daylight 
Time (AEDT). The images were acquired at the peak of the 2011 flood event at Grafton and just after it on 
the falling limb as depicted in Figure 2b. The CSK Level 1D Georeferenced Terrain Corrected (GTC) prod-
uct delivered as an 8-bit image of digital numbers was used in this study. The calibration process for the 
GTC product followed by E-Geos, corrects for local incidence angle impacts using a DEM, by normalising 
the backscatter to a 40  reference incidence angle (Italian Space Agency 2009). The domain comprised of 
74,056,858 pixels each having an area of 9 m2, bringing the total tile coverage to approximately 666.5 km2. 
These images were only used in this paper to parameterize the backscatter statistical distributions of water 
and nonwater pixels, which were then used to derive synthetic SAR images from “true” flood extents (i.e., 
the “truth” model result).
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4.  Results and Discussion
The impacts of assimilating synthetic SAR observations on the open loop ensemble, generated by propa-
gating uncertain simulated forecast inflows through LISFLOOD-FP, are summarized here. The real SAR 
images for each assimilation time step upon which the synthetic images were derived are shown in Fig-
ures 4a and 4b respectively, with only the synthetic images used for the assimilation experiment in this 
study. Forecast performance was first evaluated in terms of flood extent, followed by a spatial analysis of 
water depth. Floodplain flow velocity errors were also spatially assessed in this study for the first time in 
assimilation literature. Finally, the impacts on in-channel performance were quantified via discharge and 
WL estimation capabilities.

4.1.  Impact on Simulated Inundation Extent

Contingency maps from comparing the assimilated and open loop forecasts to the synthetic truth are dis-
played in Figure 5, with the assimilation of Image II also showing the effect of using different priors. From 
the contingency maps, it is evident that the open loop consistently over-estimated the true inundated area 
from the large number of “false alarm” pixels, although this was expected due to the positively biased inflow 
errors used in this experiment. The closed loop, otherwise known as the assimilated ensembles, exhibited 
lower numbers of false alarm pixels as a consequence of the assimilation. Positively biased models are no-
toriously difficult to distinguish using binary pattern matching measures, and thus further highlights the 
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Figure 4.  Synthetic and real SAR images juxtaposed in columns (a and b), respectively, for images acquired on January 12, 2011 at 18:03 h and January 13, 
2011 at 07:33 h, hereafter referred to as assimilation time steps 1 and 2, respectively.
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Water Resources Research

model selection potential of the proposed algorithm (see Stephens et al. (2014) for an in depth discussion). 
The main shift after the assimilation was from the false alarm class to correct rejects, while the number of 
hits remained fairly consistent. This was expected as the open loop constantly over-estimated the extent 
with most of the true extent being correctly simulated and the performance of the ensemble members dif-
fering primarily in terms of false alarm rates.

The assimilation of synthetic “observed” flood extents generated from the true flood extents should ideally 
nudge the model trajectory toward the truth, with more observations helping to constrain the forecast and 
resulting in fewer false alarms. While the assimilated forecast is consistently better than the open loop, 
based on the spatially distributed figures, no obvious differences can be observed between the assimilation 
of Images I and II or the use of different priors from Figure 5. A limited number of pixels changed their 
wet-dry status in the narrow valley between Lilydale and Rogan's Bridge (see Figure 3 for locations). This 
was in line with expectations as the assimilation of extent can only have limited impact in regions where 
flood extents are not sensitive to subtle changes in the water depth, as observed in the topographically con-
strained upstream part of the reach. Similarly, the assimilation was not expected to produce large impacts 
near the downstream boundary between Brushgrove and Yamba, where the inundation is dominated by 
tidal backwater effects, since the tidal level uncertainty is not considered in this experiment. The largest 
reductions in over-prediction (Boxes 1 and 2 in both contingency maps) were observed in the central part of 
the model domain around the Grafton-Ulmarra area, with a large and gentle-slope floodplain and limited 
backwater effects.

The assimilation had visible positive impacts until a lead time of 7 days as evident from Figure 5, although 
the open loop errors progressively decreased with lead time as the inflow magnitudes and the errors  
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Figure 5.  Contingency maps comparing the forecast and true flood extents for the open loop and assimilation runs, at (a) the first assimilation time step and 
(b) at the second assimilation time step. Note that for the second assimilation time step, the effect of using different prior distributions is also illustrated.
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decayed during the falling limb. The percentage improvement in the CSI (Figure 6a) reveals some interest-
ing differences between the various assimilation configurations. In terms of acquisition timing with respect 
to the hydrograph, assimilating the first image ∼6 h after the peak reduced false alarms by ∼17% (purple 
bars), while the second image ∼18 h post peak reduced overestimation by ∼15% at the assimilation time 
steps using either the uniform priors (yellow bars) or the Image I priors (gray bars). This implied that the 
temporal position of Image I was more favorable for the assimilation. The percentage improvement in the 
CSI values decreased with increasing lead time but continued to produce improvements up to 7 days (∼4%).

Until the 24 h (1 day) lead time, there were notable differences in the magnitude of improvements achieved 
from the three cases examined herein. However, subsequently the assimilation resulted in nearly similar im-
provements in the flood extent forecast for all of the different configurations. As the assimilated images were 
acquired close together during the falling limb, the correlation between them was expected to be high, and thus 
incorporating information from both images (i.e., using the Image I prior for the assimilation of Image II) was 
expected to yield greater forecast improvements. However, the gray bars are consistently lower (albeit margin-
ally) than the yellow bars resulting from the use of a uniform prior, demonstrating that this assumption is not 
always true. The correlation time between images is thus an important factor to consider for sequential flood 
extent assimilation, as this experiment highlights the influence of the selected prior on the forecast quality.

4.2.  Impact on Floodplain Water Depth Simulation

The forecast minus true WDD is shown in Figure 7 for the first and second assimilation time steps, with 
the same experimental configurations as in the previous section and for different lead times. Positive errors 
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Figure 6.  Percentage improvement before and after the assimilation for different lead times from the instance of assimilation, with the different plots showing 
the improvements in (a) the Critical Success Index for flood extent comparisons, (b) RMSE for water depths, (c) RMSE for flow velocities, and (d) the BSSs for 
the channel WL simulations, at the gauges along the main stem of the river (locations shown in Figure 3). Image I refers to the assimilation of only Image I, 
Image II refers to the assimilation of Image II using a uniform prior, while Images I and II refer to the sequential assimilation of Image II using the assimilated 
forecast from Image I as the prior. BSS was calculated from the assimilation time step to the end of the forecast.
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Water Resources Research

imply that the forecast over-estimates the true water depth, while negative errors indicate under-estimation. 
Darker colors in each direction are representative of the magnitude of the deviation from the truth. Since, 
the forecast has more positive errors than negative, the color discretization which best highlights the differ-
ences in the forecasts was chosen.

The first observation that can be made from Figure 7 is that the open loop was positively biased in most of 
the domain and the assimilation resulted in a strong reduction in the magnitude of errors. As an example, if 
considering the central portion of the catchment it is easily observed that a large number of pixels moved to 
lighter hues between the open loop and assimilated forecasts, implying a definitive nudge toward the truth, 
persistent up to the maximum examined lead time of 7 days. The WDD was reduced by the assimilation all 
over the domain, with notable error reductions in the upstream and downstream parts of the catchment as 
well. Even though flood extent improvements were not evident in these regions, the simulated water depths 
were improved and hence the flood hazard estimates could be considered to be more reliable.

In the WDD maps, the difference between the assimilation of Images I and II is much clearer, as is the dif-
ference due to the use of the two different priors. In fact, the assimilation performance for the assimilation 
of Images I and II using uniform priors led to nearly similar improvements but using the Image I forecast as 
a prior for Image II reduced the magnitude of improvement. For example, if the forecast at the second as-
similation time step is compared across the open loop, assimilation with the uniform prior, and assimilation 
with the Image I prior, it is evident that the uniform prior led to better results. Consider the case of a lead 
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Figure 7.  Forecast ensemble mean minus true water depth for different lead times, showing (a) lead times measured from the first time step after assimilating 
only the first image, and (b) lead times after the sequential assimilation of both images. Colors refer to the direction of the deviation from the truth; that is 
orange is within ±20 cm of the truth, the different shades of green through to indigo represent excess water while rust indicates a lack of water. The difference 
is calculated as forecast minus truth, so positive errors represent over-estimation while negative errors show under-estimation. Note that for the second 
assimilation time step, the effect of using different prior distributions is also illustrated.
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Water Resources Research

time of 1 day that is Row 2 of Figure 7. While the assimilated forecast was better than the open loop in both 
cases, using the uniform prior led to larger error reductions. On examining the upstream part of the catch-
ment, it is clear that the uniform prior case reduced positive WDD errors by several orders of magnitude, 
bringing a large number of pixels from dark green (>2 m errors) to yellow (0.2–1 m), while using the Image 
I prior only changed these pixels to light green (1–2 m) for many pixels.

Comparing the percentage improvement in the lumped spatial RMSE water depth values between the 
assimilation and the open loop forecasts in Figure 6b, revealed that persistent improvements of ∼60% 
could be retained after the assimilation of Image II for at least 7 days. Indeed, the assimilation at the 
second time step resulted in greater improvements using the uniform prior. In fact, improvements >80% 
in the spatial water depth simulations could be achieved at the assimilation time steps, which is signif-
icant in terms of the potential of flood extent assimilation to improve global flood inundation forecasts. 
Assimilating Image I and Image II led to an average improvement of ∼60% in the RMSE WD statistic, 
while using Image I as a prior for Image II reduced the magnitude of improvements (∼50%) confirming 
the findings from Figure 7. The WD forecast improvements first decayed with time up to a lead time of 
2 days and then started to increase again. This is expected to be a consequence of the selection of parti-
cles which continue to perform well even toward the end of the simulation. Moreover, the assimilation 
of Image I was more beneficial for shorter lead times while Image II led to greater forecast improvements 
for longer lead times.

Note that the images available to this study were at favorable temporal positions with respect to the flood 
hydrograph that is post peak, they proved to be particularly informative for the inundation forecast. One 
of the reasons for this is that after the flood peak has passed and flows are rapidly transitioning between 
the channel and the floodplains, inflow errors which are proportional to the flow magnitudes also start 
to decay with time after the peak. Forecast errors can thus be better constrained by observations acquired 
after the flood peak, than by images covering the rising limb, since inflow errors dominate during this time. 
Moreover, since errors increased proportional to the increasing inflows during the rising limb, the particle 
weights assigned based on a given observation remained relevant to the forecast for very short lead times. 
The assimilation of early images with limited flood extents could, therefore, potentially lead to inconsist-
ent increments. This finding is consistent with earlier studies which found that flood extent observations 
acquired just after the peak had higher information content for hydraulic model parameterization (Gobeyn 
et al., 2017; Wood, 2016; Wood et al., 2016a). Moreover, at this time, flood extents were more sensitive to 
water depth changes due to transitioning flows. This allows the assimilation of post-peak images to better 
constrain the spatial water depth forecast. Although this implies that the algorithm is sensitive to observa-
tion spatiotemporal characteristics, it is expected that the assimilation will nonetheless improve the forecast 
for most cases, but the magnitude of improvements may vary. Note that all references to the flood peak in 
this paragraph refer to the peak inflow value in the input hydrograph, while the inundation peak observed 
in the floodplain follows much later (several hours to several days) based on the catchment morphology. 
This implies that “post-peak” image assimilation can still lead to forecast improvements which enhance 
emergency preparedness and save lives.

4.3.  Impact on Floodplain Flow Velocity Simulation

The distributed impact of flood extent assimilation on flow velocities was estimated through the (FVD) 
maps shown in Figure 8, computed as the pixel-wise difference between the expectation and the truth at 
different lead times from the assimilation. The product of flow velocities and depths constitute the flood 
hazard, which determines the potential for casualties during floods and are therefore important to be sim-
ulated well. The cell velocities were computed by combining the x- and y-components of cell edge veloci-
ties produced as outputs by LISFLOOD-FP. The color scheme used here is similar to the previous section, 
although it is important to note that the discretization of classes differs based on the range of bias values 
observed. The light green therefore corresponds to the minimum error class ±1 cm/s while darker shades 
going toward indigo indicate over-estimation of velocities and the darker shades toward rust indicate un-
der-estimation. Readers should note that this study makes no claims about the accuracy of the flow ve-
locities simulated by the truth model, because they cannot be validated practically in the field at present. 
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However, the future looks promising with ongoing research to estimate flow velocities from drone-based 
(Tauro & Salvatori, 2017; Tauro et al., 2016a, 2016b) and crowdsourced (Le Boursicaud et al., 2016; Le Coz 
et al., 2016; Muste et al., 2011) video observations, which could soon make this type of validation possible. 
Since this study presents a synthetic experiment, the benchmark flow velocities can be used for evaluation. 
This analysis may provide useful insights on (a) the distributed spatial impact of the assimilation on this 
state variable which has never previously been examined, and (b) investigate the temporal evolution of 
these errors with increasing lead time.

The first and most obvious observation from the FVD maps illustrated in Figure 8 is that the assimilation 
improved the forecast for all examined lead times, consistent with the findings of previous sections. In-
terestingly, the assimilation was able to locally correct for both under- and over-estimation, introduced in 
some regions by the evolution of the inflow errors in the open loop. Since the absolute values of velocity in 
the floodplain were very low, the largest errors in the velocity simulations were observed in and around the 
channel. This was expected since accurately representing the channel conveyance plays a major role and 
presents a significant scientific challenge due to the large quantity of field information on bathymetry and 
roughness necessary to achieve this perfectly. The general trend of over-estimating velocities in the open 
loop was reduced after the assimilation, with no visible differences' observable between the assimilation of 
Image I and II or the use of different priors. Encouragingly, the impact of the assimilation remained positive 
and rather constant across all examined lead times. More importantly, the forecast was never degraded by 
the assimilation, despite studies having shown that degradation is a distinct possibility for hydraulic data 
assimilation (see Andreadis & Schumann, 2014, for details). This spatial assessment of flow velocities illus-
trated that the assimilation improved all model states and did not negatively impact the delicate equilibrium 
between them.
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Figure 8.  As for Figure 7 but for absolute flow velocity magnitudes rather than water depth.
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The percentage improvement in the spatial mean RMSE in the flow velocity is illustrated in Figure 6c. Aver-
age improvements of ∼50% could be observed in the spatial velocity simulations after the assimilation, with 
Image II generally producing greater improvements than Image I over the different lead times. One possible 
reason for this could be the timing of Image II, which was almost a day after the observed peak. At this time 
of the flood, the flows are out of bank and rapidly transitioning between the channel and the floodplains, 
leading to inundation patterns primarily driven by model propagation as opposed to the inflow errors. As 
current inflow errors have comparatively less importance, the assimilation of flood extent observations 
was able to effectively constrain the model trajectory longer. The use of different priors also influenced the 
assimilation performance in this case. Using the uniform prior is generally better but for the 3 days lead 
time the Image I prior led to greater improvements in the velocity forecast. This trend is similar to what was 
observed for the water depths in the previous section where the 3 days lead time showed a greater forecast 
improvement than some of the shorter (1 and 2 days) and longer (7 days) lead times examined.

4.4.  Impact on Channel Water Level Simulation

The assimilation results for the channel WLs, at 11 gauging stations (four synthetic and seven real gauges; 
locations shown in Figure 3) along the main stem of the river are illustrated in Figure 9. Note that the 
uniform prior was used for both Image I and Image II in the assimilated channel WL forecast trajectory 
shown in the plots. Discharge plots have been excluded for brevity as they exhibited similar characteristics. 
A cursory examination reveals that the assimilation always improved the estimation of flow and depth in 
the channel, with the assimilation of Image II exhibiting stronger impacts than the assimilation of Image 
I. As expected, due to the positively biased inflows, the open loop WL hydrograph was consistently higher 
than the truth, but the assimilation was able to recover the truth from the ensemble. Moreover, improve-
ments persisted for up to ∼7 days after the assimilation. This is crucial from an emergency management 
perspective, especially for the populated area downstream of Grafton where the flood peak arrived after 
both images had been assimilated. Of course, this may be catchment specific and dependent on the inflow 
error generation model chosen here, requiring further testing in catchments with different hydraulic char-
acteristics to demonstrate scalability.

The WL time series was also statistically evaluated using the BSS statistic as shown in Figure 6d, which 
compares the forecast skill of the assimilated ensemble with the open loop. With values ranging from −∞ 
to an ideal value of 1, BSS quantifies the percentage improvement in the quadratic errors of the forecast, in 
this case for the simulated channel WLs. The errors as well as the corresponding percentage improvement 
as a consequence of the assimilation were consistent from upstream to downstream and were ∼70% on 
average (mean of all bars ∼0.7 in Figure 6d). Indeed, as the errors were introduced as inflows at the up-
stream boundary, the improvements from assimilation were sustained for longer durations downstream (E. 
S. Cooper et al., 2018). The persistence in the improvements could also be a function of the 3 days temporal 
correlation imposed in this study following the work of García-Pintado et al. (2013). Indeed, the stationary 
bias in the true mean error imposed here undoubtedly resulted in more consistent improvements, since 
the correlation in time means that the different particles differed in terms of magnitude but not in terms 
of timing, which is unrealistic for real forecasting scenarios. While this serves to emulate the forecasts of 
hydrological models using precipitation forecasts as inputs, where the knowledge on the mean error evolu-
tion is typically lacking, future investigations should examine more complex methods to approximate the 
real world error dynamics. There was a general increasing trend in assimilation benefits from upstream to 
downstream in the discharge statistics, although the magnitude of the trend was marginal. This is expected 
to be a function of the forecast velocity improvements achieved due to the assimilation, as the WLs do not 
exhibit this trend.

4.5.  Likelihood Function Efficiency as Compared to Hostache et al. (2018)

Figure 10 shows the results from a comparison with the flood extent assimilation method proposed by Hos-
tache et al. (2018), hereafter referred to as PF-ST (PF-Standard), and the approach of this study, hereafter 
called PF-MI. In this section, both of the flood extent assimilation approaches were applied to the HISD 
(Part I) and the 2011 (Part II) events described in Section 2.3. Images were assimilated at different temporal 
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instances across the hydrograph, including during the early rising limb, pre-peak, peak, post-peak, and late 
falling limb using PF-LIST and PF-MI for the HISD event. For the 2011 event, the observations correspond-
ing to the real-world SAR acquisition times were assimilated. Note that all images were assimilated using 
a uniform prior, to assess the individual impact of each standalone observation. To evaluate the two likeli-
hood functions, the distribution of simulated WLs at Lawrence (an example downstream gauge—selected 
due to clear differences in the performances of both algorithms) was plotted, along with the particle weights 
assigned by both algorithms, the true WL and the open loop mean. This allowed visualizing the particles 
selected by each algorithm after the assimilation and lends insights to understand the performance in terms 
of the RMSE at the assimilation time step and the simulated WL hydrographs.

DASGUPTA ET AL.

10.1029/2020WR027859

22 of 28

Figure 9.  Water level time series at the synthetic and real gauge locations along the main stem of the Clarence River. The dashed black vertical lines show the 
timings of the two assimilated images. The plots for each gauge have been arranged upstream to downstream in the different rows of the figures, with the final 
subplot illustrating the gauge locations for reference.
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It is clear from Figure 10, that the flood extent assimilation led to forecast improvements for both events 
and that the PF-MI approach consistently produced performances equivalent to or better than the PF-ST 
approach. For the unbiased inflows used in the HISD event (Part I), the open loop already performs quite 
well, and it was thus harder to make improvements. However, the PF-MI produced consistently greater 
RMSE improvements in comparison to the PF-ST for all the images considered in (c), despite forecasting 
of “flashy” events being notoriously difficult. Panel (b) reveals that the PF-MI selected a range of particles 
(see the number of nonnegligible weights in green), which allowed the forecast to stay on track for longer 
lead times. In contrast, the PF-ST (purple line) selected only one particle with a full probability weight of 1, 
which may have performed excellently at the assimilation time step but may not remain relevant for long 
lead times. The consequences of this are evident from (d), which shows that the PF-MI forecast closely 
followed the truth for more than 3 days after the assimilation of the final observation. While it could be 
argued that this 3-days improvement was a function of the inflow error temporal correlation, this seems 
highly unlikely since the improvement was only visible for PF-MI even though the same ensemble was used 
for the PF-ST tests.

Similar observations can be made from Part II of Figure 10, where the assimilation methods were applied to 
the 2011 event. In this case, (b) shows that the PF-ST selected 1 well-performing particle (ensemble mem-
ber #79), which reproduced the true WL at Lawrence almost exactly at the assimilation time step, while 
PF-MI selected multiple well-performing particles. However, after performing well for a lead time of 2 days 
(d), the PF-ST forecast started deviating from the truth and after a lead time of 7 days the errors exceeded 
the open loop errors with a large positive bias. These findings further highlight the need to avoid particle 
degeneracy, and the crucial role it plays in the persistence of assimilation benefits. Moreover, the PF-MI 
produced greater improvements both at the assimilation time step and for longer lead times, implying that 
it has the potential to improve forecasts with rapidly varying hydrological conditions. Future work should 
investigate the impact of using different model likelihood functions on events of varying intensity and dura-
tion across diverse catchments. Furthermore, effective temporal decay functions should be designed which 
can objectively relax the observation influence on the forecast as the trajectories become independent of the 
instantaneous initial conditions observed at the image acquisition time.
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Figure 10.  An illustration of the performance of the PF-MI and PF-ST, applied to two different flood events, evaluated in terms of the channel water level 
forecasts. Parts I and II showcase applications to the HISD and the 2011 flood events, respectively. Panels (a and c), show the RMSE at the assimilation timestep 
and the channel water level hydrographs at Lawrence, respectively. Panel (b) shows the water levels at Lawrence for all the particles, along with the true water 
level, the open loop mean, and the particle weights computed by both algorithms at a given assimilation time step.
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5.  Conclusions
A method for assimilating SAR image-derived flood extent into a hydraulic model was proposed, using 
MI as a novel model likelihood function implemented within a SIS PF framework. MI quantifies the re-
duction of uncertainty in predicting the observation knowing the model simulation at each assimilation 
time step. Each particle, representing a particular model realization with a unique erroneous inflow input, 
was assigned a weight using the MI-based metric. The efficiency of the proposed assimilation algorithm 
was demonstrated through synthetic experiments, which evaluated assimilation impacts on forecast flood 
extent, floodplain water depths, floodplain flow velocities, channel depth, and flow. The sensitivity of flood 
extent assimilation algorithms, toward the prior distribution chosen for the sequential assimilation of SAR 
images, was also demonstrated in this study. Interestingly, using the uniform prior led to better forecast 
quality as compared to the use of the assimilated forecast from the previous observation as the prior. The 
influence of the selected prior distribution on the estimation of the true state posterior needs to be better 
understood through further investigations.

The assimilation resulted in mean flood extent forecast improvements of ∼16% at the assimilation time 
steps, which decayed to ∼4% for a 7 days lead time. Simulated water depths evaluated both in the channel 
and in the floodplain, improved by more than 70% in some cases due to the flood extent assimilation, and 
were consistent from upstream to downstream. The distributed assessment of forecast flood depths and 
flow velocities in the floodplain showcased the robustness of the proposed algorithm toward positive and 
negative biases. This implies that the observation was able to facilitate the selection of particles that per-
formed well across the entire domain for post-peak images.

Forecast improvements were shown to persist for up to 7 days after the assimilation, even though the mag-
nitude of the improvements decayed with lead time. Some of the persistence in assimilation benefits can be 
attributed to the (rather strong) temporal error correlation imposed on the inflows, however the correlation 
length is only of 3 days and thus cannot completely explain the weeklong benefits. Using the PF-MI thus 
seems viable for operational applications and can lead to improved forecasts due to larger information 
uptake along with spatial uncertainty considerations. Comparisons with the PF-ST algorithm proposed by 
Hostache et al. (2018), revealed that the PF-MI not only produced greater or equivalent improvements at the 
assimilation time step, but also that these improvements were also persistent for longer lead times.

The experiments presented in this study demonstrate that the assimilation of SAR-derived flood extents 
improve hydraulic flood inundation forecast skill despite being a prognostic state variable. Forecast skill was 
consistently and persistently improved through assimilation in the channel and in the floodplain, implying 
that the assimilation of flood extents into hydraulic inundation forecasts could be significant from an emer-
gency management perspective.

Data Availability Statement
All the data and codes used for this study are available at https://doi.org/10.6084/m9.figshare.13152908.v1 
distributed under the CC BY 4.0 License.
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