
1. Introduction
Hydrodynamic or hydraulic modeling is necessary to obtain accurate estimates of flood inundation and 
depth (Grimaldi et al., 2019). For hydraulic flood models running in forecast mode, the largest source of 
uncertainty is often the inflow error propagated from uncertain precipitation forecasts (Cloke & Pappen-
berger, 2009; G. J. P. Schumann et al., 2016), in addition to topographic errors from Global Digital Elevation 
Models (DEMs) (Kumar et  al.,  2019; Pilotti,  2015; Pramanik et  al.,  2010), and parametric errors due to 

Abstract Flood inundation forecasts from hydrodynamic models can help with flood preparedness, 
but uncertainty in the inputs and parameters can lead to erroneous flood inundation estimates. However, 
Synthetic aperture radar (SAR)-based flood extent information can be used to constrain such model 
forecasts through data assimilation thus making them more accurate. Since high-resolution SAR 
satellites can only provide partial coverage for medium to large catchments, it is expedient to evaluate 
the combination of observation footprint, timing, and frequency which can lead to maximum forecast 
improvements. Consequently, multiple spatiotemporal SAR-based flood extent assimilation scenarios 
have been simulated here to identify the optimum observation design for improved flood inundation 
forecasts. A mutual information-based particle filter was implemented in a synthetic setup for the 2011 
flood event in the Clarence Catchment, Australia, to combine SAR-based flood extents with the hydraulic 
model LISFLOOD-FP. The open loop ensemble was forced using uncertain inflows and the impact of 
assimilating flood extents in morphologically homogenous river reaches was evaluated for different 
first visit and revisit scenarios. Results revealed that the optimum temporal acquisition strategy strongly 
depends on reach morphology and flood wave arrival timing. Further, it was found that a single image 
at the right time could improve the 8-days forecast by ∼95% when assimilated at reaches with large flat 
floodplains but limited tidal influence, while in reaches with narrow valleys over 10 images were needed 
to achieve the same outcome. Experiments such as the one presented here can therefore inform targeted 
observation strategies to ensure cost effective flood monitoring and maximize the forecast accuracy 
resulting from flood extent assimilation.

Plain Language Summary Satellite observations of flood inundation have the potential to 
increase the reliability and accuracy of flood forecasts, thereby contributing to improved flood resilience 
of vulnerable populations. However, new generation high-resolution satellites can only observe small 
portions of large river systems river during a flood. Since, the model-data integration methods used to 
combine flood forecasting models with satellite data are sensitive to the observation coverage, timing, 
and frequency best case scenarios can be constructed to obtain maximum improvements in accuracy. 
This study investigated the possibility of designing targeted observation strategies that can lead to more 
accurate flood forecasts after the model-data integration. Synthetic experiments were used to simulate 
multiple different image acquisition scenarios and assess the impacts on flood forecast accuracy. Results 
indicate that the location and timing of the images is more important than the revisit interval. Findings 
from this study can therefore be used to inform future satellite acquisitions, to ensure more cost effective 
flood monitoring from space leading to more reliable flood inundation forecasts.
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lumped or incorrect specifications (Annis et al., 2020). In order to reduce forecast uncertainties, flood mod-
els must be constrained using independent observations (Grimaldi et al., 2016). Synthetic aperture radar 
(SAR) sensors are ideal for this purpose, as their all-weather all-day imaging capabilities enable the spati-
otemporal evolution of flood inundation to be observed (Dasgupta et al., 2018). SAR images provide infor-
mation on flood extent, and when intersected with a DEM yields water level observations at select shoreline 
locations (Mason et al., 2012). These SAR-derived water levels can then be used to correct model predicted 
water levels in real-time using data assimilation, leading to more reliable flood forecasts as demonstrated 
by a number of studies (e.g., García-Pintado et al., 2015; Giustarini et al., 2011; Matgen et al., 2010; Neal 
et al., 2009). However, SAR-based water level estimation is neither straightforward nor automatic (Hostache 
et al., 2018) and was identified by G. Schumann et al. (2009) as an additional source of uncertainty. Con-
sequently, a few studies have proposed the direct assimilation of SAR-derived flood extents into hydraulic 
models to reduce forecast uncertainty (e.g., Lai et al., 2014; Revilla-Romero et al., 2016).

Data assimilation allows for iterative system state estimation using a combination of instantaneous obser-
vations of the system and a continuous model of system dynamics to bridge the information gap during the 
measurement interval (Nichols, 2010). A number of different data assimilation methods have been used 
for the assimilation of remote sensing observations into hydraulic models. Of these the Ensemble Kalman 
Filter (EnKF) is the most popular as it allows the representation of model uncertainty with ensemble siz-
es significantly smaller than the state dimension (García-Pintado et al., 2013). However, since the EnKF 
requires an assumption that observation errors are Gaussian (Walker & Houser,  2005), the assimilation 
of SAR-based observations with known non-Gaussian errors (Xie et  al.,  2002) has focused attention on 
the non-parametric particle filter (PF). The adaption of the PF for high dimensional applications has been 
questioned due to the possibility of “filter collapse,” where all ensemble members attain negligible weights 
while one attains a value of unity (García-Pintado et al., 2013). Indeed, the use of large ensemble sizes are 
theoretically mandated for PFs, with the ideal ensemble size being several orders of magnitude larger than 
the size of the state vector (Banister & Nichols, 2012; Nichols, 2010). In practice, however, the required en-
semble size depends mainly on the model complexity, with hydrological model ensembles stabilizing with 
even 64 members (Reichle et al., 2002) and increases in ensemble size only leading to marginal improve-
ments (Plaza Guingla et al., 2013). Furthermore, Dumedah and Coulibaly (2013) showed that PFs enable 
the retention of forecast accuracy improvements for longer lead times than the EnKF in hydrological data 
assimilation, which is important since the persistence of assimilation benefits is a known issue (K. M. An-
dreadis et al. 2007; Matgen et al., 2010).

The increasing number of spaceborne SAR sensors promise improved temporal coverage of flood events in 
the future. For example, SAR satellite constellations such as Cosmo-SkyMed (CSK) or the Radarsat Con-
stellation mission offer 12- and 24-h revisit capabilities respectively, providing image sequences. For flood 
forecasting applications, the sensitivity of the relevant information content to first visit time and revisit 
time has been clearly highlighted by García-Pintado et al. (2013). However, the information content of SAR 
observations for flood applications is also a function of spatial coverage (Grimaldi et al., 2016). As satellites 
constantly evolve to provide increased spatial and temporal resolutions along with on-demand imaging 
capabilities, the design of targeted observation strategies could maximize forecast improvements (K. M. 
Andreadis 2018). According to Andreadis and Schumann (2014), the impact of assimilating water surface 
elevation, channel top width, and inundated area observations on forecast accuracy was keenly sensitive 
to observation spatiotemporal coverage. In fact, the study also highlighted that the assimilation could even 
degrade the forecast if observations were locally fitted to models in a highly erroneous sub-domain.

This study has therefore explored sampling design to maximize forecast improvements resulting from flood 
extent assimilation, by evaluating several realistic hypothetical observation footprint and temporal visit sce-
narios. Operational constraints related to data latency have not explicitly been considered here, since this 
problem is expected to further reduce in future satellites (McCabe et al., 2017). A real flood is simulated for 
this analysis with observed inflows serving as the baseline, with a controlled identical twin experiment used 
to assess the efficacy of each spatiotemporal scenario. First, the catchment was divided into three regions 
based on valley shape and catchment morphology, envisioned as the most important factors when assimi-
lating flood extents (see the discussion in Wood et al., 2016 and Gobeyn et al., 2017 about the information 
content of flood extent for hydraulic model calibration). Single or multiple images (with revisit intervals of 
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Water Resources Research

12-, 24-, and 48-h) were then assimilated into any one of the three model sub-domains, and results evalu-
ated in terms of absolute and relative errors. Impact on forecast accuracy for different lead times was eval-
uated by changing the time window used for calculation of the error metrics. Three brier skill score curves 
corresponding to each assumed observation footprint were generated for each temporal scenario and lead 
time combination. Ultimately, the location, timing, and frequency of observations for maximum possible 
improvement through flood extent assimilation is identified.

2. Methods
2.1. Experimental Design

Identical twin experiments were used with a hydraulic model simulation based on a real flood event. A 
uniform value of channel friction was assumed and fixed based on prior model calibration, with inflows 
considered as the primary source of errors to be corrected by the data assimilation in real-time. Measured 
inflows at the upstream boundary and calibrated friction parameters were used for the “truth” simulation, 
from which synthetic SAR-based probabilistic flood extents were generated. For the same event and sim-
ulation period, the observed inflow values were perturbed to generate an ensemble of erroneous inflows. 
Assuming the inflow measurements to represent the truth, a stationary mean error was first imposed as a 
positive multiplicative bias, followed by the addition of temporally correlated heteroscedastic errors. This 
inflow error generation method proposed by García-Pintado et al. (2013) is described in further detail later. 
The erroneous inflow ensemble was used to drive the open loop simulations (without data assimilation), 
and for all the assimilation simulation testing of different SAR visit scenarios.

The red boxes in Figure 2 (III) illustrate the sub-domains used for the assimilation, defined based on the 
river morphology, hereafter referred to as Sub 1, Sub 2 and Sub 3. Following the work of Domeneghetti 
et al. (2014) and Schumann and Andreadis (2016), three morphologically homogeneous sub-reaches were 
identified in the upper, central, and lower parts of the catchment. As the size of the floodplain and shape of 
the valley can strongly influence the inundation extent, it was reasonable to use these to define the different 
observation footprints considered for flood extent assimilation in this study. This visual interpretation was 
verified through the approach of Schumann and Andreadis (2016), where reach flow behavior was approxi-
mated using an assessment of the river longitudinal slope. For reaches with topographic controls where the 
flow behavior is typically kinematic, the longitudinal slope can be defined through a linear approximation. 
However, for reaches with more diffusive flows, the bathymetric longitudinal elevation distribution, shows 
a variation of >2σ around the fitted regression line. Based on this assessment, the sub-reaches relevant for 
flood extent assimilation were identified as follows.

Sub 1. The first sub-reach up to ∼40 km from the upstream inflow boundary, characterized by a narrow 
valley (floodplain widths ranging from ∼3 to 6 km) and high river longitudinal slope (>1%).

Sub 2. The second sub-reach from ∼40 to ∼90 km chainage, characterized by large flat floodplains (flood-
plain widths ranging from ∼7 to 24 km) with gentle channel slopes (<1%), and limited tidal effects (see the 
small waves visible in the baseflow preceding the flood hydrograph at Rogan's Bridge in Figure 2 (II)).

Sub 3. The third sub-reach from ∼90 to ∼150 km chainage, also had large flat floodplains (floodplain widths 
ranging from ∼12 to 20 km) with gentle channel slopes (<1%), but with strong tidal backwater effects that 
control the inundation (see the tidal undulations visible in the receding limb of the flood hydrograph at 
Lawrence/Maclean, in Figure 2 (II)).

Note that this sub-reach classification is not sensitive to small shifts in chainage. This implies that altering 
the length of the reaches slightly is unlikely to influence the assimilation outcome and thereby the conclu-
sions, as long as the dominant flow controls and floodplain characteristics are accurately characterized and 
are largely uniform across the reach. For each hypothetical observation footprint outlined here, several dif-
ferent temporal visit scenarios were experimentally implemented to answer the relevant research questions 
outlined in Table 1. Note that all references to flood extent assimilation in this study refer to observations 
covering only one of these sub-domains at any given time. Through this subdivision of the model into three 
sub-reaches and the evaluation of temporal visit scenarios, this paper identified the optimum footprint, 
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Water Resources Research

timing, and frequency of flood extent observations for optimum improvements from the flood extent assim-
ilation, with the results generalized for river reaches of similar slopes and catchment morphologies.

An ensemble of 128 simulations was used in this study, representing a reasonable trade-off between com-
putational expense and accuracy for particle filters (Hostache et al., 2018, 2015). Although it may be argued 
that this ensemble size is small given the number of model state variables, the practicalities of ensem-
ble-based assimilation in operational flood forecasting need to be prioritized. Ideally the ensemble size 
should be several orders of magnitude larger than the state vector (Nichols, 2010) (∼63,500 wet cells so 
at least >100,000 ensemble members), but this would be impractical for operational forecasting given the 
computational demands of hydraulic models. Moreover, Plaza Guingla et al. (2013) experimentally demon-
strated through assessments of five different particle sets (32, 64, 128, 256, and 528) that increasing the 
ensemble size beyond 128 members, yields only marginal improvements which do not justify the increased 
computational load (see Table 4 of Plaza Guingla et al. (2013)). Therefore, 128 particles were considered 
sufficient for this study along with stringent ensemble spread evaluations used to ensure that the observa-
tions were captured.

The ensemble spread and mean forecast error are crucial to ensure observations are encompassed suitably 
(Moradkhani, Sorooshian, et al., 2005). If the observations are statistically similar to the N ensemble mem-
bers over the entire forecast of length T, then the ratio (Ra = Rt/Rn) between the RMSE of the ensemble 
mean Rt, calculated as
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and should be equal to the expected value of Ra, given by
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The forecast skill can then be evaluated using the Normalized RMSE Ratio (NRR) given by


  

NRR .Ra
E Ra (4)

Values of NRR > 1 indicate too little ensemble spread, while NRR < 1 implies too much ensemble spread, 
with ideal ensembles producing NRR values close to unity (Moradkhani, Sorooshian, et al., 2005). An NRR 
value of ∼0.96 was obtained for the forecast inflow ensemble in this paper which is sufficiently close to the 
ideal value of 1 indicating adequate ensemble spread.
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Observation location/
footprint Sub 1 (upper) Sub 2 (central) Sub 3 (lower)

River Reach Morphology Narrow valley and high river 
longitudinal slope

Large floodplain, gentle river longitudinal 
slope and very limited tidal influence

Flat and large, limited variation in flood 
extent due to strong tidal effects

Note. Every temporal scenario outlined in Table 2 was implemented for each spatial case listed here separately. Note that all references to flood extent assimilation 
in this study refer to observations covering only one of these sub-domains at any given time.

Table 1 
Summary of Different Spatial Scenarios Considered in This study
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Water Resources Research

2.2. Synthetic Satellite Observations

As an accurate assessment of observation error is crucial for data assimilation applications, objectively 
representing uncertainties in satellite observations is crucial. Therefore, the synthetic SAR observations 
generated in this paper were converted into probabilistic flood extents prior to the assimilation. The gridded 
water depth values simulated by the truth model were first extracted at the relevant assimilation time steps. 
These were subsequently converted into binary flood extents using a minimum water depth threshold of 
1 cm, chosen to maximize extent variability between time steps. The truth model simulated binary flood ex-
tents were then processed into synthetic SAR images using the approach proposed by Cooper et al. (2019); 
an example of this process is illustrated in Figure 1. For each pixel in the binary “truth” model simulated 
flood maps, a backscatter value was sampled from the distributions of flood and non-flood classes obtained 
from typical flooded image histograms. These “typical” histogram statistics were computed based on two 
CSK images covering the real-world flood event presented in this study. Parameterizing a Gaussian Mixture 
Model (GMM) using the CSK image histograms, the means, standard deviations, and mixing proportions 
were obtained. Based on the simulated wet/dry cell status, a value was sampled from the corresponding 
water and non-water Gaussian distributions to generate the synthetic SAR images. Following this, the syn-
thetic SAR images were translated into probabilistic flood maps using the backscatter-based Bayesian prob-
abilistic mapping approach proposed by Giustarini et al. (2016). The probabilistic flood extent observations 
were then subset according to the spatial subsets illustrated in Figure 2 and used to simulate the various 
assimilation scenarios described in Section 2.1. Readers are referred to Dasgupta et al. (2021) for more de-
tails on the GMM parameterization and to Giustarini et al. (2016) for the probabilistic mapping approach.

2.3. Data Assimilation Framework

Particle filters use Sequential Monte Carlo sampling methods to enable the non-parametric approximate 
representation of continuous prior and posterior probability distribution functions (pdf) and are thus 
able to relax the common assumption of Gaussianity in the observation and model errors (Arulampalam 
et al., 2002). PFs are therefore well suited to the problem of SAR-based flood extent assimilation (Hostache 
et al., 2018), where flooded SAR images are known to display non-Gaussian errors (Xie et al., 2002). In 
particular, the sequential importance sampling (SIS) used here allows observations to be incorporated into 
hydraulic model forecasting chains, without disturbing the delicate system dynamics. When hydraulic mod-
els are stopped mid simulation, momentum is typically not conserved and the fluxes in the domain drop to 
zero, resulting in spurious inundation outcomes (E. S. Cooper et al. 2018). This issue can be partially solved 
by applying pre-assimilation velocities, although this approach has only been demonstrated for an idealized 
test case so far. In the SIS implementation, however, the state variables are not updated, but rather the en-
semble mean is updated to assimilate all the observations. In other words, each model ensemble member 
was assigned a probabilistic weight in comparison to the observation and these weights were then used to 
compute the weighted mean which is representative of the assimilated state vector. While this approach has 
its own limitations, such as the frequently highlighted problem of particle degeneracy, these can be dealt 
with using pragmatic mathematical solutions (Hostache et al., 2018). However, restarting the model after 
fluxes artificially drop mid-simulation may result in hydraulic shock waves across the domain in addition to 
numerical instabilities, rendering the forecast unrealistic and useless.

In the PF-SIS, each individual model ensemble member is known as a particle and associated with a unique 
set of associated inputs and parameters. In this study, all the particles shared the same model parameters 
and geometry, with the only difference between them being the unique erroneous input inflow. The particle 
filter seeks to find the best estimate of the system states N

xx , given uncertain knowledge of observations 

N
yy  and the system dynamics (Arulampalam et al., 2002). Starting from a uniform prior pdf when no 

information is available, the particle weights are updated in real-time as observations are sequentially as-
similated (Moradkhani, Hsu, et al., 2005). The prior pdf of the state is given by p(x) while observing the true 
state of the system gives the measurements according to

  true ,y h x  (5)
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Water Resources Research

where h(.)  maps the model state x to the observation space as h(x) = 1 where x > threshold and 0 otherwise, 
with ϵ representing the measurement error. Discretizing the prior state pdf into N particles according to

  


 
1

1 .
N

xi
i

p x
N

 (6)

Allows updating the state every time a new observation is available. At each assimilation time step, the 
Bayesian conditional probability of each particle given the observation is evaluated by

     
   



|
| ,

| d
p y x p x

p x y
p y x p x x

 (7)

and used as the particle weight (Kantas et al., 2015) which is used to estimate the unknown posterior pdf 
according to

  


 
1

| ,
N

i xi
i

p x y w (8)

The model simulated state estimates are evaluated against observations at each assimilation time step using 
the function Li,
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 (9)

with the density p(y|xi) being the probability of the observations given the model or the likelihood. The 
weighting function assigns higher weights to models which better reproduce the observations, using the 
mutual information based likelihood proposed by Dasgupta et al. (2021), which quantifies the reduction 
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Figure 1. An illustration of the conversion of a binary flood extent simulated by the “truth” model, into first a synthetic SAR image, and then finally, into a 
synthetic flood probability map using the approach of Giustarini et al. (2016). Note that the mean (μ), standard deviation (σ), and mixing proportions (A) of the 
water and non-water pixel populations (denoted by sub-scripts w and nw), in the “Typical Flooded Image Histogram” were obtained from Cosmo-Skymed SAR 
images.
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Water Resources Research

in uncertainty about the model given the observation. The likelihoods are then rescaled and inflated to 
enhance posterior variance, and weights computed using

 
 


 
  
   

min
,

maxmax min

i i i
i

iii

L L Lw
LL L

 (10)

where ϑ is a rescaling factor which is internally optimized based on site-specific ensemble and observation 
properties. The weights are finally normalized according to

W w

w
i

i

i
i

N




1

,
 (11)

where Wi denotes the global weight assigned to a particle for a given observation, to ensure that the posteri-
or pdf sums to unity. As new observations become available, particle weights evolve to incorporate the new 
information and cumulative weights are computed. Here the weights are multiplied forward, implying that 
the assimilated forecast including information from both the model and the observation, forms the prior 
(i.e. p(x) in Equation 7) for each subsequent observation being the previous best state estimate. More simply, 
this means that the information from past observations is carried forward in time. When the observations 
are too far apart in time, the system may become independent of the previous information and a uniform 
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Figure 2. Geographical location of the Clarence Catchment, in Australia shown in I(a), with important towns marked with respect to the Clarence River 
system in I(b). The observed hydrographs and corresponding temporal image acquisition scenarios are shown in II. The extent of the model domain from 
Lilydale to Yamba is shown in III, along with the subsets identified for the assimilation based on morphological features and gauge locations used for 
evaluation. Sub-figure IV shows Google Earth photos highlighting the hydraulic complexities of the various sub-reaches.
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Water Resources Research

prior can be used again in the absence of any additional information. Combining the weights through for-
ward multiplication beyond the decorrelation length may negatively impact the forecast (Wood, 2016). This 
“decorrelation length” is also investigated in this study (Section 4.2.2), as the number of images which yield 
(i) positive improvements and (ii) the maximum improvements, when the assimilated forecast is used as 
the prior in Equation 7. Note that the “decorrelation length” or the time window until which the forecast 
is correlated to the instantaneous observational information, is not used in this paper but rather evaluated 
experimentally, to provide a framework for the future development of temporal weight decay algorithms.

In the SIS algorithm used in this study, the updated weights are used to compute the expectation of all state 
variables as the weighted ensemble mean given by,


     

1
.

N

i i
i

E X W x (12)

The expectation therefore represents the best state estimates using the available information in the uncer-
tain models and observations (Plaza et al., 2012). Moreover, the method proposed here based on the PF-SIS 
assimilation scheme is particularly suitable for the proposed assessment, as it allows to update the state 
predictions everywhere even if only a subset of the model domain is observed. The experiments presented 
herein can also help to evaluate the effects of global updating based on local observations offering only 
partial coverage of the domain. Interested readers are referred to Dasgupta et al. (2021) for a more in depth 
discussion of the assimilation strategy used here.

2.4. Ensemble Generation

Quality of ensemble forecasts is strongly dependent on the choice of the ensemble generation method, the 
forecast model, and the analysis scheme (García-Pintado et al., 2013). In this study, a major structural as-
sumption is that all model errors arise from the upstream inflow boundary data, while the model structure 
and parameterization is assumed to be perfect. Moreover, there could also be errors due to unspecified or er-
roneous lateral flows into the domain, which are not accounted for in this study, since upstream flow meas-
urements were considered to be the sole source of forecast uncertainty. This assumption is unrealistic for 
real-world applications, since the DEM/river geometry, friction parameters and for some reaches, the lateral 
inflows heavily contribute to the forecast uncertainties. However, assuming a single uncertainty source 
is fairly standard in synthetic data assimilation studies (e.g., García-Pintado et al., 2015, 2013; Hostache 
et al., 2018). Not only does this facilitate an assessment of forecast uncertainties arising from a particular 
source of error, but it also helps to better understand assimilation performance independent of complex 
uncertainty interactions, which is especially critical for the development of new assimilation techniques. 
In such cases though, the perturbation model chosen is a key determinant of the assimilation outcomes, 
and therefore must be as realistic as possible to ensure transferability of results to real-world case studies.

Observed inflows are known to exhibit measurement errors due to the instrumentation, but for high-flows 
typical of floods the flow values are often derived from extrapolated rating curves which additionally con-
tribute to the uncertainty (see Di Baldassarre & Montanari, 2009 for an extended discussion). In assimilation 
studies, authors have chosen to perturb the input forcings of hydrological models e.g. precipitation fields (K. 
M. Andreadis et al. 2007; Hostache et al., 2018) or the forcings, parameters, and initial conditions (Matgen 
et al., 2010), to obtain an ensemble of inflows for the hydraulic modeling. While some studies have argued 
that using model cascades result in more “realistic” forecast inflow ensembles, this also means that the error 
characteristics of the resulting inflows are neither controlled nor explicitly understood. As García-Pintado 
et al. (2013) pointed out, it is vital to have clarity on the error characteristics of the inflow perturbations 
for studies focused on hydraulic data assimilation, since the main objective is to efficiently mitigate them.

Essentially, the choice of the inflow error generation model depends on the nature of the uncertainty target-
ed. For instance, for hindcasting or calibration studies it makes sense to emulate the measurement uncer-
tainties discussed earlier. However, for forecasting applications simulating uncertainties typically observed 
in hydrological model forecasts is more suitable. The errors are expected to display some degree of temporal 
autocorrelation in both cases, with hydrological model forecasts exhibiting higher autocorrelation in time 
than measurements. Some degree of spatial correlation is also expected, although since the domain used 
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Water Resources Research

in this study has only one inflow point, this discussion is presently out of scope. Since, the flood extent 
assimilation scenarios emulated in this study are positioned specifically to improve operational inundation 
forecasts, temporally autocorrelated and heteroscedastic random errors characteristic of hydrological model 
outputs were used to perturb the measured inflows (as in García-Pintado et al., 2013). The main advantage 
of adopting this approach was that the impacts of selecting a “specific” hydrological model on the error 
characteristics is negated, leading to more generic and controlled error representation.

The temporal error characteristics of hydrological ensemble forecasts for real-world applications are typi-
cally unknown. Given the best available knowledge of discharge errors, a deterministic error was imposed 
here as a multiplicative bias (20% as recommended by García-Pintado et al., 2013) along with temporally 
correlated random errors to obtain the input inflow ensemble. The heteroscedasticity was ensured by scal-
ing the inflow errors according to the coefficient of variation observed from historical rating curves. Even 
though the mean error dynamics are emulated through a deterministic stationary bias in this case, a tempo-
ral correlation factor is introduced which decays to zero between assimilation time steps. This allows for a 
more realistic evaluation of the assimilation performance, as the real-world inflow error evolution is some-
what captured. Here a temporal correlation of 3 days was assumed following García-Pintado et al. (2013), 
who argue that while arbitrary this value is representative of typical distributed hydrological models. It is 
noted that longer temporal correlation windows, such as the one used herein, will inevitably lead to more 
persistent bias correction, especially due to the stationary mean bias. However, García-Pintado et al. (2013) 
postulate that this “intentional mismatch between the error forecast model and the stationary bias serves to 
emulate the lack of knowledge of the mean error evolution in real cases.” The inflow ensemble generation 
parameters used here are identical to García-Pintado et al. (2013), except for the coefficient of variation (cv) 
which was estimated from the available gauges (cv = 0.25).

2.5. Performance Metrics

The performance metrics used in this study reflect model accuracy in simulating channel and floodplain 
inundation dynamics. Impacts on the gauge water levels were evaluated with respect to the truth model at 
point locations using the Brier Skill Scores while floodplain water levels were assessed within the assimila-
tion sub-domain for the local case and over the entire model domain in the global case using the root mean 
squared errors (RMSE). First, the RMSE was chosen for a lumped evaluation of absolute model errors (E. 
S. Cooper et al. 2018; García-Pintado et al., 2013, 2015), between the weighted ensemble mean E [WDi] and 
the truth simulation WDi

truth according to

 



   
 

2truth
1

RMSE
1

WD WD1WD ,
P

T i i i

t

E

T P
 (13)

where P refers to the total number of model grid cells and i refers to a particular cell number. WDRMSE was 
computed over the specified time windows of length T (see Table 2) using hourly data and was used to 
quantify algorithm sensitivity to spatial coverage locally (within the assimilation sub-domain) and globally 
(across the entire model domain).

Synthetic gauges were considered at a few locations in addition to the real gauge locations, to ensure an eq-
uitable distribution of gauges in all sub-domains. Impacts on channel performance were evaluated through 
Brier Skill Scores (BSS), which quantify the relative improvement in the skill of the assimilated forecast 
with respect to the open loop. BSS was calculated according to

 
 

 
 

 

. ( . )
BSS 1 ,

( )

T

T

Assim Truth Assim Truth

OL Truth OL Truth
 (14)

where the variables in bold denote state vectors while the overline denotes a time average. Values of 
BSS ∈ (−∞,1], where BSS = 0 indicates no change in forecast skill while BSS = 1 is the ideal score indicating 
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Water Resources Research

no error remains after the assimilation. BSS is therefore a relevant proxy for characterizing assimilation 
framework efficiency.

3. Hydraulic Model, Domain, and Data
3.1. The Forward Truth Hydraulic Model

The two-dimensional grid-based hydraulic model LISFLOOD-FP (Bates et  al.,  2010) was chosen as the 
grid-based domain discretization allows easy integration with remotely sensed datasets (P. D. Bates & De 
Roo 2000), and used for all the experiments described here. The inertial formulation implemented in LIS-
FLOOD-FP is computationally more efficient than other diffusive models with similar levels of accuracy 
(Fewtrell et al., 2011; Horritt & Bates, 2001). Flows through each cell face are computed using an inertial ap-
proximation of the Saint Venant equations where only convective acceleration is ignored (Bates et al., 2010). 
A finite difference numerical scheme is used for increased stability, explicit in time and first order in space 
with a semi implicit treatment of the friction term (Bates et al., 2010). Flows between cells are computed as 
a function of local water acceleration, and of the friction and water slopes (de Almeida et al., 2012). For a 
full description of the model LISFLOOD-FP and version history, readers are referred to Bates et al. (2013).

The LISFLOOD-FP model was implemented here in full two-dimensional using a 90 m pixel size as the 
Clarence River is wider than 100 m at most locations and this allowed an acceptable trade-off between 
model resolution, accuracy, and computational time. At Lilydale, the upstream boundary condition was 
specified based on the observed discharge hydrograph for the 2011 flood event in the Clarence Catchment, 
while gauged tidal levels were used as the downstream boundary at Yamba (see Figure 1 for locations). 
Distributed floodplain friction coefficients were assigned based on land-use identified from field and aerial 
photographs, while a lumped value for the channel friction specified as Manning's n was calibrated using 
high water marks (HWMs) derived from crowdsourced photos. A Manning's n value of 0.026 m1/3s−1 led to 
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Assimilation 
case

Observation characteristics Assessment area Forecast lead time

Research questionFootprint
Acquisition/

first visit time
Revisit 
interval Channel

Channel & 
floodplain

Full forecast 
(days)

Revisit interval 
(hours)

Single image 
(Section 4.1)

All subs 
Table 1

Every 12 h No revisit Point (BSS) Local RMSE 1–16 
(Section 4.1.1)

12 (Section 4.1.2) When and where 
is a single 
observation 
most useful 
for the 
assimilation?

Global RMSE

Multiple images 
(Section 4.2)

Every 
12/24/48 h

12/24/48 h Point (BSS) Local RMSE 1–16 
(Section 4.2.1)

12/24/48 
(Section 4.2.2)

How do the 
observation 
footprint, 
timing, and 
frequency 
impact 
assimilation 
efficiency?

Global RMSE

Maximum 
improvement 
(Section 4.3)

Single or 
12/24/48 h

Point (BSS) – – 12/24/48 
(Table 3)

How much can 
the forecast 
be improved 
with optimal 
observation 
characteristics?

Local RMSE = RMSE calculated within the assimilation sub-domain; Global RMSE = RMSE calculated over the entire model domain; Assimilation 
efficiency = Forecast improvements resulting from the assimilation

BSS, Brier Skill Scores.

Table 2 
Summary of Temporal Scenarios Implemented for Each Spatial Scenario Outlined in Table 1
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Water Resources Research

the best mean RMSE value of 9 cm with respect to the HWMs for 2013 flood event in the Clarence Catch-
ment and was thus used as the channel friction in this study. Terrain elevations were supplied using the 
LiDAR DEM available to this study, upscaled to a 90 m grid resolution with integrated observed channel 
bathymetry, which ensured that the channel conveyance is adequately represented. Even though this factor 
has limited importance for synthetic twin experiments, a poorly resolved channel might alter the system 
wave propagation dynamics by forcing water onto the floodplain at low discharge, which in turn would im-
pact the channel overtopping time. Readers are referred to Grimaldi et al. (2018) for a detailed description 
of the bathymetric data set. Initial conditions were computed by running a steady state simulation with the 
same model implementation and an input inflow of the most commonly observed flow value at Lilydale. 
A warm-up period of five weeks was deemed necessary to ensure numerical stability and compensate for 
uncertain initial conditions, as described in Dasgupta et al. (2021) where the model implementation was 
first presented.

3.2. Study Area and Model Domain

The Clarence Catchment is situated in New South Wales, Australia, as shown in Figure 2, and drains a 
total of 22,700 sq. kms. The Clarence River is 394 km long of which a reach of 160 km, between Lilydale 
and Yamba, is covered by the hydraulic model domain. This catchment most recently experienced severe 
flooding in 2020, with the highest on record flood in 2013 which reached water levels of 8.09 m Australian 
Height Datum at the Prince Street Gauge, Grafton (Huxley & Beaman, 2014). Floods in this catchment move 
quickly taking about 30 h to peak on average, generating a flashy catchment response (Rogencamp, 2004). 
Low-intensity, long duration rainfall events are the dominant cause of flooding in the area. The back propa-
gation of ocean storm tides also strongly influence inundation dynamics at the downstream gauges around 
Lawrence, and the impacts are visible as far upstream as Rogan's Bridge (see Figure 2 for locations). In 
fact, the tidal oscillations are evident from the observed hydrographs, as well as the simulated hydrographs 
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Figure 3. An illustration of the flood inundation extents on January 13, 2011 12:00 h, with the open loop inflow 
ensemble shown in (a), example extents for high and low discharge shown in (b), the corresponding flood probability 
map presented in (c), and the number of particles which classify a given pixel as inundated at the given timestep are 
illustrated in (d).
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Water Resources Research

where tidal levels are used as the downstream boundary condition at Yamba. Indeed, the magnitude of 
the tidal influence is visible from the observed hydrographs in Figure 3 (II), where the gauges arranged 
upstream to downstream show progressively increasing discharge/water level oscillations. The catchment 
is characterized by largely variable flow velocities, ranging from 2 to 5 m/s in the channel and along the lev-
ees, to almost zero in the backwaters (Sinclair Knight Merz and Roads and Traffic Authority of NSW, 2011).

3.3. Datasets

The setup of a hydrodynamic model typically requires the specification of inflow discharge at the upstream 
boundary, catchment topography, channel bathymetry, floodplain surface roughness, and a downstream 
boundary condition. In this study, synthetic hydrographs were generated for the open loop runs by perturb-
ing the observed inflows at Lilydale for the 2011 flood event in the Clarence River using the error model de-
scribed by García-Pintado et al. (2013). The truth model was based on the observed inflows and tidal levels 
at the downstream boundary. Topographic information for the truth and open loop runs was identical and 
specified using a 1 m Light Detection and Ranging (LiDAR) Digital Elevation Model (DEM) with a vertical 
accuracy of ±30 cm and horizontal accuracy of ±80 cm resampled to 30 m (New South Wales Land and 
Property Management Authority, 2010; Figure 2). The channel bathymetry was reconstructed by interpo-
lating field-surveyed cross sections at strategic locations and stitched to the LiDAR DEM, for the part of the 
domain where it was available. The area upstream of Copmanhurst where LiDAR coverage was unavailable, 
was filled with the 1 Second SRTM Derived Hydrological Digital Elevation Model (DEM-H) product availa-
ble from Geoscience Australia (Gallant et al., 2011). The Lidar DEM was first resampled to the same grid as 
the DEM-H using nearest neighbor, following which the DEMs were merged ensuring identical reference 
systems and datums. For a detailed description of this topographic data set and the relative coverage for 
LiDAR versus the HDEM, readers are referred to (https://elevation.fsdf.org.au/) where the datasets are also 
freely downloadable. Details of the bathymetry data collection and interpolation are provided in Grimaldi 
et al. (2018), while the bathymetric data set is available at https://figshare.com/articles/Bathymetric_sur-
vey_of_the_Upper_Clarence/5648251 (Grimaldi et al., 2017). In a real world application, this DEM merging 
would have notable impacts on the assimilation given the stark difference in the uncertainty characteristics. 
However, it is expected to have negligible impacts in this study, due to the use of a synthetic twin experimen-
tal setup where the topography is identical for the open loop and assimilated forecasts.

4. Results and Discussion
4.1. Single Image Assimilation

4.1.1. Impact of Observation Footprint and Timing on Long Lead Times

A single image was assimilated into the hydraulic model at different locations and acquisition times (con-
sidered at every 12 h from the start of the event), and the impact on the channel water level forecasts across 
the event was evaluated. This allowed the persistence of assimilation benefits for long lead times to be 
assessed. As noted in Table 2, the assessment period started from the image acquisition time and extended 
until the end of the forecast. This implies that for the first image timing considered (i.e. January 6, 2011) the 
forecast lead time was of 16 days, while for the final acquisition evaluated (i.e. 22nd January) the forecast 
lead time was 1 day. The difference forecast lead times was compensated by using a relative metric for the 
gauge evaluation, i.e. the BSS, which implicitly considers the lead time since it is essentially the ratio of 
errors in the assimilated and open loop forecasts for the same assessment period. For the absolute error met-
ric, i.e. the WDRMSE used to evaluate the spatiotemporal impact on water depth simulations, this was dealt 
with by additionally providing the open loop response. This facilitated point-wise comparisons between 
the open loop and assimilated forecast WDRMSE at each acquisition time for the same assessment periods. 
Moreover, all comments of forecast improvements were made relative to the open loop errors, even for the 
absolute error quantified by the WDRMSE, thereby, ensuring that comparative statements could be made.

Figure 3 shows the variation in extents across the particles in different parts of the catchment and the BSS 
values calculated based on the water level hydrographs for all single image assimilation time steps are 
shown in Figure 4. BSS values were also computed for channel discharge but have been omitted for brevity 
due to identical trends. Figure 4 clearly shows that the flood extent assimilation was largely able to signif-
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icantly improve forecast quality, with some images leading to even a 100% reduction in open loop errors. 
The ideal image acquisition timing to enable the highest improvement differs for the three sub-reaches, 
indicating sensitivity of the assimilation algorithm to observation footprint. Assimilating images in Sub 2 
and Sub 3 indeed resulted in more consistent improvements of higher magnitude as compared to Sub 1, 
suggesting that reaches with larger and flatter floodplains are better candidates for flood extent assimilation. 
This finding can be attributed to the extent variability shown in Figure 3, which essentially implies that the 
reaches exhibiting more variability among model simulated extents, are more likely to allow for the effective 
ranking of particles.

In Sub 1 (the red line—Figure 4), the assimilation produced extremely inconsistent improvements due to a 
narrow and constrained valley, where extent sensitivity to changes in the simulated water depth varied no-
tably during the event (see Figure 3d). Consequently, the assimilation in Sub 1 results in an almost uniform 
posterior distribution, when the observation becomes uninformative about particle likelihoods. The more 
concerning factor is that forcing the models to be ranked according the extents observed in Sub 1, could po-
tentially degrade the model as shown by the negative BSS values obtained. When assimilating an image in 
Sub 1, the impacts of the assimilation were propagated downstream through the domain by the numerical 
model, leading to higher BSS values for the downstream gauges. In fact, the images (16/17 January) which 
degrade the forecast at the local gauges, actually result in >80% improvements at the Sub 3 gauges (notice 
the changing shape of the red curve upstream to downstream—Figure 4).
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Figure 4. Brier Skill Scores (BSS) obtained for single image assimilation in each sub-reach, from the time of the satellite overpass to the end of the forecast. 
Observations were independently considered each 12 h starting from the 6th of Jan with BSS calculated at nine water level gauges along the channel (three in 
each sub-domain); the true stage at the location is shown in all subplots as a reference. Each point on each curve is representative of a satellite acquisition time 
and the corresponding BSS obtained from the time of the satellite overpass to the end of the forecast.
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Water Resources Research

When images were assimilated in Sub 2 and Sub 3 with the flatter floodplains (green and blue lines in 
Figure 4, respectively), the forecast within and downstream of the observation footprint improved notably. 
However, the BSS substantially declined for some specific time steps at the upstream gauges located within 
Sub 1, most visibly for the images acquired after the flood peak in Sub 3, as observed from the noticeable dip 
in the blue line at the Sub 1 gauges. One of the reasons for this is that the particles which perform well in 
Sub 3 differ from those that perform well in Sub 1. This effect is most pronounced when the various reaches 
experienced different phases of the flood event (e.g., peak vs. falling limb) inducing rapidly varying flood 
extents. After the valley filling occurs in Sub 3 and the flood extent stabilizes, this effect is reduced and uni-
versally well-performing particles were again selected, which also performed well in Sub 1 as evident from 
the steep rise in the blue line. The green line of BSS in Sub 2 is mostly higher than in Sub 3, indicating that 
the assimilation is able to better update the forecast in reaches largely independent of tidal influence. Since, 
the deterministic downstream tidal levels are the dominant flow controls in Sub 3 (see the low sensitivity of 
the blue curve in Figure 3d), the impact on the forecast from assimilating in Sub 3 is limited as tidal levels 
are not updated by the assimilation. Indeed, adding the downstream level as a source of uncertainty, would 
allow for larger forecast improvements as a result of the assimilation.

Assimilating single images using the proposed algorithm demonstrated a large positive impact as indicated 
by the magnitude of BSS values. Except the images acquired in the rising limb before the flood peak, all im-
ages assimilated in Sub 2 and Sub 3 after the 14th of Jan reduced the quadratic errors of the water level fore-
cast by more than 50% for notable lead times. The positive impact of flood extent assimilation increased in 
general as the flooded area increased in the domain, as evident from the increasing trend in the BSS curves 
with time for Sub 2 and Sub 3. Images at and after the peak consistently produced persistent and strong posi-
tive impacts, as the inflow values and the corresponding error added to the domain at each consecutive time 
step started to diminish. Notably, the BSS values just after the peak were highest for the images covering Sub 
2 (green curve), with the maximum BSS using a single image resulting in ∼95% relative improvement over 
the open loop. This was in line with expectations as this reach is characterized by gravitational flow and not 
heavily influenced by tides.

Evaluating the spatial water depth RMSE over time, facilitates an evaluation of the spatiotemporal impacts 
of flood extent assimilation on distributed inundation depth simulations for different observational config-
urations. Such analyses can aid the identification of an optimum targeted observation design for floodplains 
as well, which had never been previously investigated in the context of flood extent assimilation. Figure 5 
therefore shows the spatiotemporal (i.e., computed across space and time) WDRMSE of water level over the 
entire domain in (a) and within the assimilation sub-domain in (b), with Part I of the figure focusing on the 
mean water depth RMSE from the satellite acquisition time to the end of the forecast. The red, blue, and 
green lines representing assimilation in the three unique sub-reaches, must be interpreted in comparison 
with the corresponding black line of the open loop, since the statistic is not normalized for flow magnitude 
or image footprint size.

The reduction in WDRMSE values both in the global and local cases, was maximum around the time when 
the flood wave traversed the particular reach, but no clear trends were evident in terms of where or when 
to assimilate (the three colored lines are always lower than the open loop in black in Figure 5 but one is not 
consistently better than the other). Images just before the peak resulted in greater global improvements over 
longer lead times as the forecast was kept on track by the assimilation. There were minor differences in the 
improvements from the assimilation before the flood peak, which became negligible after the peak, but ear-
ly images were generally better for the forecast. It is worth noting that the BSS values were consistently high 
in this region of the hydrograph, especially for assimilation in Sub 2 and Sub 3. However, it is expected that 
local improvement within the channel might have been smoothed out in the global WDRMSE due to averag-
ing over a large number of grid cells. Interestingly, this implies that the timing and location for maximum 
improvements from flood extent assimilation differ for the channel and the floodplain.

Figure 5 I(b) shows the WDRMSE computed locally across the specific model sub-domains used for the as-
similation. The magnitude of local improvements obtained through assimilation in Sub 1 were lower than 
in the global case, indicating that the assimilation in Sub 1 has an overall positive impact across the domain 
even though the local improvements are not substantial. Similarly, the assimilation in Sub 2 continued to 
demonstrate improvements in the global WDRMSE, even as the local improvement decayed to zero due to 
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Water Resources Research

positive impacts downstream. This is aligned with the findings of E. S. Cooper et al. (2018), where SAR-
based water level observations assimilated upstream had more persistent positive impacts consistent from 
upstream to downstream. For Sub 1, the local impacts became nearly negligible after the inflow peak, which 
was expected as the valley filling occurred, and the same effect was observable in Sub 2 and Sub 3 at later 
stages. The local and global WDRMSE for Sub 3 were consistent as it was the most downstream assimilation 
location, and therefore did not have notable positive impacts upstream. A maximum reduction of ∼15 cm 
in the WDRMSE was obtained in the best case i.e. assimilating flood extents in Sub 3 during the rising limb, 
which is substantial from an emergency management perspective.

4.1.2. Impact of Observation Footprint and Timing on Short Lead Times

This section investigated the ideal combination of image footprint and timing which maximized forecast 
improvements for short lead times of up to 12 h after the assimilation. As the previous section has demon-
strated possible improvements for longer lead times, this section focused on the performance of single im-
age assimilation for forecasts with short lead times. Channel water level forecasts were evaluated through 
the BSS as shown in Figure 6. The magnitude of improvement was substantially larger for 12-h lead times 
in comparison to the longer lead times in Section 4.1.1 This was expected since the temporal distance from 
the observation time is lesser, thereby the forecast is still “on-track.” There was almost no difference in BSS 
values when assimilating images in Sub 2 and Sub 3 acquired around the peak. For images assimilated after 
the peak the difference again increased as the floodplain inundation rapidly increased. Assimilation in Sub 
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Figure 5. Plots of WDRMSE computed for the (a) global case (over the entire domain) and (b) local case (over the assimilation sub-domain), from the time of the 
satellite overpass to the end of the forecast in (I) and the 12 h between one assimilation time step to the next in (II). In both cases, observations are assimilated 
only within a given sub-domain. The true water level at Grafton is shown as a reference in each sub-plot. Here OL refers to the Open Loop forecast, while Sub1/
Sub2/Sub3 refer to the assimilated forecast obtained after assimilating images in Sub-reach 1, 2, and 3, respectively. RMSE, root mean squared error.
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Water Resources Research

1 consistently resulted in lower BSS values leading to lesser forecast improvements than the other reaches, 
which was expected due to the low sensitivity of flood extents to depth in the narrow valley. Assimilation 
impacts propagate from upstream to downstream, resulting in nearly identical BSS curves at all the gauges 
for images covering Sub 1. In contrast, the impact of assimilating in Sub 2 was consistent for gauges in Sub 
2 and Sub 3, while the forecast at the upstream gauges did not improve as much. Most images assimilated 
in Sub 2 and Sub 3 (except for a few very early images with limited or no inundation) resulted in BSS>0.9, 
implying >90% improvements over the quadratic errors in the open loop.

Spatial performance for the 12 h forecast was also evaluated through the WDRMSE, computed globally—
across the entire domain and locally—within each assimilation sub-domain, as shown in Figure 5 II(a) 
and (b), respectively. Figure 5 II(a) shows that the assimilation always improves the forecast since the red, 
green, and blue lines show lower RMSE values than the open loop in black, but the differences resulting 
from the image footprint in the global case are rather minimal. Images acquired at or around the peak pro-
duced considerable forecast improvements in all sub-reaches. However, when the flood peak was entering 
a particular sub-reach and images were assimilated elsewhere, the assimilation resulted in lower WDRMSE 
reductions. For example, the January 13, image assimilated in Sub 3 (blue line in Figure 5IIa, does not 
improve the RMSE as much as assimilating in Sub 1 and 2. Since the flood wave is leaving Sub 1 at this 
point in time and entering Sub 2, as evident from the reference true water levels at Grafton located in Sub 
2 (gray line in the Figure 5 sub-plots), an observation covering Sub 3 is not very informative for the forecast 
at this time. In fact, for images acquired just before the flood peak, assimilating in Sub 2 reduced the global 
WDRMSE by ∼40 cm, which is substantial considering that it is an average value computed across ∼550,000 
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Figure 6. As for Figure 4 except for the time window used for the BSS calculation. Here BSS was calculated from the assimilation time step of a single image 
until the next image became available. As images were considered every 12 h, this time window was restricted to 12 h after each assimilation time step. BSS, 
Brier Skill Scores.
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Water Resources Research

modeled cells. Even for flood extent assimilation in Sub 1, the WDRMSE reduced by a maximum of ∼18 cm, 
highlighting the potential of this approach for improved forecasts.

Figure 5IIb illustrates that the local improvements were typically larger than the impacts produced globally, 
with the maximum reductions of ∼1 m in the local WDRMSE in Sub 1. Assimilating images at most time 
steps in Sub 2 and Sub 3 reduced the local WDRMSE to almost zero for the 12-h forecast, indicating that this 
lead time falls within the window of system memory. Images after the peak had negligible impact on local 
WDRMSE values when assimilated in Sub 1. Assimilation of images after the peak produced the maximum 
improvements in the channel water level forecast as we saw in the BSS plots of Figure 6, while those assim-
ilated before and at the peak most reduced the absolute errors in spatial flood inundation depth relative to 
the open loop. Images assimilated at and around the peak demonstrated strong positive impacts on the flood 
forecast irrespective of assimilation location, although the impact was notably greater in the reaches with 
larger and gentles floodplains. In fact, the quadratic errors were likely most reduced when the extent varied 
rapidly, and the floodplain was involved through overbank flows.

4.2. Multiple Image Assimilation

4.2.1. Impact of Observation Footprint, Timing, and Revisit Interval on the Daily Forecast

The BSS plots for the different multiple image assimilation scenarios considered here are illustrated in Fig-
ure 7, to examine the impact of observation footprint, first visit, and revisit intervals on channel water level 
forecasts for long lead times. Each row illustrates the BSS plots for a given revisit frequency. Each point on 
each curve corresponds to the first visit time starting from which multiple images were considered with a 
particular revisit interval, and the BSS value obtained after all the images were assimilated. The final image 
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Figure 7. As for Figure 4 but for the multiple image assimilation case with weights carried forward by multiplication; impacts of different revisit intervals are 
shown in each row. Each point on each curve corresponds to the first visit time and the BSS obtained from the time of the last image assimilated on January 22, 
2011 00:00 until the end of the forecast on January 23, 2011 00:00. BSS, Brier Skill Scores.
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Water Resources Research

considered in each case is on January 22, one day before the end of the event and thus the lead time for the 
forecast is 24-h. The first visit times are shifted by the duration of the revisit interval starting from the first 
image considered on January 6, very early in the hydrograph, implying that that the number of observations 
assimilated for each consecutive point decreases by 1. For instance, if the red curve in the BSS plot for SG2 
is considered, the first point indicates the BSS value for the assimilation of 33 images in Sub 1 starting from 
January 6, while the final point on January 22, represents the impact of assimilating 1 image.

Figure 7 shows that the assimilation of flood extents is extremely sensitive to first visit time and revisit 
intervals. Interestingly, for the sequential assimilation of multiple images, the BSS values obtained for Sub 
1 were sometimes higher than the assimilation in the other two sub-domains. This is mainly expected to be 
a function of the way in which PF-SIS is implemented here and elsewhere in literature, with the posterior 
for a given observation considered as a prior for the next and cumulative weights obtained through multi-
plication (Equation 12). As the water rapidly transfers between the channel and the floodplain, the system 
errors quickly evolve and become independent of the previous observations, thus making the weight mul-
tiplication detrimental to the forecast. Since, the shape of the valley in that particular sub-domain is not 
conducive for high temporal variability in simulated extents, the assimilation impacts were consistently 
positive for the assimilation of multiple images in Sub 1, implying a longer correlation window of model 
errors in that region. In contrast, single image assimilation in Sub 2 and Sub 3 was more efficient, as the 
flood extent rapidly varied between time steps and different particles performed well at different times. 
Therefore, the forward weight multiplication frequently implemented in PF-SIS algorithms is infeasible 
for hydraulic data assimilation in river reaches with flat floodplains and gentle slopes, even substantially 
degrading the forecast when many images are cumulatively assimilated as the model error correlation 
quickly decays.

Increasing the length of the revisit interval from 12 to 48 h also did not exhibit noticeable impacts on the 
timing of the maximum BSS, and the shapes of the plots obtained for the different sub-reaches remained 
consistent. The magnitude of maximum BSS declined with a decrease in assimilation frequency. This effect 
was most pronounced for first visit times before the peak and decreased in the post peak images, in line with 
the findings of García-Pintado et al. (2013). The study found that after the flood peak, SAR-derived water 
level assimilation lost sensitivity toward revisit frequency. Assimilation impact for images considered with-
in Sub 1 was consistent across all gauges in the domain as impacts propagated upstream to downstream, 
while images assimilated elsewhere degraded the forecast at gauges located upstream.

4.2.2. Impact of Observation Frequency Based on River Reach Morphology

The previous section revealed that using the posterior at the previous assimilation time step as the prior 
at the next, degraded the forecast after several images were assimilated. This section thus investigated the 
maximum number of images which continue to improve the forecast when cumulative weights are comput-
ed through forward weight multiplication.

Additionally, this section also investigated the optimum number of images which lead to the maximum 
positive impact in each sub-domain. Figures 8 (a) and (b) illustrate the number of images which continue 
to improve the forecast and those which produces the maximum improvements with respect to different 
first visit times, respectively. BSS values were calculated for the duration of the revisit interval in each case, 
implying that lead times of 12, 24, and 48 h were considered for forecast error assessments. It is encourag-
ing to note that the assimilation continued to produce positive forecast benefits for >2 weeks for each re-
visit interval examined, which is much longer than the temporal error correlation enforced on the inflows.

The number of images which continue to lead to forecast improvements differs significantly from the num-
ber which produce the most improvements in the forecast. As the revisit interval increased the number 
of images which continued to have positive impacts increased, except for first visit times very early in the 
event. For the 48-h revisit interval, for example, all the images assimilated in Sub 1 starting from any first 
visit time, continued to produce positive impacts since there was only a limited number of observations 
covering the variable phase of the inundation. However, for the 12-h revisit case, even the number of im-
ages leading to forecast improvements in Sub 1 decreased, since the increased temporal coverage meant 
that multiple observations covering completely different inundation extents were cumulatively considered 
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Water Resources Research

through weight multiplication. For assimilation in Sub 1, the number of images which produced positive 
impacts was nearly the same as the number of images which produced the largest forecast improvements. 
This implies that the assimilation efficiency increases in reaches with narrow valleys as more images are 
considered with weight multiplication.

The differences between columns (a) and (b) in Figure 8, were largest for the 12-h revisit and decreased 
with increasing revisit intervals. This highlights that the forecast improvements reached a local maximum 
value and then started to decrease when multiple images were considered in this PF-SIS framework. For 
example, if the first visit occurred on January 11, with a revisit interval of 24 h (also the forecast lead time), 
the forward multiplication continues to yield forecast improvements for 12 image dates (BSS >> 0), while 
the highest BSS was observed after 5 days/images. For first visit times early in the rising limb, maximum 
forecast improvements were consistently observed in the falling limb for Sub 2 and Sub 3, with a greater 
number of images continuing to produce forecast improvements in Sub 2 than in Sub 3.
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Figure 8. An illustration of the impact of image frequency on forecast improvements from the assimilation with respect to different first visit times and 
revisit intervals, where (a) shows the number of images which continue to produce positive impacts, while (b) shows the number of images which produce 
the maximum positive impact when assimilated sequentially for different revisit intervals. Positive impact was defined in terms of the BSS calculated for the 
following revisit interval. The true stage at Grafton is shown as a reference in all the sub-plots.
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4.3. Maximum Forecast Improvements Possible through Flood 
Extent Assimilation

The maximum channel water level forecast improvements which can be 
obtained through flood extent assimilation are quantified in this section 
in terms of BSS and reported in Table 3. Here, the time window for the 
BSS calculation was the length of the revisit interval as in Section 4.2.2, 
and the BSS values were averaged across all gauges. While the previous 
section explored the timing associated with the maximum BSS value ob-
tained, here the magnitudes are discussed for both single and multiple 
image assimilation. The maximum BSS that was observed across all cases 
was ∼1 indicating a 100% reduction in quadratic errors relative to the 
open loop. In fact, BSS values ∼1 were obtained for almost all multiple 
image assimilation scenarios considered in Sub 2 and Sub 3. This implies 
that flood extent assimilation exhibits relatively higher sensitivity toward 
first visit times as compared to revisit intervals or frequency, also noting 
that for longer revisit intervals the forecast lead time was also longer in 
this experimental setup. For Sub 1, however, the ∼100% relative improve-
ment in the assimilated forecast was only achieved a few times for each 
revisit case for the assimilation of 11 images, and the BSS declined with 
decreasing observation frequency especially for the 48-h revisit or a single 
visit.

In general, the best performing first visit time for multiple image assimi-
lation in all the reaches was a few days before the inflow peak, for which 
the maximum BSS was observed during the falling limb of the hydro-
graph. The only exception to this was the 48-h revisit interval in Sub 2, 
where starting the assimilation after the peak was most beneficial to the 
forecast. For single image assimilation, multiple observations covering 
Sub 2, individually produced ∼100% improvements in the channel water 
level forecast. It should also be noted here that the forecast lead time for 
this case is the same as in Section 4.1.1, which is >7 days for this par-

ticular image acquired on January 15, about ∼2.5 days after the inflow peak. This implies that in a budget 
limited scenario, assimilating a single image at the right time can produce improvements comparable to 
the assimilation of multiple images. Given these results it appears that it would be expedient to consider 
when and where the most improvements in forecast accuracy are desired, in order to identify the optimum 
targeted observation strategy for flood extent assimilation. Readers should note that the exact optimum 
assimilation time may vary with respect to the upstream inflow error generation model, and thus, more 
general assertions have been made in Table 3 based on the flood phase.

5. Conclusions
This study strived to identify a targeted observation strategy for optimal forecast improvements from SAR-
based flood extent assimilation. Specifically, the impacts of observation footprint, timing, and frequency 
on flood forecasts was evaluated for different lead times. For this study, a mutual information based PF-SIS 
framework was implemented to assimilate synthetic observations based on a real event in the Clarence 
Catchment, simulated by the two-dimensional flood inundation model Lisflood-FP. Several conclusions can 
be inferred from the results. First, the performance of the assimilation algorithm was found to be sensitive 
to the location and timing of the image, particularly with respect to reach morphology and flood wave arriv-
al time. For example, assimilating images in Sub 2 and Sub 3 with larger and flatter floodplains resulted in 
strongly different outcomes than assimilating in Sub 1 with a narrow constrained valley. Second, the images 
which produced maximum forecast improvements within the channel were different from those which 
most improved spatial water depth simulations. In line with previous literature, this study showed that 
improvements from the assimilation increased from upstream to downstream. Multiple image assimilation 
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Sub-
reach Revisit

Max. 
BSS

Ideal acquisition/first 
visit time

Number of images 
assimilated

1 12 h 1.00 Very early rising limb 11

24 h 0.98 Very early rising limb 6

48 h 0.85 Very early rising limb 4

Single 1.00 Multiple images 1

2 12 h 1.00 Very early rising limb 11

24 h 1.00 Just before the peak 8

48 h 0.99 Post-peak 4

Single 1.00 Multiple images 1

3 12 h 1.00 Very early rising limb 8

24 h 1.00 Early rising limb 7

48 h 1.00 Very early rising limb 7

Single 1.00 Multiple images 1

Note. Morphological characteristics of each sub-reach can be found in 
Table 1. BSS values were computed for the revisit interval following the 
assimilation (see Table  1) and averaged across all gauges in the sub-
domain. For multiple image assimilation, weights were carried forward 
through multiplication. Temporal positions mentioned are all with 
respect to the inflow peak which differs significantly from the peak 
inundation timing in the floodplain. BSS, Brier Skill Scores.

Table 3 
Summary Table of Maximum Possible Improvements in BSS Through 
Flood Extent Assimilation for Gauged Water Level Simulations Within the 
Channel
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was shown to be heavily influenced by first visit time and revisit frequency, with the latter being a function 
of the reach morphology. It was also demonstrated that for budget limited scenarios, a single image with the 
ideal coverage and timing could produce improvements comparable to assimilating multiple images, im-
plying that observation coverage and timing were more important than frequency. Results presented herein 
can be extended to catchments around the world with reaches exhibiting similar morphological and flow 
characteristics. For instance, even for large and complex river systems such as the Ganges or the Brahmapu-
tra, if inflow errors dominate the forecast uncertainty, reaches with gentle gradients, large floodplains, and 
limited tidal influence are expected to benefit the most from systematic inundation monitoring.

Currently, users have limited control over image availability and acquisition parameters, but this is expected 
to change in the near future with multiple radar Earth Observation satellites being launched every year. 
Satellites can also be tasked with specific acquisitions under the International Charter on “Space and Ma-
jor Disasters”. This highlights the importance of designing targeted observation strategies such as the one 
presented here, which are absolutely vital to maximize the forecast accuracy resulting from the flood extent 
assimilation. Future research should additionally examine the influence of parametric and topographic un-
certainties on the optimum satellite acquisition scenario for flood extent assimilation. Moreover, techniques 
developed here should be tested for different catchment morphologies under a range of flow conditions to 
identify the opportunities and pitfalls for operational applications.

Data Availability Statement
All the data and codes for used for this paper are available in a public Figshare repository at https://doi.
org/10.6084/m9.figshare.13301342

References
Andreadis, K. M. (2018). Data Assimilation and River Hydrodynamic Modeling Over Large Scales. In G. J. -P. Schumann, P. D. Bates, H. 

Apel, & G. T. Aronica (Eds.), Global Flood Hazard. https://doi.org/10.1002/9781119217886.ch13
Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., & Alsdorf, D. E. (2007). Prospects for river discharge and depth estimation through 

assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophysical Research Letters, 34, 1–5. https://doi.
org/10.1029/2007GL029721

Andreadis, K. M., & Schumann, G. J. P. (2014). Estimating the impact of satellite observations on the predictability of large-scale hydraulic 
models. Advances in Water Resources, 73, 44–54. https://doi.org/10.1016/j.advwatres.2014.06.006

Annis, A., Nardi, F., Volpi, E., & Fiori, A. (2020). Quantifying the relative impact of hydrological and hydraulic modelling parameteriza-
tions on uncertainty of inundation maps. Hydrological Sciences Journal, 65, 507–523. https://doi.org/10.1080/02626667.2019.1709640

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian 
tracking. Signal Process IEEE Trans, 50, 174–188. https://doi.org/10.1109/78.978374

Banister, A. R., & Nichols, N. (2012). Ensemble methods in data assimilation (Vols. 1–38). Data Assimilation Research Center, University 
of Reading.

Bates, P. D., & De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54–77.
Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimen-

sional flood inundation modelling. Journal of Hydrology, 387, 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027
Bates, P., Trigg, M., Neal, J., & Dabrowa, A. (2013). LISFLOOD-FP user manual. University of Bristol.
Cloke, H. L., & Pappenberger, F. (2009). Ensemble flood forecasting: A review. Journal of Hydrology, 375, 613–626.
Cooper, E. S., Dance, S. L., Garcia-Pintado, J., Nichols, N. K., & Smith, P. J. (2018). Observation impact, domain length and parame-

ter estimation in data assimilation for flood forecasting. Environmental Modelling & Software, 104, 199–214. https://doi.org/10.1016/j.
envsoft.2018.03.013

Cooper, E. S., Dance, S. L., García-Pintado, J., Nichols, N. K., & Smith, P. J. (2019). Observation operators for assimilation of satellite obser-
vations in fluvial inundation forecasting. Hydrology and Earth System Sciences, 23, 2541–2559. https://doi.org/10.5194/hess-2018-589

Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V. R., Walker, J. P., Chini, M., et al. (2018). Flood mapping using synthetic aperture 
radar sensors from local to global scales. In G. J. Schumann, P. D. Bates, H. Apel, & G. T. Aronica (Eds.), Global flood hazard: Appli-
cations in modeling, mapping, and forecasting, Volume 233 of Geophysical Monograph Series (1st ed., pp. 55–77). John Wiley & Sons.

Dasgupta, A., Hostache, R., Ramasankaran, R., Schumann, G. J. -P., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2021). A mutual infor-
mation-based likelihood function for particle filter flood extent assimilation. Water Resources Research, 56, e2020WR027859. https://
doi.org/10.1029/2020WR02785

de Almeida, G. a. M., Bates, P., Freer, J. E., & Souvignet, M. (2012). Improving the stability of a simple formulation of the shallow water 
equations for 2-D flood modeling. Water Resources Research, 48, W05528. https://doi.org/10.1029/2011WR011570

Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river discharge observations: A quantitative analysis. Hydrology and Earth 
System Sciences, 13, 913–921. https://doi.org/10.5194/hess-13-913-2009

Domeneghetti, A., Tarpanelli, A., Brocca, L., Barbetta, S., Moramarco, T., Castellarin, A., & Brath, A. (2014). The use of remote sens-
ing-derived water surface data for hydraulic model calibration. Remote Sensing of Environment, 149, 130–141. https://doi.org/10.1016/j.
rse.2014.04.007

DASGUPTA ET AL.

10.1029/2020WR028238

21 of 23

Acknowledgments
This study was conducted within the 
framework of the project “Improving 
flood forecast skill using remote sensing 
data,” funded by thse Bushfire and 
Natural Hazards CRC of Australia. The 
authors also acknowledge E-Geos for 
providing SAR imagery and timely sup-
port during pre-processing. Additional-
ly, gratitude is extended to the Australi-
an Bureau of Meteorology (http://www.
bom.gov.au/waterdata/) and New South 
Wales Manly Hydraulics Laboratory 
(http://new.mhl.nsw.gov.au/) for the 
gauge data, in addition to Geoscience 
Australia and the Clarence Valley 
Council for sharing field and ancillary 
data. Antara Dasgupta was funded by a 
PhD scholarship from the IITB-Monash 
Research Academy. Renaud Hostache's 
contribution was supported by the Na-
tional Research Fund of Luxembourg 
(FNR) through the CASCADE project, 
grant number C17/SR/11682050.

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
028238 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.6084/m9.figshare.13301342
https://doi.org/10.6084/m9.figshare.13301342
https://doi.org/10.1002/9781119217886.ch13
https://doi.org/10.1029/2007GL029721
https://doi.org/10.1029/2007GL029721
https://doi.org/10.1016/j.advwatres.2014.06.006
https://doi.org/10.1080/02626667.2019.1709640
https://doi.org/10.1109/78.978374
https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.1016/j.envsoft.2018.03.013
https://doi.org/10.1016/j.envsoft.2018.03.013
https://doi.org/10.5194/hess-2018-589
https://doi.org/10.1029/2020WR02785
https://doi.org/10.1029/2020WR02785
https://doi.org/10.1029/2011WR011570
https://doi.org/10.5194/hess-13-913-2009
https://doi.org/10.1016/j.rse.2014.04.007
https://doi.org/10.1016/j.rse.2014.04.007


Water Resources Research

Dumedah, G., & Coulibaly, P. (2013). Evaluating forecasting performance for data assimilation methods: The ensemble Kalman fil-
ter, the particle filter, and the evolutionary-based assimilation. Advances in Water Resources, 60, 47–63. https://doi.org/10.1016/j.
advwatres.2013.07.007

Fewtrell, T. J., Duncan, A., Sampson, C. C, Neal, J. C., & Bates, P. D. (2011). Benchmarking urban flood models of varying complexi-
ty and scale using high resolution terrestrial LiDAR data. Physics and Chemistry of the Earth, 36, 281–291. https://doi.org/10.1016/j.
pce.2010.12.011

Gallant, J. C., Dowling, T. I., Read, A. M., Wilson, N., Tickle, P., & Inskeep, C. (2011). 1 second SRTM Derived Digital Elevation Models User 
Guide. Geoscience Australia. Retrieved from www.ga.gov.au/topographic-mapping/digital-elevation-data.html

García-Pintado, J., Mason, D. C., Dance, S. L., Cloke, H. L., Neal, J. C., Freer, J., & Bates, P. D. (2015). Satellite-supported flood forecasting 
in river networks: A real case study. Journal of Hydrology, 523, 706–724. https://doi.org/10.1016/j.jhydrol.2015.01.084

García-Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L., & Bates, P. D. (2013). Scheduling satellite-based SAR acquisition for sequential assimi-
lation of water level observations into flood modelling. Journal of Hydrology, 495, 252–266. https://doi.org/10.1016/j.jhydrol.2013.03.050

Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer, S., & Matgen, P. (2016). Probabilistic flood mapping using syn-
thetic aperture radar data. IEEE Transactions on Geoscience and Remote Sensing, 54, 6958–6969.

Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza Guingla, D. A., Pauwels, V., et al. (2011). Assimilating SAR-derived wa-
ter level data into a hydraulic model: A case study. Hydrology and Earth System Sciences, 15, 2349–2365. https://doi.org/10.5194/
hess-15-2349-2011

Gobeyn, S., Van Wesemael, A., Neal, J., Lievens, H., Eerdenbrugh, K., De Vleeschouwer, N., et al. (2017). Impact of the timing of a SAR 
image acquisition on the calibration of a flood inundation model. Advances in Water Resources, 100, 126–138. https://doi.org/10.1016/j.
advwatres.2016.12.005

Grimaldi, S., Li, Y., Pauwels, V. R. N., & Walker, J. P. (2016). Remote sensing-derived water extent and level to constrain hydraulic flood 
forecasting models: Opportunities and challenges. Surveys in Geophysics, 37, 977–1034. https://doi.org/10.1007/s10712-016-9378-y

Grimaldi, S., Li, Y., Walker, J. P., & Pauwels, V. R. N. (2018). Effective representation of river geometry in hydraulic flood forecast models. 
Water Resources Research, 54, 1031–1057. https://doi.org/10.1002/2017WR021765

Grimaldi, S., Li, Y., Walker, J. P., Pauwels, V. R. N., & Monash University (2017). Bathymetric survey of the Upper Clarence, https://doi.
org/10.4225/03/5a20708405ecd

Grimaldi, S., Schumann, G. J. -P., Shokri, A, Walker, J. P., & Pauwels, V. R. N. (2019). Challenges, opportunities, and pitfalls for global cou-
pled hydrologic-hydraulic modeling of floods. Water Resources Research, 55, 5277–5300. https://doi.org/10.1029/2018WR024289

Horritt, M. S., & Bates, P. D. (2001). Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydro-
logical Processes, 15, 825–842. https://doi.org/10.1002/hyp.188

Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M. (2018). Near-Real-time assimilation of SAR-derived flood maps for 
improving flood forecasts. Water Resources Research, 54, 5516–5535. https://doi.org/10.1029/2017WR022205

Hostache, R., Matgen, P., Giustarini, L, Teferle, F. N., Tailliez, C., Iffly, J. F., & Corato, G. (2015). A drifting GPS buoy for retrieving effective 
riverbed bathymetry. Journal of Hydrology, 520, 397–406. https://doi.org/10.1016/j.jhydrol.2014.11.018

Huxley, C., & Beaman, F. (2014). Additional crossing of the Clarence River at Grafton: Flood impact, levee upgrade, and structural considera-
tions. Hydraulic structures and society—Engineering challenges and extremes. Brisbane, Australia (pp. 1–8).

Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., & Chopin, N. (2015). On particle methods for parameter estimation in state-space 
models. Statistical Science, 30, 328–351. https://doi.org/10.1214/14-STS511

Kumar, A., Dasgupta, A., Lokhande, S., & Ramsankaran, R. A. A. J. (2019). Benchmarking the Indian National CartoDEM against SRTM 
for 1D hydraulic modelling. International Journal of River Basin Management, 0, 1–10. https://doi.org/10.1080/15715124.2019.1606816

Lai, X., Liang, Q., Yesou, H., & Daillet, S. (2014). Variational assimilation of remotely sensed flood extents using a 2-D flood model. Hydrol-
ogy and Earth System Sciences, 18, 4325–4339. https://doi.org/10.5194/hess-18-4325-2014

Mason, D. C., Schumann, G. J.-P., Neal, J. C, Garcia-Pintado, J., & Bates, P. D. (2012). Automatic near real-time selection of flood water 
levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: A case study. Remote Sensing of 
Environment, 124, 705–716. https://doi.org/10.1016/j.rse.2012.06.017

Matgen, P., Montanari, M., Hostache, R, Pfister, L., Hoffmann, L., Plaza, D., et al. (2010). Towards the sequential assimilation of SAR-de-
rived water stages into hydraulic models using the Particle Filter: Proof of concept. Hydrology and Earth System Sciences, 14, 1773–1785. 
https://doi.org/10.5194/hess-14-1773-2010

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W. (2017). The future of Earth observation in hydrology. 
Hydrology and Earth System Sciences, 21, 3879–3914. https://doi.org/10.5194/hess-21-3879-2017

Moradkhani, H., Hsu, K.-L., Gupta, H., & Sorooshian, S. (2005). Uncertainty assessment of hydrologic model states and parameters: Se-
quential data assimilation using the particle filter. Water Resources Research, 41, 1–17. https://doi.org/10.1029/2004WR003604

Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R. (2005). Dual state-parameter estimation of hydrological models using ensem-
ble Kalman filter. Advances in Water Resources, 28, 135–147. https://doi.org/10.1016/j.advwatres.2004.09.002

Neal, J., Schumann, G., Bates, P, Buytaert, W., Matgen, P., & Pappenberger, F. (2009). A data assimilation approach to discharge estimation 
from space. Hydrological Processes, 23, 3641–3649. https://doi.org/10.1002/hyp.7518

Nichols, N. K. (2010). Mathematical concepts of data assimilation. In W. Lahoz (Ed.), Data assimilation (pp. 13–39). Berlin: Springer Berlin 
Heidelberg.

Pilotti, M. (2015). Extraction of cross sections from digital elevation model for one-dimensional dam-break wave propagation in mountain 
valleys. Water Resources Research, 52, 52–68. https://doi.org/10.1002/2015WR017273.Received

Plaza Guingla, D. A., De Keyser, R., De Lannoy, G. J. .M, Giustarini, L., Matgen, P., & Pauwels, V. R. (2013). Improving particle filters in 
rainfall-runoff models: Application of the resample-move step and the ensemble Gaussian particle filter. Water Resources Research, 49, 
4005–4021. https://doi.org/10.1002/wrcr.20291

Plaza, D. A., De Keyser, R., De Lannoy, G. J. .M, Giustarini, L., Matgen, P., & Pauwels, V. R. (2012). The importance of parameter resampling 
for soil moisture data assimilation into hydrologic models using the particle filter. Hydrology and Earth System Sciences, 16, 375–390. 
https://doi.org/10.5194/hess-16-375-2012

Pramanik, N., Panda, R. K., & Sen, D. (2010). One dimensional hydrodynamic modeling of river flow using DEM extracted river cross-sec-
tions. Water Resources Management, 24, 835–852. https://doi.org/10.1007/s11269-009-9474-6

Reichle, R. H., Walker, J. P., Koster, R. D., & Houser, P. R. (2002). Extended versus ensemble Kalman filtering for land data assimilation. 
Journal of Hydrometeorology, 3, 728–740. https://doi.org/10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2

Revilla-Romero, B., Wanders, N., Burek, P, Salamon, P., & de Roo, A. (2016). Integrating remotely sensed surface water extent into conti-
nental scale hydrology. Journal of Hydrology, 543, 659–670. https://doi.org/10.1016/j.jhydrol.2016.10.041

DASGUPTA ET AL.

10.1029/2020WR028238

22 of 23

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
028238 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.advwatres.2013.07.007
https://doi.org/10.1016/j.advwatres.2013.07.007
https://doi.org/10.1016/j.pce.2010.12.011
https://doi.org/10.1016/j.pce.2010.12.011
https://www.ga.gov.au/topographic-mapping/digital-elevation-data.html
https://doi.org/10.1016/j.jhydrol.2015.01.084
https://doi.org/10.1016/j.jhydrol.2013.03.050
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.5194/hess-15-2349-2011
https://doi.org/10.1016/j.advwatres.2016.12.005
https://doi.org/10.1016/j.advwatres.2016.12.005
https://doi.org/10.1007/s10712-016-9378-y
https://doi.org/10.1002/2017WR021765
https://doi.org/10.4225/03/5a20708405ecd
https://doi.org/10.4225/03/5a20708405ecd
https://doi.org/10.1029/2018WR024289
https://doi.org/10.1002/hyp.188
https://doi.org/10.1029/2017WR022205
https://doi.org/10.1016/j.jhydrol.2014.11.018
https://doi.org/10.1214/14-STS511
https://doi.org/10.1080/15715124.2019.1606816
https://doi.org/10.5194/hess-18-4325-2014
https://doi.org/10.1016/j.rse.2012.06.017
https://doi.org/10.5194/hess-14-1773-2010
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1002/hyp.7518
https://doi.org/10.1002/2015WR017273.Received
https://doi.org/10.1002/wrcr.20291
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.1007/s11269-009-9474-6
https://doi.org/10.1175/1525%107541(2002)003%3C0728:EVEKFF%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2016.10.041


Water Resources Research

Rogencamp, G. (2004). Lower Clarence River flood study review—Final report: March 2004: Volume 1 of 2 main text.
Schumann, G. J. P., & Andreadis, K. M. (2016). A method to assess localized impact of better floodplain topography on flood risk predic-

tion. Advances in Meteorology, 2016, 1–8. https://doi.org/10.1155/2016/6408319
Schumann, G., Bates, P. D., Horritt, M. S, Matgen, P., & Pappenberger, F. (2009). Progress in integration of remote sensing-derived flood 

extent and stage data and hydraulic models. Reviews of Geophysics, 47, 1–20. https://doi.org/10.1029/2008RG000274
Schumann, G. J. P., Stampoulis, D., Smith, A. M, Sampson, C. C., Andreadis, K. M., Neal, J. C., & Bates, P. D. (2016). Rethinking flood 

hazard at the global scale. Geophysical Research Letters, 43, 10249–10256. https://doi.org/10.1002/2016GL070260
Sinclair Knight Merz F, and Roads and Traffic Authority of NSW TPS. (2011) Wells Crossing to Iluka Road: Upgrading the Pacific Highway: 

Tyndale to Maclean alternative alignment: Decision report.
Walker, J. P., & Houser, P. R. (2005). Hydrologic data assimilation. In Advances in water science methodologies (Vol. 233).CRC Press. https://

doi.org/10.5772/1112
Wood, M. (2016). Improving hydraulic model parameterization using SAR data. University of Bristol.
Wood, M., Hostache, R., Neal, J, Wagener, T., Giustarini, L., Chini, M., et al. (2016). Calibration of channel depth and friction parameters 

in the LISFLOOD-FP hydraulic model using medium-resolution SAR data and identifiability techniques. Hydrology and Earth System 
Sciences, 20, 4983–4997. https://doi.org/10.5194/hess-20-4983-2016

Xie, H., Pierce, L. E., & Ulaby, F. T. (2002). Statistical properties of logarithmically transformed speckle. IEEE Transactions on Geoscience 
and Remote Sensing, 40, 721–727. https://doi.org/10.1109/TGRS.2002.1000333

DASGUPTA ET AL.

10.1029/2020WR028238

23 of 23

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
028238 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1155/2016/6408319
https://doi.org/10.1029/2008RG000274
https://doi.org/10.1002/2016GL070260
https://doi.org/10.5772/1112
https://doi.org/10.5772/1112
https://doi.org/10.5194/hess-20-4983-2016
https://doi.org/10.1109/TGRS.2002.1000333

	On the Impacts of Observation Location, Timing, and Frequency on Flood Extent Assimilation Performance
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. Experimental Design
	2.2. Synthetic Satellite Observations
	2.3. Data Assimilation Framework
	2.4. Ensemble Generation
	2.5. Performance Metrics

	3. Hydraulic Model, Domain, and Data
	3.1. The Forward Truth Hydraulic Model
	3.2. Study Area and Model Domain
	3.3. Datasets

	4. Results and Discussion
	4.1. Single Image Assimilation
	4.1.1. Impact of Observation Footprint and Timing on Long Lead Times
	4.1.2. Impact of Observation Footprint and Timing on Short Lead Times

	4.2. Multiple Image Assimilation
	4.2.1. Impact of Observation Footprint, Timing, and Revisit Interval on the Daily Forecast
	4.2.2. Impact of Observation Frequency Based on River Reach Morphology

	4.3. Maximum Forecast Improvements Possible through Flood Extent Assimilation

	5. Conclusions
	Data Availability Statement
	References


