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• High spatial resolution soil moisture is
important for a number of applications.

• A regression tree, an ANN and a GPR
model were developed to downscale
soil moisture.

• Downscaling models were developed
based on the soil thermal inertia theory.

• Coarse spatial resolution soil moisture
was downscaled to 1 km.

• The results, especially from regression
tree and GPR models, are very
encouraging.
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Soil moisture information is important for a wide range of applications including hydrologic modelling, climatic
modelling and agriculture. L-bandpassivemicrowave satellite remote sensing is themost feasible option to estimate
near-surface soilmoisture (~0–5 cm soil depth) over large extents, but its coarse resolution (~10s of km)means that
it is unable to capture the variability of soil moisture in detail. Therefore, different downscaling methods have been
tested as a solution to meet the demand for high spatial resolution soil moisture. Downscaling algorithms based on
the soil thermal inertia relationship between diurnal soil temperature difference (ΔT) and daily mean soil moisture
content (μSM) have shown promising results over arid and semi-arid landscapes. However, the linearity of these
algorithms is affected by factors such as vegetation, soil texture and meteorology in a complex manner. This study
tested a (i) Regression Tree (RT), an Artificial Neural Network (ANN), and a Gaussian Process Regression (GPR)
model based on the soil thermal inertia theory over a semi-arid agricultural landscape in Australia, given the ability
of machine learning algorithms to capture complex, non-linear relationships between predictors and responses.
Downscaled soil moisture from the RT, ANN and GPR models showed root mean square errors (RMSEs) of 0.03,
0.09 and 0.07 cm3/cm3 compared to airborne retrievals and unbiased RMSEs (ubRMSEs) of 0.07, 0.08 and
0.05 cm3/cm3 compared to in-situ observations, respectively. The study showed encouraging results to integrate
machine learning techniques in estimating near-surface soil moisture at a high spatial resolution.
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1. Introduction

The demand for high spatial resolution soilmoisture data is increasing
rapidly for a broad range of applications at different scales including
hydrology, climatology and agriculture (Engman, 1991; Kornelsen and
Coulibaly, 2013; Schmugge, 1998). L-band passive microwave remote
sensing has emerged as a feasible option to measue near-surface (~
0–5 cm soil depth) soil moisture content across large extents with a
good accuracy, but suffers from being low spatial resolution (Njoku and
Entekhabi, 1996; Lakshmi, 2013; Mohanty et al., 2017; Schmugge,
1983). Downscaling satellite-based soil moisture retrievals is a viable
option to address this problem (Lakshmi, 2013; Peng et al., 2017;
Sabaghy et al., 2018). With the advancement in remote sensing of soil
moisture and the launch of L-band soil moisture satellite missions such
as Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010) and Soil
Moisture Active Passive (SMAP) (Entekhabi et al., 2014), a number of
downscaling models have been tested to improve the spatial resolution
of the radiometric soil moisture retrievals (Sabaghy et al., 2020).
Generally, the performance of these methods are site specific and not
universally applicable, due to the spatial heterogeneity in climatic
conditions and land surface properties such as topography, vegetation,
and soil texture over different regions.

Due to the high spatial resolutions of optical/thermal datasets, the
downscaling methods based on thermal/optical satellite datasets can
deliver downscaled products at a high spatial resolution (Chauhan et al.,
2003; Piles et al., 2011, 2014, 2016; Portal et al., 2018; Sánchez-Ruiz
et al., 2014). Among them, methods based on the universal triangle
between soil moisture, land surface temperature and vegetation index
(Carlson et al., 1994) have been developed and tested by a number of
researchers and exhibited good performance over arid and semi-arid
landscapes (Peng et al., 2017). Merlin et al. (2012) developed the
DISaggregation based on Physical And Theoretical scale Change
(DisPATCh) model to downscale satellite soil moisture retrievals using
1 km spatial resolution MODerate-resolution Imaging Spectroradiometer
(MODIS) products based on the ‘universal triangle’ concept. TheDisPATCh
model has shown an accuracy with the root mean square error (RMSE)
temporally varying from 0.06 to 0.18 cm3/cm3 in Austral summer and
winter, respectively, over the Murrumbidgee River catchment in
Australia (Merlin et al., 2012; Sabaghy et al., 2018; Sabaghy et al., 2020).

Fang et al. (2013, 2018) and Fang and Lakshmi (2014) have related
soil moisture to the diurnal soil temperature difference (ΔT) based on
the changes in soil thermal inertia as a result of soil moisture content.
They used soil temperature and soil moisture estimates from the
North American Land Data Assimilation System (NLDAS) at 1/8o spatial
resolution in those studies. They built regression algorithms between
ΔT and diurnal temperature difference of soil (μSM) and modulated
their model by using Normalized Difference Vegetation Index (NDVI)
values. The downscaled soil moisture using this method showed RMSE
varying from 0.02 to 0.06 cm3/cm3 in the Little Washita Watershed,
Oklahoma, United States (Fang and Lakshmi, 2014). Senanayake et al.,
2019a, 2021 developed a similar regression tree models based on soil
thermal inertia relationship between ΔT and μSM over the Goulburn
River catchment in the Upper Hunter Region of New South Wales,
Australia, to downscale coarse resolution satellite soil moisture
products. Here, they used point-scale in-situ observations from a soil
moisture monitoring network and simulated soil moisture and soil
temperature outputs from the Global Land Data Assimilation System
(GLDAS) at 0.25o spatial resolution to downscale SMOS and SMAP
satellite soil moisture products into 1 km resolution. These studies
showed encouraging results with unbiased RMSE (ubRMSE) ranging
from 0.05 to 0.10 cm3/cm3.

Until recent years, little progress has been made to develop
downscaling models by employing machine learning models with
multiple data sources. Machine learning algorithms are capable of
recognizing complex and highly non-linear patterns between the input
(predictors) and output (targets) variables from large datasets
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(Carbonell et al., 1983; El Bouchefry and de Souza, 2020; Jin et al., 2020;
Shobha and Rangaswamy, 2018). However, the reliability of machine
learning methods and choice of algorithms rely highly on the size and
quality of the dataset (Du and Swamy, 2013; Okut, 2016; Rasmussen
and Williams, 2006). There are a few studies where machine learning
methods were used to estimate high spatial resolution soil moisture.
Chai et al. (2011) employed the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) training algorithm based on the relationship between soil
moisture and MODIS derived soil evaporative efficiency in the Goulburn
River catchment, Australia on two days in November 2005 and achieved
RMSE values varying from 0.018 to 0.035 cm3/cm3. Senanayake et al.
(2019b) tested Levenberg-Marquardt algorithm to estimate soil moisture
at a high spatial resolution over the same study area and achieved RMSEs
varying from 0.058 to 0.088 cm3/cm3. Abbaszadeh et al. (2019) used the
random forest model to downscale SMAP passive soil moisture products
in the Continental United States (CONUS) area from April to December
2015 based on the properties of the top 5 cm soil profile. They observed
ubRMSEs varying from 0.02 to 0.06 cm3/cm3 in the Little Washita
watershed, and 0.02 to 0.07 cm3/cm3 against in-situ data at the Walnut
Gulch Experimental Watershed, United States in 2015. Moreover, they
showed that including parameters such as soil texture and topography
can improve the accuracy of the downscaled soil moisture products.
Alemohammad et al. (2018) used an artificial neural network (ANN) to
build a relationship between coarse resolution soil moisture products
and NDVI estimates and then, high resolution NDVI values were used to
retrieve the soil moisture outputs at a high spatial resolution. Srivastava
et al. (2013) employed three artificial intelligence techniques; (i) an
ANN, (ii) a support vector machine (SVM), and (iii) a relevance vector
machine (RVM) with a generalized linear model to enhance the spatial
resolution of SMOS soil moisture products. Here, the ANN outperformed
other two models and the downscaling method based on the season
worked well compared to continuous time series. Im et al. (2016) have
tested a random forest model, boosted regression trees, and a rule-
based regression technique to downscale AdvancedMicrowave Scanning
Radiometer on the Earth Observing System (AMSR-E) soil moisture
products by using MODIS 1 km products including surface albedo, land
surface temperature (LST), NDVI, enhanced vegetation index (EVI), leaf
area index (LAI) and evapotranspiration. They achieved RMSEs of 0.049/
0.057, 0.052/0.078, and 0.051/0.063 m3/m3, respectively, for those three
algorithms over two regions in South Korea and Australia. Jin et al.
(2020) tested a support vector area-to-area regression kriging
(SVATARK) model by employing support vector regression and area-to-
area kriging to downscale European Space Agency's (ESA) 25-km-
resolution surface soilmoisture product in theNaqu region on the Tibetan
Plateau of China. The downscaled soil moisture of this study showed
RMSEs ranging from 0.04 to 0.076 m3/m3 when compared against in-
situ observations.

Although the downscaling models based on soil thermal inertia
relationship between ΔT and μSM showed promising results over arid and
semi-arid regions in estimating soil moisture at a high spatial resolution,
the nature of this relationship is highly affected bymultiple biogeophysical
factors such as vegetation, soil texture and coldness/warmness of a day in a
complex and non-linear manner (Lu et al., 2009; Senanayake et al., 2021;
Van de Griend et al., 1985). Machine learning provides a robust approach
to identify such complex, non-linear patterns compared to the traditional
statistical methods (Lange and Sippel, 2020; Recknagel, 2001). In general,
the assumptions on normally distributed, continuous data are not required
in machine learning approaches, allowing the integration of data from
multiple sources with unknown contributions. The study presented in
this paper evaluates three downscaling models, (i) a regression tree, (ii)
an ANN (with Bayesian regularization backpropagation algorithm) and
(iii) a Gaussian Process Regression (GPR), based on the soil thermal inertia
relationship betweenΔT and μSM over the Yanco area of theMurrumbidgee
River catchment, Australia. Here, Bayesian regularization backpropagation
algorithm and GPR model were chosen by considering the size and
noisiness of the datasets, whereas the regression tree model (Senanayake
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et al., 2019a)wasusedas a baseline. Thedownscaled soilmoisture products
(1 km) were then compared against the airborne soil moisture retrievals
from the Soil Moisture Active Passive Experiment-5 (SMAPEx-5) and in-
situ soil moisture observations. The structure of this paper is as follows.
The study location and its characteristics are explained in Section 2.
Section 3 introduces datasets used in this study. Methodology used to
build the three downscaling algorithms and validation scheme are
described in Section 4 along with a brief review on the thermal inertia
relationship between ΔT and μSM and associated physical processes
affecting the soil moisture content. Section 5 provides a discussion on
results, limitations and potential future work, followed by conclusion in
Section 6.

2. Study area – Yanco area, Murrumbidgee River catchment

The study mainly focused on the Yanco region, a 60 × 60 km area
located in the Murrumbidgee River catchment in Eastern Australia
(Fig. 1). The Yanco region is located between latitudes 34.561° S and
35.170°0 S and longitudes 145.826°6 E and 146.439° E. In general, this is
a flat land area with elevations ranging from 117 m to 150 m with
negligible slope (Young et al., 2008; Ye et al., 2020). Soils in the Yanco
area consist of mainly clay, red brown earth, transitional red brown
earth, sand over clay, and deep sands. The average annual rainfall over
the area is 418.5 mm, mostly falling during late autumn and winter
(Smith et al., 2012; Yee et al., 2016). The mean daytime temperature
ranges from 32.1° C in January (Austral summer) to 13.5° C in July
(Austral winter). The Yanco area and its in-situ observations (see
Section 3.1.) have been used in a number of soil moisture and remote
sensing studies (e.g., Colliander et al., 2017; Merlin et al., 2008; Piles
et al., 2011; Ye et al., 2019; Zhu et al., 2018a, 2018b).
Fig. 1. Location and the digital elevation model (DEM) of the Murrumbidgee River Catchm
(MSMMN) monitoring stations.

3

3. Data

3.1. The Murrumbidgee soil moisture monitoring network

The Murrumbidgee Soil Moisture Monitoring Network (MSMMN)
consists of thirty-eight monitoring stations installed over the
Murrumbidgee River catchment (Fig. 1). MSMMN was established
primarily to measure the soil moisture content at various soil depths
across the root zone (0–90 cm). Soil temperature is also measured across
the soil depths with precipitation and other auxiliary data. The eighteen
monitoring stations established in 2001 are called the first generation
sites. Eight of them were grouped with automatic weather stations of
the Australia Bureau ofMeteorology. The other ten stationswere grouped
into two 150 km2 clusters, Kyeamba and Adelong Creek catchments
(Smith et al., 2012). The second generation monitoring stations were
established two years later also to measure the soil moisture across the
root zone along with soil temperature at a single depth and precipitation.
These monitoring stations were located in two focus areas; (i) extending
the Kyeamba Creek catchment monitoring stations towards the
confluence of the Murrumbidgee River, and (ii) in a grid over the Yanco
area (Fig. 1), to assist with assessing remotely sensed soil moisture
retrievals (Smith et al., 2012). These sites were upgraded in 2006 to
measure the soil moisture of the top 5 cm and soil temperature at the
top 2.5 cm soil profiles. The sites were instrumented with Campbell
scientific water content reflectometers installed vertically at 0–30,
30–60, and 60–90 cm soil depths, surface soil moisture probes at 0–5 or
0–8 cm soil depths, and soil temperature probes at 2.5 or 4 cm and
15 cm soil depths (Smith et al., 2012). Additional surface soil moisture
monitoring stations were set up in this area around 2010 (Panciera
et al., 2014; Smith et al., 2012).
ent, Australia and distribution of the Murrumbidgee soil moisture monitoring network

Image of Fig. 1
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TheMSNNN provides high quality, site-representative datasets to build
downscaling algorithms and to validate the downscaled satellite soil
moisture products since the monitoring stations were installed at the
Catchment Average Soil Moisture Monitoring (CASMM) sites as described
by Grayson andWestern (1998). The CASMM sites were carefully located
on the mid-slope areas in order to represent a wider extent around them
(Grayson and Western, 1998). The MSMMN datasets have been used to
validate both coarse resolution satellite soil moisture retrievals (Colliander
et al., 2017; Smith et al., 2012), and downscaled soil moisture products
(e.g., Malbéteau et al., 2016; Molero et al., 2016; Piles et al., 2012;
Sabaghy et al., 2020; Yee et al., 2016) from multiple soil moisture satellite
missions including SMAP, SMOS, and AMSR-E.

Near-surface in-situ soil moisture and soil temperature observations
obtained from the Yanco monitoring stations (Fig. 2) were used in this
Fig. 2. (a) Land use/land cover over the Yanco study area (Source: The Department of Enviro
National Soil and Landscape Grid, Australia), with the locations of the soil moisture monitor
study area on 6th and (d) 21st September 2015, as retrieved by MODIS 16-day NDVI composit

4

work to build the downscaling models and to validate the downscaled
soil moisture products. A summary of the MSMMN site characteristics is
given in Table 1. Note that only the details of near-surface soil moisture
measurements are given in the table, since it is the focus soil depth of this
study (i.e., the approximate depth observed by the L-band satellite soil
moisture retrievals). A detailed description on MSMMN is given in Smith
et al. (2012) and Young et al. (2008). TheMSMMNdataset can be accessed
through the OzNet web site (www.oznet.org.au).

3.2. SMAPEx-5 airborne observations

The Soil Moisture Active Passive Experiments (SMAPEx) consist of a
series airborne field campaigns carried out over the 60 km × 60 km
Yanco study area located in the Murrumbidgee River catchment (www.
nment and Climate Change, NSW). (b) Soil clay content of the Yanco study area (Source:
ing stations. (c) Normalized Difference Vegetation Index (NDVI) values over the Yanco
es (MYD13A2).

http://www.oznet.org.au
http://www.smapex.monash.edu.au
Image of Fig. 2
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smapex.monash.edu.au) (Panciera et al., 2014; Ye et al., 2016; Ye et al.,
2020). These experiments were conducted over the time frame of
2010–2015 in different seasons. SMAPEx-5 was conducted in September
2015, in parallel to the launch of SMAP satellite mission. The objectives of
SMAPEx-5 included evaluation, validation and comparison of satellite soil
moisture products, and development soil moisture retrieval algorithms
(Ye et al., 2016). Accordingly, the SMAPEx-5 dataset has been used for a
number of soil moisture studies (Sabaghy et al., 2020; Ye et al., 2016,
2019; Zhu et al., 2016, 2018a, 2018b). The same SMAP frequencies were
used in the SMAPEx-5 airborne campaign, while the observations were
timed approximately at the local SMAP overpass times. A Polarimetric L-
band Multi-beam Radiometer (PLMR) providing dual polarized (vertical
and horizontal) L-band (1.41 GHz) brightness temperature (Tb)
measurements with six beams at 7, 21.5 and 38.5 degree incident angles
at each side of the flight linewas used in the SMAPEx-5 airborne campaign.
These observations were taken at ~3000 m above ground level between
03:00 and 09:00 h, i.e., centred on SMAP descending overpass using eight
replicated flights (Ye et al., 2016, 2019). Throughout the SMAPEx-5, an
accuracy of over 1.4 K was observed at both vertical and horizontal
polarizations (Ye et al., 2019). The SMAPEx-5 PLMR brightness
temperatures showed a good correlation coefficient of 0.97 against the
SMAP 36 km radiometer L1C data (Ye et al., 2019). This shows the ability
of SMAPEx-5 soil moisture retrievals to provide good simulation for coarse
spatial resolution satellite soilmoisture products. The landuse/land cover of
the SMAPEx-5 footprint consisted of mainly cropping and grazing. Wheat
was cultivated in cropping areas and dense grasses were observed in
grazing areas. There were series of rainfall events at the beginning of
SMAPEx-5without any further rainfall throughout the campaign, providing
ideal drying down conditions (Ye et al., 2019).

3.3. MODIS LST and NDVI products

MODIS/Aqua LST and Emissivity (LST/E) Daily L3 Global 1 km Grid
V006 dataset at 1 km spatial resolution (MYD11A1) (Wan et al., 2015)
was employed to extract daily daytime and night time LST values across
the Yanco area in September 2015 (i.e., covering the period of SMAPEx-
5). NDVI values from 2004 to 2017 over the Yanco area were acquired
from the MODIS/Aqua Vegetation Indices 16-Day L3 Global 1 km SIN
Grid V005 (MYD13A2) products at 1 km spatial resolution (Didan,
2015) for both model development and predictions.

3.4. Soil and landscape grid National Soil Attributes Maps-Australia

The clay content of the top 5 cm soil profile over the study area was
obtained from the National Soil Attributes Maps of the Soil and Landscape
Grid of Australia (Grundy et al., 2015). This dataset is available at the data
access portal of the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) (https://data.csiro.au). This database was released
for Australia in 2014 in connection to the GlobalSoilMap initiative. The
dataset consists of quantitative soil properties for the entirety of Australia
on a 90 m grid. It was developed by using the site data and spectroscopic
observations in Australia. The site data used to build this soil database had
been collected during 1931–2013 by the CSIRO National Soil Archive and
National Soil Database (NatSoil) and state and territory government
agencies as a part of National Soil Site Data Collection (NSSDC). The
spectroscopic observations were collected with the National Soil Visible-
Near Infrared Database (NSVNIRD) to determine the properties of soils,
with the aid of soil sampling data collected during the National
Geochemical Survey of Australia (Rossel et al., 2015). The clay content
layers of the soil grid database were developed by using the data from
15,192 NSSDC and 1113 NSVNIRD sites over Australia.

4. Methodology

This section consists of two major parts: (i) developing the
downscaling models and estimating soil moisture at a high spatial

http://www.smapex.monash.edu.au
https://data.csiro.au
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resolution, and (ii) validating downscaled soil moisture products. A
summary of the methodology is given in Fig. 3. In-situ soil moisture and
temperature datasets were thoroughly examined using visual inspection
and other statistical exploratory methods. Then, those datasets along
with NDVI and soil clay content data were used to build three
downscalingmodels, i.e., a regression treemodel, Bayesian regularization
algorithm based ANN model, and an exponential GPR model.

4.1. Developing the downscaling models based on the thermal inertia
relationship

All three downscaling models developed in this study are based on
the soil thermal inertia relationship of ΔT and μSM. This section presents
the theoretical background of the soil thermal inertia theory. Thermal
inertia is defined as the resistance of the temperature of an object to
the fluctuations of its surrounding temperature (Sellers, 1965).
Accordingly, the temperature of an object with a high thermal inertia
varies more slowly than an object with a low thermal inertia. Therefore,
the ΔT of soil shows an inverse relationship with thermal inertia
(Engman, 1991), such that:

ΔT ¼ f
1
TI

� �
ð1Þ

ΔT ¼ TPM−TAM ð2Þ
Fig. 3. Flow chart showing a summary of

6

where TI is thermal inertia,ΔT is the diurnal temperature difference, TPM
is the afternoon and TAM is the earlymorning soil temperatures. Thermal
inertia can be expressed as (Wang et al., 2010):

TI ¼
ffiffiffiffiffiffiffiffi
ρck

p
ð3Þ

where ρ is the bulk density (in kgm−3), c is the specific heat capacity (in
Jkg−1 K−1) and k is the thermal conductivity (in Wm−1 K−1) of the
object. Since the specific heat capacity of water is significantly higher
than of the dry soil, there is a clear contrast between the thermal inertia
between wet and dry soils. Accordingly, wet soils exhibit a low ΔT
compared to dry soils due to the presence of water (Verstraeten et al.,
2006). This leads to an inverse relationship between the ΔT and μSM.
This ΔT and μSM is affected by the factors such as vegetation and soil
texture in a complex, non-linear manner (Lu et al., 2009; Senanayake
et al., 2021; Van de Griend et al., 1985).

The ΔT - μSM, regression tree models (Fang et al., 2013; Fang and
Lakshmi, 2014; Senanayake et al., 2019a) have a limited ability of dealing
with these complex and non-linear relationships due to knowledge
driven manual classification. This work tested the ability of machine
learning algorithms to capture these complex relationships between ΔT,
μSM and modulating factors to develop downscaling models to estimate
soilmoisture at a high spatial resolution. TheΔT and μSM values calculated
from the Yanco in-situ datasets of the month of September from 2004 to
2017 excluding 2015 (in total, 1802 data records) were employed in
training the models along with daily median temperature data (Tmed),
the methodology used in this study.

Image of Fig. 3
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MODIS derived NDVI data, and soil clay content values obtained from the
National Soil and Landscape Grid. Here, Septemberwas chosen due to the
availability of SMAPEx-5 airborne observations (data from September
2015 was used for validation). Table 2 provides a short summary of the
three models. NDVI and clay content values were extracted at point-
scale for each Yanco monitoring station.

4.1.1. Method 1: regression tree model
The ΔT-μSM regression tree model was developed by employing

Yanco in-situ observations. The ΔT - μSM relationship was modulated
by vegetation density, soil clay content and daily median temperature.
Vegetation density affects the evapotranspiration, and therefore
regulates both surface temperature and soil moisture content (Jackson
et al., 1982; Rodriguez-Iturbe et al., 1999; Soliman et al., 2013). De
Alcântara Silva et al. (2016) classified NDVI values into three classes
based on the vegetation density as, (i) NDVIb0.4 (areas covered by
grass or no vegetation), (ii) 0.4 b NDVIb0.6 (areas with abundant and
vigorous vegetation), and (iii) NDVIN0.6 (areaswith dense and vigorous
vegetation). Clay content affects the soil thermal inertia based on the
impact of soil texture to the thermal conductivity (Wang et al., 2010).
Including clay content to the downscaling model has a good potential
of increasing its accuracy (Abbaszadeh et al., 2019). Bonan (2015)
classifies soils with clay contentN35% as heavy clays. This classification
was used to set the break value for clay content in this model. Tmed

was used in this model considering the effect of general warmness or
coolness of the day to the ΔT. Accordingly, the regression tree was
classified into three classes based on the NDVI value (i.e., NDVI≤0.4,
0.4 b NDVIb0.6 and NDVI≥0.6), two each on the soil clay content
(clay≤35% and clayN35%) and daily median soil temperature
(Tmed ≤ 15 °C and Tmed N 15 °C). The average Tmed value of the dataset,
15 °C, was chosen as the break value for Tmed. In summary, the
regression tree was classified into 12 classes as shown in Fig. 4.

4.1.2. Method 2: artificial neural network (ANN)
ANNs are capable of adaptively learning complex functional forms and

capturing highly non-linear relationships between the inputs (predictors)
and targets (responses) (Haykin, 1994). An ANN is generated by
interconnecting artificial neurons in the input, hidden and output layers.
The input layer composed of independent variables, which are connected
to the hidden layer. The hidden layer consists of activation functions. The
activation functions calculate weights for the variables to determine the
effects of predictors on the target variables. The prediction process is
ended at the output layer, where the results are presented with an
estimation error (Alaloul and Qureshi, 2020). The training and testing
modes are the two phases of an ANN. During the training mode, the
ANN is trained to recognize patterns in the given input datasets to achieve
the desired output. The testing phase is where the pattern recognized in
the training phase is employed to produce the associated output based
on the inputs (Alaloul and Qureshi, 2020; Haykin, 1994).

For complex ANNs, the training might indicate good accuracy due to
overfitting the data. Early stopping is a regularization method
commonly utilized in ANNs to avoid overfitting when training a learner
using an iterative method. Here, the original training dataset was split
into two, as training set and validation set. In determining when
overfitting had begun, the error on the validation set was used as a
proxy for the generalization error, which indicates how accurately the
Table 2
Summary of the three downscaling models used in this study.

Model Inputs (predictors) Targets (res

Regression tree ΔT, Tmed, NDVI, Soil clay content μSM

ANN ΔT, Tmed, NDVI, Soil clay content μSM

GPR ΔT, Tmed, NDVI, Soil clay content μSM
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algorithm can predict outputs to an unseen input (Prechelt, 1998). In
this study, the Neural Net Fitting Toolbox in Matlab® R2017b was
used to train and simulate the ANN using the Bayesian regularization
backpropagation algorithm. Bayesian regularization backpropagation
uses an objective function consisting residual sum of squares and the
sum of squared weights in order to reduce estimation errors and to
obtain a good generalized model (Burden and Winkler, 2008; MacKay,
1992). In backpropagation, when an input pattern is fed into the ANN
during training phase, the ANN tries to learn and compares the predicted
output values with the expected output values. The biases between the
predicted and expected output values were then backpropagated
through the network. Then, the weights in the hidden and output layer
nodes were adjusted based on a gradient descent algorithm. This creates
a network which maps the input and output values through the hidden
neurons (Han et al., 2012). Since Bayesian Regularization does not need
a validation dataset, it can use the entire dataset for training the model.
This provides better generalization performance compared to the
methods using early stopping as the regularization method for a small
datasets (Du and Swamy, 2013; Okut, 2016).

The Bayesian regularization backpropagation algorithmwas used
in building the ANN model in this study considering the smaller size
(n = 1802) of the dataset, and its automated regularization ability.
ΔT, Tmed, clay content and NDVI values were used as the inputs and
μSM values as the targets when simulating the model. Trial and
error method was used to find the best correlation by changing the
number of hidden neurons using a neural network with two hidden
layers between predictors and targets to map the non-linear
relationships.

4.1.3. Model 3: exponential Gaussian process regression (GPR) model
GPR models are nonparametric kernel-based probabilistic models

which are capable of recognizing complex relationships between input
and output data (Rasmussen, 2004). Non-parametric models assume
that the data distribution cannot be defined by a finite set of parameters.
Instead, they define the data distribution by assuming an infinite
dimensionless function. Therefore, at first, a prior probability distribution
is defined over the functions in Gaussian Processes. This can be converted
into a posterior over functions. Then, the covariance function assumes the
points with similar predictor values (xi) to have closer response values
(yi) (Rasmussen and Williams, 2006). Accordingly, it defines the
covariance between the two latent variables (variables inferred from
other observed variables), f(xi) and f(xj), where xi and xj are vectors of d
× 1 dimension. This defines how the response of a point, xi, gets affected
by the responses at other points, xj, i ≠ j, i= 1, 2, 3…, n

In Gaussian processes, different kernel functions can be used to
define the covariance function, k(xi, xj). The covariance function can be
given as k(xi, xj│θ), since it can be parameterized in terms of the kernel
parameters in vector θ. The kernel parameters are often based on
the signal standard deviation, σf, and the characteristic length scale, σl.
The σl briefly defines the required distance between input values xi for
the response values to become uncorrelated. Both σf and σl are greater
than 0. This can be imposed by the unconstrained parametrization
vector θ, so that, θ1 = log σl, and θ2 = log σf (Rasmussen and
Williams, 2006). The basic idea is that, if xi and xj are determined by
the kernel to be similar, a similar output of the functions at those points
can be expected (Murphy, 2012).
ponses) Model details

Two Tmed classes: Tmed ≤ 15 °C and Tmed N 15 °C
Three NDVI classes: NDVI≤0.4, 0.4 b NDVIb0.6 and NDVI≥0.6
Two soil clay content classes: clay≤35% and clayN35%
5 hidden neurons with 15% of random data records for testing
Bayesian regularization backpropogation algorithm
GPR with an exponential kernel



Fig. 4. The classification used in the regression tree model.
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GPR models have been used to capture the relationships between
complex datasets in various sectors (Hultquist et al., 2014; Mehdipour
et al., 2014; Nguyen-Tuong and Peters, 2008; Taki et al., 2018; Wu
et al., 2012), which can be useful to test the ability of GPR models in
downscaling soil moisture. However, GPR models have not been used
in previous studies to downscale coarse-spatial resolution soil moisture
products. Another reason to choose GPR in this study is its good
performance with small datasets (Murphy, 2012; Rasmussen and
Williams, 2006;Wang andHu, 2015; Zhang et al., 2018). An exponential
kernel in Matlab R2017b Regression Learner App was chosen for
building the downscalingmodel. The exponential kernel can be defined
as (Rasmussen and Williams, 2006)

k xi; xjjθ
� � ¼ σ2

f exp −
r
σ l

� �
ð4Þ

where r is the Euclidean distance between xi and xj. This can be defined as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj
� �T xi−xj

� �q
ð5Þ

The same datasets which were used in the previous models, i.e., ΔT,
NDVI, Tmed and soil clay content values as inputs and μSM values as
targets, were employed here to develop the model.

4.2. Downscaling coarse resolution soil moisture product

The models were run over the Yanco area in September 2015. Here,
the ΔT, NDVI, Tmed and clay content values over the Yanco area were
input to the models (Sections 4.1.1 to 4.1.3) at 1 km spatial resolution
to estimate soil moisture at a spatial resolution of 1 km (SMest). In
downscaling, ΔT values were derived from MODIS Aqua LST values
(spatial resolution of 1 km). MODIS Aqua overpass times over the
Yanco area (01:30 h and 13:30 h) were assumed as reasonable
approximators of the lowest and highest soil temperature values to
show the diurnal soil temperature difference (Eq. (2)). It is assumed
8

that any bias in LST data are nullified when calculating ΔT. Daily NDVI
values were obtained by interpolating MODIS 16-day NDVI products
temporally using bilinear interpolation. The mean of MODIS TAM and
TPM values were considered as close approximates for the Tmed values.
Clay content obtained from the 90 m resolution National Soil and
Landscape Grid (Grundy et al., 2015) was averaged over MODIS 1 km
grid (i.e., 1 km) and used as the clay content inputs.

To replicate SMAP data for developing downscaling algorithms and
validation is one of themain objective of SMAPEx airborne experiments.
SMAPEx-5 retrievals provided very good approximates of SMAP data for
developing and testing SMAP related algorithms (Ye et al., 2019). The
SMAPEx-5 airborne soil moisture retrievals aggregated over the study
area, was used as a proxy for a coarse-spatial resolution, L-band satellite
soil moisture pixel in this study. This coarse-spatial resolution satellite
soil moisture product was downscaled using the SMest values obtained
from the three models. The downscaled soil moisture (SMds,p) at a
1 km pixel p was calculated as:

SMds;p ¼ SMest;p þ SMSMAPEX;ag−
1
n

X
i¼1

n

SMest;i

" #
ð6Þ

where SMest,p and SMest,i are soil moisture values (1 km) estimated by the
models at pixels p and i (i = 1:n), SMSMAPEX,ag is the coarse spatial
resolution satellite soil moisture value simulated by aggregating the
SMAPEX-5 soil moisture over the study area, and n is the number of
1 km pixels inside the coarse resolution pixel (Fang et al., 2013). Here,
the difference of values between the coarse resolution soil moisture
product and estimated soil moisture averaged over the coarse resolution
footprint was used for correcting the bias in SMest with respect to the
satellite soil moisture products. In other words, the coarse spatial
resolution satellite soil moisture product was used to capture the overall
temporal pattern of soil moisture, while the downscalingmodelwas used
to delineate sub-pixel spatial patterns within the coarse resolution
satellite footprint. SMest derived from each of the threemodels were used
separately to downscale the simulated coarse resolution soil moisture

Image of Fig. 4
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product (Eq. 6) over the study area for the SMAPEx-5 airborne campaign
dates (i.e., 8th, 10th, 13th, 16th, 18th, 21st, 23rd and 26th Sep 2015).

4.3. Validation of the downscaled soil moisture products

The downscaled soil moisture products were validated by using two
methods. First, they were compared against the SMAPEx-5 airborne soil
moisture retrievals at 1 km spatial resolution. This allowed one to one
Fig. 5. (a) Regression between ΔT and μSM for the category ClayN35%, 0.4 b NDVIb0.6, Tmed N 15
predicted by the GPR model against the actual in-situ soil moisture observations during mode
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comparison between the downscaled soil moisture against airborne soil
moisture retrievals on the SMAPEx-5 days. Therefore, RMSE was used
for the comparison between the downscaled soil moisture products and
SMAPEx-5 airborne retrievals (Colliander et al., 2018; Entekhabi et al.,
2010). Second, the downscaled soil moisture products were compared
against the Yanco in-situ soil moisture observations. Seven soil moisture
monitoring stations located over the study area (Y2, Y4, Y5, Y7, Y8, Y9,
Y10; see Fig. 2) were used in this comparison based on the data
°C. (b) Results from the model validation of the ANN. (c) The plot showing soil moisture
l development.

Image of Fig. 5
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availability during the SMAPEx-5period. Note that for each of these seven
instances, there was only one station per 1 km pixel of the downscaled
soil moisture. As previously explained, it was assumed that these sites
can provide good soil moisture approximations over the 1 km pixels
based on their positioning at CASMM sites (Smith et al., 2012). Yee
et al. (2016) have also identified that these sites can provide areal average
soil moisture measurements to calibrate and validate satellite soil
moisture retrievals and hydrological models. Here, a relative metric,
ubRMSE, was used to statistically evaluate the agreement between the
downscaled and in-situ soil moisture by taking the scale mismatch
between point scale in-situ observations and 1 km downscaled products
into account (Colliander et al., 2018; Entekhabi et al., 2010).

5. Results and discussion

5.1. Evaluating the variability of the Yanco in-situ soil moisture dataset

Themonthly variability of soilmoisture over the period of 2004 to 2017
(from 2002 to 2012 for Y3) is given in Appendix 1. Appendix 2 shows the
mean near-surface soil moisture content at Yanco stations. It is clear that
all the Yanco stations, generally, show dry conditions with a mean soil
moisture value below 0.2 cm3/cm3 (Appendix 2). The stations have
demonstrated slightly wet conditions in the Austral winter (i.e., June to
August) compared to the extremely lowsoilmoisture content in theAustral
summer (i.e., December to February) with the catchment average soil
moisture contents of 0.18 to 0.09 cm3/cm3 in Austral winter and summer,
respectively (see Appendix 1). Note that, the data from Y3 was not used
in building the downscaling models, due to the mismatch in measured
depths for soil moisture and temperature compared to other sites (see
Table 1 for further details).
Fig. 6. Comparison between (a) SMAPEx-5 soil moisture observations and downscaled soil
(d) Gaussian Process Regression (GPR) model.
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5.2. Results from model development and validation

The regression plotted between ΔT and μSM for the category with clay
contentN35%, 0.4 b NDVIb0.6 and Tmed N 15 °C is shown in Fig. 5 a as an
example for the regressions of the first method. Results from the validation
of theANNmodel is shown inFig. 5b. Themodel showedagoodcorrelation
for both training and testing data for 5 hidden neurons as shown in the
figure with 15% of random data records used for testing. Fig. 5 c shows
the results of the GPR model validation. The model showed an RMSE of
0.052 cm3/cm3 and a coefficient of determination (R2) of 0.6 (Fig. 5)
between the predicted response from the model and observed soil
moisture data.

5.3. Comparison of downscaled soil moisture productswith SMAPEx-5 airborne
soil moisture retrievals

Fig. 6 shows the comparison between (a) SMAPEx-5 retrievals and the
downscaled soil moisture products from (b) regression tree, (c) ANN and
(d) GPR models on six SMAPEx-5 airborne campaign dates (i.e., 13th,
16th, 18th, 21st, 23rd and 26th September 2015). Data from 8th and 10th
September 2015were excluded fromthefiguredue to thedata gaps caused
by the cloud contamination and any negative soil moisture estimates were
filtered. In general, the downscaled soil moisture from all three models
were able to capture the NW-SE oriented dry patch across the study area
which can be seen in the SMAPEx-5 retrievals as a NW-SE oriented stripe
(Fig. 6). The dry patch on the N-E corner of the study area can also be
seen in both the SMAPEx-5 and the downscaled soil moisture maps. As
per visual inspection, downscaled products from the regression tree
model showed the spatial patterns closest to the SMAPEx-5 soil moisture
maps among the three model outputs. Some wet pixels can be observed
moisture from (b) the regression tree model, (c) artificial neural network (ANN) and,

Image of Fig. 6


Table 3
Comparison between the SMAPEx-5 soil moisture and the downscaled soil moisture from
theRegression Tree (RT)model, Artificial Neural Network (ANN) and theGaussian Process
Regression (GPR) models.

RMSE (cm3/cm3)

Sep8 Sep 10 Sep 13 Sep 16 Sep 18 Sep 21 Sep 23 Sep 26

RT 0.04 0.04 0.02 0.04 0.03 0.03 0.04 0.02
ANN 0.10 0.12 0.06 0.14 0.10 0.07 0.10 0.07
GPR 0.07 0.09 0.05 0.08 0.07 0.06 0.06 0.06
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over the south-eastern region of the Yanco area at the beginning of
SMAPEx-5 campaign in SMAPEx-5 airborne retrievals and downscaled
soil moisture from the regression tree model. Downscaled soil moisture
from ANN and GPR models showed slightly drier patches over this region.

Fig. 7 shows the variability of the SMAPEx-5 soilmoisture retrievals and
downscaled soil moisture from the regression tree model, ANN, and the
GPR model in boxplots. Note that the cloud affected pixels in the
downscaled soil moisture products and their respective SMAPEx-5 pixels
were omitted from the boxplots and the error calculation. The boxplots
between SMAPEx-5 and the downscaled soil moisture product from the
regression tree model (Fig. 7a and b) showed a good agreement in terms
of both mean and variability. It is evident that the drying out condition
from 8th September to 26th September 2015 over the Yanco region has
been successfully captured by all three downscaled products (Fig. 7). Both
the standing water during the beginning of SMAPEx-5 and the low mean
soil moisture value over the area at the latter half of the SMAPEx-5
experiment (~0.2 cm3/cm3) might have affected the accuracy of the
comparison. The low mean soil moisture content makes it difficult to
interpret spatial patterns within a small value range.

The RMSE values between the SMAPEx-5 retrievals and downscaled
soil moisture products for each SMAPEx-5 day are shown in Table 3.
Downscaled soil moisture from the regression tree model, ANN and
the GPR model show average RMSE values of 0.03, 0.09 and 0.07 cm3/
cm3, respectively, with respect to the SMAPEx-5 retrievals.

5.4. Comparison of downscaled data with in-situ soil moisture observations

Fig. 8 shows the comparison between in-situ observations and
downscaled soil moisture products generated by the three models
during the SMAPEx-5 days at four Yanco stations, Y2, Y4, Y7 and Y8. A
good temporal agreement can be seen between downscaled products
from all three models against the in-situ observations. The drying
trend after the precipitation event at the beginning of SMAPEx-5 has
been captured successfully by all the downscaled products.

The comparison between in-situ soil moisture observations and the
downscaled products from the threemodels (i.e., regression tree, ANNand
GPR) showedubRMSEsof 0.07, 0.08 and0.05 cm3/cm3, respectively (Fig. 9).
Fig. 7. Daily spatial soil moisture variability across the study area captured by (a) SMAPEx-5
airborne retrievals, b) downscaled soil moisture products from regression tree model,
(c) artificial neural network (ANN)model, and (d) Gaussian Process Regression (GPR) model.
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5.5. Discussion

The downscaled soil moisture products from all three models
showed a good agreement with the Yanco in-situ observations and
SMAPEx-5 airborne soil moisture retrievals. Soil moisture estimated
by the regression tree and the GPR model have showed better results
compared to the downscaled soil moisture from the ANN model.
Overfitting can be a possible reason for the errors in the downscaled
soil moisture estimated with the ANN model (Okut, 2016).

There can be a few sources of errors affecting the comparison between
downscaled soil moisture and the SMAPEx-5 soil moisture retrievals, such
as the effects from standing water and agricultural activities (Ye et al.,
2020). Here, it is noteworthy to mention that a large fraction of the study
area is covered by agricultural lands with frequent irrigation applications.
Nearly one third of the Yanco region belongs to the Coleambally Irrigation
Area. This agricultural area consists of over 500 farms with a dense
irrigation channel network (Panciera et al., 2014). Fig. 10 shows the
distribution of irrigated agriculture over the Yanco area (NSW DPIE,
2017). Though this may not be the exact conditions specific to 2015, the
map shows a general picture of the irrigation lands in the area. The amount
of water release in this area varies with the cropping cycles and affect soil
moisture measurements consequently (Bretreger et al., 2020; Panciera
et al., 2014). Generally, the in-situ monitoring stations are established on
locations which are not subjected to flooding or irrigation. Therefore, the
Fig. 8. Comparison between in-situ soil moisture data and downscaled soil moisture
products from the regression tree (RT), artificial neural network (ANN) and exponential
Gaussian process regression (GPR) models at four Yanco monitoring stations after
rainfall (RF) in September 2015.
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Fig. 9. Comparison between the Yanco in-situ observations against downscaled soil moisture products from (a) the regression tree model, (b) artificial neural network, and (c) Gaussian
process regression model on SMAPEx-5 dates in September 2015.
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point-scale in-situ observations used for model development were unable
to capture all different water management cases and land use practices
affecting soil moisture variability over the study extent. This causes an
attenuationofmodel efficiency over someof the landuse/land cover classes
which are not represented in the model due to lack of data.
Fig. 10. Distribution of irrigated ag
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On the other hand, the standing water from the precipitation
events at the beginning of SMAPEx-5, agricultural activities and a
temporary pond located in the south-eastern part of the area can
induce uncertainties to the L-band soil moisture observations due
to the effect of water fraction on the Tb measurements (Ye et al.,
riculture over the Yanco area.

Image of Fig. 9
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2015; Ye et al., 2020). Ye et al. (2020) explained that some of the
wheat paddocks in the north-western part of the Yanco area were
subjected to flood irrigation at the end of SMAPEx-5 and this water
fraction has caused overestimation in the airborne soil moisture
retrievals. This has caused a slight increase in relative soil moisture
content over some of the irrigated lands (Fig. 10) at the latter part
of SMAPEx-5 (Fig. 6). Furthermore, the highly variable vegetation
water content driven by different vegetation types and growth
rates (Ye et al., 2020) was another factor which had affected the Tb
measurements.

Downscaling algorithms built with the in-situ data collected over
one area might not be applicable over a different spatial domain due
to the disparities in the biogeophysical properties. Therefore, it would
be worthwhile to test these machine learning algorithms using
simulated land surface model outputs despite their different spatial
resolutions. Since such datasets are available globally or regionally,
they can be adopted over catchments where in-situ datasets are
unavailable or combined with in-situ data. Senanayake et al. (2021)
showed that the downscaling algorithms built by using both a point
scale in-situ data and gridded land surface model (LSM, at ~25 km
resolution) time series outputs can provide robust methods, despite
their significant differences in spatial scales. The Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004), the Joint UK Land
Environment Simulator (JULES) (Best et al., 2011), Community
Atmosphere Biosphere Land Exchange (CABLE) (Kowalczyk et al.,
2006), Australian Water Resource Assessment-Landscape (AWRA-L)
(Frost et al., 2015) and Australian Water Availability Project-Waterdyn
(AWAP-Waterdyn) (Raupach et al., 2009) can be given as example for
potential LSM outputs for such an approach. Introducing factors such
as topography, surface albedo and wind speed to the model also has a
good potential in improving its accuracy.

The effect from the cloud cover to the thermal/optical data is
a major problem encountered in thermal/optical data based
downscaling methods. Employing thermal data from geostationary
satellites such as the Multi-Functional Transport Satellite (MTSAT)-
1R (Himawari-6) can be a potential solution for this problem
(Oyoshi et al., 2014; Yamamoto and Ishikawa, 2018). With their
high temporal frequency geostationary satellites have a potential of
providing cloud free approximates of TAM and TPM values. However,
this cannot completely ensure cloud free imagery over each and
every day. Methods of filling spatial and temporal data gaps such as
merging MODIS Aqua and Terra LSTs (Crosson et al., 2012) can also
be employed to address the effect of cloud contamination of
thermal data.

Since a long-term time record of coarse resolution satellite soil
moisture retrievals from SMOS and SMAP satellites are available from
2009, the models evaluated here can be used to develop a long-term
time record of high spatial resolution (1 km) near-surface soil moisture
for various applications. Here, it is noteworthy to mention about the
ongoing work on developing a consistent multi-satellite soil moisture
product with a 1-day temporal resolution by combining SMOS and
SMAP soil moisture retrievals (Bindlish et al., 2017). This dataset has a
good potential of being used effectively to produce a historic time-
record of high spatial resolution soil moisture at a daily time-scale.
Such a historical time record of daily high spatial resolution soil
moisture can play a vital role in regional scale hydrologic, climatic and
agricultural applications over arid and semi-arid landscapes.

6. Conclusion

This study compared three models (i.e., a regression tree, an ANN
with Bayesian regularization algorithm, and an exponential GPR)
based on the soil thermal inertia relationship between ΔT and μSM to
estimate soil moisture at a high spatial resolution by downscaling the
coarse-spatial resolution soil moisture product. The ΔT and μSM values
extracted from the MSMNN dataset were used to build the models
13
along with NDVI, soil clay content and Tmed data. Machine learning
algorithms were employed in this study by considering the complex,
non-linear relationships between these factors and the ability of
machine learning algorithms to capture such complex, non-linear
relationships. The models were applied over the Yanco region of the
Murrumbidgee River catchment to estimate soil moisture at 1 km
spatial resolution. The downscaled soil moisture products from the
three models were then compared against the SMAPEx-5 airborne soil
moisture retrievals and Yanco in-situ soil moisture observations.
Downscaled soil moisture from the regression tree model and the GPR
showed better results compared to the ANN. The models provide
encouraging results and insights for developing a long-term time record
of high spatial resolution soil moisture over semi-arid agricultural
landscapes by downscaling coarse spatial resolution satellite soil
moisture products.

Nomenclature
ΔT Diurnal temperature difference of soil (°C)
θ Unconstrained parametrization vector
μSM Daily mean soil moisture content (cm3/cm3)
ρ Bulk density (kgm−3)
σ Standard deviation
c Specific heat capacity (Jkg−1 K−1)
f(xi), f(xj) Latent variableswhere xi and xj are vectors of d× 1 dimension
k Thermal conductivity (Wm−1 K−1)
MYD11A1 MODIS/Aqua LST and Emissivity (LST/E) Daily L3 Global

1 km Grid V006 dataset
MYD13A2 MODIS/Aqua Vegetation Indices 16-Day L3 Global 1 km SIN

Grid V005 dataset
n Size of the dataset or number of pixels
r Euclidean distance between two points
SMest Estimated soil moisture (cm3/cm3)
SMest,p, SMest,i Estimated soil moisture at pixels p and i (cm3/cm3)
SMSMAPEX,ag Coarse spatial resolution satellite soil moisture value

simulated by aggregating the SMAPEX-5 soil moisture over
the study area (cm3/cm3)

TAM Early morning soil temperature (°C)
Tb Brightness temperature (K)
Tmed Daily median temperature (°C)
TPM Afternoon soil temperature (°C)
xi Predictor values
yi Response values

Source: NSWDepartment of Planning, Industry and Environment, 2017.
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Appendix 1. The distribution of daily soil moisture over eachmonth at Yanco monitoring stations, based on Yanco in-situ data from 2004 to
2017 (from 2002 to 2012 for Y3)
14
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Appendix 2.Mean and standard deviation (STD) ofnear surface soilmoisture inYanco Sites over theperiodof 2004 to 2017 (from2002 to 2012
for Y3)

3 3 3 3
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Mean SM (cm /cm )
15
STD SM (cm /cm )
1
 0.081
 0.054

2
 0.168
 0.088

3
 0.107
 0.051

4
 0.145
 0.071

5
 0.121
 0.085

6
 0.168
 0.123

7
 0.122
 0.080

8
 0.114
 0.083

9
 0.176
 0.132

10
 0.149
 0.112

11
 0.108
 0.106
Y

Unlabelled image
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