
Science of Remote Sensing 9 (2024) 100122

Available online 21 February 2024
2666-0172/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Spatial downscaling of SMAP radiometer soil moisture using radar data: 
Application of machine learning to the SMAPEx and SMAPVEX campaigns 

Elaheh Ghafari a,*, Jeffrey P. Walker b, Liujun Zhu b,c, Andreas Colliander d, 
Alireza Faridhosseini a 

a Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
b Department of Civil Engineering, Monash University, Melbourne, Australia 
c Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210024, China 
d Jet Propulsion Laboratory, NASA, California Institute of Technology, Pasadena, CA 91109, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Downscaling 
Soil moisture 
SMAP 
Random forest model 
SMAPEx 
SMAPVEX 

A B S T R A C T   

This study developed a random forest approach for downscaling the coarse-resolution (36 km) soil moisture 
measured by The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) 
mission to 1 km spatial resolution, utilizing airborne remotely sensed data (radar backscatter and radiometer 
retrieved soil moisture), vegetation characteristics (normalized difference vegetation index), soil properties, 
topography, and ground soil moisture measurements from before the launch of SMAP for training a random 
forest model. The 36 km SMAP soil moisture product was then downscaled by the trained model to 1 km res
olution using the information from SMAP. The downscaled soil moisture was evaluated using airborne retrieved 
soil moisture observations and ground soil moisture measurements. Considering the airborne retrieved soil 
moisture as a reference, the results demonstrated that the proposed random forest model could downscale the 
SMAP radiometer product to 1 km resolution with a correlation coefficient of 0.97, unbiased Root Mean Square 
Error of 0.048 m3 m− 3 and bias of 0.016 m3 m− 3. Accordingly, the downscaled soil moisture captured the spatial 
and temporal heterogeneity and demonstrated the potential of the proposed machine learning model for soil 
moisture downscaling.   

1. Introduction 

Soil moisture is an important variable in the hydrology, climatology, 
and agricultural sciences, as it is an essential factor in controlling the 
global water, energy and carbon cycles, linking land and atmospheric 
parameters (Seneviratne et al., 2010). Over the last decade, the possi
bility of global soil moisture monitoring has been made possible by the 
advent of remote sensing techniques (Entekhabi et al., 2010; Kerr et al., 
2012). Accordingly, L-band passive microwave at 1.41 GHz frequency 
has been adopted as the preferred approach due to its ability to monitor 
data under all weather conditions, the direct relationship between pas
sive microwave observation and soil moisture, and the low sensitivity to 
atmospheric effects, surface roughness and vegetation (Gao et al., 2022; 
Schmugge et al., 1986). Therefore, L-band satellites such as Soil Mois
ture and Ocean and Salinity (SMOS) mission were launched to provide 
global soil moisture maps (Barre et al., 2008). However, the low spatial 

resolution of passive microwave sensors is a major limitation to many 
applications. Consequently, investigations demonstrated that combining 
active (radar) and passive (radiometer) microwave observations can 
enhance the resolution by combing their respective advantages, 
including the high accuracy of passive observations with the fine spatial 
resolution of active observations (Das et al., 2011; Entekhabi et al., 
2010). This method has been termed as active passive. 

On the January 31, 2015, the Soil Moisture Active Passive (SMAP) 
satellite was launched by the National Aeronautics and Space Admin
istration (NASA), to provide global soil moisture maps of the top 5 cm 
soil surface with a temporal resolution of 2–3 days and spatial resolution 
of 9 km (Entekhabi et al., 2014). This was to be achieved by combining 
1.26 GHz radar backscatter (σ) at 3 km resolution and 1.41 GHz radi
ometer brightness temperature (Tb) at 36 km resolution, with the aim to 
provide a soil moisture accuracy better than 0.04 m3 m− 3 (Chan et al., 
2016). However, the SMAP radar instrument stopped working in July 
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2015, leaving only the radiometer observations measured by SMAP. 
Consequently, investigations have focused on generating a high reso
lution soil moisture product by combining the SMAP radiometer with 
other radar observations, such as those from the Copernicus Sentinel-1 
C-band radar (Das et al., 2019; Ghafari et al., 2020). Moreover, the 
data that was collected during the period the radar was working has 
provided an important experimental data set for developing and testing 
a variety of downscaled SMAP products using a range of data and al
gorithms (Colliander et al., 2017a; Sabaghy et al., 2018; Wu et al. 2015, 
2016). 

In recent years, several alternate methods have emerged for down
scaling the coarse resolution SMAP and SMOS soil moisture products 
(Das et al., 2011; Kim and Zyl 2009; Merlin et al., 2012; Narayan et al., 
2006; Piles et al., 2011). Among these approaches are machine learning 
methods, whereby optical and thermal observations, along with static 
geomorphological data at high spatial resolution are usually used as the 
covariates to downscale the passive microwave soil moisture product 
(Fang and Shen 2020; Karthikeyan and Mishra 2021; Long et al., 2019). 
However, investigations on utilizing radar observations as a covariate 
for machine learning methods has been limited (Mao et al., 2019; Zhu 
et al., 2021). Several investigations have shown that among all the 
machine learning methods used for downscaling satellite-based prod
ucts, being either the derived soil moisture or the observed brightness 
temperature, the random forest algorithm has shown the greater per
formance, as it is a more flexible model due to randomization and use of 
an ensemble approach (Abbaszadeh et al., 2019; Hu et al., 2020; Lei 
et al., 2022; Mao et al., 2022; Rao et al., 2022; Zhao et al., 2018). 

To ensure a robust satellite downscaling algorithm, this study used 
completely independent pre- and post-launch information for the 
training and testing phases of the machine learning model development, 
respectively. Moreover, a random forest model was developed, based on 
vegetation characteristics, topography, properties of the top 5 cm soil 
layer, and the soil moisture datasets available at only focus monitoring 
sites, for downscaling the coarse resolution SMAP passive soil moisture 
(36 km) to fine spatial resolution (1 km). This was achieved utilizing the 
third Soil Moisture Active Passive Experiment (SMAPEx-3) and Soil 
Moisture Active Passive Validation Experiment 2012 (SMAPVEX-12) 
campaigns. Previous studies commonly used the 36 km SMAP grid cell 
soil moisture as the 1 km soil moisture input variable to construct the 
downscaling model (Abbaszadeh et al., 2019; Hu et al., 2020; Rao et al., 
2022). Consequently, one of the novelties of this paper is utilizing soil 
moisture at the downscaling target resolution of 1 km as input to the 
training phase of the machine learning, as provided by pre-launch 
campaigns, instead of the coarse passive SMAP soil moisture. Further
more, most machine learning approaches to date have validated the 
output at just a few in situ points (Abowarda et al., 2021; Lei et al., 2022; 
Long et al., 2019). However, this study used the microwave soil moisture 
data retrieved from airborne passive observations across several SMAP 
pixels at 1 km resolution for validation, along with all available ground 
soil moisture measurements, to ensure the accuracy of the achieved 
spatial patterns in soil moisture. 

2. Study area 

Two field experiment sites were selected as the study areas due to 
their large-scale airborne and ground campaigns; the Soil Moisture 
Active Passive Experiments (SMAPEx) field campaigns carried out in 
south-eastern Australia, and the Soil Moisture Active Passive Validation 
Experiment 2012(SMAPVEX-12) field campaign conducted in south 
central Manitoba, Canada. The extensive pre-launch data make these 
very suitable study areas for the purpose of this research. Combining the 
data from both campaigns provided a sufficiently large sample size for 
training the algorithm. Furthermore, these sites present complementary 
soil characteristics, weather status and vegetation coverage, thus 
providing a wide range of conditions. More detailed descriptions about 
the field campaigns follow. 

2.1. Soil Moisture Active Passive Experiment (SMAPEx) campaigns 

Five airborne field campaigns were undertaken over the period from 
2010 to 2015 in south-eastern Australia, known as the Soil Moisture 
Active Passive Experiments (SMAPEx) (Panciera et al., 2014; Ye et al., 
2020). These were conducted in the Yanco SMAP validation area in the 
Murrumbidgee River catchment (Fig. 1). SMAPEx-1 to SMAPEx-3 were 
undertaken before the SMAP launch, while SMAPEx-4 and SMAPEx-5 
were conducted post-launch. These campaigns were designed with the 
basic target of developing the soil moisture algorithms for SMAP prod
ucts at pre-launch, and for calibration and validation of SMAP obser
vations and downscaled soil moisture at post-launch. Accordingly, 
during the SMAPEx campaigns, airborne passive and active observations 
were made similar to the SMAP observations (Wu et al., 2015), and the 
ground soil moisture and several kinds of ancillary data were collected 
coincident with SMAP overpasses. The third to fifth SMAPEx campaigns, 
which were utilized in this research for developing and then testing the 
machine learning downscaling model, were conducted in the austral 
spring (5th to 23rd September 2011), autumn (30th April to 23rd May 
2015), and spring (6th to 28th September 2015), respectively. These 
campaigns provided valuable datasets for developing the SMAP down
scaling algorithm under Australian soil and vegetation conditions 
(Panciera et al., 2014). More details about the SMAPEx datasets are in 
the workplan reports available at https://www.smapex.monash.edu, so 
only a brief outline of the information is presented here. 

The dataset from the SMAPEx-3 campaign included six focus areas, 
being a 3 km × 3 km grid cell for each, corresponding to the EASE-2 
SMAP grid cells across the SMAP radiometer pixel. These were used 
for constructing the downscaling model during the training phase of 
establishing the machine learning algorithm (Fig. 1). It is notable that 
only data from the third SMAPEx campaign was used at this step. The 
datasets during the SMAPEx-4 and SMAPEx-5 experiments, covering 
approximately six coarse resolution SMAP grid cells over the SMAP 
validation flight area (Fig. 1), were utilized for validating the algorithm. 
The variability in soil and vegetation conditions, the availability of the 
soil moisture dataset measured based on the ground experiments, and 
the availability of the required airborne and satellite data make these 
selected areas appropriate for research on microwave retrieval of soil 
moisture from satellites. The selected study site is located in a semi-arid 
area with flat topography. The six selected ground-sampling sites are 
called YA4, YA7, YB5, YB7, YE and YF. The land use of the sites is 
irrigated cropping (90%) and grazing (10%) for YA4 and YA7, irrigated 
cropping (85%) and grazing (15%) for YF, and entirely grazing for YB5, 
YB7 and YE. Therefore, the two main land cover types were cropping 
and grazing. The soil textures are categorized as clay loam for YA4 and 
YA7, silty clay loam for YE, and loam for YB5, YB7 and YF. The soil 
texture was obtained from gravimetric samples used to extract the soil 
particle distribution (Monerris et al., 2011) and the CSIRO Digital Atlas 
of Australian Soils (1991). 

The SMAPEx-3 campaign took place in the austral spring, with 
moderate rainfall in the first half of the period resulting in a soil mois
ture dry down, and winter crops in their intensive growth periods. More 
descriptions of SMAPEx-3 are available in Panciera et al. (2014). The 
SMAPEx-4 campaign took place in the austral autumn. During this 
experiment, crop areas with dry or burned corn stubble or rice straw 
residual from harvest were dominant, while some crop areas had been 
ploughed for seeding. Consequently, the surface roughness was high due 
to the deep furrows in the ploughed and harvested areas, while the 
grazing area was covered by short grass. The range in soil moisture 
conditions was around 0.1 m3 m− 3 and the average vegetation water 
content was approximately 0.1 kg m− 2. Before the campaign began, 
several heavy rainfall events occurred which made for heterogenous soil 
conditions during the dry down period in the selected area. Two medium 
rainfall events also occurred during the campaign, providing further 
heterogeneity to the soil water content distributions (Ye et al., 2020). 
The last campaign, SMAPEx-5, took place in the austral spring when the 
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vegetation had high growth rates, with VWC up to approximately 2 kg 
m− 2. Heavy rainfall occurred before the campaign providing heteroge
neity in soil moisture conditions along with a dry down situation. The 
most vegetated area during this campaign was the irrigated and dryland 
cropping, followed by grazing land (Ye et al., 2020). 

2.2. The Soil Moisture Active Passive Validation Experiment 2012 
(SMAPVEX-12) campaign 

The SMAPVEX-12 field campaign was conducted at the pre-launch 
stage of SMAP to assist SMAP algorithm development. The campaign 
was conducted at the Canadian Red River Watershed in south central 
Manitoba, Canada (Fig. 2), mostly covered by agricultural and some 

Fig. 1. The SMAPEx study site in the Murrumbidgee River catchment in south-eastern of Australia with the Digital Elevation Model (DEM), and the six focus areas 
used for ground sampling, together with the SMAP grid cells overlain with the land use map. 

Fig. 2. Overview of the SMAPVEX-12 study site located at the Red River watershed in south-central Manitoba in Canada overlain with the land cover types and the 
location of USDA agricultural fields. 
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forest areas (McNairn et al., 2015). The period of the SMAPVEX-12 
experiment was from June 17th to July 19th, 2012, with the intent of 
collecting active and passive airborne observations together with 
ground soil moisture measurements and ancillary datasets. The size of 
the site was 12.8 km × 70 km, capturing forest and agricultural areas 
(Fig. 2). The soil texture varied from heavy clays to fine loamy sand 
through the east to west of the study area, leading to substantial soil 
moisture gradients over short distances. The site is predominately flat 
with a maximum slope of 2%. Ground soil moisture data were acquired 
by permanent soil moisture stations installed by Agriculture and 
Agri-food Canada, manual sampling teams, and temporary sites installed 
by the United States Department of Agriculture (USDA). 

As shown in Fig. 2, the selected site was dominated by a mix of 
agricultural area, mostly including cereals and oil seeds. Overall, 67% of 
the site was covered by crops and approximately 15% by grassland and 
pasture. Seeding was undertaken in April/May and harvesting in 
August/September. Fifty-five agricultural fields of at least 800 m × 800 
m in size were monitored throughout the SMAPVEX-12 campaign, col
lecting ground soil moisture measurements as shown in Fig. 2. As both 
cropland and grassland data were available, the SMAPVEX-12 campaign 
provided useful information to complement the SMAPEx campaign 
dataset for downscaling the SMAP soil moisture utilizing the machine 
learning algorithm. Further details about the campaign are available in 
McNairn et al. (2015), with the SMAPVEX-12 datasets accessible at https 
://nsidc.org/data/smap/validation-data. 

3. Data 

3.1. SMAP radiometer soil moisture product 

The SMAP satellite provides global scale soil moisture maps of the 
top 5 cm, with an ubRMSE of less than 0.04 m3 m− 3 (Bindlish et al., 
2016). This research utilized a machine learning approach for down
scaling the SMAP radiometer-based soil moisture product. The 
descending overpass of the SMAP L3 radiometer 36 km EASE-grid soil 
moisture product version 8 (L3_SM_P) was selected for this purpose 
(O’Neill et al., 2021). This product is available at https://nsidc.org/data 
/SPL3SMP/versions/8. 

3.2. Active and passive airborne datasets 

The airborne instruments used in the SMAPEx campaigns included 
the 1.41 GHz Polarimetric L-Band Multibeam Radiometer (PLMR) and 
the 1.26 GHz Polarimetric L-Band Imaging Synthetic Aperture Radar 
(PLIS), which provided the L-band passive (brightness temperature) and 
active (backscatter) microwave observations. Overall, there are nine 
flight dates from SMAPEx-3 (5th, 7th, 10th, 13th, 15th, 18th, 19th, 21st 
and 23rd September 2011), six flight dates from SMAPEx-4 (2nd, 5th, 
10th, 11th, 19th and 21st May 2015) and eight flight dates from 
SMAPEx-5 (8th, 10th, 13th, 16th, 18th, 21st, 23rd and 26th September 
2015) covering several 3 dB SMAP radiometer footprints. Notably, 
SMAPEx-4 data was coincident with both SMAP radiometer and radar 
observations. 

The passive airborne radiometer brightness temperature data for 
SMAPEx experiments was collected by the PLMR instrument with 1 km 
spatial resolution at horizontal and vertical (h and v) polarizations and 
nominal incidence angles of 17◦, 21.5◦ and 38.5◦. An accuracy of around 
±1.4 K was obtained for the calibration of PLMR brightness temperature 
at vertical and horizontal polarization, and an accuracy of about ±1.5 K 
for thermal correction of the calibrated dataset was achieved during the 
SMAPEx campaigns (Ye et al., 2020). The PLMR brightness temperature 
observations were angle normalized from their original angles to the 
reference incidence angle of SMAP (~40◦) utilizing a cumulative dis
tribution function approach (Ye et al., 2015). An accuracy of about 
±2.4 K was achieved for angle normalization of the PLMR brightness 
temperature (Wu et al., 2015). As the SMAP soil moisture data did not 

exist for the training phase, due to being in the pre-launch period, the 
SMAPEx-3 airborne retrieved soil moisture at 1 km spatial resolution (Ye 
et al., 2020) was averaged to 36 km resolution to simulate the SMAP 
derived soil moisture data to train the machine learning algorithm. 
Additionally, the derived soil moisture observations from SMAPEx-4 and 
SMAPEx-5 PLMR brightness temperature at 1 km spatial resolution over 
the entire SMAP validation flight area (Fig. 1) were used in the testing 
phase of the machine learning algorithm development, for the purpose 
of evaluating the downscaling algorithm results. During the SMAPEx 
experiments, the airborne radar backscatter datasets were measured by 
the PLIS instrument at hh, hv, vh and vv polarizations, high temporal 
resolution and 10 m spatial scale (Ghafari et al., 2020; Zhu et al., 2018) 
with an incidence angle between 15◦ to 45◦. The PLIS instrument pro
vided complete coverage over the study area during SMAPEx-3, but with 
small gaps across the SMAPEx-4 and 5 campaigns due to the flight 
design. However, previous investigations on the PLIS coverage gaps 
demonstrated that there was a nonsignificant effect on the accuracy of 
the PLIS backscatter when processed to 3 km resolution for use in 
downscaling (Ghafari et al., 2020). Before using the PLIS observations in 
the machine learning technique, the data was calibrated, georeferenced, 
and normalized for the incidence angle, with an accuracy of 0.58 dB 
achieved for calibration (Zhu et al., 2018). To normalize the PLIS inci
dence angle to that of SMAP (40◦), the method utilized for angle 
normalization of the PLMR observations was performed (Ye et al., 
2015). An accuracy of 0.8 dB was achieved for the angle normalized 
backscatter data at 1 km resolution (Wu et al., 2015). Finally, the PLIS 
backscatter data was aggregated by linear averaging from the original 
grid cell (10 m) to the required resolution (1 km). In this study, the 
vertical and horizontal co-polarized and cross-polarized PLIS back
scatter (σvv, σhh and σxpol) were used. 

The airborne instrument of the SMAPVEX-12 campaign is called the 
Passive Active L-band Sensor (PALS), providing L-band radiometer 
brightness temperature with both vertical and horizontal polarization at 
1.41 GHz frequency, and L-band radar backscatter with hh, hv, vh and vv 
polarizations at 1.26 GHz frequency. The PALS instrument was mounted 
to provide a single beam with a 40◦ incidence angle looking to the rear of 
the aircraft (McNairn et al., 2015). Sixteen flight dates of SMAPVEX-12 
(7th, 12th, 15th, 17th, 22nd, 25th, 27th and 29th June, and 3rd, 5th, 
8th, 10th, 13th, 14th, 17th and 19th July 2012) provided active and 
passive airborne measurements for the machine learning algorithm 
training over the SMAPVEX-12 area. In this research, the calibrated 
co-polarized and cross-polarized PALS backscatter observations (σvv, σhh 
and σxpol), Version 1 (SV12PLBK) (Colliander 2014) measured over 
SMAPVEX-12 agricultural sampling fields (nominal size of 800 m × 800 
m) were resampled through a linear averaging approach to provide the 
1 km resolution radar observations, while the retrieved soil moisture 
data, Version 1 (SV12PLSM) achieved from PALS brightness tempera
ture observations (Colliander 2017; Colliander et al., 2016) at 1 km 
spatial resolution was utilized to simulate the 36 km SMAP soil moisture. 
The SMAPVEX data was only used in the training step of developing the 
machine learning based downscaling algorithm. More description about 
the PALS instrument and its radar and radiometer calibration method
ologies are available in McNairn et al. (2015). 

3.3. MODIS normalized difference vegetation index (NDVI) 

Machine learning methods are able to integrate various data sources. 
Utilizing vegetation index parameters in the satellite soil moisture 
downscaling methods has been one of the widely accepted approaches 
over the past decade (Fang and Lakshmi 2014; Merlin et al., 2008; Piles 
et al., 2011). The MODerate resolution Imaging Spectroradiometer 
(MODIS) is a multispectral instrument of the NASA Earth Observing 
System, consisting of Aqua and Terra satellites which measure the 
visible, near infrared, and thermal infrared signatures at 36 spectral 
bands every 1–2 days. In this study the daytime overpass of Terra, being 
most consistent with the SMAP overpass, was selected to extract the 
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NDVI variable. The selected MODIS product was the version-061 daily 
surface spectral reflectance (MOD09GA) at 1 km spatial resolution, 
available at https://e4ftl01.cr.usgs.gov/MOLT/. The reflectance prod
uct is available at 500 m spatial resolution. However, for consistency 
with the microwave data it was resampled to 1 km resolution before 
calculating NDVI. 

3.4. Soil texture data 

Soil texture, including clay, silt and sand content, is one of the basic 
parameters affecting the soil moisture values, through its influence on 
the rate of water infiltration, soil moisture storage and soil drainage 
characteristics. Accordingly, several studies have shown that informa
tion on soil texture can be one of the important sources in downscaling 
soil moisture using machine learning (Abbaszadeh et al., 2019; Karthi
keyan and Mishra 2021). 

In this study, the machine learning algorithm utilized the informa
tion on soil texture (% clay, % silt, and % sand). The soil texture of the 
SMAPEx ground sampling site is clay loam (31% clay, 48% silt and 20% 
sand) for YA4 and YA7, silty clay loam (39% clay, 43% silt and 17% 
sand) for YE, and loam (23% clay, 47% silt and 29% sand) for YB5, YB7 
and YF. The SMAPEx ground sampling soil texture data values, and also 
the soil texture information over the SMAP validation flight area 
(Fig. 1), were obtained from gravimetric experiments that extracted soil 
particle size distribution and the CSIRO Digital Atlas of Australian Soils 
(1991). The soil texture information for SMAPVEX-12 was extracted 
from soil texture data collected by coring devices over each agricultural 
field as part of the campaign. The soil texture types varied over this 
selected area including sand (7% clay, 4% silt and 89% sand), loamy 
sand (6% clay, 6% silt and 88% sand), sandy clay loam (34% clay, 14% 
silt and 51% sand), sandy loam (16% clay, 9% silt and 75% sand), silty 
clay loam (40% clay, 56% silt and 4% sand), clay (56% clay, 30% silt 
and 14% sand), heavy clay (67% clay, 29% silt and 4% sand), clay loam 
(38% clay, 19% silt and 43% sand) and silty clay (54% clay, 40% silt and 
6% sand). This dataset is accessible at https://nsidc.org/data/smap/va 
lidation-data (Bullock et al., 2014). 

3.5. Geographic data 

Soil moisture conditions, especially in the surface layers, are affected 
by topographic data (Crow et al., 2012). As elevation, terrain slope and 
aspect have been found to be the important topographic parameters in 
soil moisture downscaling studies (Mascaro et al., 2011; Wilson et al., 
2005), these features were selected for use in the machine learning 
model developed here to downscale the SMAP soil moisture. The 
topography of the Murrumbidgee River catchment changes from 50 m to 
2000 m (Fig. 1), however, based on the 250 m topography information 
from the Geoscience Australia Digital Elevation Model (DEM), the 
elevation at 1 km spatial resolution for the SMAPEx study area only 
changed from 100 m to 400 m throughout the SMAP validation flight 
area. The terrain slope and aspect values were derived from DEM in
formation of the SMAP validation flight area, and changed from 0◦ to 
12◦ and from -1◦ to 360◦ respectively at 1 km resolution. The DEM 
product obtained from the ASTER Global-DEM project (https://a 
sterweb.jpl.nasa.gov/gdem.asp) has been used for SMAPVEX, having a 
30 m spatial resolution with a vertical accuracy of 7 m–14 m. Based on 
the data extracted from ASTER, the mean elevations at the USDA agri
cultural fields varied from 237 m to 276 m when averaged to 1 km 
resolution, while the terrain slope and aspect values changed from 3◦ to 
7.8◦ and from 127.2◦ to 215.1◦. 

3.6. Ground soil moisture observations 

Each of the SMAPEx campaigns included six focus areas (3 km × 3 
km) aligned with the SMAP radar grid cells, with dense soil moisture 
cluster monitoring stations to monitor soil moisture, along with 

intensive spatial ground sampling (Fig. 1). During the campaigns, 
intensive soil moisture values were monitored over the 0–5 cm depth 
concurrent with airborne overpasses at the focus areas using the 
Hydraprobe Data Acquisition System (HDAS) (Merlin et al., 2007). The 
soil moisture information was recorded on a 250 m × 250 m grid over 
each SMAPEx focus area. Three soil moisture values were measured at 
each ground sample point within a radius of 1 m to consider soil mois
ture variations, reducing the impact of errors in measuring the data. For 
use in this study, these soil moisture values were aggregated through 
linear averaging within each 1 km grid, being the target spatial 
resolution. 

The selected ground soil moisture of the SMAPVEX-12 experiments 
for this research was from the temporary soil moisture sensors installed 
by the United States Department of Agriculture (USDA). As mentioned 
earlier, there were 55 measurement sites known as agricultural fields 
(Fig. 2). Soil moisture values during the SMAPVEX-12 experiments 
varied spatially due to variations in soil texture, the topography of the 
area, and differences in field irrigation management. To provide valid 
average soil moisture measurements, sixteen sampling points with three 
replicates at each point were selected for every agricultural field (mostly 
800 m × 800 m fields representing about 1 km spatial resolution) to 
measure ground soil moisture over the 0–5 cm depth. Replication was 
utilized to decrease the error resulting from spatial variability in soil 
properties. The average soil moisture data at each agricultural field was 
considered as the 1 km ground reference value. The soil moisture was 
measured using a Stevens Water Hydra Probe (McNairn et al., 2015). 
The information for the selected datasets is presented in Table 1. 

4. Methodology 

4.1. Summary of the random forest technique 

Random forest is a machine learning method that functions as an 
ensemble multiple decision tree model (Breiman 1996, 2001). Impor
tantly, the overfit situation may easily occur in the training stage with 
this approach, leading to poor performance during the testing phase. To 
overcome this problem, the random forest model makes several decision 
trees that work individually at the training stage, with the output data 
achieved by calculating the average prediction of those trees. Accord
ingly, the input features are divided by the random forest algorithm into 
several regression trees, so that each tree is produced through a boot
strap sample providing its own prediction value. Overall, the reduction 
in generalization error occurs due to the combination of results from 
several decision trees (Breiman 2001). Based on previous research, 
random forest is the most appropriate machine learning approach for 
regression and classification problems, such as downscaling of satellite 
products like soil moisture (He et al., 2016; Long et al., 2019; Mao et al., 
2022), as it makes the decision trees using the adaptive, randomized and 
independent features for the relation between input and output vari
ables (Amit and Geman 1997; Breiman 2001). 

4.2. Soil moisture downscaling method 

The target of this research was to develop a random forest algorithm 
that leads to soil moisture at finer resolutions (i.e., 1 km), utilizing 
datasets sourced from before and after the SMAP launch. The basic idea 
for the approach is to construct a transfer function between different 
input variables and the soil moisture output variable using: 

SMd = f (C) + ε, (1)  

C=(c1, c2, c3,… cN), (2)  

where the SMd is the downscaled surface soil moisture, ε is the model 
estimation error, and ci demonstrates the individual input variables, 
including co-polarized and cross-polarized backscatter (σvv, σhh and 
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Table 1 
Characteristics of the datasets utilized in the machine learning approach.  

Data set Details Source Spatial resolution Temporal 
resolution 

Time series/Dates 

SMAP Level 3 soil moisture Version 8, SMAP radiometer soil moisture 
product 

NSIDC 36 km 2–3 days May 2015 (six 
dates) 
September 2015 
(eight dates) 

PLMR soil moisture Airborne soil moisture data from SMAPEx-3, 
SMAPEx-4 and SMAPEx-5 experiments 

smapex.monash.edu 1 km Daily September 2011 
(nine dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates) 

PLIS backscatter Active airborne backscatter data from 
SMAPEx-3, SMAPEx-4 and SMAPEx-5 
experiments 

smapex.monash.edu 10 m (resampled to 1 
km) 

Daily September 2011 
(nine dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates) 

PALS soil moisture Airborne soil moisture data from SMAPVEX- 
12 experiment 

NSIDC 1500 m (resampled to 1 
km) 

Daily June 2012 (eight 
dates) 
July 2012 (eight 
dates) 

PALS backscatter Active airborne backscatter data from 
SMAPVEX-12 experiment 

NSIDC 500 m, and 1500 m 
(resampled to 1 km) 

Daily June 2012 (eight 
dates) 
July 2012 (eight 
dates) 

Normalized Difference 
Vegetation Index (NDVI) 

Extracted from MODIS MOD09GA – version 
061 

NASA LP DAAC 1 km Daily September 2011 
(nine dates) 
June 2012 (eight 
dates) 
July 2012 (eight 
dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates) 

Soil Texture Variables (% Clay, Silt, Sand) CSIRO, and SMAPVEX-12 
field surveys 

1 km Static September 2011 
(nine dates) 
June 2012 (eight 
dates) 
July 2012 (eight 
dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates) 

Terrain features Digital Elevation Model (DEM), Terrain 
slope and Aspect 

Geoscience Australia, and 
ASTER Global-DEM project 

1 km Static September 2011 
(nine dates) 
June 2012 (eight 
dates) 
July 2012 (eight 
dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates) 

Ground soil moisture Focus areas of SMAPEx, and USDA 
agricultural fields of SMAPVEX-12 

smapex.monash.edu, and 
NSIDC 

Resampled to 1 km Daily September 2011 
(nine dates) 
June 2012 (eight 
dates) 
July 2012 (eight 
dates) 
May 2015 (six 
dates) 
September 2015 
(eight dates)  
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σxpol), geographic data (elevation, terrain slope and aspect), soil texture 
(% clay, % silt, and % sand), airborne radiometer-based soil moisture 
and NDVI, and N is the dimension of input predictors (N = 11 in this 
study). 

The training of the random forest algorithm used 11 input variables 
that are at or resampled to the resolution of 1 km to downscale the SMAP 
radiometer soil moisture product (L3_SM_P). These included retrieved 
soil moisture data from airborne radiometer measurements at 1 km 
resolution aggregated to 36 km and radar backscatter in co-polarized 
and cross-polarized channels (σvv, σhh and σxpol) aggregated to 1 km, 
NDVI as being representative of the vegetation dynamics, soil texture, 
and geographic data including the Digital Elevation Model (DEM), 
derived terrain slope and aspect (Table 1). These parameters have 
shown a strong relationship with the temporal dynamics and spatial 
heterogeneity of soil moisture (Abbaszadeh et al., 2019; Abowarda et al., 
2021; Zhu et al., 2020). As the training phase of the random forest al
gorithm needs a source of soil moisture data as the output response 
variable, the 1 km ground soil moisture datasets were utilized for this 
purpose. While the 1 km resolution radiometer observations could also 
have been used to aid in the training, this was not done in this instance. 
It is notable that over the SMAPEx-3 and SMAPVEX-12 experiments, the 
ground soil moisture datasets were only measured at the focus areas 
(size of 3 km × 3 km each as shown in Fig. 1) and at the agricultural 
fields (size of 800 m × 800 m each as shown in Fig. 2), respectively. 
Moreover, the SMAP radar backscatter data from the active passive 
product (SMAP_L2_SM_AP) resampled to 1 km resolution were used 
rather than the PLIS backscatter during the SMAPEx-4 campaign. 

The dataset was split into two groups: i) the data collected before the 
SMAP launch to train the random forest model, and ii) the data collected 
after the SMAP launch, unseen by the random forest model, and thus 
used at the validation phase to verify the resultant downscaling model. 
Therefore, to investigate the main objective of this study, the data 
collected during SMAPEx-3 and SMAPVEX-12 (in the years 2011 and 
2012, respectively) were used for the training phase of the model, and 
the data collected during SMAPEx-4 and SMAPEx-5 (in the year 2015) 
were used for the testing phase. Because the training phase was before 
the SMAP launch, the radiometer derived soil moisture from SMAPEx-3 
and SMAPVEX-12 at 1 km resolution was aggregated to 36 km and used 
as the input soil moisture data in place of the SMAP 36 km soil moisture 
during training. In contrast, the SMAP 36 km radiometer soil moisture 
observations were utilized as the input at the validation stage and the 1 
km resolution SMAPEx soil moisture data were used only for validation 
of the downscaled soil moisture. Table 2 presents numerical information 
regarding the available data in the training and validation phases. 

The 12 columns were considered during the training of the machine 
learning algorithm, which include the 11 input variables (available at 1 
km or resampled to 1 km) and the one output response variable (1 km 
ground soil moisture data). As an example, the focus area of SMAPEx-3 
provides a data set with 162 rows and 12 columns, where the 162 is 
computed as 2 × 9 × 9, with 2 referring to the number of ground 
sampling focus areas with an available dataset for each day, 9 refers to 
the number of 1 km grid cells at each focus area (i.e., 3 km × 3 km), and 

the last 9 refers to the number of experiment days during the campaign. 
The 11 input variables were normalized from 0 to 1 before being utilized 
in both the training and validation phases. This step was to remove any 
error due to the non-equal magnitudes of the input variables (Breiman 
2001; O and Orth, 2021; Srivastava et al., 2013). Subsequently, the 
SMAP soil moisture data was downscaled via the trained algorithm, 
utilizing the SMAPEx-4 and SMAPEx-5 data for the input variables. 
Finally, the SMAP downscaled soil moisture, was evaluated utilizing the 
ground soil moisture datasets and the high-resolution airborne radi
ometer derived soil moisture. 

Fig. 3 presents a schematic of the proposed random forest model for 
downscaling the 36 km SMAP soil moisture. The random forest algo
rithm requires the input variables on a 1 km grid. Therefore, the data 
collections which were not originally at 1 km resolution were resampled 
to this spatial resolution. The MATLAB built-in function TreeBagger 
from the MATLAB Regression Learner application was used to apply the 
random forest algorithm, working based on the Bagging (Bootstrap +
Aggregating) approach (Breiman 1996, 2001). Using this method, the 
training dataset was sampled to M subgroups by the bootstrap approach, 
and the M individual regression decision trees fitted to train the random 
forest algorithm through using the input variable data. The predicted 
data was calculated through M replications. Finally, the average of the 
output values from the individual decision trees was considered as the 
final result value. The ensemble decision was made by averaging the M 
results from individual regression trees: 

p(SMd|C)=
1
M

∑M

t=1
pt(SMd|C), (3)  

where pt(SMd|C) is the output of each individual decision tree deter
mining the conditional distribution of the downscaled soil moisture 
(SMd) considering the multidimensional feature input vector (C). 

The k-fold cross-validation technique (Hastie et al., 2009) was also 
included in the model to avoid overfitting. A k-value equal to 5 was 
selected as it showed the best performance during the training, obtained 
through a trial and error approach. It is also important to choose the 
appropriate values for minimum leaf size and number of learners 
applied in the random forest model during the training phase to improve 
the downscaling accuracy. For this purpose, different values were tested 
through trial and error, with a minimum leaf size equal to nine and a 
number of learners equal to 25 yielding the best performance of the 
trained random forest model in improving the downscale ing accuracy. 
After the training phase, the best calibrated random forest regression 
model was exported for implementation on the validation dataset, 
allowing the evaluation using unseen data. Accordingly, the SMAP 
radiometer soil moisture observations over the SMAP validation flight 
area (Fig. 1) were downscaled utilizing the calibrated random forest 
algorithm to 1 km resolution, and evaluated by the fine resolution 
ground soil moisture measurements at the focus areas averaged over 1 
km grids, and also the soil moisture retrieved from the airborne 
brightness temperature at 1 km. 

Validation of the downscaled soil moisture included quantification of 
statistical metrics and model errors, by comparing the estimated values 
with the airborne retrieved soil moisture observations and ground soil 
moisture measurements as the reference data. These metrics include the 
unbiased root mean square error (ubRMSE), Pearson correlation coeffi
cient (R), and mean difference or bias. The ubRMSE was considered as 
the representative accuracy of the soil moisture in this research. 

The importance of each individual variable was assessed to analyze 
the relative contribution of input features on the random forest down
scaling accuracy. For this purpose, a leave-one-out approach was per
formed by removing the one input variable (i.e., radar backscatter, 
NDVI, DEM, terrain slope and aspect, soil texture) and implementing the 
random forest downscaling algorithm using the rest of the variables in 
order to investigate the impact of the removed variable. 

Table 2 
Description of the data used for training and validation phases, including the 
number of 1 km grid cells, number of experiment days and the total available 
samples over selected campaigns.   

Campaign Number of 1 
km grid cells 

Number of 
experiment days 

Total 
available 
samples 

Training 
phase 

SMAPEx-3 18 9 162 
SMAPVEX- 
12 

25–50 16 585 

Validation 
phase 

SMAPEx-4 6035 6 33,234 
SMAPEx-5 6319 8 50,552  
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5. Results and discussion 

5.1. Evaluation of the soil moisture data sets 

Original SMAP_L3, PLMR and PALS soil moisture observations 
(resampled to 1 km spatial resolution) were first evaluated against the 
ground soil moisture measured during the experiment periods. Fig. 4 
demonstrates the evaluation of the different soil moisture observations 
against ground soil moisture measurements at the pixel level, including 
the statistical analysis values. Accordingly, the correlation coefficients 
between the PALS and PLMR retrieved soil moisture with the ground 
measurement were found to be higher than the SMAP_L3 soil moisture 
by 0.03 m3 m− 3 and 0.07 m3 m− 3 for PLMR and PALS, respectively. In 
contrast, the original SMAP_L3 soil moisture showed better ubRMSE 
against ground measurements than the airborne soil moisture retrieval 
from PLMR and PALS, achieving the lowest value equal to 0.062 m3 

m− 3. The highest ubRMSE was obtained between PLMR soil moisture 
retrieval and ground observations as 0.09 m3 m− 3, which was partially 
due to standing water found in grasslands (due to heavy rainfall) at the 
beginning of the SMAPEx-5 campaign and crop lands (due to flood 
irrigation) at the end of the SMAPEx-5 campaign. Importantly, the PLMR 
instrument captured the soil moisture variation of these pixels. The 
calculation of bias statistics showed an overestimation for SMAP_L3 soil 
moisture of 0.013 m3 m− 3, and an underestimation for PLMR and PALS 
soil moisture of − 0.008 m3 m− 3 and -0.029 m3 m− 3 respectively when 
compared against ground measurements. 

For comparison, the SMAP_L3 soil moisture has been resampled to 1 
km resolution by applying the same soil moisture value for each 1 km 

pixel within each 36 km EASE grid cell. The resampled SMAP soil 
moisture has then been compared against the PLMR soil moisture ob
tained during the SMAPEx-4 and -5 experiments. This is considered as 
the “do-nothing” baseline performance that the downscaling algorithm 
must beat in order to add value. Fig. 5 shows that the comparison had a 
correlation coefficient of 0.66, bias of 0.016 m3 m− 3 (SMAP_L3 higher), 
and ubRMSE of 0.121 m3 m− 3. Thus, in order to ensure that the differ
ences between the SMAP downscaled soil moisture and the airborne 
retrieved soil moisture at high spatial resolution were affected only by 
the machine learning downscaling algorithm, and not because of the 
sensor to sensor bias, this bias value between the SMAP and PLMR soil 
moisture was removed before utilizing the data in the downscaling 
process. 

5.2. Results from random forest model development 

The calibration and validation of the proposed random forest algo
rithm was conducted using the input and output variables over selected 
areas. As mentioned earlier, the normalized training dataset from the 
SMAPEx-3 and SMAPVEX-12 experiments was partitioned into a 5-fold 
cross-validation. In the training phase, the 1 km ground soil moisture 
dataset was used in the algorithm for matching with the output response 
variable (see Fig. 3). The statistical results of the Ensemble TreeBagger 
algorithm applied at the training phase showed a good performance 
with R, root mean square error (RMSE) and mean absolute error (MAE) 
of 0.88, 0.05 m3 m− 3 and 0.04 m3 m− 3, respectively, demonstrating the 
capability of the calibrated random forest model for generalization to an 
unseen dataset. These results showed a better correlation coefficient and 

Fig. 3. Flowchart of the proposed random forest downscaling model.  

Fig. 4. Evaluation of different soil moisture observations against ground soil moisture measurements including a) 36 km SMAP_L3 SM during 30 April – 23 May 2015 
(SMAPEx-4, red points) and 6–28 September 2015 (SMAPEx-5, green points) at the SMAPEx-4 and -5 sites, respectively; b) 1 km PLMR SM during 5–23 September 
2011 (SMAPEx-3, blue points), 30 April – 23 May 2015 (SMAPEx-4, red points) and 6–28 September 2015 (SMAPEx-5, green points) at the SMAPEx-3, -4 and -5 sites, 
respectively; and c) 1 km PALS SM during 7 June – 19 July 2012 at the SMAPVEX-12 site (SMAPVEX-12, brown points). 
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RMSE than Senanayake et al. (2021), which used the Gaussian process 
regression model over the Yanco area for downscaling of soil moisture. 
The statistical results of this research have been obtained by trying 
different numbers of decision trees and tree leaf size to achieve a suitable 
calibrated random forest model for the downscaling. 

5.3. Assessment of the downscaling algorithm performance 

5.3.1. Comparison of downscaled soil moisture with PLMR airborne 
retrieved data 

Fig. 6 provides the scatterplots and statistical results of the SMAP 
downscaled soil moisture against PLMR soil moisture observations, 
which exhibit good agreements. The calculated R, bias, and ubRMSE 
were 0.97, 0.016 m3 m− 3 and 0.048 m3 m− 3. The results show the 
improvement of R from 0.66 between the SMAP_L3 and PLMR soil 
moisture to 0.97 between the downscaled SMAP and PLMR soil mois
ture. Importantly, when utilizing the random forest algorithm trained 
only by the SMAPVEX-12 data there was no apparent degradation in the 
downscaled results (results not shown) when applied to the SMAPEx 
data, even though applied to an entirely independent site, suggesting 
that there is some degree of transferability of the machine learning 
approach to locations different to those used for training. Additionally, 
the random forest algorithm was trained utilizing data over the entire 
flight areas of the SMAPEx-3 (36 km × 38 km) and SMAPVEX-12 (12.8 
km × 70 km) study areas (Fig. 2) on experiment days. In this case, the 
calculated R, bias, and ubRMSE between the downscaled SMAP soil 
moisture using the random forest model and PLMR soil moisture of 
SMAPEx-4 and SMAPEx-5 were 0.97, 0.015 m3 m− 3 and 0.051 m3 m− 3, 
being only slightly different from the results reported in Fig. 6. However, 
the scatter plots indicate an overestimation at lower soil moisture 
values, and an underestimation between downscaled SMAP soil mois
ture and PLMR values at higher soil moisture values. Importantly, 
ubRMSE, the main statistical metric of the downscaling algorithm ac
curacy, improved from 0.121 m3 m− 3 to 0.048 m3 m− 3, showing good 
downscaling performance by the proposed random forest model. 

Overall, the statistical results achieved through the comparison of 
the downscaled SMAP pixel with the PLMR soil moisture showed the 

success of the developed random forest algorithm in downscaling the 
SMAP soil moisture. The results of the random forest method utilized in 
this study are encouraging, especially when evaluated with the results of 
the original SMAP soil moisture reported in Fig. 5, with an improved 
accuracy of downscaled SMAP soil moisture against PLMR measure
ments, and the results of earlier studies shown in Sabaghy et al. (2020) 
for the same site. Consequently, the quality of PLMR observations and 
their full spatial coverage over the selected area have provided a good 
opportunity to investigate machine learning based downscaling. 

In order to assess the soil moisture spatial distribution, the spatial 
pattern of SMAP downscaled soil moisture were investigated against the 
course resolution SMAP observations and the airborne retrieved soil 
moisture. Figs. 7 and 8 present the spatial variability in the downscaled, 
original SMAP soil moisture, and PLMR retrieved soil moisture over the 
SMAP validation flight area of SMAPEx-4 (71 km × 85 km) and 
SMAPEx-5 (71 km × 89 km) during each of the experiment days (D is 
representative of the day). The downscaled maps closely correspond to 
the airborne soil moisture retrieval patterns. The rainfall events on 9th 
and 18th May (D3 and D5) during SMAPEx-4 were clearly captured by 
the spatial pattern, as the soil moisture in these days showed higher 
values than others (Fig. 7). The dry down pattern during SMAPEx-5 from 
D1 to D8 corresponds to the rainfall events that preceded the campaign 
(Fig. 8). Overall, the downscaled soil moisture closely matched the 
pattern of the PLMR observations during both the SMAPEx-4 and 
SMAPEx-5 experiments, conducted under diverse climate and vegeta
tion conditions. 

To further analyze the capability of the downscaling model at 
capturing the soil moisture change, the pattern of the temporal variation 
of the SMAP downscaled and airborne soil moisture was investigated. 
There were several heavy rainfall events before both the SMAPEx-4 and 
SMAPEx-5 campaigns, providing heterogeneous soil moisture condi
tions with dry downs. Furthermore, the two additional rainfall events on 
the 9th and 18th of May during the SMAPEx-4 experiments are visible in 
Fig. 7 as increased soil moisture values. In contrast, there was no sig
nificant additional rainfall during SMAPEx-5, resulting in a prolonged 
dry down. Figs. 7 and 8 show that both the SMAP course resolution and 
the downscaled soil moisture values correspond to the temporal 

Fig. 5. Comparison of SMAP_L3 SM resampled to 1 km against 1 km PLMR airborne soil moisture retrieval during 30 April – 23 May 2015 (SMAPEx-4, red points) 
and 6–28 September 2015 (SMAPEx-5, green points) over SMAPEx-4 and SMAPEx-5 flight areas, respectively. 

Fig. 6. Validation of downscaled SMAP soil moisture versus PLMR airborne soil moisture retrieval (1 km) during 30 April – 23 May 2015 (SMAPEx-4, red points) and 
6–28 September 2015 (SMAPEx-5, green points) and all available data (blue points) over PLMR flight areas. All available data (blue points) include both SMAPEX-4 
(red points) and SMAPEx-5 (green points) data. 
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variability of the PLMR soil moisture in response to rainfall events. For 
instance, the higher amounts of soil moisture at the beginning of 
SMAPEx-5 are attributed to rainfall followed by a dry down with a 
distinct soil moisture pattern that is clearly detected. However, the 
consistency of the original and downscaled SMAP soil moisture with the 
PLMR soil moisture was affected based on the land cover and atmo
spheric situations. In the following, the differences are discussed ac
cording to the soil moisture dynamic ranges. For this purpose, the 
minimum and maximum amounts of soil moisture have been mentioned 
to clarify the ranges of the soil moisture. 

Over the SMAPEx-4 site, the original and downscaled SMAP soil 
moisture varied from 0.09 m3 m− 3 to 0.31 m3 m− 3 and from 0.022 m3 

m− 3 to 0.57 m3 m− 3, respectively. Over the SMAPEx-5 site, the SMAP 
course resolution and downscaled soil moisture varied from 0.13 m3 

m− 3 to 0.33 m3 m− 3 and from 0.02 m3 m− 3 to 0.57 m3 m− 3, respectively. 
Overall, the range of downscaled SMAP soil moisture was more than the 
range of the original SMAP soil moisture over SMAPEx-4 and SMAPEx-5. 
In addition, the PLMR soil moisture ranged from 0 m3 m− 3 to 0.6 m3 m− 3 

during SMAPEx-4 and SMAPEx-5. According to Figs. 7 and 8, it can be 
seen that the soil was generally wetter and with larger range during 
SMAPEx-5 than SMAPEx-4. Moreover, the vegetation water content was 
high with actively growing vegetation, and agricultural activities such as 
irrigation affecting the soil moisture ranges and the standing water, 
leading to increased PLMR retrieval uncertainties for some pixels. In 
order to minimize these errors, the bias value between the original 
SMAP soil moisture and the PLMR retrieved soil moisture was removed. 

To investigate the spatial distribution of errors during the down
scaling process, the actual difference plots between the downscaled 

SMAP soil moisture and PLMR observations have also been presented in 
Figs. 7 and 8. Overall, the difference values gave good agreement be
tween PLMR and downscaled soil moisture, but showed that the errors 
between PLMR and downscaled products at the dry and wet soil mois
ture conditions had more bias than under more normal soil moisture 
situations. 

5.3.2. Comparison of downscaled soil moisture with ground measurements 
The calculated R, bias, and ubRMSE of the downscaled SMAP soil 

moisture against the ground data were 0.73, − 0.047 m3 m− 3 and 0.057 
m3 m− 3 for clay loam, 0.83, − 0.038 m3 m− 3 and 0.072 m3 m− 3 for loam, 
and 0.8, − 0.031 m3 m− 3 and 0.06 m3 m− 3 for silty clay loam (Fig. 9). 
The statistical results demonstrated that the downscaled soil moisture 
had a good correlation with the ground soil moisture observations over 
these soil texture conditions, especially for loam and silty clay loam 
textures, and an underestimation of downscaled soil moisture over all of 
the selected soil texture conditions. The ubRMSE showed better perfor
mance for the clay loam and silty clay loam soil textures than the loam 
soil texture condition. 

The performance of the downscaled SMAP soil moisture was also 
assessed considering the two types of land covers. The R, bias, and 
ubRMSE were 0.68, − 0.061 m3 m− 3 and 0.058 m3 m− 3 for the cropland, 
and 0.85, − 0.028 m3 m− 3 and 0.067 m3 m− 3 for the grassland (Fig. 9). 
The bias was negative (downscaled SMAP soil moisture lower) for both 
cropland and grassland, and although the R was worse for the cropland 
than for the grassland, the ubRMSE was better for the cropland than for 
the grassland. 

The R, bias, and ubRMSE were 0.79, − 0.04 m3 m− 3 and 0.066 m3 

Fig. 7. Spatial distribution of original SMAP_L3 soil moisture (36 km), downscaled SMAP soil moisture (1 km), and airborne PLMR retrived soil moisture (1 km) at 5 
cm depth during the period 30 April – 23 May 2015 at SMAPEx-4 over PLMR flight area (71 km × 85 km). 
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m− 3 for all data over selected focus areas (Fig. 9). Although the R was 
better compared with those for SMAP_L3 (Fig. 4), the ubRMSE was not 
better in this case. Overall, the results of this study are consistent with 
those from Abbaszadeh et al. (2019), which utilized the random forest 
approach for SMAP soil moisture downscaling over the Continental 
United States at different soil texture conditions. 

For a more detailed investigation, the performance of the down
scaled SMAP soil moisture was assessed with the SMAPEx-4 and 
SMAPEx-5 data separately. Because these campaigns were conducted in 
different seasons, they provide insight into the effects of different at
mospheric conditions, soil moisture variations, and variability in vege
tation. The SMAPEx-4 data was collected in the austral autumn with the 
land surface type of bare soil in croplands and grasslands covered by 
short grass. In comparison, the SMAPEX-5 took place during the austral 
spring when the crops were in the growth stage with high vegetation 
water content, and grassland vegetation was at mature stages, as 
described earlier. Table 3 reports the statistical analysis, including R, 
bias, and ubRMSE between the downscaled SMAP soil moisture and 
ground measurements considering the soil texture and land cover sce
narios for SMAPEx-4 and SMAPEx-5 experiments. The R showed good 

values for all scenarios of the SMAPEx-5 experiment. Moreover, R 
showed acceptable values for the SMAPEx-4 experiment with the 
exception of loam soil texture and croplands. While the ubRMSE values 
meet the SMAP soil moisture accuracy requirement for nearly all 
selected soil texture and land cover situations over SMAPEx-4, the 
ubRMSE over SMAPEx-5 showed worse values than SMAPEx-4 results, 
except for the cropland situation. 

Overall, considering the ground soil moisture measurements as an 
independent reference, the proposed random forest model improved the 
accuracy of downscaled SMAP soil moisture over the focus areas of 
SMAPEx-4, when comparing with the uniform values from the original 
SMAP_L3 product. However, the statistics of the downscaled SMAP soil 
moisture did not show equal improvement for the focus areas of 
SMAPEx-5. It seems that at these focus areas, the downscaling perfor
mance was affected by the high vegetation water content and flood 
irrigation during the SMAPEx-5 experiments. 

Figs. 10 and 11 present the spatial variability of the downscaled and 
original SMAP_L3 soil moisture, and ground soil moisture measurements 
over the 3 km × 3 km SMAPEx focus areas of SMAPEx-4 and SMAPEx-5 
during each of the experimental days. The downscaled soil moisture 

Fig. 8. Same as Fig. 7 except for SMAPEx-5 over PLMR flight area (71 km × 89 km) during the period 6–28 September 2015.  
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maps correspond to the patterns of the ground soil moisture observa
tions by generally capturing the rainfall events during SMAPEx-4 
(Fig. 10) and the dry down pattern of SMAPEx5 due to the rainfall 
events prior to the campaign (Fig. 11). 

The geographic parameters such as topography, vegetation 
coverage, and soil texture contribute to the heterogeneity. While the 
topography of the SMAPEx focus areas does not change substantially, 
there are three distinct soil texture types. Considering the spatial dis
tribution based on the soil textures for SMAPEx-4 (Fig. 10), the down
scaled soil moisture matched the spatial pattern of the ground soil 
moisture qualitatively for different soil texture conditions. Considering 
the spatial distribution based on the land cover of SMAPEx-4, it seems 
that the spatial distribution of soil moisture within the focus area under 
both grassland and cropland showed good consistency when compared 
to the ground soil moisture measurements. It is notable that conditions 
included bare soil in the cropland and sparsely vegetated dry grassland 
during the SMAPEx-4 experiment. These conditions will have affected 
the soil drying states as well as rapid infiltration after any rainfall or 
irrigation. 

Based on the spatial distribution maps, greater heterogeneity in the 
soil moisture spatial distribution was visible for vegetated and irrigated 

areas during SMAPEx-5. However, the greater vegetation led to an 
increased attenuation of the microwave signal, contributing to an un
derestimation of soil moisture. Considering the spatial distribution in 
the different soil texture variations, for SMAPEx-5 (Fig. 11) the down
scaled soil moisture matched qualitatively the spatial pattern of the 
ground soil moisture for the clay loam texture type (YA4, YA7). More
over, considering the spatial distribution based on the land cover of 
SMAPEx-5, the soil moisture spatial distribution of the focus area 
showed qualitatively better consistency under croplands (YA4 and YA7) 
than grasslands. The random forest method showed higher uncertainty 
under grassland (YB5 and YB7) in downscaling the SMAP soil moisture 
during the early days of the campaign, which were influenced by 
standing water. Table 3 reports the same results, with the ubRMSE 
values over SMAPEx-5 achieving 0.046 m3 m− 3 and 0.078 m3 m− 3 for 
cropland and grassland, respectively. 

5.4. Results of utilizing 36 km SMAP data at 1 km in the training phase 

Most of the machine learning based passive soil moisture down
scaling approaches to date have focused on utilizing the coarse resolu
tion grid cell soil moisture uniformly across all fine resolution grid cells 

Fig. 9. Validation of downscaled SMAP soil moisture versus ground soil moisture measurements (1 km) over the SMAPEx focus area during 30 April – 23 May 2015 
(SMAPEx-4, red points) and 6–28 September 2015 (SMAPEx-5, green points). The first row presents the results for different soil texture conditions, and the second 
row shows the results for different land cover types, along with the results from all available data. 

Table 3 
The statistical metrics of soil moisture comparison between ground soil moisture and SMAP downscaled estimates according to land cover and soil texture during 
SMAPEx-4 and SMAPEx-5, separately.   

Campaign name  SMAPEx-4  SMAPEx-5   

R Bias ubRMSE R Bias ubRMSE  

– m3.m− 3 m3.m− 3 – m.m− 3 m3.m− 3 

Soil texture Clay Loam 0.76 − 0.013 0.04 0.68 − 0.073 0.055 
Loam 0.27 − 0.055 0.051 0.82 − 0.026 0.084 
Silty Clay Loam 0.56 0.005 0.038 0.86 − 0.048 0.062 

Land Cover Crop 0.36 − 0.034 0.059 0.82 − 0.086 0.046 
Grass 0.53 − 0.034 0.046 0.84 − 0.025 0.078  
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as an input in the training phase. In order to understand the effect of 
such assumptions, the results from utilizing the 1 km soil moisture 
values at the focus areas were compared with results from utilizing 36 
km grid cell average soil moisture at the same focus areas as the input in 
the training phase of the random forest algorithm. Fig. 12 shows the 
scatter plots and the statistical analysis of the downscaled SMAP soil 
moisture against airborne PLMR soil moisture and the ground soil 
moisture measurements for the two different approaches over the 
ground sampling focus area. When using the average soil moisture of the 
36 km grid cell as the input in the training phase, the statistical metrics 
R, bias, and ubRMSE of the SMAP downscaled soil moisture against 
PLMR soil moisture were 0.53, 0.055 m3 m− 3, and 0.083 m3 m− 3, and 
against ground soil moisture were 0.54, 0.014 m3 m− 3 and 0.074 m3 

m− 3. The accuracy of the downscaled SMAP soil moisture derived from 
the random forest algorithm based on the proposed approach of this 
paper clearly showed better performance in ubRMSE (by 0.04 m3 m− 3) 
than the algorithm based on utilizing the averaged soil moisture. 
Additionally, the range of downscaled soil moisture based on utilizing 
the average soil moisture changed from 0.02 m3 m− 3 to 0.15 m3 m− 3, 
which was substantially lower than the range of downscaled soil mois
ture based on the proposed approach. Overall, utilizing 1 km grid soil 
moisture observations as the input in the training phase showed a better 
skill level in matching with observed soil moisture patterns, meaning 
that it can construct a well-trained downscaling algorithm. 

5.5. Importance of input variables to the downscaled soil moisture 

The importance of different variables must be analysed in order to 
realize their effectiveness on the performance of the random forest al
gorithm for soil moisture downscaling. In random forest models, the 
increased percentage of MSE in comparison with that achieved from 
utilizing all variables in the model describes the importance of different 
variables. When an important variable is not used in the algorithm, the 
MSE will increase, with the larger the increase in MSE signifying the 
greater the importance of that variable (Breiman 2001). Therefore, the 

significance of each input variable was analysed using the ablation test, 
in which each input variable was independently omitted from the 
downscaling process and the random forest algorithm applied using the 
remaining variables. Ten different input schemes including removal of 
the radar backscatter (σvv, σhh, σxpol), NDVI, DEM, slope, aspect and soil 
texture (% clay, silt and sand) were tried independently. Removal of soil 
moisture from the input variables increased the percentage of MSE value 
equal to 23.8 %, showing the highest importance in this machine 
learning downscaling approach. Therefore, as downscaling of the SMAP 
soil moisture was the main purpose of this research, the soil moisture 
parameter was included in the input schemes. The MSE values of the 
downscaled SMAP soil moisture estimates relative to PLMR soil moisture 
were calculated separately for each input variable, with percentage of 
increase in MSE values shown in Fig. 13. 

Horizontal backscatter (σhh) and slope are recognized as the most 
important variables (3.66 % and 3.63 %, respectively), showing more 
influence than other variables on the random forest accuracy. Soil 
texture ranked third, indicating 2.85 % and 2.76 % importance for sand 
and clay, respectively. The soil texture can influence water permeability, 
infiltration rate and water storage capacity. In this assessment, silt 
fraction showed least importance compared to other input variables in 
the proposed downscaling model. NDVI also showed high importance 
(2.51 %) due to the ability of presenting the vegetation status; NDVI is 
one of the crucial auxiliary parameters used in soil moisture retrieval, 
and in several soil moisture downscaling algorithms (Colliander et al. 
2017a, 2017b). Among the airborne co-polarized and cross-polarized 
backscatter products utilized in the random forest model, the impor
tance of horizontal co-polarized backscatter (σhh) was highest (3.66 %). 
However, the vertical co-polarized backscatter (σvv) and cross-polarized 
backscatter (σhv) also showed a high influence. While the DEM had a 
slightly lower influence (1.73 %) compared to the high influence input 
variables on the results, it is one of the important input variables in the 
proposed random forest algorithm in this study. However, previous 
research has shown the high importance of a vegetation index such as 
NDVI in soil moisture retrieval, and the low importance of the DEM 

Fig. 10. Spatial distribution of original SMAP_L3 soil moisture (36 km), downscaled SMAP soil moisture (1 km) and ground soil moisture (1 km) measurments at 5 
cm depth during the period 30 April – 23 May 2015 at SMAPEx-4 focus areas (3 km × 3 km). 
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(Abowarda et al., 2021; Karthikeyan and Mishra 2021). Overall, it is 
suggested that utilizing all selected input variables in the downscaling 
model would be necessary to obtain the best downscaling accuracy. 
Moreover, landcover type was not included here as an option due to 
challenges in including categorical information in machine learning 
models. However, given the strong relationship in backscatter response 
to different landcover types and their associated land surface conditions, 
this could also be an important variable for use in future investigations. 

6. Conclusion 

This study presented a new strategy for downscaling the 36 km SMAP 
radiometer soil moisture product to 1 km spatial resolution. A random 
forest model using 1 km resolution remotely sensed backscatter, 
together with 1 km resolution vegetation characteristics, topography 
and soil properties, was used to downscale 36 km resolution passive 
microwave satellite soil moisture, based on training to focus areas with 
1 km resolution soil moisture. The model was trained using data ac
quired pre-launch of SMAP, and evaluated with post-launch of SMAP 
airborne and field soil moisture data. Soil moisture from focus areas at 1 
km spatial resolution were utilized to train the random forest algorithm, 
rather than the more traditional approach of using the SMAP 36 km soil 
moisture. The SMAP downscaled soil moisture product from the pro
posed random forest downscaling algorithm was then validated using 
post-launch airborne retrieved soil moisture observations and the 
ground soil moisture measurements from multiple points. This study 
was performed considering different soil characteristics and land cover 
conditions, including both grasslands and a variety of crops. 

Based on the validation results, the downscaled SMAP soil moisture 
demonstrated an excellent agreement with the airborne soil moisture 
observations over the flight area of SMAPEx-4 and SMAPEx-5. The sta
tistical results between the downscaled SMAP and airborne PLMR 
retrieved soil moisture in terms of R, bias and ubRMSE were 0.97, 0.016 
m3 m− 3 and 0.048 m3 m− 3, respectively. Overall, compared to the 
original passive SMAP soil moisture product applied as a uniform field, 
the proposed downscaling random forest algorithm showed the ability 
to improve the ubRMSE of downscaled SMAP soil moisture from 0.121 
m3 m− 3 (Fig. 5) to 0.048 m3 m− 3 (Fig. 6), when considering the PLMR 
soil moisture as a reference, being close to the SMAP soil moisture ac
curacy requirement. The results of this study show that the proposed 
random forest downscaling algorithm has the ability to be applied 
regionally by training to a few local pixels at 1 km in order to downscale 
the coarse resolution microwave soil moisture, and that training in one 
location (SMAPVEX-12) could be applied to another location (SMAPEx). 
Moreover, the statistics between the downscaled SMAP and ground soil 
moisture measurements over the SMAPEx focus areas achieved 0.79, 
− 0.04 m3 m− 3 and 0.066 m3 m− 3 in terms of R, bias and ubRMSE, 
respectively. Additionally, the downscaled SMAP soil moisture obser
vations satisfactorily captured the spatial and temporal heterogeneity 
relative to ground and airborne soil moisture observations. 

In order to investigate the importance of using data at fine spatial 
resolution to train the random forest algorithm, as was conducted for 
this research, the results were compared with those from the strategy of 
utilizing the average from a 36 km grid cell. In general, the statistical 
metrics showed a 0.04 m3 m− 3 improvement in terms of ubRMSE 
downscaling accuracy by using the higher spatial resolution training 

Fig. 11. Same as Fig. 10 except for SMAPEx-5 focus areas (3 km × 3 km) during the period 6–28 September 2015.  
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data, when evaluated with airborne retrieved soil moisture. 
An investigation on the importance of the input variables in the 

random forest algorithm revealed that the best downscaling accuracy 
was achieved through contribution of all the input variables tested. 
Overall, the assessment showed that the variable importance in the 
random forest downscaling approach utilized in this study was in the 
following order: horizontal backscatter (σhh), slope, sand, clay, NDVI, 
DEM, vertical backscatter (σvv), cross-polarized backscatter (σhv), aspect 
and silt. However, the use of a landcover map should also be considered 
in future studies. 
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