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A B S T R A C T   

Precision irrigation management and crop water stress assessment rely on accurate estimation of root zone soil 
moisture. However, only the top 5 cm soil moisture can be estimated using the two current passive microwave 
satellite missions, Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), which 
operate at L-band (wavelength of ~21 cm). Since the contributing depth of the soil to brightness temperature 
increases with observation wavelength, it is expected that a P-band (wavelength of ~40 cm) radiometer could 
potentially provide soil moisture information from deeper layers of the soil profile. Moreover, by combining both 
L- and P- bands, it is hypothesized that the soil moisture profile can be estimated even beyond their individual 
observation depths. The aim of this study was to demonstrate the potential of combined L-band and P-band 
radiometer observations to estimate the soil moisture profile under flat bare soil using a stratified coherent 
forward model. Brightness temperature observations at L-band and P-band from a tower based experimental site 
across a dry (April 2019) and a wet (March 2020) period, covering different soil moisture profile shapes, were 
used in this study. Results from an initial synthetic study showed that the performance of a combined L-band and 
P-band approach was better than the performance of using either band individually, with an average depth over 
which reliable soil moisture profile information could be estimated (i.e. with a target root mean square error 
(RMSE) of less than 0.04 m3/m3) being 20 cm for linear and 15 cm for second-order polynomial functions. Other 
functions were also tested but found to have a poorer performance. Applying the method to the tower-based 
brightness temperature achieved an average estimation depth of 28 cm (20 cm) and 5 cm (5 cm) during the 
dry and wet periods respectively when using a second-order polynomial (linear) function. These findings 
highlight the opportunity of a satellite mission with L-band and P-band observations to accurately estimate the 
soil moisture profile to as deep as 30 cm globally.   

1. Introduction 

Soil moisture is a key state variable in the water, energy, and carbon 
cycles (Falloon et al., 2011; Zhang et al., 2019). While soil moisture 
accounts for only a small fraction of the freshwater globally (0.15%), it 
has an important impact on rainfall-runoff processes (Brocca et al., 
2012), regulates net ecosystem exchange (Chu et al., 2019), constrains 
food security (Sadri et al., 2020), and influences land-atmosphere 

interactions (Yuan et al., 2020). However, many studies have shown 
large variability in the spatial and temporal distribution of soil moisture, 
especially in the top 20 cm of the soil (Shi et al., 2014), emphasizing the 
necessity of monitoring these variations. Moisture in this region of the 
soil profile limits the plant’s photosynthetic activity and transpiration 
(Seneviratne et al., 2010; Reich et al., 2018). In addition, information on 
the root zone soil moisture is used for irrigation scheduling (Liang et al., 
2016), understanding of plant stress and pesticide management (Malone 
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et al., 2004; Jiang et al., 2021). As compared to estimation of moisture in 
the shallow layer, root zone soil moisture estimation is more challenging 
(Etminan et al., 2020). Accurate spatial and periodic mapping of this 
vital variable through direct measurement is almost impossible due to its 
cost-intensive and time-consuming measurement, higher 
spatio-temporal variability, and non-linear relationship with surface soil 
moisture (Das and Mohanty, 2006; Sabater et al., 2007; Hu and Si, 2014; 
Gao et al., 2019). 

Microwave remote sensing techniques have been identified as the 
most promising approach for global observation of near-surface soil 
moisture content (Karthikeyan et al., 2017). Specifically, passive mi-
crowave remote sensing at L-band has been widely adopted with current 
remote sensing satellites dedicated to the monitoring of soil moisture, 
including the European Space Agency (ESA) Soil Moisture and Ocean 
Salinity (SMOS; Kerr et al., 2010) and the National Aeronautics and 
Space Agency (NASA) Soil Moisture Active Passive (SMAP; Entekhabi 
et al., 2014) missions. While L-band can observe a deeper layer of soil 
than shorter wavelengths, its soil moisture measurement is limited to 
just a few centimeters of the soil (Zheng et al., 2019; Shen et al., 2020, 
2022a). Therefore, researchers have investigated different techniques 
for estimating the root zone soil moisture from surface soil moisture 
including multiple regression (Qiu et al., 2010; Mahmood et al., 2012), 
data assimilation (Walker et al., 2001; Baldwin et al., 2017), and sta-
tistical/empirical methods such as machine learning (Carranza et al., 
2021; Karthikeyan and Mishra, 2021; Xia et al., 2022), principle of 
maximum entropy (Mishra et al., 2018; Zhou et al., 2016), and expo-
nential filters (Mishra et al., 2020). The approach chosen is usually 
based on the application, level of complexities involved and the amount 
of a priori information available. When it comes to applications on a 
large scale, the number of inputs needed is of utmost importance, 
especially in areas where data is scarce. As a result, approaches that 
require minimal inputs have gained attention in these types of appli-
cations. Generally, all the models require establishing a relationship 
between surface and root-zone soil moisture. However, the relationship 
between the two is often nonlinear and becomes weaker with depth, 
making it challenging to capture using conventional statistical tech-
niques (Ford et al., 2014). 

The multiple regression models are simple and relatively straight-
forward to interpret, but they have limitations in handling complex non- 
linear relationships between input and output variables. These models 
are also sensitive to outliers, which means that even a small number of 
extreme values can significantly affect the results. Conversely, machine 
learning algorithms are well-suited to handle non-linear relationships 
between inputs and outputs, making them suitable for modeling com-
plex soil moisture patterns. However, they require large amounts of 
training data to produce accurate estimates, which can be difficult to 
obtain in some cases. Additionally, some machine learning algorithms 
can be difficult to interpret, making it challenging to understand the 
physical basis for their predictions and to identify areas for improve-
ment. There is also a risk of overfitting, where the algorithm becomes 
too specialized to the training data and does not generalize well to new 
data. The principle of maximum entropy method does not rely on prior 
information about the profile, but it requires the values of surface soil 
moisture, the average moisture content, and the moisture content of the 
bottom-most layer, which are difficult to obtain. The exponential filter 
only requires the time series of surface soil moisture, which is easily 
available from microwave sensors, however sensitivity is reduced during 
prolonged dry periods and in deeper layers where plant uptake is the 
main factor affecting root-zone moisture movement due to the 
assumption of no transpiration and constant hydraulic conductivity. 

Current regional or global scale root zone soil moisture products such 
as Soil Moisture Ocean Salinity (SMOS) level 4 RZSM data, Soil Moisture 
Active Passive (SMAP) level 4 RZSM data, the Japanese 55-year Rean-
alysis (JRA-55), National Centers for Environmental Prediction (NCEP) 
Reanalysis version 1 (NCEP R1) and 2 (NCEP R2), the Modern-Era 
Retrospective analysis for Research and Applications, Version 2 

(MERRA-2), the fifth generation European Centre for Medium-Range 
Weather Forecasts (ECMWF) atmospheric reanalysis (ERA-5), and the 
Global Land Data Assimilation System (GLDAS) are based on assimila-
tion of surface soil moisture into land surface models (LSMs) or global 
hydrological models (GHMs) (Xu et al., 2021). The Ensemble Kalman 
Filter is a widely used assimilation algorithm in land surface models, but 
its implementation is claimed to be inappropriate because of non-linear 
relationships between observations and model states (Clark et al., 2008). 

Compared with L-band (1.4 GHz; 5 cm sensing depth), P-band (750 
MHz) has been shown to be more sensitive to soil moisture over deeper 
layers (~10 cm; Shen et al., 2020). As the L-band and P-band emissions 
are derived from different depths in the soil (Shen et al., 2020), there is 
the potential to derive insights into the depth variation of soil moisture 
by using the two together. Some researchers have used P-band radar 
alone (Tabatabaeenejad et al., 2013, 2015, 2016, 2017; Sadeghi et al., 
2016; Chen et al., 2018; Etminan et al., 2020; Yueh et al., 2020) or 
combined with L-band radar (Du et al., 2015; Chen et al., 2016, 2017; 
Azemati et al., 2019; Yi et al., 2019) to estimate root zone soil moisture. 
While their results have shown the concept to be promising, they have 
typically applied constraints, been limited to snapshot retrieval, and 
been applied to radar rather than radiometer observations. Moreover, a 
comprehensive investigation of the different mathematical functions 
that might be used to represent the soil moisture profile is lacking. 
Importantly, compared with a radiometer, radar is more sensitive to 
vegetation and surface roughness (Engman and Chauhan, 1995), and 
thus it is possible that multi-frequency L-and P-band radiometer obser-
vations could provide more accurate soil moisture profile estimation 
than that obtained from radar. 

The aim of this research was to study the use of multi-frequency (L- 
and P-band) radiometry to estimate the root zone profile for flat bare 
soil. The forward stratified coherent model of Njoku and Kong (1977) 
was applied to calculate brightness temperature (TB) from soil moisture 
and temperature profiles. While the coherent and incoherent models 
have the same general trend, the former includes phase-interference 
oscillations (Ulaby and Long, 2014). The main differences between 
them relate to the effects of interference, which is a function of fre-
quency and the steepness of soil moisture profile near the surface 
(Schmugge and Choudhury, 1981). When data from regions of rapid 
sub-surface moisture variations (rapid drying out or a region having a 
subsurface water table) are interpreted with depth, the incoherent 
models become inaccurate, since coherent reflections are not accounted 
for. Also, when there is considerable diurnal surface temperature vari-
ation, incoherent models become inaccurate for longer wavelengths. 
Thus, the coherent models of Njoku and Kong (1977) and Wilheit (1978) 
were introduced and formulated in terms of continuous and discrete 
varying dielectric constant within the soil, respectively. Only a small 
difference was observed between the Njoku and Wilheit models 
(Schmugge and Choudhury, 1981) and so in this research the Njoku 
model was used. 

The analysis has considered single or dual-frequency, single or dual- 
polarization, single or multi-incidence angle, and snapshot or time series 
retrieval options. Several mathematical functions have been investi-
gated as representative functions of the soil moisture profile, namely i) 
Linear (hereafter Li), ii) Exponential (Exp), iii) Second-order Polynomial 
(Pn2), iv) simplified solution of the Richards’ Equation (RE), v) 
Parametrized second-order polynomial from the simplified solution of 
the Richards’ Equation (PRE), vi) Third-order Polynomial (Pn3), and vii) 
Piecewise Linear (PL). 

2. Data 

As part of the P-band Radiometer Inferred Soil Moisture project 
(PRISM; www.prism.monash.edu), a comprehensive tower-based 
experiment site was established at Cora Lynn, Victoria, Australia from 
October 2017 to September 2021 to advance the state of microwave 
remote sensing technology readiness (Fig. 1). The tower was 
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instrumented with the Polarimetric P-band Multi-beam Radiometer 
(PPMR) and the Polarimetric L-band Multi-beam Radiometer (PLMR), 
operating at 0.742–0.752 GHz and 1.400–1.425 GHz, respectively. The 
tower was located at the center of 4 quadrants, each with a size of 75 m 
× 75 m, in order to observe different land cover conditions but similar 
soil moisture status (Shen et al., 2020). The PPMR has a phased array 
antenna with four beams having 30◦ beamwidth, distributed at angles of 
±15◦ and ±45◦ from the normal to the antenna plane, and the PLMR has 
six antenna beams having 15◦ beamwidth distributed at angles ±7.5◦, 
±21◦, and ±38.5◦ from the normal to the antenna plane. These radi-
ometers could not only be rotated in azimuth to look at the different 
quadrants but tilted to change the look angles, which was done auto-
matically according to a predefined schedule. Footprints of PLMR and 
PPMR for two extreme incidence angles of 30◦ and 60◦ are shown in 
Fig. 1. At the middle border of each quadrant ground stations (called 
stations 126, 127, 128 and 136) were installed, equipped with 
hydra-probes that simultaneously measured the soil moisture and tem-
perature from the soil surface to 60 cm depth at 5 cm intervals. Soil 
texture analysis was also conducted for different locations and depths, 
providing an average (standard deviation, depth 5 cm, depth 20 cm, 
depth 50 cm) soil texture of 18.3% (±3.15%, 18%, 17%, 17%) clay, 
13.7% (±5.89%, 12%, 11%, 20%) sand, and 68% (±5.12%, 71%, 69%, 
62%) silt, indicating a silty loam soil. The quadrants were maintained 
under different conditions in terms of vegetation type (corn, wheat, 
grass or bare) and surface roughness (smooth, furrow and bench furrow 

with parallel or perpendicular row orientation (Shen et al., 2022b);). For 
simplicity, this research has focused on the flat bare soil condition. 

The performance of a multi-frequency optimization approach was 
investigated using experimental data of soil moisture and temperature 
profiles from the soil surface to 60 cm depth in 5 cm increments, 
covering soil moisture conditions ranging from 0.07 to 0.35 m3/m3. 
Data from stations 126 and 136 as shown in Fig. 2 (a and b), and tower- 
based TB as shown in Fig. 2 (c), were used under flat and bare soil 
conditions for two periods, namely A (1st to 30th April 2019) and B 
(20th February to 20th March 2020). Fig. 2 (a and b) shows the high 
variability of moisture and temperature in the near-surface layer relative 
to deeper layers in the profile. It is seen during Period A that variation of 
soil moisture in the deeper layers was much lower than Period B, with 
high variability of moisture in almost all of the soil layers. Despite rapid 
drying of the surface and shallow layers, the deeper layers of the soil 
were slow to respond (see soil moisture at deeper layers in Fig. 2 (a)). 
Compared to soil moisture, soil temperature has a strong day to day 
variation and cooling of the near-surface layer relative to deeper layers 
for Period A compared with Period B (Fig. 2 (c)). 

In an initial synthetic study, the twenty soil moisture and soil tem-
perature profiles in Fig. 3, selected from the two periods in Fig. 2 to 
cover the different profile shapes identified in Fig. 4, were used to pre-
dict TB values for developing the soil moisture profile estimation pro-
cess. The selected data were used for answering questions including: i) if 
single or multi-frequency provide better results;; ii) if single or multi- 

Fig. 1. Location map (a) of the experimental site (b) having a tower (c) at the center of a paddock at Cora Lynn, Victoria, Australia. The colored ovals represent the 
footprints of the microwave radiometers. The green dots represent the stations installed at the borders of the quadrants Q1 to Q4. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 

F. Brakhasi et al.                                                                                                                                                                                                                                



Science of Remote Sensing 7 (2023) 100079

4

incidence angles yield better results; iii) if single (H or V) or dual (H and 
V) polarization provide a more robust solution; iv) which mathematical 
function(s) provides the best results; v) whether a snapshot or time series 
approach performs best; and vi) the impact of soil temperature profile 
approximation on the soil moisture profile estimation accuracy? 

3. Methodology 

Quantification of soil moisture using passive microwave remote 
sensing relies on a model, which in its simplest form can be a regression 
model, or in its most complex form a physical model. Microwave 
emission models are physical models that take the form of either a 
coherent or an incoherent model for soil moisture estimation. In this 
research, the coherent stratified model of Njoku and Kong (1977) was 
employed. 

3.1. Forward model background 

A vertically inhomogeneous half-space model (Njoku and Kong, 
1977), hereafter referred to as the Njoku model, was used as the forward 
model to simulate TB at the sensor level. The theory behind such an 
approach uses electromagnetic fluctuations and electromagnetic wave 
propagation as formulated by Stogryn (1970), which established a 
relationship between emitted energy and the properties of the medium 
(surface roughness, soil moisture, and physical temperature). Mathe-
matically, TB at H (Eq. (1)) and V (Eq. (2)) polarization from the Njoku 
model is written as: 

TBH =
k

cos θ

∫ 0

− ∞
dzT(z)εr

′′(z)|ψ(z)|2 (1)  

TBV =
1

kcosθ

∫ 0

− ∞
dzT(z)εr

′′(z).

{⃒
⃒
⃒
⃒

1
εr(z)

dφ(z)
d(z)

⃒
⃒
⃒
⃒

2

+

⃒
⃒
⃒
⃒
kxφ(z)
εr(z)

⃒
⃒
⃒
⃒

2
}

(2)  

where K = 2π
λ is the free space wave number, kx = k sin θ, θ is the angle of 

observation, εr(z) = εr
′

(z) + iεr
”(z) is the complex dielectric constant 

profile, and T(z) is the soil temperature profile. The functions ψ(z) and 
φ(z) are solutions of the following 2 s-order differential equations (Eq. 
(3) and Eq. (4)): 
{

dψ(z)
dz

+ ikcosθ[2 − ψ(z)]
}

z=0
= 0 (3)  

{
dφ(z)

dz
+ iεr(z)kcosθ[2 − φ(z)]

}

z=0
= 0. (4) 

These wave propagation equations are solved in conjunction with the 
boundary condition for a smooth surface. From the perspective that at 
lower frequencies more information about soil moisture comes from the 
deeper layers of the soil, Tsang et al. (1975) reformulated Eq. (1) and Eq. 
(2) for a large number of horizontal layers. This was then incorporated 
by Njoku and Kong (1977) and referred to as a stratified medium 
approach for smooth and bare soil according to Eq. (5) (for H polari-
zation) and Eq. (6) (for V polarization):  

Fig. 2. Evolution time series of (a) soil 
moisture and (b) soil temperature as a 
function of depth were measured at Cora 
Lynn station number 126 (period A) and 136 
(period B), and (c) brightness temperature 
from PPMR and PLMR at quadrant 2 over 
Period A (1st - 30th April 2019) and quad-
rant 3 over Period B (20th February to 20th 
March 2020). The twenty black arrows show 
the timing of the soil moisture and temper-
ature profiles used for snapshot and time 
series retrieval in the synthetic study.   
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where θ is the incidence angle, index l is the ID of the layer, k = 2π
λ =

ω ̅̅̅̅̅μ0
√ ε0 is the wavenumber in free space (λ is the wavelength, ω is the 

frequency in radiance/sec, μ0 is the permeability of free space, ε0 is the 
permittivity of free space), εl = ε′

l + iε”
l is the complex permittivity of the 

l th layer, εl
ε0 

is the dielectric constant of l th layer, Tl is the temperature in 

the l th layer, kl = ω ̅̅̅̅̅μ0
√ εl is the wavenumber in the l th layer, klz = klz

′

+

iklz
′′
= k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εl/ε0 − sin2 θ
√

, dl is the depth below the surface, and n is the 

total number of horizontal layers. The quantities Al, Bl, Cl, Dl, Th and Tv 

are wave amplitudes that are related to each other by propagation 
matrices. The impact of surface roughness was considered based on a 
semi-empirical approach (referred here to as the HQN model) which was 
proposed by (Wang and Choudhury, 1981) and developed by (Wigneron 
et al., 2001) through Eq. (7). 

rGP(θ)=
[
(1 − qP(θ))r*

GP(θ)+ qP(θ)r*
GQ(θ)

]
exp( − hP(θ)cosnP (θ)), (7) 

Fig. 3. Selected (a) soil moisture and (b) temperature profiles for this research. All of these soil moisture profiles were used in investigating different mathematical 
functions to represent the soil moisture and soil temperature profile. 

TBH =
k

cos θ
∑N

l=1

ε′′l Tl

ε0

(
|Al exp( − iklzdl)|

2

2klz′′
{1 − exp[2klz′′(dl− 1 − dl)]} −

|Bl exp( − iklz dl)|
2

2klz′′
{1 − exp[− 2klz′′(dl− 1 − dl)]}

−

(
[Al exp( − iklz dl)][Bl exp( − iklz dl)]

*

2iklz′

)

{1 − exp[− i2klz
′

(dl− 1 − dl)]}+

(
[Al exp( − iklz dl)]*[Bl exp( − iklz dl)]

2iklz′

)

{1 − exp[− i2klz
′

(dl− 1 − dl)]}

)

+
k

cos θ
ε′′t Tt

ε0

|Th|
2 exp(− 2ktzdn)

2ktz′′
(5)  

TBV =
k

cos θ
∑N

l=1

ε′′l Tl

ε0|kl|
2

(
|klz|

2
+ kx

2
)
[
|Cl exp( − iklz dl)|

2

2klz′′
{1 − exp[− 2klz′′(dl − dl− 1)]} −

|Dl exp(iklz dl)|
2

2klz′′
{1 − exp[2klz′′(dl − dl− 1)]}

+
|klz|

2
− kx

2

|klz|
2
+ kx

2

(
[Cl exp( − iklz dl)][Dl exp( − iklz dl)]

*

2iklz′ {1 − exp[− i2klz
′

(dl − dl− 1)]} −
[Cl exp( − iklz dl)]*[Dl exp(iklz dl)]

2iklz′ {1 − exp[− i2klz
′

(dl − dl− 1)]}

)]

+
k

cos θ

ε′′t
(
|ktz|

2
+ kx

2
)

Tt

ε0|kt|
2 |Tv|

2exp(− 2ktzdn)

2ktz
′′ , (6)   
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where qP (with P = H and Q = V or P = V and Q = H) is a polarization 
mixing factor, hP is a surface roughness parameter, and nP is the angular 
dependence of the surface roughness. The parameter hP was calculated 
using (Wigneron et al., 2001) by Eq. (8): 

hP = 1.3972*
(rms

lc

)0.5879
, (8)  

where rms and lc are the RMS height and correlation length measured at 
the field for the two study periods. The parameter qP was set to 0 for both 
L- and P- bands. The parameter nP was calibrated using Eq. (7) and the 
Njoku model from another period of data, yielding values of − 0.50 
(1.80) and − 0.333 (0.415) at H (V) polarizations for L-band and P-band 
respectively. The parameter r*

GP is the specular reflectivity calculated 
from the Fresnel equations for H (Eq. (9)) and V (Eq. (10)) polarizations 
such that: 

r*
GH =

⃒
⃒
⃒
⃒
⃒

cos
(

θ
)
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εr − sin2( θ
√ )

cos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εr − sin2(θ)
√

⃒
⃒
⃒
⃒
⃒

2

(9)  

r*
GV =

⃒
⃒
⃒
⃒
⃒

εr • cos(θ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εr − sin2(θ)
√

εr • cos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εr − sin2(θ)
√

⃒
⃒
⃒
⃒
⃒

2

, (10)  

where εr = ε′

r − i • ε′′r is the relative soil dielectric constant which in-
cludes real (’) and imaginary (′′) parts, and θ is the incidence angle. 
Using the coherent model, the emissivity is calculated in each layer, so 
by adjusting the calculated surface layer emissivity for roughness before 
multiplying by the physical temperature, the roughness can be included 
in the overall TB estimate by summing the TB contributions from each 
layer. Using the stratified coherent model to calculate the TB, with in-
puts of soil moisture and temperature, requires selecting an appropriate 
soil dielectric model, profile depth and a number of horizontal layers 

Fig. 4. Examples of (a)–(e) soil moisture 
and (f) soil temperature profile shapes 
encountered in Cora Lynn over the period 
December 2017 to December 2019 along 
with fitted mathematical functions (Li: 
Linear, Exp: Exponential, Pn2: second-order 
Polynomial, PRE: Parametrized second- 
order polynomial from simplified solution 
of Richard Equation, RE: simplified solution 
of Richards’ Equation, Pn3: third order 
Polynomial, and PL: Piecewise Linear). Note: 
Both Pn2 and PRE functions resulted in 
exactly the same values, meaning that the 
curves were overlapped.   

Table 1 
The boundaries of parameters used in the mathematical functions. SP (Shape 
Parameter; unitless), SSM (Surface Soil Moisture; % in Equation (12), m3/m3 in 
the rest), and ΔSM (the change of moisture in the profile from surface to the 
bottom of the profile (here 60 cm); %). The numbers in the brackets show the 
boundary [lower, upper] of each parameter.  

Equation a b c d 

11 Slope [-0.83, 0.83] – SSM [0, 0.5] – 
12 SP [-50, 50] ΔSM [-35, 35] SSM [0, 50] – 
13 SP [-1, 1] SP [-1, 1] SSM [0, 0.5] – 
14 SP [-1, 1] SP [-1, 1] SSM [0, 0.5] SP [-1, 1] 
15 Slope [-1, 1] Slope [-1, 1] SSM [0, 0.5] –  
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(profile depth divided by layer thickness). Here the multi-relaxation 
generalized refractive mixing dielectric model (Mironov et al., 2013, 
2014) was used, as it considers the interfacial (Maxwell-Wagner) 
relaxation of water in the soil, which is significant at P band (Zhang 
et al., 2020). Schmugge and Choudhury (1981) recommended there be a 
total of 100 layers in 1 m profile depth (layer thickness varies from 
0.003 cm at the surface to 1 cm at a depth of 9 cm and 5 cm at a depth of 
40 cm) for 1.4 GHz frequency and higher. However, based on a sensi-
tivity analysis using a combination of synthesized soil moisture and 
temperature profiles at various incidence angles using L- and P-band and 
H/V polarization, the profile depth and the number of horizontal layers 
did not exceed 0.9 m and 56 (when the layer thickness was 0.016). 
However, for preventing error from the numerical configuration of the 
model, they were set to 1 m and 0.01 m respectively, with 100 layers. 

3.2. Mathematical representation of soil moisture and temperature profile 

Several mathematical functions including Li (Eq. (11)), Exp (Eq. 
(12)), Pn2 (Eq. (13)), Pn3 (Eq. (14)), PL (Eq. (15)), RE (Eq. (16)) and 
PRE (Eq. (21)) were selected from literature (Reutov and Shutko, 1986; 
Tabatabaeenejad et al., 2015; Cuenca et al., 2016). Mathematically 
these functions are: 

SM(z)= az + c (11)  

SM(z)= c + b(exp(− az) − 1) / (exp(− az1) − 1) (12)  

SM(z)= az2 + bz + c (13)  

SM(z)= az3 + bz2 + dz + c (14)  

SM(z)= c+ az + b(z − z1)x, (15)  

where z is depth (positive downward) and a, b, c and d are coefficients of 
the related function. Table 1 shows the boundaries of each parameter. 
The parameters a in Eq. (11) and Eq. (15) represent the profile slope of 
soil moisture content, while in Eq. (12) and Eq. (13) along with d in Eq. 
(14) control the shape of the profile. Parameter b in Eq. (12) is the 
change of moisture from the surface to the depth z1 (0.6 m in this study), 
while in Eq. (15) its value along with the a parameter is the slope of the 
second piece of the piecewise linear function. The parameter c in Eq. 
(11) to Eq. (15) represents the surface soil moisture content. Parameter 
z1 in Eq. (12) is the depth after which the soil moisture can be considered 
constant, while Eq. (15) contains two linear segments that join at the 
depth z1. Moreover, the binary vector x in Eq. (15) is mathematically 
written as: if (z ≤ z1,0,1). Notably, each of these functions has different 
computational requirements and degrees of complexity for fitting the 
shape variables. For example, the linear function has only two shape 
variables, while the exponential and second-order polynomial functions 
have three shape variables, and the third-order polynomial and piece-
wise linear each have four shape variables. The simplified solution to 
Richards’ equation Eq. (16) has five parameters, two of which are 
empirical parameters (hcM and P) related to effective capillary drive and 
soil pore size distribution respectively, given for different soils in Table 1 
(51.64 and 10.84 respectively for the silty loam soil used here) of 
Sadeghi et al. (2016), while the rest (a, b, and c) are parameters con-
trolling the shape of the profile and do not have any physical meaning. 
Consequently, these were parametrized according to the value of soil 
moisture at the top (θ1), middle (θ2), and bottom (θ3) of the investigated 
depth (z1, z2 and z3) as follows (Sadeghi et al., 2016): 

SM(z)=
(

az + b exp
(

z
hcM

)

+ c
)1

P

(16)  

a=
θP

3 − θP
1 − A

(
θP

2 − θP
1

)

z3 − z1 − A(z2 − z1)
(17)  

b=
θP

2 − θP
1 − a(z2 − z1)

exp
(

z2
hcM

)
− exp

(
z1

hcM

) (18)  

c= θP
1 − az1 − b exp

(
z1

hcM

)

(19)  

A=
exp
(

z3
hcM

)
− exp

(
z1

hcM

)

exp
(

z2
hcM

)
− exp

(
z1

hcM

) (20) 

Assuming P = 1 and/or hcM is larger than the investigation domain 
(

z
hcM

< 1
)

leads to a second-order polynomial approximation (Eq. (21)): 

SM(z)= az+ b exp
(

z
hcM

)

+ c. (21) 

It is worth noting that the unknown parameters of Eq. (16) and Eq. 
(21) include the soil moisture value at the surface, middle, and bottom of 
the soil profile (0, 30 and 60 cm in the application here). When P > 1, 
and θ1 < θ2 < θ3 or θ1 > θ2 < θ3, the calculated soil moisture profile using 
Eq. (16) is undefined for a part of the profile. To solve this problem, P is 
considered as 1 so that the second-order polynomial in Eq. (21) can be 
used. 

Data throughout the period December 2017 to December 2019, 
having different wetting and/or drying regimes, was used to identify 
typical profile shapes and analyze the seven mathematical functions 
identified from literature for approximating soil profile conditions. This 
step was undertaken to aid in estimating the root zone soil moisture 
profile, as estimating a few shape parameters is a simpler task than 
estimating directly the soil moisture at multiple depths in the soil. The 
profile types (or shapes) are distinguished by changes in their moisture 
gradient, and their dynamic response to precipitation, evapotranspira-
tion, soil properties etc. Type 1 in Fig. 4 (a) is a soil moisture profile that 
has little variation with depth (gradient or slope which can be 
decreasing, stable, or increasing). Type 2 in Fig. 4 (b) is a dry case with 
higher soil moisture at depth due to exfiltration. Type 3 in Fig. 4 (c) 
occurs when rain has wetted the soil near the surface and this has moved 
down through the soil column as plug flow, resulting in a sharp gradient 
neat the bottom of the profile. It could also happen if there are large 
differences in the soil texture such that the shallow layer can hold the 
moisture while the bottom of the profile does not. Type 4 in Fig. 4 (d) is 
where infiltration has occurred (due to rainfall) on the profile of Type 1, 
such that the profile takes a concave shape. Type 5 in Fig. 4 (e) is the 
most complex, taking on a S shape likely due to alternate wetting and 
drying cycles, resulting in substantial moisture variation throughout the 
profile. Samples of observed soil moisture profiles along with a typical 
soil temperature profile and their comparison with the fitted functions 
are illustrated in Fig. 4. 

From the analysis it was concluded that depending on the time of the 
year, site, and its soil texture and infiltration dynamics, a mathematical 
function with a higher number of parameters will typically represent the 
soil moisture profile more accurately. The average RMSE (from surface 
to 60 cm depth) between soil moisture profiles from the fitted function 
and observed soil moisture profiles were 0.026 (PL), 0.028 (Pn3), 0.03 
(Pn2 and PRE), 0.032 (Exp), 0.034 (RE), and 0.035 (Li) (the unite is m3/ 
m3). However, the greater number of parameters also brings greater 
challenges to identify them. In this research, Eq. (11) to Eq. (16) and Eq. 
(21) were considered as the mathematical representation of soil mois-
ture profiles. 

3.3. Inversion scheme 

Radiative transfer equations used for forward models like the Njoku 
model need the distribution of soil moisture and temperature 
throughout the profile to simulate TB at the sensor level. Moreover, the 
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output from the forward model should be able to closely mimic the TB 
that would be recorded by the sensor. Critically, validity of the forward 
model is a prerequisite for success of the inverse problem. For the syn-
thesis study, it was assumed that the forward model met this criterion, 
while for the field application, roughness parameters were first cali-
brated to an independent period of data. In order to estimate the soil 
moisture profile, each of the above assumed mathematical functions was 
applied to calculate soil moisture as a function of depth. Accordingly, 
the parameters of the associated mathematical function were derived 
from matching predicted and observed TB using the cost function in Eq. 
(22) through the coherent model in Eq. (5) and Eq. (6) by the process 
explained in Fig. 6. Accordingly, using the Njoku model the TB expected 
from an L-band and P-band radiometer were simulated separately and 
constrained using Eq. (22). 

L(X)=
1
N

[
∑

p=h,v
|TBf ,p(X) − TBf ,p

⃒
⃒2
]

(22)  

where (X) represents the parameters of interest, TBf ,p and TBf ,p(X) are 

the calculated and observed TB, N is the number of observations, p and f 
represent the polarization (H or V) and frequency, respectively. 

Given the complex analytical form of this physics-based emission 
model, an iterative optimization scheme was used to minimize the cost 
function and estimate the desired soil moisture profile parameters of 
interest. Different optimization algorithms were analysed, including 
simulated annealing (SA), genetic algorithm (GA), particle swarm 
optimization (PSO) and their combinations, to estimate soil moisture 
profiles under two nominal conditions (a dry case and a wet case). Ac-
cording to the results (not shown here), PSO alone consistently produced 
the best results and so was selected for optimization of the soil moisture 
profile shape parameters in this study. PSO is a stochastic evolutionary 
computation technique that relies on the social behavior of swarms of 
fish, bees, and other animals. Each solution in PSO can be considered as 
a particle, except that they share their information and interact locally 
with each other and with the community. These interactions lead to a 
global behavior which is less likely to get stuck in a local minimum. A 
schematic of the algorithm search for the global minima is shown in 
Fig. 5. By randomly initializing parameters, any particle (blue circle in 

Fig. 5. (a) Schematic view of the particle swarm intelligence and (b) movement of a particle based on the theory of the PSO algorithm.  

Fig. 6. Flowchart of soil moisture profile retrieval using the stratified coherent model. Note: here the soil moisture profile was retrieved using the L-band alone, P- 
band alone, and joint L-and P-band as explained in the text. For method L_P, first the soil moisture profile was retrieved based on this flowchart using L-band. In the 
next step, the soil moisture profile was retrieved using P-band alone but with the surface soil moisture parameter as already retrieved using L-band. 
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Fig. 5 (a)) in the search space has an initial position whose value is the 
cost function. The next position of the particles is determined by Eq. 
(23): 

xi[t+ 1] = xi[t] + vi[t+ 1] (23)  

vi[t+ 1] =wvi[t] + c1r1
(
xi,best[t] − xi[t]

)
+ c2r2

(
xgbest[t] − xi[t]

)
(24)  

where xi[t] is the current position of the particle, vi[t+1] (Eq. (24)) is the 
speed for the next position which is a function of movement in the di-
rection of the previous position wvi[t], the best experience of the particle 
xi,best[t] − xi[t] and movement in the direction of the best particle 
xgbest [t] − xi[t], w is inertial weight between 0.6 and 0.9, slowing the 
particle and helping it to converge around xgbest, c1 and c2 (between 1.2 
and 1.5) are acceleration constants and r1 and r2 are random numbers 
between 0 and 1. A sample of the movement for one particle is shown in 
Fig. 5 (b). 

Different strategies were considered to retrieve the soil moisture 
profile shape parameters (as shown in Fig. 6), including using the a) L- 
band observations alone, b) P-band observations alone, c) L- and P-band 
observations jointly (namely LP method), and d) retrieving the surface 
soil moisture parameter in each of the functions using the L-band 
observation and the rest of the shape parameters using the P-band 
observation (namely L_P method). In the L_P method, the soil moisture 
profile was first estimated using the L-band alone (method (a)). Because 
L-band is more sensitive to surface soil moisture, just the parameter 
related to the surface soil moisture in each of the used mathematical 
functions (parameter c in Eq. (11) to Eq. (15) and parameter θ1 related to 
Eq. (16) and Eq. (21)) was accepted and fed into the next step, which 
then retrieves the remaining parameters using P-band. It should be 
noted here that the estimated surface soil moisture using the coherent 
stratified model from L-band is the soil moisture at the air-soil interface 
and not the average soil moisture from surface to 5 cm depth. In order to 
compare the result of the different strategies, the number of iteration 
(100) and the parameters of the PSO algorithm (w, c1 and c2) along with 
the convergence criteria (<0.01 K) for minimizing the cost function 
were considered equal. A flowchart of soil moisture profile estimation 
using the coherent stratified model is shown in Fig. 6. 

In soil moisture profile estimation using each of the strategies, first a 
mathematical function was considered and then the corresponding pa-
rameters of the function were generated randomly and dependently. In 
applying all of the seven mathematical functions, first, surface soil 
moisture as a parameter of the function was generated and then the rest 
of the parameters were generated in a way that the change of soil 
moisture from the surface to the investigated depth did not exceed 0.35 
m3/m3 to prevent generating strange soil moisture profile shapes. The 
generated soil moisture profile along with the observed (or approxi-
mated) soil temperature profile was then fed into the Njoku model, and 
the TB at L-band and/or P-band simulated. In the LP method, the Njoku 
forward model is run twice in a sequential manner, once for the L-band 
and once for the P-band. The Njoku model is a multilayer model which is 
a function of the soil profile (taken to be to 1 m depth in our application), 
thereby negating the necessity for any assumptions regarding the 
different observation depths of L-band and P-band (Shen et al., 2020). 
The simulated TB was then compared with the observed TB collected 
from the radiometers mounted on the tower (or the synthetic equiva-
lent) using the cost function in Eq. (22). For estimating each soil mois-
ture profile, the total 100 iterations and a population of 50 particles 
were considered. If the cost functions of ten successive iterations remain 
almost constant (<0.01 K), then the algorithm interrupts the optimiza-
tion process by changing the parameters w, c1 and c2, and randomly 
generating a new population. The algorithm saves the last cost function 
and the corresponding parameters in a separate matrix and starts 
generating parameters from the beginning. If it doesn’t get stock in the 
local minimum, it generates the parameters so that it will converge the 
cost function. Finally, the matrix containing the smallest cost function of 

each ten successive iteration were sorted based on its cost values and the 
corresponding parameters of the smallest selected as the final output. 
The soil moisture profile was then calculated from the retrieved pa-
rameters using the corresponding mathematical function and the RMSE 
between estimated and observed soil moisture profile calculated. 
Moreover, the practical depth for estimating the soil moisture profile 
from the relevant mathematical function with a satisfactory level of 
accuracy (RMSE less than 0.04 m3/m3) was approximated. 

Experimental data of various soil moisture and temperature profile 
shapes (Fig. 2) collected from ground Stations 126 and 136 in Cora Lynn 
under flat bare soil were used as input to the coherent model to 
demonstrate the potential for profile estimation. Retrieved shape pa-
rameters for the soil moisture profile were evaluated by comparing the 
derived profile against the original profile used to produce the observed 
TB, with and without TB error imposed. A uniform distribution of noise 
(low noise: − 1 ~ +1 K, and high noise: − 4 ~ +4 K) was imposed on the 
TB observations, and each soil moisture profile estimated 10 times 
(realization) using different realizations of noise. The analysis consid-
ered single and dual-frequency, single and dual-polarization, and single 
and multi-incidence angle, snapshot and time series. Additionally, the 
soil temperature profile was considered as known, or assessed for 
approximation using a simple method. 

In approximating the soil temperature profile, first a time series of 
the 6 a.m. profiles was extracted from discrete measurements and 
interpolated to a continuous profile. The 12 soil temperature measure-
ments of each profile were related to depths of 2.5 (0–5 cm) to 57.5 
(55–60 cm) in 5 cm increments. The gradient between 2.5 and 7.5 cm 
was used to estimate the soil temperature at the surface. The soil tem-
perature below 57.5 cm up to 100 cm was considered constant and equal 
to the soil temperature at depth of 57.5 cm. Second, a general profile was 
calculated based on the whole set of 6 a.m. soil temperature profiles. 
Then surface soil temperature (measured or estimated from a land sur-
face model) for that day could be added to the general profile shape and 
the soil temperature profile of that day approximated. The reason 
behind using the general profile shape lies in the fact that 6 a.m. soil 
temperature profiles through the year have a similar profile shape, but 
with an offset. 

4. Results and discussion 

In this section, the result from the soil moisture profile estimation 
methods as described in section 3.3 are first presented and discussed. 
The performance of the best method from the synthetic study is then 
evaluated using experimental data. 

4.1. Soil moisture profile estimation 

To explore the potential of the proposed soil moisture profile esti-
mation models explained in the methodology section, the 20 soil mois-
ture profiles shown in Fig. 3 were estimated individually using the four 
methods with dual H and V polarization, incidence angle of 40◦, and the 
seven mathematical functions used to represent the soil moisture profile. 
The average final value of the cost function in the case of low (0.58 K) 
and high (0.96 K) noise scenarios using the LP method demonstrated the 
robustness of the inversion scheme. The depth for reliable estimation 
and error (RMSE) was calculated for each soil moisture profile at 
different depths over the top 60 cm profile, containing in situ soil 
moisture measurements at 12 depths. The result (Fig. 7 for high noise 
scenario and Fig-Sm. 1 in supplementary material for low noise sce-
nario) showed that as the depth increased, the RMSE typically increased 
because of the reduced contribution of the soil dielectric profile to the 
total emission from the soil. Moreover, it was found that the RMSE of the 
methods was lower for Period A (profile numbers 1 to 10 in Fig. 7 and 
Fig-Sm. 1) as compared to Period B (profile numbers 11 to 20 in Fig. 7 
and Fig-Sm. 1) due to the higher penetration depth of L- and P-band 
wavelengths in drier profiles (Rao et al., 1988). Taking all the 
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mathematical functions and the twenty soil moisture profiles into ac-
count, it was found that the LP method outperformed other methods 
(Fig. 8). The two different levels of noise in the synthetic study aimed to 
represent the impact of calibration and model uncertainty. The average 
estimation depth of the methods under low (high) noise scenarios were 5 
(4) cm at L-band, 6 (5) cm at P-band, 13 (12) cm with LP method, and 11 
(10) cm for L_P method. Thus, it is clear that the performance of the two 
wavelengths together is better than the performance of a single wave-
length. Since the sensitivity to factors which affect soil emission is fre-
quency dependent (e.g. penetration depth is increased in the soil at 
longer wavelengths), obtaining higher accuracy and getting information 
from deeper layers are expected to be achieved by combining the two 
L-band and P-band frequencies. More specifically, there are many profile 
options that could lead to the same P-band TB prediction. However, 
adding an additional frequency at L-band constrains these options and 
thus leads to a more accurate extrapolation. The L_P method was the 
next best performing method followed by the P-band and finally L-band 
only models. Regardless of the applied noise scenario or the period, the 
RMSE of the L-band model predicted shallower surface soil moisture 
than the P-band model (Fig. 8). This is because the P-band signal carries 

information about the soil moisture from much deeper layers of the soil. 
The performance of the individual mathematical functions representing 
the soil moisture profile was investigated. For this reason, the estimation 
depth of the methods was calculated as shown in Fig. 9. The linear 
function with only two parameters (Eq. (11)) could estimate the soil 
moisture up to a depth of 31 cm (mean of low and high noise scenarios) 
at LP and 30 cm at L_P method, outperforming all other functions. 
Additionally, the average estimation depth of the Pn2 function (17 cm) 
was comparable with Pn3 (17.5 cm) using each of the LP or L_P methods. 
The RE function recommended by Sadeghi et al. (2016) led to an esti-
mation depth of 12 cm at both LP and L_P methods. The PL function 
using LP (L_P) method was the next best function with estimation depth 
9 (12) cm. Although applying the Exp function resulted in an estimation 
depth of 12 cm using the LP method, the lowest estimation depth was 
achieved using this function with 1 cm at L-band alone, 2 cm at P-band 
alone and 4 cm for L_P method. Also, using the PRE function an average 
estimation depth of 4 cm (10 cm) was achieved using L-band or P-band 
(LP or L_P) methods. The reason of achieving lower estimation depth 
using the Exp function could be linked to the fact that a small change in 
the shape parameters (a and b in Eq. (12)) of this function leads to a huge 

Fig. 7. Heatmap of RMSEs (average of ten 
perturbations under high noise scenario) 
between retrieved and observed soil mois-
ture profile using L-band only (first column), 
P-band only (second column), LP band 
jointly (third column), and L_P method (last 
column). Each row shows results for a 
mathematical function representing the soil 
moisture profile including (a) linear, (b) 
exponential, (c) second-order polynomial, 
(d) derived second order polynomial from 
simplified solution of Richard equation, (e) 
simplified solution of Richard equation, (f) 
third-order polynomial, and (g) piecewise 
linear. Note: the blue color represents the 
RMSE below the target RMSE (0.04 m3/m3). 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the Web version of this article.)   
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change in the profile shape. Additionally, function PRE could capture 
the shape of the profiles that are dominant in Period B (Fig. 3). Except 
Exp, PRE, and RE functions, the depth of estimation of the other func-
tions were similar using L-band or P-band methods and were 8 cm and 9 
cm respectively. The results obtained using the employed functions were 
similar at least for depths less than 10 cm (Figs. 7 and 10). Therefore, if 
the intention is to estimate the soil moisture not deeper than 10 cm, any 
of these functions can be expected to give a similar result. The linearity 
of soil moisture variation at the lower depth could be a possible reason 
for achieving such similar results, thus enabling most of these functions 
to capture the shape of the profile at the lower depths. However, as the 
depth increased, the RMSE between the estimated and observed soil 
moisture profile increased (Figs. 7 and 10). This synthetic study clearly 
shows the effectiveness of the LP method in estimating the soil moisture 
profile with the best mathematical functions of Li followed by Pn2 
function. Therefore, the LP method was selected as the most robust 
method and thus the main focus of the further analysis of this research. 

4.2. Time series estimation of soil moisture profile 

The optimization algorithm (PSO) used in this study is population- 
based and so the particles share information together while searching 
the global minimum. In the snapshot retrieval, one global minimum is 
found by 50 particles during every iteration. For example, considering a 
second-order polynomial for retrieving parameters a, b, and c, the 50 

particles search for finding one global minimum. By increasing the 
number of observations (known) in a fixed time-window, more param-
eters can be retrieved. If a 30 day estimation period of soil moisture 
profiles is considered using the second-order polynomial function 
instead of retrieving one set of a, b, and c, 30 sets of parameters are 
retrieved. However, in a drying down period, these 30 parameters of a, 
b, and c change gradually and so can build a density of global minima in 
the search space. As a result, finding 30 global minima (built by 30 days 
× 3 parameters) by 50 particles is much easier than finding one global 
minimum. Accordingly, PSO is expected to give a better result with the 
time series approach, because it is able to incorporate the prior knowl-
edge of the previous time step to get the value for the next time step as it 
understands the relationship between these parameters through time. As 
a result, the motivation of using time series retrieval is proposed. 

The temporal behaviour of soil moisture is usually characterized by a 
relatively slow dry-down process following an abrupt increase from 
precipitation or irrigation. Therefore, dry down periods of soil moisture 
in Period A and B were considered to compare the time series and 
snapshot retrieval methods. The purpose of selecting the dry-down pe-
riods was for partially removing the uncertainties in calibration and 
forward modeling in the multi-temporal soil moisture profile estimation. 
The Period A is characterized by simple soil profile shapes and relatively 
lower soil moisture with average 0.13 m3/m3 (minimum 0.07 m3/m3 

and maximum 0.23 m3/m3) while Period B has more complex profile 
shapes with an average of 0.27 m3/m3 (minimum 0.13 m3/m3 and 

Fig. 8. Comparison of the methods for (a) low noise and (b) high noise scenario. Note: the RMSE axis is the average RMSE of 10 realizations and 7 mathematical 
functions. The vertical and horizontal dotted lines show the target RMSE (0.04 m3/m3) and the associated maximum estimation depth respectively. The dashed 
horizontal line shows worst case scenarios of estimation depth. 

Fig. 9. The estimation depth of methods according to assumed moisture profile functions based on target RMSE 0.04 m3/m3 under (a) low and (b) high 
noise scenarios. 
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maximum 0.35 m3/m3). Fig. 10 shows the comparison between the 
snapshot and time series estimation for the two periods using the LP 
method. It is concluded that except the Li function, the time series 
outperformed the snapshot estimation under low (high) noise scenario 
by 0.01 (0.01) m3/m3 for RE, 0.01 (0.02) m3/m3 for PRE, 0.02 (0.02) 
m3/m3 for PL, 0.008 (0.01) m3/m3 for Exp, 0.004 (0.008) m3/m3 for 
Pn3, and 0.006 (0.002) m3/m3 for Pn2 functions. Function Li showed an 
exception in which RMSE increased by 0.006 (0.003) under low (high) 
noise scenarios when using the time series approach. 

The effect of combining observations from different incidence an-
gles, including 10, 20, and 40◦, on the soil moisture profile estimation 
accuracy as compared to having observations at a single incidence was 
assessed using the L-band, the P-band, and the LP method. It was found 
that using one incidence angle at 40◦ with the LP method outperformed 
using multi-incidence angles at L-band or P-band alone (Fig-SM. 2). 
Taking all the mathematical functions into account, the result of the LP 
method using a combination of different incidence angles, including 
40◦, 20 and 40◦, and 10, 20 and 40◦ demonstrated (Fig-SM. 3) that two 
incidence angles resulted in a 0.003 m3/m3 decrease in RMSE under low 
and high noise scenarios, while remaining unchanged when three 

incidence angles were employed. 
Investigation of single and dual-polarization retrieval from the LP 

method confirmed expectations (Fig-SM. 4) that using H and V together 
resulted in better performance than when using either polarization 
individually. 

4.3. Impact of approximation of soil temperature profile on the estimation 
accuracy 

The soil temperature profile is one of the important inputs of the 
microwave coherent model in simulating TB, but obtaining this variable 
is challenging and has thus been a limitation for large-scale applications. 
Therefore, an approximation method as explained in the methodology 
section was considered and differences quantified between the approx-
imated profiles from actual temperature profiles and their impact on the 
simulated TB and soil moisture estimation. It was found (not shown 
here) that approximation of the soil temperature profile leads to an 
average RMSE between actual soil temperature profiles at 6 a.m. and 
approximated soil temperature of around 3 K. 

The impact of the soil temperature profile approximation on the TB 

Fig. 10. Snapshot retrieval of soil moisture profiles using the combined L- and P-band method (H and V polarization and single 40◦ incidence angle) for (a and b) 
known and (c and d) approximated soil temperature profile using snapshot retrieval, and time series retrieval (e and f) with known soil temperature profile under low 
and high noise scenarios. The dashed and dotted horizontal lines show best and worst case scenarios of estimation depth. 
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estimation for soil moisture profile estimation was investigated. 
Accordingly, TB was simulated for both L-band and P-band using the 
coherent model from actual and approximated soil temperature profiles. 
Considering the thermal sensing depth at L-band and P-band, it is 
obvious that if approximated soil temperature profiles were calculated 
from the surface soil temperature, the RMSE of the simulated and 
observed TB would be higher at P-band (4 K) as compared with L-band 
(3 K). The reason is that thermal sensing depth at P-band is much deeper 
than for L-band, and P-band is more sensitive to the temperature of the 
deeper layers. In the above analysis, a dry soil moisture profile was 
considered. However, when a wet soil moisture profile was considered, a 
much lower RMSE of TB was achieved when using the approximated soil 
temperature profile. The reason is that when soil moisture is high, the 
penetration depth and the variation of soil temperature near the surface 
decrease so that surface temperature is more realistic for approximating 
the soil temperature profile. 

It should be noted that, to investigate the impact of approximated 
soil temperature profiles on soil moisture profile estimation, the twenty 
soil moisture profiles (Fig. 3) were estimated individually using the LP 
method under low and high noise scenarios (Fig. 10 (c and d)). In the 
low noise scenario, except Exp (decrease in RMSE by 0.001 m3/m3), Pn2 
(decrease in RMSE by 0.0005 m3/m3), and PL (decrease in RMSE by 
0.001 m3/m3) function, and in the high noise scenario except Pn3 
(decrease in RMSE by 0.005 m3/m3) and PL (decrease in RMSE by 
0.0001 m3/m3) functions, the retrievals from other functions were a 
little worse by average 0.002 m3/m3. Therefore, the approximation 
method of soil temperature profile can be considered as an appropriate 
substitution of having known soil moisture profile information when 
estimating the soil moisture profile using coherent models. 

4.4. Estimating soil moisture profile using real experiment data 

In the synthetic study it was found that the LP method outperformed 
other methods, and that using the time series approach gave better 
performance compared with snapshot retrieval. Additionally, it was 
concluded that the two incidence angles 10◦ and 40◦ at both H and V 
polarization led to the lowest RMSE. It was also shown that Li and Pn2 
functions resulted in a lower RMSE compared with the other options. 
Thus, using this configuration, the coincident brightness temperature 
observations at L-band and P-band for the Period A and B profiles shown 
in Fig. 2 were used for testing with real data. In the real study using real 
data, because of the configuration of the tower, the brightness temper-
ature observations were only available at incidence angles of 45◦ (for 

Period A) and 40◦ (for Period B) for both L-band and P-band. Therefore, 
the soil moisture was estimated using a single incidence angle. To assess 
the performance of the proposed inversion scheme, the L-band and P- 
band observations (Fig. 2 (c); 26 days in Period A and 14 days in Period 
B) were first used along with simultaneous measurements of soil mois-
ture and temperature profiles (Fig. 2 (a and b)) for the two periods from 
the PRISM project. The numerical setup of the coherent model was 
considered the same as for the synthetic study with the same profile 
depth and number of layers. The brightness temperature was simulated 
using the coherent forward model and evaluated against observations at 
L-band and P-band for both periods. As explained in the methodology 
section, the roughness parameters hP, qP, and nP in Eq. (7), and soil 
temperature profile were considered as known. 

Fig. 11 shows the predicted brightness temperature versus the 
respective L-band and P-band observations over the two Periods A and B. 
The V (4.4 K) and H (4.6 K) polarization achieved the best performance 
for L-band and P-band respectively, followed by V (6.9 K) and H (8.6 K) 
polarization at the P-band and L-band. The H polarization is more sen-
sitive to roughness and so this could be the possible reason for higher 
RMSE at L-band compared with the V polarization. Following rainfall 
when the surface was drying out, the anomalous error in H polarization 
at L-band led to higher observed TB. However, the model used the 
average soil moisture below the surface (measured by ground stations), 
which was wetter than the surface (due to infiltration), resulting in a 
relatively lower modelled TB. The source of anomalous error in P-band 
and V polarization is unknown, with the model overestimating the TB. 
None of these errors were removed from the calculations. Notably, there 
is a tendency for the Njoku model to underestimate (overestimate) at 
low (high) soil moisture (especially at L-band) (Njoku and O’Neill, 
1982). Reasons for differences include: i) during a dry period, the soil 
moisture at the skin is lower and drier than the deeper profile while 
during the wet period (especially during rainfall), the surface tends to be 
saturated and it is wetter than deeper profiles; ii) wind and rain showers 
modify the surface and the differences between surface roughness 
characteristics change; iii) the skin soil moisture was constructed by 
having the slope of soil moisture variation estimated using the sensor 
values at 2.5 and 7.5 cm which might not be realistic. 

In the synthetic study, it was found that applying the LP method 
using a linear and a second-order polynomial within a time series 
retrieval resulted in the lowest RMSE. As a comparison to the synthetic 
study, the soil moisture profiles were estimated for Periods A (26 days) 
and B (14 days) using the LP model using the seven mathematical 
functions with both the time series and snapshot approaches. The result 

Fig. 11. Comparison of calculated brightness temperature from the coherent model and tower observations at (a) L-band and (b) P-band over bare soil. The dash 
lines denote ±5 K offset. R refers to the Pearson correlation coefficient. 
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in Fig. 12 shows that using snapshot (time series approaches) the soil 
moisture profiles were estimated with lower RMSE in Period A (average 
11 cm (21 cm) estimation depth) as compared with Period B (average 4 
cm (5 cm) estimation depth). The reason is that during the dry period 
when all layers had low moisture, the L-band and P-band had a deeper 
observation depth. During the dry period (Period A), the time series 
approaches outperformed the snapshot retrieval with an increasing 
estimation depth of 20 cm for Exp, 15 cm for PL, 10 cm for Pn2 and Pn3, 
5 cm for PRE and RE, and 3 cm for Li, resulting in average increase of 10 
cm. During the wet period (Period B), the time series approach still 
resulted in an average increase of 1 cm, with 4 cm, 4 cm, and 3 cm in-
crease in estimation depth of Exp, RE, and PRE respectively, unchanging 
for Pn3 and PL, and 1 cm decrease for Pn2 and Li functions. The time 
series approach using the LP method was found to be the most robust 
with a minimum estimation depth of 8 cm using the PRE function and 
maximum estimation depth of 28 cm using Pn2 and Pn3 functions over 
period A. Additionally, the result of the time series approach for Period B 
had the minimum estimation depth of 5 cm using L, Exp, Pn2, Pn3, and 
PL, and maximum estimation depth of 8 cm using the PRE and RE 

functions. Besides, the time series approach is faster (0.5 s faster in 
retrieving each profile) and more precise (standard deviation 0.015 
(0.016) m3/m3 at the surface; 0.05 (0.06) m3/m3 at depth of 60 cm for 
time series (snapshot) with lowest values for the Pn2 function) than the 
snapshot retrieval approach. Moreover, the Exp, PRE and PL functions 
were found to be more sensitive to noise in the observed brightness 
temperature compared to the other functions, resulting in the snapshot 
retrieval approach having a higher RMSE when using these functions. In 
contrast, the RE function is not sensitive to noise, however under some 
conditions (as explained in the methodology) it has to be replaced with 
the PRE function resulting in a higher RMSE. The time series retrieval 
can mitigate noise as explained in section 4.2 and so resulted in a much 
lower RMSE as compared with the snapshot retrieval. 

From this analysis it is concluded that the Pn2 function is the best 
function for estimating soil moisture. Additionally, if the intention is 
estimating soil moisture below 20 cm, the Li function with only two 
parameters can be considered as the best representation of soil moisture 
profile especially during a wet season (Period B). The reason for a lower 
RMSE in the linear function is the linearity of soil moisture in the 

Fig. 12. The average RMSE calculated between in-situ and retrieved soil moisture profiles using LP method for (a) snapshot and (b) time series approaches 
decomposed to Period A (c and d) and Period B (e and f). The dashed and dotted horizontal lines show best and worst case scenarios of estimation depth. 
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shallow layer so that it is captured by this function. The better perfor-
mance of the PRE function during Period B is because during this period 
soil moisture profiles had a large gradient at the shallow layers (up to 20 
cm) and also showed some changes of soil moisture value in the deeper 
layers, meaning that this function can capture their shapes more easily. 
Some samples of estimated and observed soil moisture profiles for both 
periods are shown in Fig. 13. 

5. Conclusions 

A soil moisture profile estimation strategy has been developed using 
L- and P-band radiometer observations together with a stratified 
coherent model and the PSO optimization algorithm. Under low and 
high noise synthetic scenarios with RMSE lower than 0.04 m3/m3, the 
combined use of L- and P-band dual polarization data outperformed 
both the L- or P-band method alone, with an average estimation depth of 
20 cm for the Li function and 15 cm for the Pn2 function under both a 
wet and dry period with complex profiles, providing the more robust 

time series approach was employed. Multi-incidence angle retrieval 
using 10◦ and 40◦ improved the average RMSE by 0.002 m3/m3 and 
0.005 m3/m3 under low and high noise scenarios respectively as 
compared with single angle retrieval at 40◦, while adding a third inci-
dence angle of 20◦ made no further improvement. Moreover, when 
approximating the soil temperature profile with a simple method that 
uses a trend of the profile together with a surface soil temperature 
measurement, there is little impact on the result. In a real-world 
experiment, the combined L-band and P-band method using the time 
series retrieval approach and a second-order polynomial representing 
the soil moisture profile outperformed the other methods tested, with an 
RMSE less than 0.04 m3/m3 for depths up to 28 cm for a dry period but 
only to 5 cm for a wet period. The success of this work demonstrates the 
potential of this approach, which now requires further research to 
determine the most suitable mathematical functions for soil moisture 
profile estimation in different regions around the world. Additionally, 
this study demonstrates the potential of combining L-band and P-band 
radiometry for estimating soil moisture in the root zone, proving the 

Fig. 13. Samples of estimated soil moisture profile using the LP method for the two periods A (left column) and B (right column) periods utilizing the time se-
ries approaches. 
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merit of this concept for the next generation radiometer satellite 
mission. 
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