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Abstract: A capability for mapping meter-level resolution soil moisture with frequent temporal 
sampling over large regions is essential for quantifying local-scale environmental heterogeneity and 
eco-hydrologic behavior. However, available surface soil moisture (SSM) products generally in-
volve much coarser grain sizes ranging from 30 m to several 10 s of kilometers. Hence, a new method 
is proposed to estimate 3-m resolution SSM using a combination of multi-sensor fusion, machine-
learning (ML), and Cumulative Distribution Function (CDF) matching approaches. This method 
established favorable SSM correspondence between 3-m pixels and overlying 9-km grid cells from 
overlapping Planet SuperDove (PSD) observations and NASA Soil Moisture Active-Passive (SMAP) 
mission products. The resulting 3-m SSM predictions showed improved accuracy by reducing ab-
solute bias and RMSE by ~0.01 cm3/cm3 over the original SMAP data in relation to in situ soil mois-
ture measurements for the Australian Yanco region while preserving the high sampling frequency 
(1–3 day global revisit) and sensitivity to surface wetness (R 0.865) from SMAP. Heterogeneous soil 
moisture distributions varying with vegetation biomass gradients and irrigation regimes were gen-
erally captured within a selected study area. Further algorithm refinement and implementation for 
regional applications will allow for improvement in water resources management, precision agri-
culture, and disaster forecasts and responses. 

Keywords: soil moisture; local scale; SMAP; Planet SuperDove; Google Earth Engine; machine 
learning; CDF matching 
 

1. Introduction 
Surface soil moisture (SSM) exerts a fundamental control on land surface hydrologi-

cal and ecological processes [1,2] and serves as a key environmental input for a variety of 
scientific studies and applications such as flood and drought monitoring [3,4], wildfire 
risk assessment [5], and crop yield forecasts [6].  

SSM strongly influences soil thermal and dielectric properties, surface reflectance, 
and vegetation physiology [7]. Both optical-infrared (IR) and microwave remote sensing 
techniques provide practical approaches for quantifying the spatial distribution and tem-
poral changes of regional SSM through measuring the electromagnetic signatures of the 
land surface. Optical-IR sensors are well suited for indirectly inferring surface and root 
zone soil moisture by monitoring the changes of surface thermal properties (e.g., soil tem-
perature, thermal inertia in the case of bare soil) and surface reflectance properties sensi-
tive to vegetation cover and growth, although, the observations may be degraded by 
cloud cover, atmosphere aerosols, and sub-optimal illumination conditions [7]. Micro-
wave remote sensing provides direct measurements of soil dielectric properties, which 
are highly sensitive to soil moisture changes [8]. Satellite active and passive microwave 
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sensors are also capable of day-and-night and nearly all-weather observations of Earth’s 
surface. The microwave penetration ability is superior to optical-IR wavelengths, with 
lower frequencies suitable for sensing deeper soil layers.  

Operational SSM mapping over the globe mainly relies on space-borne microwave 
radiometers and scatterometers. For example, SSM at ~1-cm depth has been measured 
routinely using the Advanced Microwave Scanning Radiometer—EOS (AMSR-E) and 
AMSR-2 sensors since 2002 [9,10]. The AMSR-E/2 X-band SSM products have reasonable 
accuracy (RMSE < 0.06 cm3/cm3) for sparsely to moderately vegetated conditions with veg-
etation water content (VWC) less than 1.5 kg/m2 [9,11]. With the launch of L-band micro-
wave sensors, including the ESA Soil Moisture and Ocean Salinity (SMOS) mission [12] 
and the NASA Soil Moisture Active-Passive (SMAP) mission [2], significant improve-
ments in SSM retrievals have been made in terms of both accuracy (RMSE < 0.04 cm3/cm3 
for VWC < 6 kg/m2), and soil sensing depth (~5 cm) [2,13,14]. In addition, the microwave 
radiometers onboard polar-orbiting satellites provide 1 to 3-day global revisits suitable 
for monitoring surface wetness dynamics at a level of performance required for hydrolog-
ical and ecological studies [10,15]. A major constraint of the satellite microwave radiome-
ters or scatterometers is associated with their coarse product spatial resolutions (e.g., 
AMSR-E/2 25 km; SMAP 9 km and 36 km), which are unable to characterize local scale 
(e.g., meter-level) heterogeneity in SSM dynamics.  

To overcome the limitations in satellite passive microwave observations, a variety of 
downscaling techniques have been developed to disintegrate radiometer brightness tem-
perature (Tb) or soil moisture estimates into values for finer-scale pixels [16]. The 
downscaling approaches generally rely on (a) higher-resolution information inferred from 
Synthetic Aperture Radar (SAR) observations [17,18], optical-IR remote sensing [19–21], 
or land surface model simulations [22]; and (b) cross-scale relationships among the obser-
vations, retrievals or simulations [16,23]. For example, SMOS 36-km SSM was downscaled 
to 1-km resolution using a triangular feature space defined by MODIS land surface tem-
perature and vegetation index data without significant degradation in accuracy [24]. 
SMAP Tb data was disintegrated into 1-km pixels by exploiting complementary infor-
mation provided from Sentinel-1 SAR radar backscatter, and the disaggregated Tb was 
further used for deriving 1-km resolution SSM [25]. Besides the physically-based ap-
proaches, machine learning (ML) methods were successfully used to define the non-linear 
and cross-scale relationships among soil moisture, satellite observations, and geospatial 
variables [16]. In particular, tree-based regression models were proven effective in com-
bining a variety of predictor variables from satellites, process models, and in situ meas-
urements for enhancing SSM resolution [20,26,27]. 

Continuous and local-scale (e.g., from 1-m to 100-m resolutions) surface wetness in-
formation is essential for characterizing environmental heterogeneity and dynamics 
[22,28] and improving applications such as irrigation management [20], household-level 
flood risk assessment [29], and landslide monitoring [30]. Despite previous downscaling 
efforts, the potential of meter and sub-meter satellite remote sensing has not been fully 
explored, considering the growing capability of small or micro-satellites for rapid and 
high-resolution earth observations. Commercial satellite constellations consisting of opti-
cal or SAR sensors such as Planet and Capella are now able to provide global daily/sub-
daily coverage at meter-level resolutions. Planet observations have been used for deline-
ating fine-scale surface features such as water and ice over small water bodies [31,32]. The 
high-resolution images are rich in spatial, spectral, and textural information but also in-
volve very large data loads. Relative to traditional computation performed locally, cloud-
based platforms such as Google Earth Engine (GEE) enable more efficient access, pro-
cessing, and analysis of big data archives [33].  

Benefiting from recent advances in remote sensing and cloud computation, this study 
focused on the synergistic use of high-resolution optical and coarse-resolution microwave 
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sensors and exploited ML and Cumulative Distribution Function (CDF) matching ap-
proaches to derive daily and local-scale (3-m) SSM. The work is potentially useful for stud-
ies and applications needing improved quantification of land surface heterogeneity. 

2. Study Region and Data Sets  
2.1. Study Region 

Our study region is a 63 km × 63 km area located in the Yanco area of southern New 
South Wales, Australia, consisting of 7 by 7 SMAP 9-km grid cells in a global EASE-GRID 
v2 projection format (Figure 1). The region is characterized by a semi-arid climate, domi-
nated by cropland and grassland, and has been intensely studied in previous field cam-
paigns [19,34,35]. The 9-km grid cells (gray lines in Figure 1) were used to match SMAP 
SSM and Planet SuperDove (PSD) observations for training a machine learning model. In 
situ soil moisture stations within the Yanco network are used as a Core Validation Site for 
assessing SMAP SSM products [14] and were adopted in this study for algorithm evalua-
tion. A focused study area (3 km × 6 km blue rectangle in Figure 1) was selected for exam-
ining local-scale SSM distribution patterns, where intensive soil moisture sampling was 
conducted in March 2021. 

 
Figure 1. Location of the study region (red rectangle) consisting of 7 by 7 SMAP 9-km grid cells 
(gray lines) used for preparing spatially and temporally matched data sets for machine learning,  
Yanco soil moisture network (stations marked by red circles with names labeled) used for assessing 
the accuracy of downscaled SSM, and  a focused study area (dark blue dash lines) with intensive 
soil moisture sampling for examining local-scale SSM distribution patterns. 

2.2. Data Sets 
Four major data sets were used for generating and assessing the 3-m SSM results, 

including (a) long-term in situ soil moisture measurements from the Yanco network, (b) 
intensive ground measurements using the Hydraprobe Data Acquisition System (HDAS) 
[36] over the focused study area, (c) PSD 8-band imagery, and (d) SMAP Enhanced L3 
Radiometer Global daily 9-km soil moisture (SPL3SMP_E; version 5). In addition, eleva-
tion and terrain slope data were obtained from a 5-m Digital Elevation Model (DEM) of 
Australia [37] to account for terrain effects on soil moisture patterns. Our study focused 
on an 11-month period from January to December 2021, coinciding with the limited avail-
ability of in situ SSM and PSD imagery used for model validation.  

2.2.1. Yanco Network 
The Yanco soil moisture network is part of the larger Murrumbidgee Soil Moisture 

Monitoring Network (MSMMN), providing long-term and spatially-distributed SSM 
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measurements [38]. The MSMMN measures surface soil moisture (0–5 cm or 0–8 cm 
depth) every 20 min, along with soil temperature and rainfall parameters [38]. The 0–5 cm 
SSM measurement record from January to December 2021 was used for this study and 
downloaded from the OZNET website (http://www.oznet.org.au/, accessed on 15 January 
2022). Among all Yanco stations, only 14 sites (Figure 1) possessing at least 35 data pairs 
formed by SMAP SSM and clear-sky PSD observations during the study period were se-
lected for evaluating the proposed downscaling approaches.  

2.2.2. Intensive Sampling Using HDAS  
Intensive sampling of 0–5 cm depth SSM was made using the HDAS at 50 m spacing 

over the focused study area for a three-week period (8–28 March 2021) during the P-band 
Radiometer Inferred Soil Moisture 2021 (PRISM-21) campaign 
(https://www.prism.monash.edu, accessed on 15 January 2022) [39]. Ancillary vegetation 
and irrigation information was also collected along with soil moisture by the HDAS opera-
tors to assist the interpretation of field plot-to-plot soil moisture changes. The intensive sam-
pling data were used to analyze the spatial patterns of the downscaled 3-m SSM results.  

2.2.3. PSD 8-Band Imagery 
The Planet constellation is currently composed of three generations of satellites, includ-

ing Dove Classic, Dove-R, and SuperDove, with Equator crossing times between 9:30 and 
11:30 [40]. Improved from the first two sensor generations, which capture four-band im-
agery, SuperDoves allow for eight-band imaging (Coastal Blue, Blue, Green, Green II, Yel-
low, Red, Red-Edge, and NIR bands) with enhanced image sharpness and quality [40]. Fol-
lowing launches from 2019 to 2022, there are more than 100 SuperDoves on-orbit, which 
have delivered daily global observations since 2021. In this study, we selected SuperDove 
imagery obtained with cloud coverage of less than 5% over the study region and period.  

2.2.4. SMAP Soil Moisture 
The SMAP L-band radiometer has provided twice daily (~6:00 p.m. and a.m. local time) 

microwave brightness temperature (Tb) observations over the globe since 2015. The 
SPL3SMP_E was derived from the Tb data spatially interpolated to a finer 9-km global 
EASE-GRID (v2) resolution using the Backus–Gilbert (BG) technique [41]. The SPL3SMP_E 
data files record SSM estimates derived using three algorithms, including Single Channel 
Algorithm (SCA) using V-polarized Tb, SCA using H-polarized Tb, and Dual Channel Al-
gorithm (DCA) [13,14]. As the current baseline, the DCA has shown the best performance 
among all three SSM retrieval algorithms in comparison with in situ measurements across 
the globe [42]. The DCA SSM estimates derived from descending (morning pass) SMAP 
observations were used in this study to pair with PSD morning acquisitions for training an 
ML model and providing baseline surface wetness information for further downscaling ac-
tivities. The SMAP data were downloaded through the NSIDC website 
(https://nsidc.org/data/SPL3SMP_E/versions/5, accessed on 15 January 2022). 

2.2.5. Data Processing Using GEE 
The GEE is a web-based platform capable of efficient archiving, processing, visualiz-

ing, and analysis of multi-petabyte and multi-source data [33]. The high-performance 
cloud computation capabilities of GEE are suitable for the integrated analysis of large ge-
ospatial data sets for environmental applications. For our study, we relied on the GEE 
Application Programming Interface (API) available in the Google Colab Notebook envi-
ronment for matching the multi-source data spatially and temporally. Specifically, the 
SMAP HDF-format data were first converted to GeoTIFF format and then uploaded to 
GEE as an image collection. Similarly, the PSD images were uploaded to GEE as another 
image collection. For linking SMAP SSM and PSD spectral observations, SuperDove 3-m 
pixels were aggregated for each SMAP 9-km grid cell (Figure 1) using GEE by averaging 
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all pixels within the associated grid cell and then matched with SMAP SSM based on date 
and location. The SMAP and PSD data pairs were then used for training an ML model in 
the Colab Notebook environment. 

3. Methods 
3.1. Approach Overview  

This approach (Figure 2) involves a combination of multi-sensor data fusion, ML, and 
CDF matching for generating daily SSM maps at 3-m spatial resolution. For the ML step, 
the relationships between predictor variables and the SSM target variable were first de-
rived under SMAP 9-km grid cells. The trained model was then applied to 3-m pixels 
when both SMAP retrievals and overlapping clear-sky PSD observations were available. 
Thirty-nine predictor variables were used in this study, including reflectances from all 
eight PSD spectral bands, normalized reflectance differences calculated from PSD band 
pairs, terrain information, and the number of each ten-day period in the calendar year 
(N10DOY) (Table 1). 

 
Figure 2. Algorithm flow chart illustrating the proposed downscaling approach for generating 3-m 
SSM maps based on multi-sensor data fusion, ML, and CDF matching techniques. 
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Table 1. Summary of the 39 predictor variables used for ML-based SSM prediction. 

Predictor Name Description 
Number of 
Predictors 𝑹_𝑩𝒂𝒏𝒅𝒌  Reflectance of PSD band k (k = 1 to 8) 8 𝑰𝒏𝒅𝒆𝒙_𝑩𝒂𝒏𝒅𝒊𝒋 Normalized reflectance difference between band i and j 28 𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 N/A 1 𝒔𝒍𝒐𝒑𝒆 N/A 1 𝑵𝟏𝟎𝑫𝑶𝒀 The number of each 10-day period in a year 1 

To overcome the missing PSD data issue caused by cloud and atmospheric con-
straints, CDF-matching was applied to each 3-m pixel to establish relationships between 
the SSM target variable and overlying SMAP SSM retrievals and then to apply these em-
pirical models to derive 3-m SSM maps using the SMAP product as the sole model input. 

The stepwise algorithm (Figure 2) description is listed below. 
(a) Aggregate all predictor variables for 9-km SMAP grid cells and pair with the corre-

sponding SMAP SSM for the same dates using GEE. 
(b) Perform region-independent cross-validations for model assessment by dividing the 

SMAP grid cells into seven rows from north to south (Figure 1), selecting data associ-
ated with every six rows for model training, and using data from the remaining row 
for validation. A total of 2100 SMAP and PSD data pairs were used for the assessment. 

(c) Select the best-performing model from the resulting ML algorithms, and apply it to 
the 3-m PSD data under clear-sky conditions. 

(d) For a given 3-m pixel, perform CDF matching for the SSM estimates of the pixel and 
the associated SMAP values of the overlying 9-km grid cell, and generate 3-m soil 
moisture estimates using only the SMAP retrievals as model inputs. 

3.2. Machine-Learning Methods 
Regression-tree-based ML models and conventional linear regression were used first 

to establish model relationships between SSM and predictor variables at the SMAP spatial 
scale (9 km for this study); the resulting trained models were then fed high-resolution 
inputs to obtain local-scale (3-m) SSM estimates. The regression-tree models have shown 
high efficiency, good accuracy, and robustness in satellite SSM downscaling studies 
[16,26] and are generally less affected by data noise and overfitting issues in comparison 
with other machine learning approaches [43]. 

The regression-tree methods assessed include Random Forest (RF) [43], Gradient 
Boosting regression (GBRegrssor) [44] and Light Gradient Boosting Machine regression 
(LightGBRegressor) [45]. The regression-tree mechanism enables cost-sensitive learning 
and probability tree estimation [46]. Trees are fit using subsets of explanatory variables 
and the residual “error” between the predicted and actual values assessed. For the RF 
approach, a number of trees were built using bootstrap samples, and the final regression 
results obtained from a forest to provide more accurate and stable predictions than 
achieved using a single tree [47]. The GBRegressor and LightGBRegressor methods are 
enhanced versions of tree regression algorithms that adopt gradient boosting, which iter-
atively constructs the model using the prediction errors from each round [44,45]. In addi-
tion to the gradient boosting framework, LightGBRegressor has unique features such as a 
histogram-based algorithm, exclusive feature bundling, leaf-wise tree growth strategy, 
histogram difference acceleration, and sequential access gradient methods, which enable 
high computation efficiency and accuracy [45]. All of the models except LightGBRegressor 
were implemented using the Python scikit-learn library (https://scikit-learn.org/, accessed 
on 15 March 2022), with the LightGBRegressor method coded using an independent Py-
thon library (https://lightgbm.readthedocs.io, accessed on 15 March 2022). For enabling 
model inter-comparisons, the same sets of training and validation data were used for each 
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model. The model parameters used for tuning and evaluating the machine learning meth-
ods are listed in Table 2. For a given parameter, if two values gave similar performance 
(e.g., R2 difference less than 0.0025), the smaller value was selected to avoid over-fitting.  

Table 2. Summary of model parameters used in evaluating machine-learning methods. 

Method Parameter From To Step Other Options Selected 
LightGBRegressor max_depth 5 30 5  20 

 n_estimators 20 120 20  120 
 num_leaves 20 120 20  60 

Random forest max_depth 5 30 5  20 
 n_estimators 20 120 20  100 
 max_features 0.5 0.9 0.2 ‘auto’, ‘log2’, ‘sqrt’ 0.9 

GradientBoosting max_depth 5 30 5  30 
 n_estimators 20 120 20  60 
 max_features 0.5 0.9 0.2 ‘auto’, ‘log2’, ‘sqrt’ 0.7 

3.3. Input Variables Used for ML-Based SSM Prediction 
As a key parameter in the soil–plant–atmosphere continuum, soil moisture affects (a) 

plant water status, composition, structure, and growth; (b) water and energy exchange be-
tween the atmosphere and land surface; and (c) the partitioning of rainfall between runoff 
and infiltration [48,49]. The vertical and horizontal distributions of soil moisture are also 
regulated by water and energy cycle processes through precipitation, plant canopy inter-
ception and evapotranspiration, runoff, and infiltration. Considering the inter-connections 
among soil moisture and other water and energy cycle components, a number of factors 
influencing or reflecting the fine-scale soil moisture distributions have been considered in 
ML-based SSM downscaling studies, including land cover type, vegetation conditions, soil 
texture, land surface temperature, and topographic information [26]. Different from 
downscaling studies targeting 30-m to 1000-m SSM mapping, it is challenging to estimate 
meter-level SSM due to the lack of supporting data at comparable scales. For this study, the 
feasibility of using PSD 3-m reflectance observations and ancillary terrain and date infor-
mation (Table 1) for ML-based SSM mapping at local scales was examined. The PSD spectral 
reflectances and associated indices allow for spectra-based descriptions of surface vegeta-
tion and soil conditions at 3-m resolution, the terrain elevation and slope variables govern 
soil water distributions, and N10DOY is used to account for the general SSM seasonality. 

3.4. CDF Matching for Generating Daily SSM Record 
CDF matching is a non-linear method widely used for removing biases among soil 

moisture data sets derived from different approaches, such as satellite passive/active mi-
crowave remote sensing, reanalysis, and in situ measurements [50–52]. For this study, 
CDF matching was aimed to relate SSM values obtained from 9-km grid cells and 3-m 
pixels and generate more temporally continuous SSM data at 3-m resolution. Specifically, 
SSM data for a given 3-m pixel were first generated using the ML approach and paired 
with the corresponding SMAP results for the overlying 9-km grid cell. CDF matching was 
then used to align SMAP SSM data with the 3-m results. The polynomial function for fit-
ting the two data sets was finally applied to the whole SMAP time series to obtain the 
corresponding SSM estimates for the 3-m pixels without relying on additional PSD obser-
vations or ancillary data. Local-scale SSM mapping was thus achieved while preserving 
the frequent temporal sampling of SMAP.  

3.5. Algorithm Assessment 
The algorithm assessment consisted of three parts. (a) Examining the performance of 

the ML models in predicting SSM at 9-km resolution based on the independent validation 
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data (Section 3.1), using the coefficient of determination (R2) and root mean square error 
(RMSE) calculated between SMAP SSM and the predicted values as performance metrics; 
(b) quantitative assessment of the ML and CDF matching based SSM downscaling results 
using the original SMAP 9-km product, the resulting 3-m data sets, and in situ measure-
ments. This assessment involved 14 Yanco sites having at least 30 data pairs of SMAP and 
ML-predicted SSM available for the CDF calculation. The statistical metrics used for eval-
uating the performance included R2, RMSE, and absolute bias; (c) a qualitative assessment 
of the resulting local-scale SSM patterns by comparing the 3-m model predictions with the 
HDAS intensive SSM sampling results.  

4. Results 
4.1. Assessing the Performance of ML Models in Predicting SSM at 9-km Resolution 

In situ soil moisture observations representative of different land cover types, seasons, 
and geo-locations are scarce and insufficient to support ML model training for global SSM 
mapping. Therefore, this study trained ML models using the SMAP 9-km SSM product, 
which has global coverage every 1–3 days. The assessment at the 9-km grid cells showed 
that the ML models are capable of rebuilding SMAP SSM from finer-grained PSD observa-
tions and ancillary information (Table 3). The regression-tree-based methods have similar 
accuracy when comparing their predictions with the overlying SMAP SSM retrievals (R2 
values from 0.846 to 0.857; RMSEs from 0.030 to 0.029 cm3/cm3) while also outperforming 
the conventional linear regression approach (R2 0.591; RMSE 0.050 cm3/cm3). Among the re-
gression-tree methods, LightGBRegressor is slightly superior to the others in having the 
highest correlation (R2 0.857) and lowest uncertainty (RMSE 0.029 cm3/cm3) (Figure 3; Table 
3). The predictor contribution scores are informative for understanding ML prediction 
mechanisms and the inter-connections among different input variables and SSM. Among 
the 39 predictors, the 5 most important variables are N10DOY, near-infrared band reflec-
tance, terrain slope, elevation, and red-edge band reflectance (Table 4). The Normalized Dif-
ference Red Edge (NDRE) index, involving red-edge and near-infrared bands, was also an 
important predictor but with a lower (2.7%) contribution. Low NDRE values typically rep-
resent bare soil or stressed vegetation, while higher values indicate healthy vegetation due 
to NDRE sensitivity to vegetation chlorophyll [53]. Compared to red-edge band reflectance 
(4.2%) and NDRE (2.7%), the red band and NDVI for measuring vegetation greenness had 
lower importance, with respective contributions of approximately 1.6% and 1.3%. 

Table 3. Summary of model performance in predicting SSM at 9-km grid cells, with bold numbers 
denoting the best values. 

Method R2 RMSE (cm3/cm3) 
LightGBRegressor 0.857 0.029 

Random forest 0.846 0.030 
GradientBoosting 0.856 0.029 

Linear 0.591 0.050 

Table 4. Summary of the contribution scores for the five most important predictors. 

Predictor Score 
N10DOY 7.9% 

Near-infrared band reflectance 5.9% 
Slope 4.5% 

Elevation 4.3% 
Red-edge band reflectance 4.2% 
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Figure 3. Comparison between LightGBRegressor predictions and SMAP SSM at 9-km grid cells (R2 
0.857; RMSE 0.029 cm3/cm3). 

4.2. Assessing SSM Predictions at 3-m Resolution 
The LightGBRegressor model trained over 9-km grid cells was applied to 3-m pixels for 

the dates when clear-sky PSD observations were available. After initial predictions over the 
limited dates, the SSM estimates from LightGBRegressor and SMAP were paired in space and 
time and then used for CDF matching. The polynomial fit for removing SMAP SSM bias rela-
tive to ML-based estimates for a given 3-m pixel was finally applied to the entire SMAP record 
for generating 3-m SSM time series without the use of additional PSD data.  

Comparisons among SMAP 9-km, LightGBRegressor 3-m, and additional CDF match-
ing 3-m results were made for a limited number of dates when all three data sets were avail-
able. Among the 14 Yanco sites, CDF matching for the 10 sites led to higher accuracy and 
lower bias of the 3-m SSM predictions in relation to in situ measurements than the 9-km 
SMAP SSM retrievals (Table 5). For example, the CDF matching results for Site Y12 dramat-
ically reduced the bias level of SMAP SSM (SMAP absolute bias 0.073 cm3/cm3; CDF match-
ing absolute bias 0.040 cm3/cm3) while removing outliers of the LightGBRegressor predic-
tions (LightGBRegressor RMSE 0.055 cm3/cm3; CDF matching RMSE 0.045 cm3/cm3) (Table 
5) and enabling continuous SSM predictions (Figure 4a). For the other four sites, the 
LightGBRegressor predictions provided no additional value in refining the SMAP SSM time 
series. For example, the LightGBRegressor SSM results for site Yb5e were very similar to 
those of SMAP, which did not help to remove SMAP SSM biases in the subsequent CDF 
matching process (Figure 4b). Overall, the CDF-matching-based SSM results showed a sim-
ilarly high correlation as the SMAP product (R 0.864) and a low level of absolute bias as the 
LightGBRegressor estimates (0.043 cm3/cm3), which led to the lowest RMSE (0.062 cm3/cm3) 
in the comparisons with the in situ SSM measurements (Table 5). 

Table 5. Summary of the SSM comparisons among SMAP 9-km, LightGBRegressor 3-m, and addi-
tional CDF matching 3-m results for the dates when all three data sets were available. Bold numbers 
denote the best model performance at each site. 

Site SMAP LGBMR CDF SMAP LGBMR CDF SMAP LGBMR CDF Number 
 RMSE (cm3/cm3) Absolute Bias (cm3/cm3) Correlation  

Y8 0.041 0.040 0.030 0.009 0.005 0.005 0.902 0.841 0.906 41 
Yb5e 0.095 0.102 0.099 0.084 0.091 0.091 0.863 0.824 0.860 41 
Yb5d 0.079 0.089 0.081 0.070 0.075 0.075 0.901 0.750 0.898 42 
Yb7c 0.073 0.064 0.061 0.063 0.050 0.050 0.906 0.868 0.906 44 
Yb7d 0.048 0.040 0.033 0.024 0.010 0.010 0.888 0.832 0.888 45 
Yb3 0.064 0.108 0.104 0.036 0.075 0.075 0.849 0.707 0.834 44 



Remote Sens. 2022, 14, 3812 10 of 17 
 

 

Y10 0.044 0.049 0.049 0.003 0.018 0.018 0.926 0.921 0.923 48 
Y7 0.047 0.048 0.043 0.033 0.028 0.028 0.915 0.872 0.914 48 
Y1 0.097 0.077 0.075 0.086 0.066 0.066 0.760 0.670 0.763 55 
Y5 0.096 0.086 0.079 0.082 0.066 0.066 0.703 0.534 0.703 52 

Y13 0.080 0.060 0.049 0.029 0.009 0.009 0.830 0.671 0.834 53 
Y9 0.066 0.074 0.061 0.048 0.042 0.042 0.924 0.832 0.924 54 

Y11 0.066 0.075 0.060 0.036 0.024 0.024 0.877 0.765 0.877 58 
Y12 0.096 0.055 0.045 0.073 0.040 0.040 0.862 0.590 0.873 58 

Allsites 0.071 0.069 0.062 0.048 0.043 0.043 0.865 0.763 0.864 683 

The CDF-matching approach used for the paired LightGBRegressor and SMAP SSM 
estimates was further applied to the entire SMAP record to generate a continuous 3-m 
SSM record over the study domain. Among the 14 validation sites, 11 sites showed higher 
accuracy of the downscaled 3-m SSM data than the original SMAP 9-km results relative 
to the in situ SSM ground truth measurements (Table 6). Overall, the CDF-matching re-
sults lowered the RMSE and absolute bias by ~0.01 cm3/cm3, with RMSE decreasing from 
0.081 cm3/cm3 to 0.070 cm3/cm3, while absolute bias declined from 0.052 cm3/cm3 to 0.045 
cm3/cm3 (Table 6). 

Table 6. Summary of the comparisons among SMAP and CDF matching SSM results over the 12-
month study period, with bold numbers denoting the best performance at each in situ validation site. 

Site SMAP CDF_Matching SMAP CDF_Matching 
Number 

 RMSE (cm3/cm3) Absolute Bias (cm3/cm3) 
Y8 0.049 0.039 0.004 0.005 164 

Yb5e 0.100 0.107 0.086 0.095 163 
Yb5d 0.083 0.082 0.071 0.071 164 
Yb7c 0.077 0.068 0.057 0.046 160 
Yb7d 0.064 0.044 0.037 0.017 163 
Yb3 0.083 0.117 0.040 0.086 162 
Y10 0.057 0.062 0.007 0.021 178 
Y7 0.063 0.055 0.041 0.035 178 
Y1 0.113 0.087 0.097 0.075 178 
Y5 0.107 0.085 0.091 0.068 178 

Y13 0.091 0.055 0.045 0.019 178 
Y9 0.074 0.070 0.043 0.036 178 

Y11 0.066 0.062 0.026 0.013 178 
Y12 0.111 0.049 0.086 0.040 178 

Allsites 0.081 0.070 0.052 0.045 2400 
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(b) 

Figure 4. SSM comparisons among 9-km SMAP product, in situ measurements, and respective 3-m 
estimates derived using LightGBRegressor and CDF matching for sites Y12 (a) and Yb5e (b). 

4.3. Evaluating SSM Spatial Distributions at 3-m Resolution 
For the focused study area (Section 2.1; Figure 1), spatial distributions of SSM at 3-m 

resolution derived from the combined ML and CDF matching approach were compared 
with SSM maps interpolated from HDAS intensive sampling results derived using the 
Inverse Distance Weighted (IDW) approach for 8, 15, and 26 March 2021 (Figure 5a–f). It 
is noted that multiple independent SSM measurements were taken using HDAS for each 
location, and the readings may vary widely in highly heterogeneous areas [39]. The inter-
polation results were generated based on mean soil moisture values averaged from all 
readings over a given location. Detailed land cover information (Figure 5g) was also used 
for the comparisons. The dates were selected for examining the local-scale SSM patterns 
under distinct surface wetness conditions. In addition, Plots 1 and 6 (Figure 5g) represent 
managed croplands, which were used to examine irrigation impacts on SSM patterns. 
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Figure 5. The downscaled (3-m) SSM patterns derived using the combined ML and CDF-matching 
approach (a,c,e) and interpolated SSM maps generated from intensive HDAS ground measurement 
sites (dots) (b,d,f) over the focused study area for 8 March 2021 (a,b), 15 March 2021 (c,d), and 26 
March 2021 (e,f); field plots with HDAS measurements are labeled on the land cover map for the 
same area (g). 

Overall, the downscaled results (Figure 5a–f) captured the contrasting wetness con-
ditions of the three dates as indicated by the HDAS measurements, with high correlation 
between the two data sets (R 0.81). For 8 March, different from low SSM conditions in 
most plots, the 3-m results showed wetter soil conditions in the irrigated field (Plot 1), 
though to a lesser extent than the HDAS readings (Figure 5a,b). Relative to 8 March, larger 
spatial heterogeneity was found over the fields on March 15, along with similar wetness 
gradients between non-irrigated (e.g., Plots 8, 9, 10) and irrigated (e.g., Plot 6) fields cap-
tured from both the downscaled results and in situ measurements (Figure 5c,d). For 26 
March, despite the overall wet conditions, relatively drier soil conditions (Plots 8, 9, and 
10) and a noticeable south–north wetness gradient (Plot 5) were apparent in both the 
downscaled results and HDAS data (Figure 5e,f).  

Major inconsistencies between the two data sets were found in Plots 3 and 4 over 8 
and 15 March and Plot 2 over 26 March, where wet biases were identified in the 
downscaled results. By excluding the major outlier plots, the downscaled results have an 
overall moderate correlation (R 0.45) with the mean HDAS SSM readings (R 0.71 for 8 
March, 0.34 for 15 March, and 0.30 for 26 March); and a slightly improved correlation (R 
0.54) when comparing with the maximum HDAS readings (R 0.75 for 8 March, 0.45 for 15 
March, and 0.41 for 26 March). The HDAS measurements differ from the downscaled re-
sults in data acquisition time and spatial representativeness, so the correlation analysis 
results need to be interpreted cautiously, in particular when high SSM heterogeneity ex-
ists and leads to a large difference in HDAS readings at ground sampling locations.  

For the areas without HDAS measurements, linear features with lower/higher SSM 
relative to surrounding pixels were associated with road/drainage systems (Figure 5a,c,e), 
and higher SSM was found over more densely vegetated areas partially covered by trees 
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(e.g., grass and trees). In comparison, the two 9-km SMAP grid cells (Figure 1) overlying 
the focused study region were unable to capture a similar level of SSM variability.  

5. Discussion 
This study proposed a new approach for deriving both high temporal and spatial 

resolution SSM data using a combination of ML, statistical modeling, and multi-sensor 
fusion. Of the ML approaches tested, the LightGBRegressor method showed the best per-
formance in estimating SSM using independent and reflectance-based observations over 
9-km grid cells (R2 0.857; RMSE 0.029 cm3/cm3). Other regression-tree-based methods are 
also suitable for this application, given their comparable performance to the 
LightGBRegressor results (Table 3). These alternative approaches include traditional RF 
methods widely used for SSM downscaling [20,26] and additional RF refinements using 
gradient boosting methods. One advantage of this new approach is that the model train-
ing does not rely on any in situ observations or measurements from airborne campaigns, 
which enables the approach to be generally applicable to other regions where high-quality 
SMAP retrievals are available.  

When analyzing the importance of SSM predictor variables, the NDRE was weighted 
more than NDVI in the ML prediction. Considering the inherent relationships between 
vegetation growth and soil wetness, NDVI was among the main inputs for downscaling 
passive microwave SSM [24,26], while this study suggests that vegetation health condi-
tions represented by NDRE are likely related more closely to SSM than the greenness 
quantified by NDVI. Soil moisture in the Yanco region has clear seasonality with generally 
drier conditions in the austral summer (DJF) and wetter soil conditions in winter (JJA) [52], 
which likely led to the relatively high importance of N10DOY in the SSM prediction. In 
addition, elevation and slope factors are among the most important predictors, which re-
flect the impacts of topographic control on SSM spatial distributions [26,54]. Despite the 
high performance of the ML models over the 9-km grid cells, this new approach may still 
be constrained by the limited spectral information provided by PSD 8-band observations. 
Richer spectral information, in particular additional thermal band observations used in 
previous studies [24], may enable further improvements in model performance. 

There are two challenges in deriving meter-level SSM using the ML model trained 
using coarser 9-km grid cell data. One is that the training data sets representing or aggre-
gated for 9-km grid cells may not be comprehensive enough to cover the range of local 
variability represented from 3-m pixels. The training data were collected from 49 SMAP 
9-km grid cells spanning a 12-month period and accounting for a variety of surface soil 
and vegetation conditions. However, larger study regions and a longer training period 
would likely enable further algorithm enhancement. Another issue is the relatively sparse 
temporal coverage of clear-sky PSD observations due to frequent cloud cover causing ap-
proximately 80% missing data out of all possible PSD observations during the study pe-
riod. Although clouds are a well-known constraint in optical remote sensing, this limits 
the capability of downscaling approaches for generating continuous SSM products 
needed in many applications, such as irrigation management [20]. In addition, despite the 
overall lower RMSE and bias of the LightGBRegressor versus 9-km SMAP SSM results 
relative to the in situ measurements (Table 5), the 3-m ML predictions had relatively lower 
correlations and more data point outliers (e.g., Figure 4a). To increase the temporal fidel-
ity, the LightGBRegressor results paired with the corresponding SMAP SSM values were 
fed into the additional CDF matching process. The CDF matching removes outliers in the 
ML predictions likely caused by noise in PSD reflectance observations under suboptimal 
atmospheric conditions and, more importantly, for building a continuous SSM time series 
by accounting for the cross-scale SSM relationships for each 3-m pixel. After applying CDF 
matching, it was possible to generate SSM time series at 3-m resolution with similarly low 
RMSE and bias as the LightGBRegressor results while maintaining similar high correla-
tion with in situ observations as the SMAP product.  
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It is worth noting that the underlying assumptions of our approach are that (a) the 
SMAP product has high accuracy over the 9-km grid cells, as has been shown for the Yanco 
region [14], (b) station-based SSM measurements are representative of the overall surface 
wetness of 3-m pixels, and (c) the ML results can capture the unique soil wetness conditions 
for a given 3-m pixel. These assumptions held for most of the 14 sites examined (10 sites in 
Table 5; 11 sites in Table 6), which showed better SSM performance of the downscaled re-
sults than the original SMAP product. If the above assumptions are incorrect, no improve-
ment in SSM at fine scales would be expected since the LightGBRegressor results would fail 
to represent the surface wetness level observed on site (e.g., Figure 4b). The sites without 
performance enhancement in the downscaled results relative to the SMAP product (e.g., 
Yb5e, Yb5d, and Yb3; Tables 5 and 6) are concentrated in a small area with relatively homo-
geneous soil properties and land use (mainly pasture) [55]. The lack of fine-scale variations 
in surface properties in this area likely leads to little added contribution to the SSM estima-
tions from high-resolution SuperDove observations. There are no additional measurements 
within the 3-m pixels for evaluating the spatial representativeness of the in situ SSM meas-
urements; however, differences between the 3-m pixel results and in situ SSM measure-
ments, which may be biased due to site installation and management activities [55], likely 
contribute to uncertainties in the model validation (Section 4.2; Tables 5 and 6).  

The 3-m SSM distributions over the focused study area were examined under three 
contrasting wetness conditions. In general, irrigated farms and denser vegetation cover 
corresponded with higher 3-m SSM levels, while non-irrigated land, bare ground, and 
roads showed lower wetness. The fine-scale land features with significant SSM spatial 
variations caused by different irrigation regimes and vegetation cover were generally cap-
tured by the downscaled results. A major issue identified is the SSM overestimation rela-
tive to the HDAS measurements (e.g., Plots 3 and 4), which was likely caused by high-
level retrieval biases as found in other locations (Tables 5 and 6). In addition, the 3-m SSM 
estimates for irrigated fields were higher than the surrounding fields but lower than the 
HDAS measurements. The sub-daily irrigation signals are likely partially missed in the 
slower changes of vegetation conditions captured by the PDS observations, which led to 
the underestimation of downscaled SSM. 

6. Conclusions 
Capabilities for mapping meter-scale soil moisture conditions globally and with high-

temporal repeat are essential to local-scale environmental studies and applications. Here, a 
new method for 3-m SSM mapping was developed by integrating information from satellite 
passive microwave and high-resolution optical remote sensing through machine-learning 
and CDF-matching approaches. Compared with the original 9-km SMAP product, the re-
sulting 3-m SSM predictions showed higher accuracy and lower bias in relation to inde-
pendent soil moisture observations from the Yanco region while preserving the high sensi-
tivity to surface wetness and temporal coverage of SMAP. Complex soil moisture patterns 
consistent with heterogeneous land cover and vegetation conditions within a focused study 
area were only captured by the downscaled results. Potential algorithm refinement and im-
plementation for global regions would enable quantification of local-scale land surface het-
erogeneity and processes for improving the assessment of local environmental changes, dis-
aster risk mitigation, water resources management, and precision agriculture. 
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