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Abstract: Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its poten-
tial for retrieving a number of geophysical parameters, including soil moisture. However, single-pass
GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two differ-
ent data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based
dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two
19-element antenna arrays with four electronically steered beams each. The instrument was flown
twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia):
the first flight was performed after a long period without rain, and the second one just after a rain
event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of
the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different
integration times, and finally, an artificial neural network is used to retrieve soil moisture from the
reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil
moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation
index (NDVI) data, and ECMWF Land Surface Temperature.

Keywords: GNSS-R; dual-band; airborne; soil moisture; surface roughness; vegetation

1. Introduction

Soil is a natural reservoir of water, making it the main supply store for plants to live.
The surface storage is mainly depleted by the natural process of evaporation, percolation to
lower layers in the soil, water uptake by plants, etc. Conversely, moderate-to-high surface
soil moisture (SM) values increase flood [1] risks and affect soil erosion [2] by wind and
rain. Consequently, monitoring the soil moisture content of this near-surface layer of soil is
crucial for sustainable irrigation of crop fields (smart irrigation), forest fire risk prediction,
assessment of vegetation senescence, and to have a better knowledge of the water cycle,
which plays a key role in the climate feedback loops [3].

Soil moisture can be measured using in-situ probes, or by means of remote sensing
techniques, for which several approaches have been shown to have the ability to retrieve
surface soil moisture states at different spatiotemporal scales. Using L-band microwave
radiometry, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)

Remote Sens. 2021, 13, 797. https://doi.org/10.3390/rs13040797 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6441-6676
https://orcid.org/0000-0001-6636-1587
https://orcid.org/0000-0001-8517-2415
https://orcid.org/0000-0003-0031-0802
https://orcid.org/0000-0003-2694-7107
https://orcid.org/0000-0002-9514-4992
https://orcid.org/0000-0003-4375-4446
https://orcid.org/0000-0002-4817-2712
https://orcid.org/0000-0002-4817-2712
https://doi.org/10.3390/rs13040797
https://doi.org/10.3390/rs13040797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040797
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/13/4/797?type=check_update&version=2


Remote Sens. 2021, 13, 797 2 of 20

mission [4] and the National Aeronautics and Space Administration (NASA) Soil Moisture
Active Passive (SMAP) mission [5] are providing soil moisture maps at a native resolution
of ∼55 km [6] and 36 km [7], respectively. Thermal Infrared spectrometers have also
been used to estimate soil moisture, although with lower accuracy than microwave ra-
diometers [8]. Moreover, radar scatterometers (e.g., [9]) and Synthetic Aperture Radars
(SAR) (e.g., [10–12]) at L- and C-bands have been used to derive soil moisture indexes.
More recently, Global Navigation Satellite System—Reflectometry (GNSS-R) has been
proven to allow for the retrieval of soil moisture from ground [13,14], airborne [15–17], and
spaceborne [18–24] configurations.

GNSS-R offers the promise of an enhanced spatial resolution when compared to
microwave radiometry sensors. The spatial resolution of GNSS-R receivers is mostly linked
to the size of the first Fresnel zone [25], where for an airborne receiver at an altitude of
∼1000 m the spatial resolution ranges from 7.2 m/cos(θi) to 16.6 m/cos(θi) [26] and for
a spaceborne receiver it scales with the squared root of the height, i.e., at 500 km height
it is 22.4 times larger. Such high resolution from space has been analyzed in [27], where
the GNSS-R signal collected by CyGNSS allowed the detection of riverbeds of a width of
200–250 m. However, current methods to retrieve SM from GNSS-R space-borne data are
not providing such resolution. As discussed in [28], few reflections (less than 16%) contain
a noticeable coherent component, thus showing that incoherent scattering is dominant over
land. Under these conditions, the spatial resolution is degraded, as many contributions
coming from the entire glistening zone are collected by the receiving antenna (i.e., 25–37 km
as shown in [29]). Because of that, many algorithms to retrieve SM using GNSS-R data
require averaging the GNSS-R observable to the SMAP native resolution of 36 km [23,30]
or by applying spatial and temporal averaging (i.e., 22 km resolution in [31]). Other works
have shown an enhanced spatial resolution as compared to the previous ones. As CyGNSS
data is now tagging reflections containing a large coherent component [32], new algorithms
are being developed providing large spatial resolutions up to 2 km [33] or 3 km [34] just
including coherent reflections retrieved by CyGNSS. It is worth mentioning that the use of
coherent reflections and an Artificial Neural Network (ANN) based algorithm is key to
provide a high-resolution SM product [34].

Machine learning algorithms, and in particular ANNs, are now the latest approach
to retrieve soil moisture from a wide range of remote sensing techniques. For instance,
the SMOS soil moisture product assimilated by the European Centre for Medium-range
Forecast (ECMWF) is obtained using an ANN [35]. However, ANNs challenge is to correctly
train the algorithm: in this process, the key is not only to select the correct target but also
the amount of ancillary data inputs used for the algorithm. Known ANN implementations
are summarized in Table 1 from [30], and they require a large spatial averaging and the
use of ancillary data due to the incoherent scattering that is produced over land. In most
of the cases discussed in [30], the ancillary data used is either the normalized difference
vegetation index (NDVI), the SMAP vegetation optical depth (VOD), or a combination of
the soil texture and topography data.

Current reflectivity models (Equation (1) [36]) compensate for the vegetation attenua-
tion and the surface roughness according to:

Γ(θ) = R(θ)2γ2exp(−4k2σ2
h cos2(θ)), (1)

where Γ is the reflectivity, θ stands for the local incidence angle, R corresponds to the
amplitude of the Fresnel reflection coefficient, γ is the transmissivity—which accounts for
the vegetation attenuation—and it is modeled by the VOD or the NDVI as a proxy, k is the
wavenumber (i.e., 2π

λ ) and σh is the surface root-mean square (RMS) height.
If any of the terms included in Equation (1) is not estimated accurately, the soil

moisture cannot be properly retrieved. This is shown experimentally in [17,37]: at L-
band, soil moisture produces a change on the retrieved reflectivity of up to 17 dB for a
range between 0 and 0.45 m3/m3, while under coherent scattering conditions, the surface
roughness effect by itself may reduce the reflectivity up to 18 dB for a local RMS surface
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height variation of 0–4 cm [37] or up to 11 dB when a Kirchhoff Approximation simulator
is applied to the multielevation surface [38]. Furthermore, vegetation may reduce the
reflectivity by up to 11 dB for a VOD variation of 0–0.6. Therefore, it is critical to adequately
estimate and include both parameters into the retrieval algorithm. While the vegetation
impact can be, in principle, more easily corrected by means of the NDVI or the VOD, this
is not the case for the surface roughness, as the effective surface RMS height is extremely
complicated to be accurately modeled or retrieved. Previous studies from an airborne
platform [17] showed that, even when estimating the surface roughness using laser profilers
on ground, the reflectivity could not be properly corrected for, as the reflection of the GNSS
signal actually takes place in the near soil surface, whose depth varies depending on the
soil moisture content of the reflection area, and the signal wavelength [39]. Therefore, the
effective RMS height also depends on the soil moisture content [40].

This study analyzes the effects of the surface roughness variations using GNSS-R
data from the Microwave Interferometer Reflectometer (MIR) instrument [41,42], acquired
during two flights across an extensively used agricultural area New South Wales, Australia.
MIR is a state-of-the-art GNSS-R instrument designed to work as an interferometric GNSS-
Reflectometer [43], but raw data was also stored at 32 MS/s at 1 bit. These data have
been postprocessed following the conventional GNSS-R (cGNSS-R) technique at different
integration times, as presented in [44,45] for the MIR flights over the ocean. This work
shows the very first results of the MIR instrument over land, and it is organized as follows:
Section 2 describes the data set used and the ancillary data used to calibrate/validate
the instrument performance. Section 3 analyzes the statistics of the reflectivity of the
different MIR flights over Yanco, where the surface roughness effect is evaluated at different
integration times; its effect on the soil moisture retrieval is also evaluated. Finally, Section 4
shows the results of an ANN algorithm applied to the MIR data to retrieve soil moisture.

2. Data Description

MIR flew over the Yanco-designated portion covered by OzNet [46], New South Wales,
Australia, on 1 May 2018, and on 18 June 2018 (see Figure 1). The two flights covered the
same area, but the first flight was conducted after a long period without rain, under very
dry soil conditions, while the second flight was conducted the day after a rainy day, in
which the water content of the soil was substantially higher. These two flights are called
herein as “Dry” and “Wet” flights, respectively.

(a) (b)

Figure 1. (a) Highlighted in black is the NSW area of Australia where the flight was conducted, and
(b) definition of the Yanco areas A (34◦43′S, 146◦05′E) and B (34◦59′S, 146◦18′E).
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2.1. Ground-Truth and Ancillary Data

MIR covered Yanco areas A and B (see Figure 1) in the two flights. As shown in
Figure 2, the OzNet soil moisture of both days is significantly different. In the area cov-
ered by the plane track, the ground stations showed an average SM ∼0.05 m3/m3, and
∼0.27 m3/m3, for the dry and wet flights, respectively. However, considering only a limited
set of in situ measurements is not enough to compare it with the GNSS-R measurements.
For that reason, other remote sensing products have been used as reference data.

Figure 2. The tracks denoted by the Received Power color scale represent the received power (in
arbitrary units) by the Microwave Interferometer Reflectometer (MIR) instrument, and the coloured
squares are the in-situ OzNet soil moisture (m3/m3) sensors at 5 cm depth. (a) Shows the received
power and in-situ measurement during Dry flight at (a) Site A, and (b) Site B; and during Wet flight
at (c) Site A, and (d) Site B. Note: anomalous low reflectivity values for large banking angles during
the turns are not used in the study.

Two ancillary SM products are key for the correct interpretation of the data in this
work. The first ones are the SMOS and SMAP soil moisture products. However, as the
resolution is too large for our data set (∼55 and 36 km), a pixel downscaling [47,48] of the
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coarse resolution SMOS L3 soil moisture product has been enhanced down to 20 m, using
SMOS brightness temperatures, ECMWF land surface temperature, and visible and near
infra-red (VNIR) data from Sentinel-2. This technique has been validated with different soil
moisture networks [49]. Moreover, the downscaled data have been validated against the
OzNet SM network at both “Dry” and “Wet” flights, showing a bias of 0.01 m3/m3, with
a root-mean-square deviation (RMSD) of 0.032 m3/m3 for the “Dry” flight, and a bias of
0.02 m3/m3, with a RMSD of 0.038 m3/m3 for the “Wet” flight. The RMSD for both maps
is lower than the SMOS accuracy at native resolution (0.04 m3/m3), and it is lower than
the RMSD presented in other studies [50]. Therefore, the presented downscaled product is
suitable as ground-truth data.

As it can be seen in Figure 3 and 4, the NDVI from Sentinel-2 presents some differences
between the Dry and Wet flights, and the downscaled SMOS soil moisture product also
presents large differences between both flights. However, the important values for this
study are the ones collocated with the GNSS specular reflection points. For that reason,
both the NDVI and the SM maps are interpolated to each of the specular points of the MIR
instrument, and the histograms of both measurements for the two flights are shown in
Figure 5.

Figure 3. Normalized difference vegetation index (NDVI) retrieved by Sentinel-2. The selected data
sets contain Copernicus Sentinel data corresponding to 2018-05-01 (Dry) and 2018-06-16 (Wet) from
the Sentinel Hub [51]. Dry flight at (a) Site A, and (b) Site B; and during Wet flight at (c) Site A, and
(d) Site B. Note that negative NDVI values in (a,c) correspond to the Coleambally Canal.
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Figure 4. SM retrieved by the combination of SMOS SM and downscaled using Sentinel-2 NDVI. Dry
flight at (a) Site A, and (b) Site B; and during Wet flight at (c) Site A, and (d) Site B. Credits: Barcelona
Expert Center [52]. Note that the color scale is different in each plot to maximize the contrast and
ease its visualization.

Figure 5. Histograms of the collocated Sentinel-2 NDVI (a) and downscaled SM (b) values over the
MIR specular points for both the Dry and Wet flights.
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2.2. GNSS-R Data

The MIR uplooking and downlooking antenna arrays are composed of 19-element
dual-band patches. Each array creates 2 beams at L1/E1 and 2 beams at L5/E5a using an
automatic beam-steering algorithm that compensates for the aircraft attitudes. Therefore,
MIR is able to track up to four different GNSS satellites simultaneously with the uplooking
antenna and four specular points with the downlooking antenna (two for each band). The
instrument automatically tracks different satellites when the plane has a stable attitude
in the Local-Vertical Local-Horizontal frame. In the case that a given satellite goes out of
the antenna pattern, the algorithm automatically changes to a new one. Moreover, the
instrument notifies whenever the plane is not having a stable attitude (i.e., during turns
or maneuvers), and therefore flagged data need to be filtered out. The plane flew at an
altitude of h ∼ 500 m at an average speed of v ' 75 m/s. From this altitude, the size of the
Fresnel zone lFr is (Equation (2) [43,53]):

lFr =

√
λRr

cos(θinc)
,

Rr =
h

cos(θinc)
,

(2)

where λ is the signal wavelength, (λ = 19 cm at L1/E1 and λ = 25 cm at L5/E5a), and
θinc denotes the incidence angle of the GNSS signal. Thus, for an incidence angle θinc = 0◦

(i.e., smaller Fresnel zone), lFrL1 = 9.75 m at L1/E1, and lFrL5 = 10.75 m at L5/E5a.
Based on the flight characteristics, the maximum integration time to prevent blurring

of the first Fresnel zone is bounded by Tint <
lFrL1

v
' 130 ms. For this study, and in order

to have enough oversampling, Tint = 20 ms has been selected. In that case, and depending
on the local incidence angle, the number of samples overlapped in the same Fresnel zone
varies from 6 to 11 samples, which corresponds to θinc = 0◦ and to θinc = 45◦, respectively.

Because of the flight height and speed, the delay and Doppler spreads are negligible,
and therefore the selected GNSS-R observable is the reflectivity as shown in Equation (1).
Applying the Pseudo-Random Noise injection technique conceived in [54], the MIR in-
strument is calibrated as described in [55], including the antenna pattern compensation as
in [56]. Furthermore, the reflectivity is calculated assuming only the peak of the waveform
minus the noise according to Equation (3):

Γ =
Pre f − PNre f

Pdir − PNdir

×
Gup(θdir, φdir)

Gdn(θre f , φre f )
, (3)

where P is the amplitude of the waveform at its maximum, PN is the noise power of the
waveform, computed as the average of the delay bins before the peak of the Delay-Doppler
Map, G is the gain of either the uplooking or the downlooking antenna, θ and φ are the
look angles to either the transmitting satellite (“dir”), and to the specular reflection point
(“ref”). In this case, the GNSS satellite antenna pattern is not taken into account, neither
the additional path losses, as the increased distance is negligible (500 m) with respect to
the already traveled distance (>20,000 km).

The reflectivity is absolutely-calibrated using different water bodies that the MIR
instrument crossed during both flights. As shown in Figure 6, the reflectivity over the
selected water bodies is ∼−2.1 dB at incidence angle ∼20◦. Figure 7 shows the histogram,
normalized as a Probability Density Function (PDF), of the reflectivity. As it can be
seen, mean reflectivity values have a difference between Dry and Wet flights of ∼7–8 dB.
Considering Figure 21 from [37], the difference in received power is expected to be ∼4 dB
for a difference of ∼0.22 m3/m3. However, Ref. [37] does not take into account the effect of
the penetration depth of the GNSS reflection signal in different soil moisture conditions.
In this work, the surface roughness plays a significant role in this averaging operation, as
the average of a magnitude affected by an attenuation is a biased estimator of the actual
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magnitude. Additionally, as previously discussed, this roughness also depends on the soil
moisture content [39], and therefore an analytic solution to that problem is very complex.

Figure 6. MIR reflectivity for both (a) Dry and (b) Wet flights (dB). Average Reflectivity over the
selected water bodies is ∼−2.1 dB at an incidence angle ∼20◦. The resultant reflectivity has been
evaluated against a saline water model [57], assuming a very low salinity (psu = 1 ppm) and a
temperature of 15 ◦C.

Figure 7. MIR reflectivity Probability Density Function (PDF) for both (a,b) Dry and (c,d) Wet flights.
The Y-axis is the normalized counts values of the PDF, and the average reflectivity for the four beams
at the Dry flight are: −17.6 dB, −16.8 dB, −16.3 dB, and −16.7 dB, with a standard deviation of
∼4.7 dB; and for the Wet flight are: −11.2 dB, −10.8 dB, −10.5 dB, and −10.4 dB, with a standard
deviation of ∼4.8 dB. Note that, the tracking algorithm selects those satellites whose reflection has a
very small incidence, and the average incidence angle for the four beams is below ∼30◦.
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3. Soil Moisture Retrieval Using GNSS-R

As shown in Figure 23 from [37], and discussed in Section 1, herein a difference of
just 4 cm in the local RMS height may produce a 18 dB drop in the power of the reflected
GNSS signal. Furthermore, as the first Fresnel zone of the reflection is very small, the local
surface roughness also has a high variability between overlapped nearby reflections.

3.1. Reflectivity Statistics Using Different Integration Times

The discussion of the previous section has shown that performing the average of the
reflectivities (in linear units, and then taking its logarithm) of a certain area can reduce
the effect of terrain inhomogeneity, and reduces the Speckle noise. In this section, the
effect of increasing the integration time is addressed from a statistical point of view. In this
case, consecutive incoherently-integrated reflectivity samples at Tint = 20 ms are averaged
(linearly, using a moving average filter, and then taking the logarithm of the resulting
magnitude) up to 5 s. Different histograms for Beams 1 (L1) and 3 (L5) for both Dry and
Wet flights are shown in Figure 8a,b, respectively for L1 and L5 cases. As it can be seen,
as the effective integration time increases, the average value remains constant, but the
standard deviation of the reflectivity decreases.

(a) (b)

Figure 8. Normalized histogram PDFs of the MIR reflectivities retrieved at different effective integra-
tion times at (a) L1 and (b) L5.

In addition, Figure 9 shows a selected track over a certain region where the local
surface roughness of the crop field changes. As it can be seen, for shorter averaging times, a
larger local variability of the signal is encountered, capturing small variations in the terrain,
as in the middle of the image (outlined with a black box), where the signal crosses a small
irrigation channel. However, as the effective integration time increases, small variabilities
of the terrain (i.e., surface roughness) are averaged, and therefore the attenuation variability
caused by the surface roughness is diluted, providing a negative bias in the reflectivity,
which varies as a function of the integration time.
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Figure 9. Geolocated MIR reflectivities in Yanco site A during Wet flight at different Tint: (a) 20 ms
and (b) 1000 ms.

3.2. Surface Roughness Effect in Soil Moisture Retrievals

Since at high SM the reflectivity tends to saturate (Figure 21 of [37]), its sensitivity to
SM decreases. In this case, if the scattering occurs close to the surface, the roughness effects
on reflectivity, and consequently SM, are more noticeable. This is observed in Figure 9, in
which the large variability in the reflectivity is mostly produced by local surface roughness
variations. When the incoherent integration time is very short (i.e., 20 ms), the terrain
contribution is not smoothed, and therefore the power changes caused by local roughness
variations are highlighted.

In order to analyze in detail the effect of the surface roughness, the Wet flight over
Yanco site B has been selected. The NDVI of the area is very low and almost constant, and
the attenuation due to vegetation opacity can be neglected. The influence of the soil surface
roughness on SM can be studied by isolating its corresponding term in Equation (1) and
assuming a saturated reflectivity due to very high soil moisture values. Therefore, the
surface RMS roughness can be estimated from Equation (4), as follows:

σh =

√√√√ (−ln(10
Γ[dB]+5

10 )

(4k2 × cos(θinc)2))
. (4)

The Fresnel reflection coefficient of Equation (1) is set to a constant value of −5 dB
for a saturated SM value. As it is seen in [37], the GNSS-R reflectivity gets saturated for
SM values larger than ∼0.25–0.3 m3/m3. Moreover, as it can be seen in Figure 7c from [21],
these SM values produce a range of reflectivities from −6 to −4 dB. Thus, for the sake of
simplicity, a reflectivity value of −5 dB has been selected for this study. Note that, this
range of reflectivities is assuming a VOD < 0.2. As it is shown in Figure 2a [58], an L-band
VOD < 0.2 is provided for NDVI values < 0.4.

Figure 10a shows the results of applying Equation (4) to the Yanco site B during the
Wet flight, after removing all reflectivities from water bodies or with an NDVI > 0.4, so
as to assume negligible attenuation due to vegetation. To perform this study, the selected
beams at L1 and L5 are from the same GNSS spacecraft so that the specular reflection point
is the same. In this case, for moist soils the penetration depth at both bands is limited
to ∼2 cm [39]. As it can be seen, the estimated roughness at both bands is very similar,
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with an average value of ∼1.23 cm and a standard deviation of ∼0.68 cm at L1/E1, and
an average value of ∼1.37 cm, and a standard deviation of ∼0.59 cm at L5/E5a, which is
consistent with a slightly larger penetration depth at L5/E5a, and a reflection accuracy
over a slightly flatter interface. In this case, the impact of an average roughness of 1.3 cm
produces a degradation in the reflectivity of ∼1.4 dB, while a surface roughness of 2 cm
produces a degradation up to 4 dB.

(a) (b)

Figure 10. Estimated Surface Roughness normalized PDF in Site B during Wet flight seen by L1 and
L5 signals, assuming a flat reflectivity Γ = −5 dB, and using (a) Tint = 20 ms, and (b) at Tint = 1000 ms
and 5000 ms only for the L1 case.

Finally, the roughness at L1 depending on the integration time is displayed in Figure 10b.
As the effective integration time increases, the estimated surface roughness decreases to
values lower than 1 cm. Averaging up to 1000 ms produces an average roughness of
0.88 cm, with a standard deviation of 0.45 cm, and averaging up to 5000 ms produces an
average roughness of 0.78 cm and a standard deviation of 0.35 cm. Increasing the effective
integration time reduces the surface roughness variability, but this introduces a bias in the
estimation of the reflectivity.

4. Soil Moisture Retrieval Algorithms

Surface roughness is the variable limiting the accuracy of SM retrievals using GNSS-R
data [17]. As introduced in Section 1, algorithms based on ANNs have proven to be very
powerful tools to detect and solve nonlinear problems by minimizing the error of the
algorithm output with respect to a known target. Despite that, up to now, most of the
algorithms have shown a dependence on the ancillary data (e.g., [30]). In our proposed
approach, the use of ancillary data has been reduced by adding statistical metrics of the
reflectivity itself to the algorithm input, such as the standard deviation of the reflectivity.
However, those statistics are computed from data collected at different time instants,
and there is not yet an approach for single-pass retrieval. Despite that, this points out
an interesting question: is there a relationship between the standard deviation of the
reflectivity and the surface roughness?

4.1. Surface Roughness and Reflectivity Standard Deviation

To address this question, some examples are provided in both Dry and Wet flights
over Yanco site B. The geolocated averaged Γ and the moving standard deviation (movstd)
of Γ are computed and presented in Figures 11 and 12.

Both figures present the Γ, averaged to 5000 ms, the movstd(Γ) for the same integration
interval. The movstd is calculated in linear units over N 20 ms integrated reflectivity
measurements (i.e., for a Tint = 5000 ms, N = 250), and then converted into dB units.
Finally, the Noise-to-Signal Ratio (NSR), computed as movstd(Γ) minus Γ, is presented in
the third column. The color axis is evenly defined for the two flights and each of the three
parameters.
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Figure 11. Geolocated Γ, movstd(Γ), and Noise-to-signal ratio (NSR), defined as movstd(Γ) − Γ, at
Tint = 5000 ms at L1 C/A for the Dry flight. Black boxes identify areas with reflectivity drops due to
vegetated areas and an increase of the surface roughness.

Figure 12. Same as Figure 11 but for the Wet flight.

As it can be seen in Figure 11, the two highlighted areas present a large decrease of the
average reflectivity down to ∼−20 dB. The moving standard deviation is also affected, and
the computed NSR in both areas increases. In this case, the increase in this NSR term can
be linked to a rougher area, as in the bottom one. In this case, the reflectivity drop is linked
to the loss of coherency caused by a vegetated area. However, it is important to remark
that the average NSR is large: −0.78 dB. As it can be seen, lower NSR values correspond to
areas with a larger reflectivity, and a lower reflectivity variation, which can be linked to
smoother surfaces.

Moving to the Wet flight (Figure 12), the two previously highlighted areas are also
shown, plus a third one in the middle of the map. First of all, it is important to remark
that the average reflectivity is larger due to the higher soil moisture content of the flight.
Moreover, the NSR is slightly lower than the Dry flight: −1.13 dB, and there are converging
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to the Speckle Noise NSR limit: −5.6 dB (p. 608 from [59]). This noise is the effect of the
environmental conditions of the reflection scenario (i.e., surface facets, geometry, etc.),
and it is a multiplicative noise that, among others, can be reduced by low-pass filtering,
applying averages, or using neural networks [60]. The two selected sites of the Dry and
Wet flights present a similar NSR, ∼1 dB for the top left one, and ∼2–3 dB for the one at
the bottom right. Therefore, even though the soil moisture content is different, and the
reflectivity value of the Dry flight is ∼7 dB lower than the Wet flight, the NSR is in the same
order; therefore, the terrain inhomogeneity is similar in both cases.

Finally, Figure 13 presents a scatter density plot of the reflectivity computed at 20 ms,
compared to the NSR computed at 5000 ms, for Dry and Wet cases, and at L1 and L5 bands.
It is important to remark in the regime where the Speckle Noise is dominant (i.e., NSR
close to −5.6 dB), the reflectivity tends to its average value, whilst for larger NSR values,
the reflectivity displays a much larger variability due to terrain inhomogeneity and surface
roughness.

Figure 13. Scatter density plot of the Noise-to-Signal Ratio (NSR) computed at Tint = 5000 ms with
respect to the reflectivity values at Tint = 20 ms at L1 for (a) Dry and (b) Wet flights, and at L5 for
(c) Dry and (d) Wet flights.

The differences between the Dry and Wet flights are noticeable. In the Dry flight, the
contribution from the surface roughness is dominant, and the NSR does not reach the
−5.6 dB Speckle Noise SNR limit. On the contrary for the Wet flight, and especially at L5,
the NSR presents a larger number of points with NSR lower than −4 dB, with some of the
realizations in the −5.6 dB of the Speckle Noise SNR limit. The differences in NSR in both
flights are linked to the surface roughness variation depending on the moisture content,
and therefore the penetration depth of the incidence wave. The higher NSR of the Dry
flight indicates a rougher terrain than the Wet flight. Furthermore, the flights at L5 also
present a lower NSR than the ones at L1, due to the change in the penetration depth of the
L5 signal, and the difference in the autocorrelation function width.

4.2. Artificial Neural Network

Due to the nonlinear behavior of Γ and σh in relation to SM, the soil moisture retrieval
process does not have an analytical closed-form solution. However, the use of machine
learning algorithms, and neural networks in particular, is a growing technique broadly
used to solve nonlinear problems. In this case, selecting the proper inputs is crucial to
accurately retrieve soil moisture. It has been shown in the previous section that the NSR is
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related in some way to the surface roughness, but as this parameter is computed from the
subtraction of movstd(Γ) and Γ, both parameters have been used separately in an ANN
algorithm, therefore letting the network use both parameters independently. To do that,
the following ANNs are proposed using the following four cases:

1. Γ, movstd(Γ) as a proxy for σh, NDVI, and θinc,
2. Γ, NDVI, and θinc,
3. Γ, movstd(Γ) as a proxy for σh, and θinc,
4. Γ, and θinc.

Furthermore, different integration times (Tint = 0.1, 1, 2, and 5 s) are used, and the target
output for all cases is the collocated and downscaled to 20 m SM data from SMOS/Sentinel-
2 described in Section 2. Finally, the input data is split in two: one network is deployed
for L1 and another for L5. Both networks are based on a three hidden-layer feed-forward
network with 6 neurons each, and each data set (L1 and L5) is randomly divided into two
parts: training and test. The training set is 20% of all the data available for both Dry and
Wet flights, for the two Yanco A and B locations. The test set is the resulting 80%. This
training set is the one used to train the network, randomly divided again in 70%, 15%, 15%,
for training, validation, and testing of the network, respectively. In order to avoid neural
network overfitting, early stopping and pruning techniques are applied to the trained
network [61]. Finally, the results are applied to the overall data set. Note that the entire
data set (i.e., both Yanco A and B areas, and all the possible NDVI values) are used in the
algorithm to cover a wider reflectivity and terrain variability.

4.3. Results

Due to the environmental constraints of the two flights, the SM values of the Dry flight
and the SM values of the Wet flight are quite distant. It is important to remark that the Dry
flight was conducted after ∼1 month without rain and most of the area is not irrigated.
Moreover, during the Dry flight SM values from 0.05 m3/m3 up to 0.1 m3/m3 are found.
In contrast, the Wet flight was conducted after a strong rain event, and therefore most of
the soil is very moist, in this case, values from ∼0.26 m3/m3 up to 0.33 m3/m3 are found.

Figures 14 and 15 show the scatter density plot of the GNSS-R L1 SM output from the
ANN, with respect to the SMOS/Sentinel-2 downscaled SM. The color axis is the density
of points in logarithmic units. Analyzing Figure 14, it can be seen that the information
provided by the NDVI increases the R parameter in any case. Moreover, the standard
deviation of the error decreases, even without using the movstd(Γ), but the best case is
when this parameter is used. For short effective integration times, the R and the standard
deviation of the error are slightly worse than the case for longer integration times. As the
averaging increases, the estimation of the attenuation due to both the surface roughness
and the vegetation are averaged, and the use of the movstd(Γ) increases the correlation
between the target and the ANN output. Furthermore, by looking at the shape of the
output of the ANN, it can be seen the misclassification produced by the algorithm, where
points falling into the Wet area, are classified as low soil moisture. This is mostly due to
the effect of the reflectivity reduction due to surface roughness. In this case, by increasing
the effective integration time (Figure 14 right, Tint = 5 s), the attenuation is smoothed and
the algorithm shows a better behavior, showing the lowest error. Finally, it is important
to remark that, in the case where the reflectivity is used alone, the ANN output is the
least accurate one, clearly indicating that additional information is required to retrieve
soil moisture.
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Figure 14. ANN estimated SM vs. SMOS/Sentinel-2 downscaled SM at L1. Columns from left to
right increasing Tint for 0.1, 1, 2, and 5 s. Row from top to bottom, ANN cases 1 to 4.

Figure 15. As for Figure 14 but for L5.

Moving to the L5 case (Figure 15), it can be seen that both the R and the standard
deviation of the error are clearly better than in the L1 case. In any of the selected cases,
the standard deviation of the error is ∼2–3 times lower than in the L1 case. Furthermore,
even with a small averaging (i.e., Tint = 0.1 s), the dispersion is smaller than at L1. Note
that, these results are consistent with Figure 13, where the NSR at L5 was very close to
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the Speckle Noise limit, indicating that the L5 signal is less affected by surface roughness
variations, especially during the Wet flight.

As the effective integration time increases, the ANN output shows lower error and
a higher correlation coefficient with respect to the SMOS/Sentinel-2 downscaled soil
moisture. Note that errors are drastically reduced for the case with larger averaging, where
the standard deviation of the error is almost negligible (i.e., 0.016 m3/m3), showing a very
low dispersion in both Dry and Wet flights.

4.4. Discussion

The presented results show a significant difference between L1 and L5 bands, with a
standard deviation of the error at L1 being three times larger than at L5, despite the lower
antenna directivity (DL1 = 21 dB, DL5 = 18 dB). This is due to a longer wavelength and a
larger penetration depth, and by design, a much narrower autocorrelation function (30 m
in space) at L5, which translates into a higher resolution. In this case, the peak of the L5
waveform contains contributions from a smaller glistening zone, increasing the coherency
of the received signal. On the contrary, the L1 signal has a much larger autocorrelation
function (300 m in space), and therefore contributions from a larger glistening zone are
added in the L1 waveform, producing larger fluctuations than at L5.

Aside from the difference in bands, there is also a large variability depending on the
selected integration time. In order to illustrate it, the same neural network is now deployed
for Tint = 0.1, 0.5, 1, 2, 3, 4, and 5 s. Results are shown in Figure 16.

(a) (b)

Figure 16. Standard deviation of the error of the ANN with respect to Sentinel-2/SMOS downscaled
soil moisture for the four different cases for different integration times, at (a) L1 and (b) L5.

Comparing cases 2 and 3 for large integration times, case 3 (i.e., using movstd(Γ))
introduces larger errors than case 2 (i.e., using NDVI), which is not happening for lower
integration times (i.e., 2000 ms at L1 and 1000 ms at L5). However, the combined use of the
movstd(Γ) parameter together with the NDVI provides the lowest error for all integration
times. In this case, as the vegetated areas are quite small (see Figure 3), a very large
integration time produces errors, as a Tint = 5000 ms is equal to a specular point movement
of ∼375 m. However, the lower the integration time, the larger the surface roughness effect.
On the contrary, for the smallest integration time, 100 ms, where the plane movement is
equal to the size of the first Fresnel zone, case 3 provides the same error as case 1, and
a much smaller error than cases 3 and 4. Thanks to the oversampling in the along-track
direction, several measurements of speckle noise and surface roughness are included in
the recovery algorithm by means of the movstd(Γ) term. However, for longer integration
periods, e.g., Tint = 2000 ms, the signal covers up to ∼15 Fresnel zones (i.e., vplane = 75 m/s,
and lFr ∼10 m). The terrain inhomogeneity while crossing these areas together with the
presence of different vegetated areas induces errors in the recovery algorithm, which can
be only corrected using NDVI.
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It is clear that there is a clear trade-off between spatial resolution and radiometric
resolution, where it is not possible to achieve a good radiometric resolution and low root-
mean-square error of the retrieved parameter and good spatial resolution at the same
time. As shown in Figure 13 from [30], the standard deviation of their spaceborne GNSS-
R SM retrieval algorithm is decreased to ±0.1 m3/m3 when more than 25 averages are
performed, and the smaller the number of averages, the larger the error, and hence the
worse the radiometric resolution.

As shown in this study, when increasing the integration time, and therefore lowering
the spatial resolution, the standard deviation of the error decreases, but effects due to
terrain changes in the along-track direction of the GNSS-R measurement induce errors
that need to be corrected for using NDVI measurements. On the contrary, reducing the
averaging leads to a much higher resolution, and the NDVI term is not providing additional
information to the ANN algorithm. However, the standard deviation of the error at such
low integration times is larger.

Just to remark that the radiometric and the spatial resolutions cannot be maximized at
the same time and there will always be a trade-off (if no ancillary data is used) between the
required SM error and the spatial resolution of the GNSS-R-derived SM product.

5. Conclusions

This study has analyzed the data collected by the MIR instrument during two flights
(“Dry” and “Wet”) over the OzNet Yanco sites in New South Wales, Australia, during May–
June 2018. The effect of increasing the averaging and its impact on the surface roughness
estimation are addressed, showing that the effective integration time has to be increased
to 5 s to neglect surface roughness effects. A statistical parameter based on the moving
standard deviation over N samples of the reflectivity (movstd(Γ)) has been presented as
a proxy of the surface roughness effects when the averaging (N) is large enough. Finally,
an ANN-based algorithm has been presented for different combinations of auxiliary data
and reflectivity averages, for L1 and L5 cases. In both cases, the use of the movstd(Γ)
parameter reduces the error of the retrieved SM to 0.047 m3/m3 and 0.016 m3/m3 at
L1 and L5 respectively, for a Tint = 5000 ms. Furthermore, the L5 signal shows a larger
correlation coefficient with the expected SM output than the L1 signal because of the higher
penetration depth and the narrower autocorrelation function.
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