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(CNRS), Institut de Recherche pour le Dévelopement (IRD), Université Paul Sabatier, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement 
(INRAE), 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France 
f INRAE, UMR 1391 ISPA, Universit’e de Bordeaux, F-33140 Villenave d’Ornon, France 
g United States Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory (Retired), MD 20705-2350, United States 
h Department of Civil Engineering, Monash University, Clayton 3800, Australia 
i United States Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705-2350, USA 
j Department of Earth System Science, Tsinghua University, Beijing 100084, China 
k State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, National Cooperative Innovation Center for Water Safety and Hydro-science, College of 
Hydrology and Water Resources, Hohai University, Nanjing 210024, China 
l School of Artificial Intelligence, Jianghan University, Wuhan 430056, China   

A R T I C L E  I N F O   

Edited by Jing M. Chen  

Keywords: 
Soil moisture 
Vegetation optical depth 
MCCA 
Polarization dependence 
SMAP 

A B S T R A C T   

Soil moisture (SM) and vegetation optical depth (VOD) estimates using passive microwave remote sensing at L- 
band (1.4 GHz) are essential for attaining a better understanding of water exchanges at the land-atmosphere 
interface. However, current retrieval algorithms often ignore the polarization dependence of vegetation ef
fects. This study proposed a parameter self-calibrating framework for the multi-channel collaborative algorithm 
(MCCA) and presented a new SM and the first polarization-dependent VOD product based on the dual-polarized 
L-band observations at a fixed angle (40◦) from the NASA Soil Moisture Active Passive (SMAP) mission. The 
parameter self-calibrating framework utilizes an information theory-based approach to obtain surface roughness 
and effective scattering albedo globally. Furthermore, the MCCA does not require auxiliary data for vegetation or 
soil moisture to constrain the retrieval process. Comparison with other SM and VOD products, such as MT-DCA 
version 5, DCA, SCA-H, SCA-V from SMAP Level-3 products version 8, and SMAP-IB, demonstrate analogous 
spatial patterns. The MCCA-derived SM exhibits the lowest unbiased root mean square deviation (ubRMSD, 
about 0.055 m3/m3), followed by SMAP-IB and DCA (0.061 m3/m3), with an overall Pearson’s correlation co
efficient of 0.744 (SMAP-IB performed best with R = 0.764) when evaluated against in-situ observations from 18 
dense soil moisture networks. The MCCA generates VOD values for both vertical and horizontal polarization, 
demonstrating a slight polarization difference of vegetation effect at the satellite scale. Both VODs exhibit a 
strong linear relationship with above-ground biomass and canopy height. The polarization difference of VODs is 
primarily observed in densely vegetated and arid areas.   

1. Introduction 

Soil moisture (SM) is an important boundary condition of land- 

atmosphere feedbacks (Green et al., 2019), and is identified as an 
essential climate variable by the Global Climate Observing System 
(GCOS-138, 2010). Vegetation optical depth (VOD, τ) is a physical 
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variable that describes the microwave extinction effects caused by 
vegetation in the microwave radiative transfer models (RTM) (Mo et al., 
1982; Ulaby and Wilson, 1985) and it provides information on both 
plant water status (Konings et al., 2021) and biomass (Fan et al., 2019; 
Liu et al., 2015). Microwave remote sensing has good capability to 
retrieve SM and VOD (Karthikeyan et al., 2017; Wigneron et al., 2017), 
especially passive microwave L-band (1–2 GHz) because at these 
wavelengths the vegetation is semi-transparent, and the observed 
brightness temperature (Tb) is sensitive to the water content of the first 
few centimeters of the soil surface, and absorption and scattering have 
lower impacts, compared to shorter wavelengths (Hornbuckle et al., 
2016). 

Current L-band passive microwave sensors on Earth-orbiting satel
lites include the European Space Agency’s (ESA) Soil Moisture and 
Ocean Salinity (SMOS) mission, launched in November 2009 with multi- 
angular and full-polarized observations (Kerr et al., 2010) and the Na
tional Aeronautics and Space Administration’s (NASA) Soil Moisture 
Active Passive (SMAP) mission, launched in January 2015 with full- 
polarized observations at an incidence angle of 40◦ (Entekhabi et al., 
2010a). This study focuses on the retrieval of SM and VOD using SMAP 
observations. 

Most SM and VOD retrieval algorithms for SMAP are based on the 
zero-order solution of RTM, also known as the τ-ω model. They can be 
categorized into three types (Zhao et al., 2021): 

(1) Algorithms based on the reverse-order RTM: SM is directly 
derived from the surface soil roughness and dielectric model, with VOD 
estimated by introducing auxiliary data from optical vegetation indices 
(Jackson, 1993). For example, the single channel algorithm (SCA), 
either at horizontal (SCA-H) or vertical (SCA-V) polarization, uses the 
normalized difference vegetation index (NDVI) as a proxy of vegetation 
water content (VWC) in the SMAP SM products (O’Neill et al., 2021a). 
The retrieval performance is dependent on the uncertainties introduced 
by the auxiliary data (Zhao et al., 2014). 

(2) Iterative algorithms based on forward simulations of RTM: One 
such algorithm is the dual-channel algorithm (DCA) (Chan et al., 2018; 
Chaubell et al., 2020; O’Neill et al., 2021a), which iteratively minimizes 
a cost function using nonlinear least-squares to retrieve SM and VOD. 
Since SMAP provides only two observations during an overpass, the 
degree of information (DoI) of Tbs can be lower than the number of 
unknowns (surface parameters, SM, and VOD) (Konings et al., 2015). 
These algorithms may incorporate prior spatial or temporal information 
or apply regularization techniques to enhance the robustness of the re
trievals (Gao et al., 2021). For example, Konings et al., (2016, 2017) 
proposed a multi-temporal dual-channel algorithm (MT-DCA) to 
retrieve SM, VOD, and effective single scattering albedo (ω, omega) by 
assuming that VOD is constant in the multi-temporal overpass during the 
retrieval process. SMAP-INRAE-BORDEAUX (SMAP-IB) uses multi- 
temporal averages of SM and VOD in the cost function to constrain the 
retrieval (Li et al., 2022). Another algorithm uses the two-stream model 
and spatial information to assume VOD as constant over a limited area 
for retrieving SM, VOD, and ω, simultaneously (Gao et al., 2020b). 
Additional constraint methods add a regularization term in the cost 
function (Zwieback et al., 2019), which could smooth short-term vari
ability and reduce retrieval uncertainty (Feldman et al., 2021b). This 
kind of variant algorithm of DCA is applied to SMAP including the 
constrained multi-channel algorithm (CMCA) (Ebtehaj and Bras, 2019), 
and the combined CMCA (C-CMCA) (Gao et al., 2020a). 

(3) Algorithms based on microwave indices: These algorithms 
establish analytical relationships between microwave observations and 
geophysical variables for retrieval purposes (Lu et al., 2009; Njoku and 
Chan, 2006). For example, the land parameter retrieval model (LPRM) 
expresses the microwave polarization difference index (MPDI) analyti
cally as a function of SM and VOD (Meesters et al., 2005; Owe et al., 
2001). LPRM has also been employed in SMAP (O’Neill et al., 2021a). 

Most of these algorithms ignore the discrepancy of vegetation char
acteristics between polarizations (the SMAP SCA recognizes this by 

using different parameter sets for H- and V-polarization). The τ-ω model 
is the zero-order approximation of the RTM. The vegetation-related 
parameters ω and VOD are effective (equivalent) values (Kurum, 
2013), which are theoretically affected by incidence angle, polarization, 
frequency, and ground reflectivity. The polarization and incidence angle 
dependence of VOD depends on the structure of the vegetation and the 
distribution of liquid water within those structures, and it is not neces
sarily the same for different types of vegetation or even for different 
phenological stages of a given type of vegetation. For the satellite 
footprint scale, researchers hypothesize that the polarization depen
dence of VOD is weak because a variety of vegetation and soil types is 
included in a satellite footprint of tens of kilometers (Njoku and Li, 1999; 
Owe et al., 2001; Wigneron et al., 2017). Operational algorithms neglect 
the VWC distribution variations with vegetation (Konings et al., 2021; 
Xu et al., 2021). Moreover, the difference between VOD at H- and V- 
polarization is ignored (Baur et al., 2019; Kerr et al., 2012; Wigneron 
et al., 2017). These simplifications might induce uncertainties in the 
retrieval of VOD, affect the subsequent analysis, and result in a missed 
opportunity for a better understanding of VOD (Konings et al., 2021). It 
is worth noting that VOD dependence on polarization has been 
commonly found and investigated in previous ground-based experi
ments for several vegetation types (Brunfeldt and Ulaby, 1984; 
Wigneron et al., 1995; Wigneron et al., 2004). For L- and C-band, Van de 
Griend et al. (1996) found that H-polarized VOD is generally smaller 
than V-polarized VOD at different incidence angles in wheat crop fields. 
Wigneron et al. (2004) found a large VOD polarization discrepancy 
based on several experimental datasets collected at the L-band, partic
ularly for crops with vertical structures (wheat, corn). Schwank et al. 
(2005) demonstrated and simulated polarization-dependent VOD for 
fast-changing vegetation structure due to a hail event. Ground-based 
radiometer measurements in the Soil Moisture Experiment in the Luan 
River (SMLER) showed that the L-band vegetation attenuation coeffi
cient b (VOD = b•VWC) of H- and V-polarization changes alternately 
with the incidence angles (b of H-polarization is not always smaller than 
b of V-polarization) in a crop field (Zhao et al., 2020). Currently, few 
published results explore the polarization difference of satellite VOD for 
SMAP. Hence, there is a need to further investigate the SMAP VOD 
dependence on polarizations for a better understanding of the associated 
vegetation properties. 

More recently, a new algorithm named the multi-channel collabo
rative algorithm (MCCA) was developed to retrieve SM and microwave- 
channel-dependent VOD (Zhao et al., 2021), where the multiple chan
nels refer to different frequencies, polarizations, and incidence angles. In 
the case of SMAP, which operates at L-band only, it has two channels: H- 
and V-polarized Tbs at 40◦. To implement the MCCA, one channel (H-/ 
V-polarization) is selected as the core channel, and the other (V-/H- 
polarization) as the collaborative channel, H-polarization was selected 
as the core channel in this study. The main idea of the MCCA is to apply 
the relationship between soil and vegetation properties of the core 
channel to the collaborative channel using three features: (1) unlike 
other algorithms using proxy or iterative procedure to retrieve VOD, an 
analytical solution was proposed to derive the vegetation transmissivity 
followed by VOD; (2) a general function was proposed to describe the 
relationships of VODs between microwave-channels; and (3) The rela
tionship between the Tbs of the core and the collaborative channel was 
derived from the two-component version of the τ-ω model and used to 
estimate the Tb of the collaborative channel. Given that SMAP has only 
two channels, it is challenging to enhance the capability of retrieving 
polarization-dependent VOD from SMAP data without ancillary data. 

In this study, a parameter self-calibrating framework is proposed for 
retrieving both SM and VOD using the MCCA algorithm with SMAP data. 
The main objectives of this research were as follows: (1) to assess the 
feasibility of the MCCA algorithm for retrieving SM and VOD with only 
two observations at the satellite scale; (2) to minimize the reliance on 
ancillary data associated with SMAP in the retrieval of SM and VOD in 
SMAP official algorithms; and (3) to estimate polarization-dependent 
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VOD at L-band using SMAP data. The primary focus of this paper is to 
present the further development of the MCCA algorithm for retrieving 
SM and VOD using SMAP data and to conduct an inter-comparison of the 
global SM and VOD products from SMAP-IB (Li et al., 2022), MT-DCA 
(Feldman et al., 2021a), and the three released official SMAP radiom
eter products (DCA, SCA-H, and SCA-V) (O’Neill et al., 2021a; O’Neill 
et al., 2021b). 

2. Dataset 

2.1. SMAP Level-3 brightness temperature product 

The SMAP satellite is in a sun-synchronous orbit, with ascent and 
descent over the equator at 6:00 PM and 6:00 AM local solar time, 
respectively. SMAP has a swath width of about 1000 km, and its average 
coverage period is 1–3 days. It scans the Earth with an incidence angle of 
40◦. In this study, H- and V-polarized Tb, and the surface temperature 
included in the SMAP Level-3 Radiometer Global Daily 36 km EASE-Grid 
Soil Moisture (SPL3SMP) version 8 were used to retrieve SM and VOD. 
The SPL3SMP is distributed by the National Snow and Ice Data Center 
(NDISC) and projected to the global Equal-Area Scalable Earth-2 
(EASE2) grid with a spatial sampling of 36-km (O’Neill et al., 2021b). 
ω and the surface roughness parameter in SPL3SMP were not used. The 
SMAP SM and VOD products based on the DCA, SCA-H, and SCA-V in 
SPL3SMP were also used to inter-compare with the MCCA retrieved SM 
and VOD. 

2.2. Soil moisture networks 

Due to the heterogeneity of satellite footprints, 19 dense networks 
and 1 sparse network (the soil climate analysis network, SCAN) 
(Schaefer et al., 2007) were involved to evaluate MCCA and the other 
five remotely sensed SM estimates, including (a) eight networks (SCAN, 

HOBE, MySMNet, REMEDHUS, Yanco, Kyeamba, TERENO, and SMN- 
SDR) sourced from the International Soil Moisture Network (ISMN) 
database (Dorigo et al., 2011); (b) data for seven networks (South Fork, 
Walnut Gulch, St. Joseph’s, Reynolds Creek, Fort Cobb, Little Washita, 
and Little River) was obtained from the United States Department of 
Agriculture (USDA) (Jackson et al., 2012), (c) four additional networks 
(Shiquanhe, Maqu, Naqu, and Pali) were accessed from the National 
Tibetan Plateau Data Center, and (d) the SMN-WDL network built in the 
Tibet Plateau, focuses on observing soil moisture, soil temperature, and 
freeze/thaw state (Zheng et al., 2024). Basic information about these 
networks can be found in Table 1, with additional details available in 
Table S1 in the supplementary material. 

2.3. Other datasets 

Sand and clay fractions were obtained from the global soil texture 
database (SoilGrids250m) for use in the dielectric model (Hengl et al., 
2017). VWC has a significant impact on VOD and is closely related to 
biomass and canopy height. For comparative analysis, retrieved VOD 
from MCCA and other algorithms, was assessed against global ecosystem 
dynamics indicators. Canopy height data were collected from the global 
ecosystem dynamics investigation (GEDI) Level 3 gridded mean canopy 
height (version 2) (Dubayah et al., 2021), while above-ground biomass 
(version 4) was sourced from the ESA Climate Change Initiative (CCI) 
Programme (Santoro and Cartus, 2023) were utilized. Total precipita
tion data from the ERA5-Land hourly data (Muñoz Sabater, 2019), 
converted from hourly to a daily sum, were also used in the analysis. 
Frozen precipitation was also considered as it contributes to SM. All 
datasets were aggregated to align with the SMAP pixel grid size. Addi
tionally, a tree cover map derived from 3-m spatial resolution Planet
scope images in Africa was used to analyze the VODs in the Sahara 
deserts (Reiner et al., 2023a). This tree cover map provided detailed 
information on tree distribution and density at a spatial resolution of 

Table 1 
The dense soil moisture networks information.  

Network 
name 

Country Climate 
regime 

Depth 
(cm) 

Sensor 
numbers 

Data period 
used 

Network 
name 

Country Climate 
regime 

Depth 
(cm) 

Sensor 
numbers 

Data period 
used 

HOBE Denmark Temperate 0–5 27 
2015/03/ 
31–2019/03/ 
13 

Fort Cobb USA Temperate 5 14 
2015/03/ 
31–2019/03/ 
04 

MySMNet Malaysia Tropical 0–5 7 
2015/03/ 
31–2015/12/ 
31 

Little 
Washita 

USA Temperate 5 19 
2015/03/ 
31–2019/03/ 
25 

REMEDHUS Spain Temperate 0–5 20 
2015/03/ 
31–2019/01/ 
01 

Little River USA Temperate 5 29 
2015/03/ 
31–2018/07/ 
19 

Yanco Australia Semi-Arid 0–5 12 
2015/03/ 
31–2018/08/ 
27 

Shiquanhe China Cold 5 12 
2015/03/ 
31–2019/08/ 
31 

Kyeamba Australia Temperate 0–5 7 
2015/03/ 
31–2018/08/ 
27 

Maqu China Cold 5 16 
2015/03/ 
31–2019/05/ 
31 

TERENO Germany Temperate 5 4 
2015/03/ 
31–2019/04/ 
03 

Naqu China Polar 0–5 44 
2015/03/ 
31–2018/10/ 
15 

Walnut 
Gulch USA Arid 5 29 

2015/03/ 
31–2019/12/ 
31 

Pali China Tundra 0–5 17 
2015/06/ 
20–2018/10/ 
10 

St. Joseph’s USA Cold 5 10 
2015/03/ 
31–2019/02/ 
27 

SMN-SDR China Continental 3 34 
2018/09/ 
11–2021/05/ 
07 

South Fork USA Cold 5 20 
2015/03/ 
31–2018/12/ 
31 

SMN-WDL China Polar 5 10 
2019/09/ 
19–2021/11/ 
17 

Reynolds 
Creek 

USA Arid 5 18 
2015/03/ 
31–2018/02/ 
20 

SCAN USA – 5 134 
2015/04/ 
02–2021/03/ 
30 

Sensor numbers refer to the maximum station of a network in the validation period, if two sensors are installed at the same location (same longitude and latitude, but 
different sensors), it is treated as one. 
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100 m. 
To compare the results of MCCA, SMAP SM and VOD products from 

MT-DCA (Konings et al., 2017) version 5 (Feldman et al., 2021a), and 
SMAP-IB (Li et al., 2022) were utilized. 

3. Methodology 

3.1. Multi-channel collaborative algorithm 

MCCA is based on the two-component version of the τ-ω model 
proposed by Shi et al. (2008), which for SMAP is written as: 

TbP = Ve
P +Vt

P • es
P, (1)  

where subscript P stands for polarization (H- or V-), superscript s stands 
for soil surface, es

P is emissivity of rough soil surface, Ve
P is the vegetation 

emission term, and Vt
Pis the vegetation transmission term. The variables 

Ve
P and Vt

P can be calculated as: 

Ve
P = ev

P • (1+ΓP) • Tv, (2)  

Vt
P = ΓP • Ts − ev

P • ΓP • Tv, (3)  

where superscript v stands for vegetation, Ts and Tv are physical tem
peratures of the vegetation and soil, respectively, ΓP is vegetation 
transmissivity, ev

P is the vegetation emissivity that can be expressed as 
(1 − ωP) • (1 − ΓP), and ωP is the single scattering albedo. MCCA needs 
at least two channels in the retrieval procedure. Among them, one 
channel is set as the core channel, and the others are set as collaborative 
channels. H-polarization was set as the core channel in this study. The 
Tb at V-polarization can therefore be written as an equation of Tb at H- 
polarization without any assumptions such that: 

TbV = Ve
V − SrVr • Ve

H + SrVr • TbH , (4)  

where Sr =
es

V
es

H 
is the ratio of soil emissivity as a function of SM and 

surface roughness (Rou); and Vr =
Vt

V
Vt

H 
is the ratio of the vegetation 

transmission term, more details can be found from the supplementary 
material in Zhao et al. (2021). 

Given Tb for a specific channel (H or V) and rearranging eqs. (1)–(3), 
the τ-ω model can be written as: 

a′ • Γ2
P + b′ • ΓP + c′ = 0, (5) 

with parameters a′, b′, c′ defined as: 

a′ = −
(
1 − es

P

)
• (1 − ωP) • Tv, (6)  

b′ = es
P • [Ts − (1 − ωP) • Tv ], (7)  

c′ = (1 − ωP) • Tv − Tbv
P, (8)  

where Tbv
P is the Tb emitted from vegetated areas. Importantly, a′ + c′ <

0 indicates a vegetated area, and a′ + c′ = 0 indicates a bare soil. 
Moreover, the analytical solution of the general quadratic eq. (5) can be 
used to derive ΓP as: 

ΓP =
− b′ ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b′2 − 4 • a′ • c′

√

2 • a′ , (9)  

and VOD can be calculated according to Beer’s law: 

VODP = − ln(ΓP) • cosθ, (10)  

where θ is the incidence angle (observation angle relative to nadir at 
ground) of SMAP. 

For certain vegetation properties, the electromagnetic radiation at 
different channels will interact with different parts of the vegetation 

(water content), thus leading to different VODs, which can be described 
using the general function Fasm proposed by Zhao et al. (2021) based on 
previous studies (Jackson and Schmugge, 1991; Wigneron et al., 1995), 
given as: 

Fasm :
VODH

VODV
=

(
fH

fV

)Cf

•
sin2θ • CH + cos2θ
sin2θ • CV + cos2θ

, (11) 

Because SMAP has only L-band observations at 40◦, the frequency 
and incidence angle dependent component are ignored, and Fasm can be 
simplified as: 

Fasm :
VODH

VODV
=

sin240 • CH + cos240
sin240 • CV + cos240

, (12)  

where CH and CV are parameters characterizing the dependence of VOD 
on polarizations, respectively. They were set as 1 in the current MCCA 
SMAP SM retrieval procedure. 

Because SMAP only has two channels, it is challenging to incorporate 
the polarization dependence of every related parameter without the use 
of ancillary data. Therefore, the polarization dependence of ω is not 
considered in this study. When given ω, roughness parameter, and SM 
values, the corresponding VOD can be calculated from the Tb at H-po
larization (core channel) by eqs. (9) and (10), and the Tb at V-polari
zation (collaborative channel) can be estimated by eq. (4), with VOD at 
V-polarization calculated by eq. (12). The estimated Tb at V-polarization 
is then utilized to choose the best SM value by minimizing the cost 
function Φ such that: 

minΦ =

(
Tbestimated

V − Tbobserved
V

)2

Tbobserved
V

, (13)  

where Tbestimated
V is the Tb estimated by eq. (4), and Tbobserved

V is the 
observed Tb at V-polarization. Finally, once the SM is retrieved, VODs at 
H- and V-polarizations can be calculated by eqs. (9) and (10). The 
flowchart of MCCA is shown in Fig. 1, which can be implemented in both 
ergodic form and iterative form (Zhao et al., 2021). To reduce the usage 
of auxiliary data, the ergodic form of MCCA was implemented in this 
study, in which a series of SM values from 0.001 (unit: m3/m3) to 
porosity (the fraction of void space in the soil, unit: m3/m3) were set as 
input. 

3.2. Advancement of the algorithm for parameter self-calibrating 

The successful implementation of MCCA with SMAP data hinges on 
the calibration of ω and Rou at L-band, based on only two SMAP Tb 
observations and the fact that using the τ-ω model it is difficult to 
disentangle the scattering albedo from the soil roughness effect 
(Wigneron et al., 2017). To address this challenge, a self-calibrating 
framework was proposed that fine-tunes algorithm parameters 
through the utilization of time-series Tb observations while leveraging 
an information theory-based strategy. 

Information theory has played a significant role in the field of remote 
sensing, offering valuable insights and techniques. For example, Wang 
and Bras (2011) proposed a model for estimating evapotranspiration 
based on the theory of maximum entropy production. Similarly, entropy 
has been employed in the design of soil moisture monitoring networks, 
such as the SMOS L3 SM study conducted by Kornelsen and Coulibaly 
(2015), as well as the development of an improved AGB model as 
demonstrated by Adnan et al. (2021). In this study, two information 
theory metrics are employed, namely the degree of information (DoI) 
and the Wasserstein distance, to determine the appropriate values for ω 
and Rou, respectively. The minimal DoI can give a relatively high co
efficient of correlation value with relatively reasonable ω, and the 
minimal Wasserstein distance tends to find SM with low values of 
ubRMSD based on the test on the in-situ observations, more details can 
be found in Fig. S1 in the supplement. Accordingly, the usage of these 
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two metrics is first introduced, with data from 2016 to 2018 used as an 
example to demonstrate the parameter self-calibrating framework. 

The DoI has been proposed by Konings et al. (2015) for quantifying 
the number of parameters that can be robustly retrieved from a given 
dataset. Accordingly, this study has utilized the DoI to assess the inde
pendent information between SM and VOD. To optimize the value of ω 
within the range of 0 to 0.2, with a step of 0.001, a minimum DoI 
approach at each given Rou was employed according to: 

DoI = N −
T(SM,VOD)

H(SM,VOD)
, (14)  

where N is 2 (because SM and VOD are two independent variables); 
T(SM,VOD) is the total correlation quantifying the amount of depen
dence among SM and VOD, and H(SM,VOD) is the joint entropy, 
expressed as: 

H(SM,VOD) = −
∑

SM

∑

VOD
p(SM,VOD) • log2p(SM,VOD), (15)  

T(SM,VOD) = H(SM)+H(VOD) − H(SM,VOD), (16)  

where p(SM,VOD) is the joint probability mass function (pmf) of SM and 
VOD, H(SM) and H(VOD) are the Shannon entropy of SM and VOD, 
respectively (Cover and Thomas, 2005), and H(SM) is described as: 

H(SM) = −
∑

p(SM)log2p(SM), (17)  

where p(SM) is the pmf of SM. The equation of H(VOD) is not listed 
above because its form is the same as H(SM). The calculation of entropy 
is affected by the choice of bin size, so Scott’s rule (Scott, 1979) was 
employed to determine the bin size, as suggested by Konings et al. 
(2015). However, it is important to note that Scott’s rule is influenced by 
the standard deviation and size of the data. To ensure the stability of DoI 
values, it is preferable to utilize a larger dataset, DoIs at different ω for a 
given Rou shared the same bin size calculated from the whole set. 
Furthermore, employing the same bin size configuration allowed for the 
comparability of DoIs at the same level. It is important to clarify that SM 
and VOD are two distinct quantities with no inherent dependence. 
Although VOD is related to SM through the total Tb of a vegetated 
surface, as calculated using eqs. (1) and (4), the calibration of ω based on 
minimum DoI does not imply an interdependence between SM and VOD. 

The parametric surface roughness model proposed by Zhao et al. 
(2015) was used to characterize the impact of surface roughness with 
the specification of an exponentially correlated surface. This model 
proposed a parameter Rou based on geometric roughness variables 
(Rou = s2

l , root mean square height s and correlation length l, in centi
meters) to represent surface roughness and was separately parameter
ized for H- and V-polarizations. For a given ω, the minimum Wasserstein 
distance (WD) between SM and VOD was used to determine Rou ac
cording to Ramdas et al. (2017): 

WD(p, q) = inf
γ∈
∏

(p,q)

∫

ℝ×ℝ
|SM − VOD|dγ(SM,VOD), (18)  

where 
∏
(p, q) represents the set of all couplings of p and q, a coupling γ 

is a joint probability measure on ℝ × ℝ whose marginals are p, q on SM 
and VOD, respectively. The Wasserstein distance is a distance function 
defined between probability distributions on a given metric space and 
has been widely used as a loss function in deep learning like generative 
adversarial networks (Arjovsky et al., 2017; Gulrajani et al., 2017). To 
determine the optimal Rou, a range of [0, 4.5] with a step of 0.01 was 
considered for a given ω, and the minimum Wasserstein distance was 
utilized as a criterion for selection. 

SMAP Tbs from the period of 2016 to 2018 were utilized in this study 
to calibrate Rou and ω on a global scale. The parameter self-calibrating 
framework was performed for each pixel, following the flowchart pre
sented in Fig. 2. 

The self-calibrating of Rou was carried out under two extreme con
ditions. For the first condition, which was assumed a smooth surface, the 
following procedure was followed: 

(1) Rou was initially set to 0 globally. Using the MCCA algorithm, 
201 pairs of SM and VOD at H and V polarizations were retrieved fora 
range of ω from 0 to 0.2 with a step of 0.001. The bin size for DoI 
calculation was determined using all the 201 pairs of time series SM and 
H-polarized VOD. The ω value corresponding to the minimum DoI was 
selected as the result. 

(2) With the ω value obtained from step (1), 451 pairs of time series 
SM and VOD were retrieved using MCCA for Rou values ranging from 
0 to 4.5 with a step of 0.01. The first initial Rou (Rouinit1) was optimized 
by minimizing the WDs calculated by SM and VOD at H-polarization. 

For the second condition, which assumed no vegetation scattering, 
the second initial Rou (Rouinit2) was optimized using the same procedure 
as step (2) in the first condition, but with ω fixed at 0. 

Extreme value-based parameter estimation is frequently utilized in 
remote sensing-based algorithms. Two well-known examples of such 

Fig. 1. Flowchart of the MCCA, adapted from the flowchart in Zhao 
et al. (2021). 
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algorithms are the surface energy balance system (Su, 2002) and the 
surface energy balance algorithm for land (Bastiaanssen et al., 1998). 
The final Rou value used in the retrieval process was calculated as the 
simple arithmetic average of the two initial Rou values at extreme 
conditions, according to: 

Rou = (Rouinit1 +Rouinit2)/2, (19) 

The spatial distribution and boxplot of Rou are shown in Fig. 3. To a 
certain extent, the retrieved Rou shows topographical features from 
mountainous areas like the Himalayan Mountains in Asia and the Tibesti 
Mountain in the Sahara Desert. The spatial pattern of Rou is analogous to 
that of the roughness parameter in the SMAP DCA algorithm (Chaubell 
et al., 2020) and the global roughness map estimated from the SMOS 
data in 2011, as reported in Parrens et al. (2016), and roughness ob
tained from the Advanced Microwave Scanning Radiometer for Earth 
Observing System (AMSR-E) (Karthikeyan et al., 2019). However, sur
face roughness is not only due to topography but also due to other kinds 
of small-scale heterogeneities in ground permittivity (Schwank et al., 
2010). Large Rou values are observed in dense vegetation regions, such 
as tropical forests (e.g., Amazon in Brazil, Congo Basins, and South-East 
Asia) and boreal forests at high latitudes. The high Rou values in dense 
vegetation regions may be attributed to the presence of ground litter 
lying at the bottom of the canopy, which affects microwave emission but 
is not accounted for in the RTM of this study. It is consistent with pre
vious literature that found high roughness effects in forested areas 
(Grant et al., 2008; Grant et al., 2007; Parrens et al., 2016). 

The final ω was calibrated by repeating step (1) of calibrating Rou, 
but with the constant Rou value replaced by the final Rou value. Fig. 4(a) 
displays the global map of ω, having a similar spatial pattern to the 

averaged time series of ω retrieved in Baur et al. (2021) and the ω map 
obtained by MT-DCA in Konings et al. (2017). Fig. 4(b) shows that 
forests tend to have higher ω values compared to other classifications. 
This is because scattering increases in larger and more complex canopies 
(Baur et al., 2021). Only 6% of the pixels attained ω >0.15. These pixels 
were mostly in water bodies (45.8%), and so could be filtered based on 
the water fraction. Additionally, 13% of the pixels with high ω values 
were associated with grasslands, primarily located in the far northern 
regions of Canada and the Tundra, where significant water bodies are 
present, which aligns with the result from MT-DCA in Konings et al. 
(2017). 

3.3. Evaluation methods 

The comparison of MCCA retrieved SM and VOD with five other 
products was conducted during the same period, specifically at the 
overpass of local 6:00 AM because MT-DCA and SMAP-IB only provide 
descending data. This comparison was conducted globally, encompass
ing both SM and VOD data over three consecutive years from 2016 to 
2018. The following steps were taken in the process: (a) removal of 
outliers falling outside the range of Q1–1.5•IQR and Q3 + 1.5•IQR, 
where Q1 and Q3 are the first and third quantiles, and IQR is the inter- 
quantile range (Q3-Q1); (b) exclusion of pixels with <30 data samples; 
and (c) elimination of other products when “Scene Flags” > 1 and 
“Soil_Moisture_StdError” > 0.05 in SMAP-IB during the validation of SM 
at networks, following the SMAP-IB product recommendations. Addi
tionally, “Optical_Thickness_Nad” >0.05 in SMAP-IB was also used to 
exclude VOD data when comparing the global pattern of these six 
products. 

Fig. 2. Flowchart of procedure for self-calibration of Rou and ω.  
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Fig. 3. (a) Spatial distribution, and (b) IGBP-based boxplot of the final Rou (s2/l, unit: cm) obtained by data from 2016 to 2018. The box shows the 25th and 75th 
percentiles around the median and the whiskers extend to 1.5 times the interquartile range around the percentiles. Abbreviations: GRA (Grasslands), OSH (Open 
Shrublands), CRO (Croplands), SAV (Savannas), URB (Urban and built-up), CSH (Closed shrubland), CVM (Cropland/natural vegetation mosaics), WSA (Woody 
savannas), DBF (Deciduous broadleaf forest), ENF (Evergreen needleleaf forest), MF (Mixed forests), DNF (Deciduous needleleaf forest), EBF (Evergreen broadleaf 
forest), and BSV (Barren). 

Fig. 4. (a) Spatial distribution, and (b) IGBP-based boxplot of ω obtained by DoI using data from 2016 to 2018.  
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Soil moisture was evaluated with statistical metrics, including 
Pearson’s correlation coefficient (R), bias (m3/m3), and ubRMSD (m3/ 
m3) (Entekhabi et al., 2010b). The temporal range of SM in the networks 
is shown in Table 1, with freeze conditions filtered by LST <273.15 K 
during pre-processing. Given the surface heterogeneity within the SMAP 
footprint, meter-scale in-situ measurements from stations may not pre
cisely represent conditions at the kilometer scale of a pixel. Therefore, 
for each soil moisture observation dense network, a rectangle boundary 
was defined using the maximum and minimum longitude and latitude of 
network stations. The retrieved SM of the pixel within this bounding 
rectangle was averaged and compared with the network observations. 
Soil moisture from network observations was computed as the arith
metic average of all stations in the network at the hour closest to the 
overpass time. For sparse networks such as SCAN, the overall and me
dian values of statistical metrics were calculated for intercomparison 
across all pixels. 

The VOD was evaluated with biomass and canopy height. Because 
biomass is an annual dataset, the annual averaged VOD (2017 and 2018) 
was calculated to compare with biomass, and the annual VOD was 
averaged to compare with canopy heights. 

3.4. Sensitivity analysis 

The global sensitivity analysis has been widely used to evaluate the 
uncertainty as described in Razavi et al. (2021), including remotely 
sensed optical RTM (Chen et al., 2012; Li et al., 2015). A global sensi
tivity analysis method called high dimensional model representation 
(HDMR) (Herman and Usher, 2017; Li et al., 2010) was employed to 
analyze the sensitivity of Tb to SM, VOD, and LST in the MCCA retrieval. 
Retrieved time-series SM, VOD (H- or V-polarization), and surface 
temperature (LST) from 2016 to 2018 were set as inputs, and Tb (H- or 
V-polarization) was set as the output to construct a map of the rela
tionship and analyze the sensitivity of Tb to SM, VOD, and LST over the 
globe. 

4. Results and analysis 

4.1. Soil moisture 

4.1.1. Spatial patterns of soil moisture 
The global spatial pattern of SM is presented in Fig. 5, based on data 

from 2016 to 2018. The six rows are the results of MCCA, MT-DCA, DCA, 
SCA-H, SCA-V, and SMAP-IB respectively, while the two columns depict 
the annual average and seasonal amplitude of SM, respectively. The 
seasonal amplitude was computed as the annual average of the differ
ence between 95% and 5% percentile of time-series SM after applying a 
45-day moving-average filter to the data (Konings et al., 2017; Li et al., 
2022). 

From the annual average SM, MCCA was found to exhibit a similar 
spatial pattern to the other algorithms. The lowest SM values were 
observed in desert areas (e.g., the Sahara, the Taklamakan in the 
northwest of China, and deserts of Australia, etc.). Conversely, the 
highest SM values were found in dense vegetation areas such as the 
Amazon and Congo basins. The DCA has higher SM values than other 
products in the above areas, and South Asia (Fig. 5e). MT-DCA has 
similar SM values in desert areas but drier SM values in tropical rain
forests, and the highest SM appears in boreal forests (Fig. 5c). The dry- 
wet gradient of MCCA SM is similar to other products, though MCCA was 
wetter than the other five products in areas of east Brazil, and the 
western parts of North America. The gradient of SM from the Congo 
basin to the Sahel of MCCA is rather like that in the MT-DCA than the 
others, with MCCA and MT-DCA also showing a lower SM gradient than 
the other algorithms. The difference is most apparent in the boreal 
forests, with the MCCA and MT-DCA being wetter than other products. 

The right column in Fig. 5 shows areas with mid-range SM values 
that present the highest seasonal amplitude, which aligns with the 

regions affected by the global monsoon (Fig. 1. in Huang et al. (2020)). 
In the densely vegetated areas near the equator, the magnitude and dry- 
wet gradient of the MCCA SM seasonal amplitude is smaller than that of 
the other products shown in the second column of Fig. 5. SMAP-IB and 
both of the SCA SM options had higher dry-wet gradients of seasonal 
amplitude between the tropical forests and non-forest areas than that of 
the other products. 

4.1.2. Validation and inter-comparison of soil moisture products 
In this section, the six SM products were compared with the 19 dense 

SM networks and the SCAN, across various underlying surface and 
climate zones. The validation statistics are shown in Table 2 and Fig. 6. 
Overall, all six products had comparable R values (Fig. 6a). The overall 
items in Table 2 show SMAP-IB had the highest correlation with an R- 
value of 0.764, followed by DCA (0.753) and MCCA (0.744) in dense 
networks, which performed slightly better than the other products. For 
SCAN, both inter-comparison methods show a comparable correlation 
between all six products. For all six products, R values exceeded 0.6 at 
most of the networks. All the algorithms performed well for the net
works located in the Tibet Plateau except SMN-WDL, where the number 
of quality-controlled SM values was limited. However, when the quality 
control procedure of SMAP-IB was discarded and the MT-DCA SM 
product was excluded, the correlations of the remaining four SM prod
ucts all exceeded 0.7. The lowest performance in terms of R occurred at 
the SMN-SDR, installed in the Shandian River Basin of China, with lower 
R scores compared to those reported by Zheng et al. (2022). This 
discrepancy was attributed to differences in upscaling methods used for 
the in-situ observations and the application of quality flags. The 
MySMNet network installed in the tropical forest of Malaysia also 
exhibited a relatively low R-value, which aligns with findings from 
Ayres et al. (2021), indicating the challenging nature of accurately 
estimating SM in forested areas due to the complex structure of forests, 
litter under the canopy, and signal attenuated by the dense structure of 
tree trunks and branches. 

In dense networks (except TERENO), MCCA, DCA, and SCA-V over
estimated the SM with an overall bias of 0.02 m3/m3, 0.02 m3/m3, 
0.014 m3/m3, while MT-DCA and SCA-H underestimated SM with a dry 
bias of 0.014 m3/m3, and 0.021 m3/m3 respectively, SMAP-IB had the 
lowest dry bias of 0.006 m3/m3. The bias results are consistent with the 
spatial pattern shown in Fig. 5, and pixel-based validation with a median 
value in the networks (Li et al., 2022), but different from other evalu
ation work by Ma et al. (2019). 

Table 2 and Fig. 6 indicate that MCCA performed better in terms of 
ubRMSD over most of these networks (10 over 20), followed by SCA-V 
with 4 networks. The overall ubRMSD of MCCA (0.055 m3/m3) was 
slightly lower than DCA and SMAP-IB (0.061 m3/m3). 

Four networks from different continents were selected to visualize 
the time series performance of the six SM products in Fig. 7. It’s observed 
that MCCA captures the temporal variation, including precipitation 
events (Fig. 7a), surface thawing in Naqu (Fig. 7c), irrigation (Fig. 7e), 
and dry-down trends (Fig. 7g), similar to the other five products. All 
products overestimate SM from July to September 2016, especially SCA- 
V which hits an upper retrieval limit at the Kyeamba site. 

4.2. Polarization-dependent vegetation optical depth 

4.2.1. Spatial patterns of vegetation optical depth 
Fig. 8 presents the global spatial pattern of VOD based on data from 

2016 to 2018. MCCA could retrieve both H- and V-polarized VOD due to 
the analytical solution of transmissivity, as shown in Fig. 8 (a-d). 
Because SCA-H and SCA-V algorithms use optical vegetation indices as a 
proxy of VWC, their VOD is the same as shown in Fig. 8 (i, j). The spatial 
patterns of annual average VOD of all products exhibited similarities to 
SM as shown in Fig. 5. Regions characterized by semi-arid conditions 
tended to have lower VOD values, while tropical forests exhibited the 
highest VOD values. Among all the products, MT-DCA had the highest 
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Fig. 5. Global distribution of (left) annual averaged, and (right) mean annual seasonal amplitude (SA) of different SM products from 2016 to 2018, (a-b) MCCA, (c-d) 
MT-DCA, (e-f) DCA, (g-h) SCA-H, (i-j) SCA-V, and (k-l) SMAP-IB. 
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Table 2 
The network-based validation statistics of different retrieval algorithms with the best performance of the six SM products in each network are marked in bold. Num1 
represents the number of samples used for calculating metrics, and Num2 represents the total number of effective retrievals that matched the in-situ observations for 
each product.  

Method Network R Bias 
(m3/ 
m3) 

ubRMSD (m3/ 
m3) 

Num1 Num2 Network R Bias 
(m3/ 
m3) 

ubRMSD (m3/ 
m3) 

Num1 Num2 

MCCA 

Little River 

0.874 0.056 0.026 564 1179 

MySMNet 

0.543 0.108 0.045 95 229 
MT- 

DCA 
0.854 0.038 0.041  1001 0.630 0.018 0.038  186 

DCA 0.861 0.106 0.034  1179 0.627 0.123 0.046  229 
SCA-H 0.822 0.081 0.040  1179 0.485 0.143 0.058  229 
SCA-V 0.834 0.132 0.032  1179 0.625 0.137 0.048  229 
IB 0.846 0.068 0.033  581 0.566 0.102 0.044  96 
MCCA 

Little Washita 

0.865 0.023 0.033 651 1436 

SMN-SDR 

0.380 ¡0.033 0.040 240 963 
MT- 

DCA 
0.885 0.010 0.051  706 0.419 − 0.050 0.057  388 

DCA 0.894 0.008 0.033  1429 0.405 − 0.051 0.046  641 
SCA-H 0.869 − 0.050 0.029  1429 0.414 − 0.098 0.042  641 
SCA-V 0.891 ¡0.005 0.027  1429 0.403 − 0.062 0.043  641 
IB 0.880 − 0.009 0.037  666 0.445 − 0.067 0.042  244 
MCCA 

Reynolds 
Creek 

0.813 0.008 0.045 400 1013 

SMN-WDL 

0.583 0.013 0.026 44 776 
MT- 

DCA 0.805 − 0.029 0.046  728 0.619 − 0.064 0.039  157 

DCA 0.797 − 0.016 0.045  915 0.593 0.048 0.049  418 
SCA-H 0.773 − 0.075 0.049  915 0.610 − 0.018 0.043  418 
SCA-V 0.793 − 0.029 0.047  915 0.613 0.008 0.036  418 
IB 0.865 − 0.020 0.037  424 0.632 0.019 0.030  62 
MCCA 

South Fork 

0.634 − 0.075 0.054 496 1294 

Maqu 

0.768 0.074 0.044 93 1459 
MT- 

DCA 0.583 − 0.089 0.073  783 0.736 ¡0.023 0.058  133 

DCA 0.684 ¡0.052 0.048  1136 0.782 0.076 0.047  1090 
SCA-H 0.531 − 0.085 0.068  1136 0.718 0.033 0.072  1090 
SCA-V 0.633 − 0.063 0.054  1136 0.764 0.074 0.060  380 
IB 0.601 − 0.082 0.063  535 0.739 0.098 0.051  1090 
MCCA 

St. Joseph’s 

0.809 − 0.040 0.040 466 1384 

Naqu 

0.894 0.025 0.030 156 1264 
MT- 

DCA 0.822 − 0.055 0.049  1260 0.887 − 0.053 0.041  627 

DCA 0.821 − 0.023 0.037  1200 0.888 0.065 0.062  883 
SCA-H 0.596 − 0.034 0.060  1200 0.790 0.011 0.082  883 
SCA-V 0.755 ¡0.015 0.043  1200 0.835 0.030 0.062  883 
IB 0.812 − 0.043 0.044  492 0.847 0.026 0.049  220 
MCCA 

Walnut Gulch 

0.844 0.068 0.024 686 1437 

Pali 

0.687 0.055 0.028 200 1052 
MT- 

DCA 0.827 0.039 0.051  766 0.740 0.038 0.039  593 

DCA 0.830 0.046 0.031  1435 0.746 0.054 0.030  833 
SCA-H 0.808 − 0.020 0.022  1435 0.768 − 0.098 0.024  833 
SCA-V 0.834 0.028 0.023  1435 0.762 − 0.030 0.024  833 
IB 0.852 0.017 0.032  695 0.779 0.023 0.029  204 
MCCA 

Fort Cobb 

0.861 ¡0.007 0.031 631 1431 

Shiquanhe 

0.782 0.056 0.020 219 1388 
MT- 

DCA 0.879 − 0.021 0.049  706 0.803 0.003 0.043  676 

DCA 0.886 − 0.015 0.033  1414 0.798 0.031 0.034  819 
SCA-H 0.860 − 0.062 0.033  1414 0.795 − 0.057 0.017  819 
SCA-V 0.881 − 0.022 0.029  1414 0.800 − 0.007 0.019  819 
IB 0.885 − 0.039 0.035  647 0.807 − 0.013 0.032  224 
MCCA 

Kyeamba 

0.850 0.037 0.044 568 1179 

TERENO 

0.839 0.019 0.036 882 1795 
MT- 

DCA 
0.860 0.020 0.069  1013 0.850 0.000 0.054  1418 

DCA 0.866 0.040 0.058  1179 0.804 0.005 0.043  1771 
SCA-H 0.859 0.030 0.089  1179 0.714 − 0.052 0.046  1771 
SCA-V 0.870 0.050 0.074  1179 0.736 − 0.006 0.045  1771 
IB 0.881 0.002 0.060  578 nan nan nan 0 0 
MCCA 

Yanco 

0.846 0.061 0.044 571 1187 

Overall of dense 
networks 
except TERENO 

0.744 0.020 0.055 7574 22,223 
MT- 

DCA 
0.862 0.033 0.075  1016 0.684 − 0.014 0.071  13,896 

DCA 0.868 0.052 0.056  1187 0.753 0.020 0.061  19,447 
SCA-H 0.874 0.027 0.076  1187 0.706 − 0.021 0.073  19,447 
SCA-V 0.878 0.055 0.065  1187 0.711 0.014 0.067  19,447 
IB 0.881 0.028 0.066  583 0.764 ¡0.006 0.061  8160 
MCCA 

REMEDHUS 

0.795 0.016 0.032 714 1429 

Median of SCAN 

0.688 0.008 0.055 86,864 125,161 
MT- 

DCA 
0.817 − 0.010 0.054  1413 0.688 − 0.025 0.061  109,255 

DCA 0.836 ¡0.001 0.038  1429 0.707 0.003 0.054  111,104 
SCA-H 0.818 − 0.029 0.041  1429 0.660 − 0.042 0.058  111,106 
SCA-V 0.827 − 0.006 0.040  1429 0.693 − 0.001 0.052  111,106 
IB 0.841 − 0.014 0.047  723 0.719 0.000 0.056  93,167 

(continued on next page) 
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VOD in densely vegetated areas (Fig. 8e), while the spatial gradient of 
VOD for MCCA was comparable to that of the other products across the 
globe. In arid areas such as central Asia, and northwest China, DCA and 
SCA exhibited almost zero values, indicating little to no vegetation. In 
contrast, MCCA, MT-DCA, and SMAP-IB showed a presence of vegeta
tion in these regions based on their VOD values. 

Regarding the seasonal amplitude of VOD, all six products exhibited 
a similar spatial pattern in most areas of the globe. For example, North 
America showed a lower seasonal cycle in the west compared to the east, 
while central and western Asia exhibited a smaller amplitude than that 
of the periphery of Asia. DCA and SCA generally show higher amplitude 
than the other products in areas with a high seasonal cycle. The main 
difference in seasonal amplitude is observed in forested areas and 
transitional zones between forests and non-forests, particularly in the 
Amazon and Congo regions. In the Amazon, both the MCCA and MT- 
DCA VOD products exhibited a seasonal cycle, while the DCA and 
SMAP-IB had low seasonal amplitude except in areas close to streams of 
the Amazon River (Fig. 8h, l). However, this seasonal cycle was not 
observed in SCA (Fig. 8j). This discrepancy in seasonal amplitude arises 
because DCA and SCA use the NDVI climatology to initialize the 
retrieval or to directly calculate VOD, respectively (O’Neill et al., 
2021a). However, a saturation effect occurs for NDVI values higher than 
0.7–0.8 (Rodríguez-Fernández et al., 2018) due to the strong absorption 
in the red wavelength (Tian et al., 2016). Additionally, excessive regu
larization may have been applied in the DCA VOD retrievals (Chaparro 
et al., 2022), which makes the resulting VOD closely related to the prior 
input of the NDVI climatology. Therefore, the VOD of DCA and SCA 
shows less variability compared to that of MCCA and MT-DCA, which do 
not rely on auxiliary data in the retrieval process. Around the Congo 
basin, including the Sahel and south Congo, both MCCA VODs exhibit 

analogous spatial patterns to DCA, SCA, and SMAP-IB products, with the 
highest amplitude observed in MCCA products. However, no obvious 
gradient features are observed in MT-DCA (Fig. 8f). More detailed time 
series variations of VODs are shown and analyzed in Fig. S2 in the 
supplementary material. 

Fig. 9 presents the relationship between polarization-dependent 
VODs retrieved by MCCA after the retrieval spikes were removed. The 
VOD values between H- and V-polarization exhibit a strong correlation 
globally, except for arid areas like the Saraha desert where H-polarized 
VOD remains close to zero (Fig. 9a). The polarization-dependent VODs 
provide more information compared to polarization-independent VOD, 
as indicated by DoI > 1) (Fig. 9b). While the annual average difference 
between H- and V-polarized VOD is not prominent in most areas, dif
ference can be observed in tropical forests, the Sahara, southern Saudi 
Arabia, central Australia, and fragment areas in Asia (Fig. 9c). Generally, 
the H-polarized VOD was ~0.015 higher than the V-polarized VOD in 
densely vegetated areas, while the V-polarized VOD was ~0.03 higher 
than the H-polarized VOD in the Sahara. Further discussion is provided 
in Section 5.3. 

4.2.2. Relationship with aboveground biomass and canopy height 
Fig. 10 presents a comparison of the six VOD products with the ESA- 

CCI AGB from 2017 to 2018 (unit: Mg ha− 1) (Santoro and Cartus, 2023) 
and GEDI-based canopy height (Dubayah et al., 2020; Dubayah et al., 
2021). It was found that all six products exhibited a strong linear rela
tionship with biomass and canopy height. Notably, the canopy is semi- 
transparent to the L-band, which in turn is more sensitive to the tree’s 
vertical structure. Additionally, the small leaves of the tree are essen
tially transparent. It is logical that VOD would have a more pronounced 
linear relationship with tree height, whereas foliage affects AGB but not 

Table 2 (continued ) 

Method Network R Bias 
(m3/ 
m3) 

ubRMSD (m3/ 
m3) 

Num1 Num2 Network R Bias 
(m3/ 
m3) 

ubRMSD (m3/ 
m3) 

Num1 Num2 

MCCA 

HOBE 

0.729 0.018 0.044 780 2123 

Overall of SCAN 

0.721 0.007 0.086 86,864 125,161 
MT- 

DCA 
0.757 − 0.089 0.050  1744 0.607 − 0.033 0.104  109,255 

DCA 0.771 0.027 0.052  2031 0.740 0.010 0.085  111,104 
SCA-H 0.677 ¡0.002 0.052  2031 0.735 − 0.033 0.090  111,106 
SCA-V 0.753 0.024 0.049  2031 0.743 0.008 0.086  111,106 
IB 0.822 − 0.021 0.050  806 0.737 0.007 0.097  93,167  

Fig. 6. The network-based (a) R and (b) ubRMSD (unit: m3/m3) from Table 2.  
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canopy height. The relationships between MCCA VOD at both V- and H- 
polarizations and biomass/canopy height are similar to those of MT- 
DCA and SMAP-IB. The relationship between SCA (DCA) and biomass 
and canopy height have a sharp increment around VOD of 1.25 
(Fig. 10d, e, j, k) as expected since they are not retrieved but directly 
computed from NDVI. These findings about MT-DCA, DCA, and SCA are 
consistent with the SMAP-IB algorithm discussed in Li et al. (2022). 
Overall, Fig. 10 offers valuable information about the spatial relation
ships between VOD, biomass, and canopy height. However, for a 
comprehensive understanding of these relationships over time, further 
investigation and analysis considering the temporal dynamics of VWC 
and environmental conditions are necessary. 

5. Discussion 

5.1. Global sensitivity analysis of MCCA 

Fig. 11 maps the global sensitivity analysis results of MCCA at dual- 

polarization using a HDMR approach. The analysis was conducted based 
on the retrieved results from 2016 to 2018, and the least robust pixels 
(total sensitivity indices <0.9 or >1.1) were masked as blank. This 
analysis revealed that different areas have different dominant factors 
influencing the Tb at H- and V-polarization in the MCCA. For H-polar
ization (Fig. 11a), SM had the highest sensitivity to Tb in arid areas such 
as the northern Sahel, deserts in Australia, and the Gobi in Mongolia. In 
the western parts of the Americas and Asia, both SM and surface tem
perature (LST) contribute substantially to Tb variations, as indicated by 
the purple color. In densely vegetated areas, the sensitivity of Tb at H- 
polarization was found to be higher in boreal forests compared to 
tropical forests. In the transition zones between dense and sparse 
vegetated areas, the dominant factors were SM and VOD (colored in 
teal), such as in the savanna climate areas around the Amazon, Congo 
basin, and India. In Southeast China, the sensitivity of Tb to LST was 
higher than that of SM and VOD. In summary, the sensitivity of Tb at H- 
polarization to these three variables exhibited distinct regional features. 

Regarding the result of Tb at V-polarization (Fig. 11b), the sensitivity 

Fig. 7. Time series and scatter plots of the six SM products with the period listed in Table 1 at (a-b) HOBE (Denmark), (c-d) Naqu (China), (e-f) Kyeamba (Australia), 
and (g-h) Little Washita (USA), respectively. Time series plots contain daily precipitation (mm/day) shown in the axis on the right side (grey bar). Note that daily 
precipitation accumulates liquid and frozen water, including rain and snow. 
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Fig. 8. Global distribution of annual averaged (left column), and mean annual seasonal amplitude (right column) of different VOD products from 2016 to 2018, (a-b) 
MCCA VOD-H, (c-d) MCCA VOD-V, (e-f) MT-DCA, (g-h) DCA, (i-j) SCA, and (k-l) SMAP-IB. 
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of SM and LST dominated most areas globally, except for the boreal 
forest (where VOD and LST were dominant) and the ocean-continent 
boundaries. This suggests that the VOD of the boreal forest exhibits 
significant annual dynamics. A decrease in VOD may potentially be 
linked to freezing in the boreal forest (Schwank et al., 2021). The area 
dominated by SM at V-polarized Tb was larger compared to that of H- 
polarization in Fig. 11a. Notably, many studies have found that Tb at H- 
polarization is more sensitive to SM at L-band, but using the one-factor- 
at-a-time (or step-wise) approach (Balsamo et al., 2006; Hornbuckle and 
England, 2004). However, when considering multiple factors, including 
LST, and vegetation effects, the dominance of SM influencing V-polar
ized Tb is greater than that of H-polarized Tb. This finding is consistent 
with the SMAP team’s previous use of SCA-V as the baseline SM retrieval 
algorithm (O’Neill et al., 2020), which generally outperforms the SCA- 
H. 

In the tropical rainforest areas near the equator, both H- and V- 
polarized Tbs exhibited higher sensitivity to SM and LST. This indicates 
that changes in Tb in these areas are primarily driven by variations in SM 
and LST, suggesting that the L-band microwave frequencies have a 
certain capability to retrieve SM even under the dense vegetation cover, 
such as in the Amazon and Congo basin. Conversely, the low sensitivity 
of VOD in these tropical densely vegetated areas may indicate that VOD 
tends to remain relatively stable, and its impact on Tb is weaker 
compared to changes in SM and LST. This finding is consistent with the 
results obtained from the SCA and DCA algorithms (see Fig. S3 in Sup
plementary material). However, it is important to note that MT-DCA 
shows higher sensitivity to SM in these areas compared to other algo
rithms, as indicated in Fig. S3. 

5.2. Uncertainty and variability of vegetation optical depth 

The MCCA retrieved VOD values are relatively smaller compared to 
other products, which corresponds to different model parameters lead
ing to different estimates of vegetation or roughness effects. This 
discrepancy in VOD can be partially attributed to the variation in 
effective roughness values used by different retrieval algorithms. For 
example, SCA has a roughness parameter (Hp) ranging from 0 to 0.16, 
MT-DCA uses a fixed global value of 0.13, DCA has a Hp range from 0 to 
approximately 2 (excluding areas heavily influenced by terrain, with a 
median of 0.56), and Rou in MCCA ranges from 0 to 3 (excluding areas 
heavily influenced by terrain, with a median of 0.79). Similarly, a recent 
study found that seasonal variation in VOD retrievals for dense tropical 

forests is strongly affected by constant omega values (Wang et al., 2023). 
Therefore, VOD and roughness parameters are more like conceptual 
variables as they are both effective values under the framework of the 
τ-ω model. It can be therefore very challenging to obtain their physical 
magnitudes (Frappart et al., 2020; Njoku and Chan, 2006; Wang et al., 
2021; Wigneron et al., 2017). Additionally, the roughness parameter, 
originally defined as a geometric roughness, is sensitive to surface 
dielectric properties (Bai et al., 2022; Peng et al., 2017; Schneeberger 
et al., 2004; Schwank et al., 2010; Wigneron et al., 2017; Wigneron 
et al., 2001). High emissivity (manifested as low dielectric constant) due 
to the presence of litter has been observed in ground experiments over 
forest and grass regions (Grant et al., 2008; Grant et al., 2007; Gugliel
metti et al., 2008; Saleh et al., 2006; Schwank et al., 2008) and in sat
ellite retrievals from SMOS and AMSR (Karthikeyan et al., 2019; Parrens 
et al., 2016). Consequently, the surface roughness can be influenced by 
the presence of litter and the dynamic processes of litter interception, 
which can result in a rough dielectric interface and thus affect the VOD 
retrieval. 

Fig. 12 shows the global distribution of R between MCCA VOD at H- 
polarization and other products (the result calculated by VOD at V-po
larization is in Fig. S4 in the supplementary material). The results 
indicate that there is a high correlation between MCCA and MT-DCA, 
DCA, and SMAP-IB VOD over most of the globe, particularly for DCA 
VOD. MT-DCA and SMAP-IB showed comparable correlations with 
MCCA in terms of trend, while SMAP-IB had a higher correlation with 
MCCA in terms of anomalies. It’s noteworthy that although DCA VOD 
exhibited lower seasonal amplitude in the tropical forests as shown in 
Fig. 8(h) and Fig. S2(c), the anomalies of MCCA VOD are highly corre
lated with DCA VOD (Fig. 12d). As mentioned in Fig. S2, it seems that 
MCCA had different oscillation with other products, which can be 
attributed to two features. First, MCCA utilized the relationship between 
SM and VOD of the core channel to derive the Tb at the collaborative 
channels. Second, the VOD calculation in MCCA was based on an 
analytical solution. Other algorithms (except SCA) employ multi- 
temporal (MT-DCA) or Tikhonov regularization (DCA, SMAP-IB) to 
minimize the solution space in their iterative procedure. The balance 
between smoothing and capturing short-time variability of VOD is 
challenging for regularization (Chaparro et al., 2022). 

5.3. Vegetation optical depth at dual polarization 

Section 4.2 indicates that there is a polarization difference in VOD at 

Fig. 9. Global distribution of polarization-dependent VOD (2016–2018) characteristics: (a) correlation coefficient between 7-day moving average H- and V-polarized 
VODs, (b) DoI between H- and V-polarized VODs, (c) annual averaged difference (H-polarization minus V-polarization), and (d) annual average seasonal amplitude of 
difference. Grey pixels indicate no valid data. 
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Fig. 10. Density scatter plots of the six VOD products (annually averaged) against AGB, in Mg ha− 1 (first two rows), canopy height (the last two rows), and the color- 
bars are in the log10 scale. 
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the satellite scale, with the differences in VOD polarization in this study 
mainly located in tropical rainforests and arid areas (Fig. 9). Fig. 13 
presents boxplots comparing the different SM and VOD products in two 
representative regions: the Sahara and an equatorial area. The figure 
highlights that the major difference between the products is observed in 
VOD rather than SM. In the Sahara region (Fig. 13a, b), varying ranges of 
VOD were observed among different products. DCA and SCA VOD values 
were zero in most of the Sahara due to the utilization of NDVI clima
tology and land cover type (parameter b is set as 0 in barren) in their 
calculation. MT-DCA and SMAP-IB exhibited small VOD values but not 
zero. MCCA VODs show distinct differences: MCCA VOD-H resembles 
SCA and DCA with values close to zero, while MCCA VOD-V resembles 
MT-DCA and SMAP-IB with a median value <0.04. It is noteworthy that 
recent research has indicated that more than one-quarter of Africa’s tree 
cover is outside areas previously classified as forest, extending even to 
the Sahara desert (Fig. 14a-b) (Reiner et al., 2023b). MCCA, MT-DCA, 
and SMAP-IB aligned well with the distribution of tree coverage in the 

Saraha, as shown in the right column of Fig. 14. and the fact that plants 
like ferns still occur today in the Tibesti mountains (of the Sahara) for 
supporting animals (Runge et al., 2022). However, further investigation 
is needed to explore vegetation distribution in the Sahara, especially 
since there is no valid tree coverage for the central Sahara region. 
Moreover, the Sahara vegetation exhibited higher V-polarized VOD 
(Fig. 14e) compared to H-polarized VOD (Fig. 14c), a phenomenon that 
requires additional research to understand its implications. 

The observed difference between VOD at H- and V-polarization in the 
densely vegetated area can be attributed to the impact of the canopy 
structure on the microwave radiation transfer process (Ulaby et al., 
1987; Wigneron et al., 1995). Canopy structure, which is affected by 
factors such as vertical stalks in forests, plays a significant role in this 
regard. This finding aligns with the result of previous studies conducted 
on forested experiments, such as the research by Grant et al. (2008). 
Additionally, recent advancements in polarized VOD estimation based 
on multi-angular SMOS observations and alternative algorithms that 

Fig. 11. Map of the global sensitivity analysis result of MCCA at (a) H-polarization, and (b) V-polarization. The sensitivity of LST, VOD (H/V), and SM to Tb (H/V) 
was used to construct the depth of red, green, and blue maps. For example, if the sensitivity of SM in HDMR is the highest at a pixel, it is colored blue; if the sensitivity 
of SM and LST are about equal with a small sensitivity of VOD, it is colored purple. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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incorporate microwave vegetation indices have also corroborated these 
findings (Bai et al., 2022). 

Fig. 15 illustrates density plots showcasing the relationship between 
VOD and AGB, along with canopy height for both H- and V- polariza
tions. These plots are based on the SMOS retrieval using the multi- 
temporal and multi-angular (MTMA) algorithm (Bai et al., 2022). 
Notably, the polarization difference of VOD is more pronounced in 
SMOS, resulting in significantly greater disparities between H- and V- 
polarization, AGB, and canopy height compared to the polarized VOD 
retrieved by MCCA from SMAP observations. The advantage of MCCA is 
that polarization-dependent VOD can be retrieved from limited SMAP 
observations. However, it requires the assumption that the vegetation 
omega is the same for both V- and H -polarization, resulting in un
certainties in VOD retrieval. In contrast, the MTMA utilizes SMOS multi- 
angular information to independently derive the vegetation albedo and 
VOD for V- and H- polarization. Thus, it is expected that the SMOS- 
derived VOD should be more reasonable. However, algorithms that 
utilize multi-angular information may have significant uncertainties 
when vegetation is dense due to a weak angle dependence of microwave 
emission. Consequently, differences in VOD performance with AGB and 
canopy height between SMOS and SMAP result from differences be
tween the multi-angular and dual-polarization algorithms. 

It’s important to note that, although SMOS theoretically provides 
more information with its multi-angular observations, the polarized 
VOD of MCCA in SMAP exhibits a stronger correlation with AGB and 
canopy height (Fig. 15). As there are currently only two products with 
polarization-dependent VOD, it is challenging to conclude which algo
rithm performs “better” in the retrieval of VOD. It is expected to 
implement the MCCA to SMOS data thus creating a physically consistent 

SMOS and SMAP polarization-dependent VOD. Based on the presented 
results and analysis, it is confirmed that there exists a polarization dif
ference in VOD at the satellite scale, which is not only caused by the 
retrieval algorithm. 

6. Conclusion 

This study introduced a novel parameter self-calibrating framework 
for the MCCA algorithm as a new approach for retrieving SM and 
polarization-dependent VOD using the dual-polarized Tb observations at 
the fixed incidence angle (40◦) from the SMAP mission. The whole 
MCCA algorithm offers two key features: 

(1) The new parameter self-calibrating framework uses information- 
based technology to obtain surface parameters including ω and surface 
roughness at a global scale without the need for ancillary data. 

(2) This method enables the retrieval of VOD with polarization dif
ferences simultaneously with SM. It is particularly challenging because 
SMAP only has two channels (dual-polarized Tb observations at a fixed 
incidence angle). 

To assess the performance of the retrieved SM and VOD, comparisons 
were conducted with five other SMAP-based algorithms, namely MT- 
DCA, DCA, SCA-H, SCA-V, and SMAP-IB. The evaluation of SM 
involved in-situ observations from 19 dense and 1 sparse soil moisture 
network. Given the challenge of comparing VOD with in-situ measure
ments, the polarization-dependent VODs were assessed using ESA-CCI 
AGB and GEDI-based canopy height. 

Based on the statistical metrics obtained from the network-based 
comparison, no algorithm demonstrated an absolute advantage over 
the others. Among the dense networks, SMAP-IB achieved the highest 

Fig. 12. Map of R between MCCA calculated VOD at H-polarization and other products (2016–2018). The left column is calculated by the 7-day moving average 
result, and the right column is calculated by the corresponding anomalies (VOD minus the 7-day moving average VOD). The blank pixels correspond to p values 
>0.05. No inter-mask is applied here. 
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overall R score of 0.764, followed by DCA (0.753) and MCCA (0.744). 
Regarding ubRMSD, MCCA exhibited the lowest value (0.055 m3/m3), 
followed closely by the SMAP-IB and DCA (0.061 m3/m3). Similar levels 
of accuracy were observed in the sparse network SCAN. The spatial 
pattern of different SM products exhibited similarities and differences. 

Both H- and V-polarized VOD retrieved by the MCCA exhibited 
analogous spatial patterns to VOD from other products. Arid areas 
generally exhibited low VOD values, while densely vegetated areas 
showed high VOD values. The trend (7-day moving average) and cor
responding anomalies of MCCA VOD had the highest correlation with 
DCA, while MT-DCA and SMAP-IB VOD showed a comparable correla
tion with MCCA in terms of trend. SMAP-IB has a higher correlation of 
anomalies with MCCA compared to MT-DCA. All six VOD products 
demonstrated strong linearity with AGB and canopy height. 

The MCCA retrieved results revealed a slight difference in the 
polarization-dependent VODs depending on the specific vegetation 
characteristics at the satellite scale while maintaining a high degree of 
correlation. The findings indicated higher H-polarized VOD in densely 
vegetated areas and higher V-polarized VOD in arid areas. The meth
odology employed in this study enhanced SMAP’s capability to retrieve 
polarized VOD, thus expanding its potential applications. The 

polarization-dependent VOD provides additional information and offers 
an opportunity to deepen understanding of the water transport in the 
soil-vegetation-atmosphere. By combining the polarization-dependent 
VODs at L-band (SMAP) and together with the VODs at different fre
quencies of AMSR (Hu et al., 2023), it should be possible to observe the 
vegetation hydraulic properties (Konings et al., 2021). 
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Fig. 14. Spatial distribution of tree coverage (a-b) and average VODs (c-l) from five VOD products (2016 to 2018): (c-d) MCCA VOD-H, (e-f) MCCA VOD-V, (g-h) MT- 
DCA, (i-j) DCA, and (k-l) SMAP-IB. The right columns show detailed views of the selected area indicated by the black box in the left column. Grey pixels represent 
areas with average VOD values below 0.01, while white pixels indicate regions with no valid data. No inter-mask is applied here. 

Z. Peng et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 302 (2024) 113970

20

– review & editing. Hui Lu: Writing – review & editing. Yu Bai: Data 
curation, Formal analysis. Panpan Yao: Data curation. Jingyao Zheng: 
Formal analysis. Zushuai Wei: Formal analysis. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The SMAP SM and VOD product using MCCA was developed by the 
Aerospace Information Research Institute, Chinese Academy of Sciences, 
with the data available at the National Tibetan Plateau/Third Pole 
Environment Data Center (https://doi.org/10.11888/Terre. 
tpdc.272088). The SMAP INRAE-Bordeaux (IB) VOD data set is avail
able at https://ib.remote-sensing.inrae.fr/. 

Acknowledgements 

This study was jointly supported by the National Key Research and 
Development Program of China (No. 2022YFB3903302) and the Na
tional Natural Science Foundation of China (No. 42090014). Nemesio J. 
Rodríguez-Fernández was partially supported by the CNES TOSCA 
project SMOS-HR and the Dragon V project (No. 59312). This research 
was supported in part by the U.S. Department of Agriculture, Agricul
tural Research Service. USDA is an equal opportunity provider and 
employer. This research was a contribution from the USDA Long-Term 
Agroecosystem Research (LTAR) network. We thank the reviewers and 
Prof. Brian K. Hornbuckle for comments that improved the paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.rse.2023.113970. 

References 

Adnan, S., Maltamo, M., Mehtätalo, L., Ammaturo, R.N.L., Packalen, P., Valbuena, R., 
2021. Determining maximum entropy in 3D remote sensing height distributions and 
using it to improve aboveground biomass modelling via stratification. Remote Sens. 
Environ. 260, 112464. 

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein generative adversarial networks. 
In: Doina, P., Yee Whye, T. (Eds.), Proceedings of the 34th International Conference 
on Machine Learning, pp. 214–223. Proceedings of Machine Learning Research: 
PMLR.  

Ayres, E., Colliander, A., Cosh, M.H., Roberti, J.A., Simkin, S., Genazzio, M.A., 2021. 
Validation of SMAP soil moisture at terrestrial National Ecological Observatory 
Network (NEON) sites show potential for soil moisture retrieval in forested areas. 
IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 10903–10918. 

Bai, Y., Zhao, T., Jia, L., Cosh, M.H., Shi, J., Peng, Z., Li, X., Wigneron, J.-P., 2022. 
A multi-temporal and multi-angular approach for systematically retrieving soil 
moisture and vegetation optical depth from SMOS data. Remote Sens. Environ. 280, 
113190. 

Balsamo, G., Mahfouf, J.F., Bélair, S., Deblonde, G., 2006. A global root-zone soil 
moisture analysis using simulated L-band brightness temperature in preparation for 
the hydros satellite mission. J. Hydrometeorol. 7, 1126–1146. 

Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M., 1998. A remote 
sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. 
J. Hydrol. 212–213, 198–212. 

Baur, M.J., Jagdhuber, T., Feldman, A.F., Akbar, R., Entekhabi, D., 2019. Estimation of 
relative canopy absorption and scattering at L-, C- and X-bands. Remote Sens. 
Environ. 233, 111384. 

Baur, M.J., Jagdhuber, T., Feldman, A.F., Chaparro, D., Piles, M., Entekhabi, D., 2021. 
Time-variations of zeroth-order vegetation absorption and scattering at L-band. 
Remote Sens. Environ. 267, 112726. 

Brunfeldt, D.R., Ulaby, F.T., 1984. Measured microwave emission and scattering in 
vegetation canopies. IEEE Trans. Geosci. Remote Sens. GE-22, 520–524. 

Chan, S.K., Bindlish, R., O’Neill, P., Jackson, T., Njoku, E., Dunbar, S., Chaubell, J., 
Piepmeier, J., Yueh, S., Entekhabi, D., Colliander, A., Chen, F., Cosh, M.H., 
Caldwell, T., Walker, J., Berg, A., McNairn, H., Thibeault, M., Martínez- 
Fernández, J., Uldall, F., Seyfried, M., Bosch, D., Starks, P., Holifield Collins, C., 
Prueger, J., van der Velde, R., Asanuma, J., Palecki, M., Small, E.E., Zreda, M., 
Calvet, J., Crow, W.T., Kerr, Y., 2018. Development and assessment of the SMAP 
enhanced passive soil moisture product. Remote Sens. Environ. 204, 931–941. 

Chaparro, D., Feldman, A.F., Chaubell, M.J., Yueh, S.H., Entekhabi, D., 2022. Robustness 
of vegetation optical depth retrievals based on L-band global radiometry. IEEE Trans. 
Geosci. Remote Sens. 60, 1–17. 

Fig. 15. Same as Fig. 10, but AGB and canopy height compared with the polarized VOD products: (a-b) and (e-f) SMAP, (c-d) and (g-h) SMOS. The R-values for SMAP 
differ from those in Fig. 10 because this figure represents an inter-mask of SMAP and SMOS. 

Z. Peng et al.                                                                                                                                                                                                                                     

https://doi.org/10.11888/Terre.tpdc.272088
https://doi.org/10.11888/Terre.tpdc.272088
https://ib.remote-sensing.inrae.fr/
https://doi.org/10.1016/j.rse.2023.113970
https://doi.org/10.1016/j.rse.2023.113970
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0005
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0005
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0005
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0005
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0010
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0010
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0010
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0010
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0015
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0015
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0015
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0015
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0020
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0020
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0020
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0020
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0025
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0025
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0025
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0030
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0030
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0030
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0035
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0035
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0035
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0040
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0040
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0040
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0045
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0045
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0050
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0055
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0055
http://refhub.elsevier.com/S0034-4257(23)00522-9/rf0055


Remote Sensing of Environment 302 (2024) 113970

21

Chaubell, M.J., Yueh, S.H., Dunbar, R.S., Colliander, A., Chen, F., Chan, S.K., 
Entekhabi, D., Bindlish, R., O’Neill, P.E., Asanuma, J., Berg, A.A., Bosch, D.D., 
Caldwell, T., Cosh, M.H., Collins, C.H., Martínez-Fernández, J., Seyfried, M., 
Starks, P.J., Su, Z., Thibeault, M., Walker, J., 2020. Improved SMAP dual-channel 
algorithm for the retrieval of soil moisture. IEEE Trans. Geosci. Remote Sens. 58, 
3894–3905. 
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