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A B S T R A C T   

Time series algorithms for soil moisture retrieval from synthetic aperture radar (SAR) data have steadily 
increased in popularity over the past decade due to the feasibility of decoupling the effect of other surface 
variables, and the increasing availability of dense time series SAR data. While soil moisture inversion from time 
series data can utilize more independent observations, the value of further constraints on the inversion process 
are widely acknowledged. However, how to constrain a time series retrieval for global soil moisture mapping is 
still unresolved. In this study, three kinds of time series constraints were further developed and evaluated, 
including the use of 1) temporal behavior of soil moisture and soil moisture bounds; 2) temporal behavior of 
vegetation or time-invariant vegetation; and 3) time series ensemble skill. The effect of these constraints was 
investigated using 4 years (2016–2019) C-band Sentinel-1 data collected over 547 worldwide stations from 17 
networks available on the international soil moisture network (ISMN) and intensive ground samples collected 
during the Fifth Soil Moisture Active and Passive Experiment (SMAPEx-5). While the effect of these temporal 
retrieval skills varies in time and space, the global validation yielded four general suggestions: 1) the assumption 
of time-invariant vegetation contributed negatively even for a short retrieval period of ≤12 days; 2) reliable soil 
moisture bounds of each retrieval period can substantially improve the retrieval statistics at the cost of an 
underestimated soil moisture range; 3) the temporal constraints of soil moisture and vegetation need to be used 
together with the soil moisture bounds for reliable estimation; 4) the use of an ensemble retrieval could partly 
remove the retrieval uncertainties at the expense of underestimating soil moisture variation. The use of these 
constraints resulted in a competitive correlation coefficient (R: 0.64), root mean square error (RMSE: 0.072 m3/ 
m3) and unbiased RMSE (ubRMSE: 0.052 m3/m3) at a spatial grid of 100 m, with similar performance achieved 
across a retrieval window up to 132 days.   

1. Introduction 

Surface soil moisture (top 5 cm) is important for its impact on land- 
atmosphere interactions and its partitioning of rainfall into runoff 
through regulation of the infiltration capacity of the soil (Demargne 
et al., 2014). Economic, social and environmental planning for a water- 
limited future requires a capacity to monitor soil moisture content at a 
level of spatial (0.1–1 km) and temporal (< 3 days) detail that does not 
currently exist (Peng et al., 2020). Despite the modest retrieval accu-
racy, the recent investments in space-borne Synthetic Aperture Radars 
(SAR) enables access to massive free SAR data with an enhanced data 
revisit of a few days, e.g., the NASA-ISRO Synthetic Aperture Radar 

(NISAR, Kellogg et al., 2020), BIOMASS (Quegan et al., 2019), Sentinel- 
1 (Torres et al., 2012) and Chinese Terrestrial Water Resources Satellite 
(TWRS, Zhao et al., 2020), being an operational source of frequent 
global soil moisture mapping. 

In the past four decades, great efforts have been made to retrieve soil 
moisture from SAR data (Kornelsen and Coulibaly, 2013). Most studies 
have focused on developing an “optimal” scattering model (Dubois 
et al., 1995; Oh, 2004; Shi et al., 1997) and/or inversion process for a 
specific retrieval scenario (see Kornelsen and Coulibaly, 2013 for a re-
view). Various parameterization solutions of rough soil surfaces were 
proposed to account for the effect of roughness (e.g., Lievens et al., 2011; 
Zribi et al., 2014), which commonly includes 1–3 parameters (Fung, 
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1994), e.g., the root mean square height, correlation length and their 
equivalents or invariants. Similarly, the complex vegetation layers were 
simplified and described as a few parameters, with the most famous 
parameterization being the water cloud (Attema and Ulaby, 1978). 
Based on these simplifications and/or parameterizations, the complex 
earth surface scattering can be modeled using a limited number of pa-
rameters (Chen et al., 2003; Fung, 1994; Gu et al., 2021; Huang and 
Tsang, 2012). 

Despite the advances, soil moisture retrieval as an inversion process 
of the above models remains a challenge because of the large number of 
unknowns to be determined. Consequently, multi-angular (Baghdadi 
et al., 2006; Merzouki and McNairn, 2015; Rahman et al., 2008; Sahebi 
and Angles, 2010; Shi et al., 2021) and/or multi-frequency (Bindlish and 
Barros, 2000; Pierdicca et al., 2008; Zhu et al., 2019a) SAR data were 
used to introduce more independent observations. Moreover, a prior 
information has been used to constrain the inversion process, such as an 
initial guess of soil moisture and/or roughness values (Joseph et al., 
2008; Mattia et al., 2009); the range, possibility and probability distri-
butions of soil moisture and roughness (Pierdicca et al., 2008; Verhoest 
et al., 2007; Vernieuwe et al., 2010). Various ancillary data have also 
been used to constrain the retrieval or as inputs of scattering models. 
Soil moisture from coarse passive microwave data and hydrological 
models were confirmed to be an effective guess of high-resolution soil 
moisture (Kim and Van Zyl, 2009; Mattia et al., 2006; Mattia et al., 2009; 
Zhan et al., 2006), while optical data (e.g., Landsat series and Sentinel- 
2) and passive data have been widely used as a source of vegetation 
information required in vegetation scattering models (Bousbih et al., 
2018; El Hajj et al., 2016; Wang et al., 2021b). 

The use of time series SAR data provides a promising alternative to 
address the problem of ill-posed inversion. This so-called change 
detection technique assumes that the vegetation canopy and soil 
roughness change little in the retrieval period, and thus directly relates 
the variation of backscatter to that of soil moisture (Balenzano et al., 
2011; Ouellette et al., 2017; Wagner et al., 1999a; Wagner et al., 1999b; 
Zribi et al., 2020; Zribi et al., 2007). The snapshot methods used to in-
verse a scattering model have been similarly extended for time series 
data with the roughness and/or vegetation being assumed time- 
invariant (Fan et al., 2021; Kim et al., 2014; Kim et al., 2012; Mattia 
et al., 2009; Zhu et al., 2019b). These multi-temporal algorithms have 
been increasingly popular in the past decade because of: 1) the 
simplicity of decoupling the effect of soil moisture and other surface 
variables; 2) the increasing availability of dense time series data; and 3) 
the convenience to retrieve soil moisture over a large spatial area 
(Balenzano et al., 2021; Bauer-Marschallinger et al., 2018). 

The challenge is that more observations also mean more unknowns 
and so the uncertainties are not fully addressed (Ulaby et al., 2014; Zhao 
et al., 2021). Moreover, a globally well calibrated forward scattering 
model is not available due to the absence of extensive ground roughness 
and vegetation samples, with only the SMAP radar baseline algorithm 
used to model L-band backscattering globally (Kim et al., 2014). This 
means large scale soil moisture retrieval from SAR data can only use 
imperfect scattering models with large uncertainties. Consequently, 
constraining the inversion process with a prior information and ancillary 
data still plays an important role in time series algorithms. An accurate 
guess of maximum and minimum soil moisture is key to the performance 
of short-term change detection methods (Ouellette et al., 2017; Palm-
isano et al., 2020) and empirical relationships (Kim and Van Zyl, 2009), 
while an assumption of dry down soil moisture for a period after a 
rainfall can substantially improve the retrieval accuracy (Zhu et al., 
2019a, 2019b). The knowledge of temporal vegetation and roughness 
variation is critical for determining a proper retrieval time window (Zhu 
et al., 2019a). 

In contrast to the snapshot methods with numerous studies on 
inversion constraints and skills, how best to constrain the inversion of 
time series retrieval remains unresolved. Consequently, the aforemen-
tioned soil moisture and vegetation constraints were further developed 

using common auxiliary data and evaluated independently and collec-
tively for an improved time series retrieval, including the use of 1) 
temporal behavior of soil moisture and the soil moisture bounds; 2) 
temporal behavior of vegetation or time-invariant vegetation; and 3) 
time series ensemble skills. These constraints were treated as extensions 
of the time series retrieval algorithm of (Zhu et al., 2020), being also 
compatible with other model based time series methods. The in-situ soil 
moisture collected from 547 worldwide stations available on the inter-
national soil moisture network (ISMN, Dorigo et al., 2021) and the 
ground samplings made in the Fifth Soil Moisture Active and Passive 
Experiment (SMAPEx-5, Ye et al., 2020) were used as the ground truth. 
The effects of these constraints on soil moisture retrieval were investi-
gated using time series C-band Sentinel-1 data, being expected to pro-
vide some straightforward principles on how to constrain scattering- 
model based time series inversion. 

2. Methodology 

2.1. Time series retrieval scheme 

The time series retrieval scheme used in this study was built on the 
stochastic ensemble inversion method (Zhu et al., 2020) and the concept 
of using sliding window processing (Balenzano et al., 2021) for opera-
tional soil moisture mapping. Given a Sentinel-1 acquisition k, it was 
processed together with the previous Nt − 1 acquisitions (e.g., Nt = 4 in 
Fig. 1). The Ne sub-time-series were then randomly generated from the 
original VV and HV Sentinel-1 data with random polarization combi-
nations, resulting in Ne sub-retrievals for each time instance (Ne = 2 in 
Fig. 1). The sliding window was then moved forward to retrieve the soil 
moisture of the following time instances. Consequently, there were Nt ×

Ne retrievals for each time instance except the first and last Nt - 1 time 
instances, which were ensemble averaged as the output. The multiple 
sub-retrievals with different inputs are expected to improve the retrieval 
accuracy by reducing the effect of uncertainties (Lee et al., 2021; Zhu 
et al., 2020). The parameter of Ne was set to 10 in this study according to 
the sensitivity analysis of Zhu et al. (2020), with the special case of Ne =

1 being the single retrieval using all the input data (i.e., time series VV 
and VH for Sentinel-1). 

In each sub-retrieval, Nt soil moisture values were achieved by 
minimizing: 

fσ =
∑Nt

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ni

∑Ni

j=1

(
σ0

ij − σ0
model,ij(Si,Vi,mvi)

)
√
√
√
√ (1)  

where subscript i refers to the ith acquisition within the sliding window 
and Ni is the number of selected polarizations from the ith acquisition, 
being 1 or 2 for Sentinel-1. σmodel, ij

0 and σij
0 are the modeled and observed 

backscattering coefficients in dB respectively, with the Si, Vi, and mvi 
being the soil surface roughness parameters, vegetation parameters, and 
soil moisture. 

In this study, look up tables (LUTs) built by the Oh model (Oh, 2004) 
and the distorted Born approximation (DBA, Lang and Sighu, 1983) 
were used to present the scattering of bare soil and vegetated area (Zhu 
et al., 2019a). Only one independent roughness parameter was consid-
ered, being the root mean square (s) height ranging from 0.5 to 4 cm. 
The vegetation was approximated as a layer of randomly distributed 
cylinders and the vegetation parameters required in the DBA were all 
collected in SMAPEx-5. These vegetation parameters were all related to 
vegetation water content (VWC) using allometric relationships. The 
VWC and mv of LUTs ranged from 0 to 4 kg/m2 and 0.03 to 0.47 m3/m3 

respectively. Evaluation based on C-band RADARSAT-2 data showed an 
RMSE of <2.2 dB on three general landcover types (bare soil, wheat and 
grass), with consistent performance for an incidence angle of 22.4–39.5◦

(Zhu et al., 2019a). Since soil surface roughness in agricultural areas has 
shown negligible variation from tens days to a whole crop season after 
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soil tillage (Callens et al., 2006; Njoku et al., 2002; Ye et al., 2020), Eq. 
(1) becomes: 

fσ =
∑Nt

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ni

∑Ni

j=1

(
σ0

ij − σ0
model,ij(s,VWCi,mvi)

)
√
√
√
√ (2)  

with 2Nt + 1 unknowns and Nt to 2Nt independent observations for each 
sub-retrieval, being still ill-posed. Therefore, more constraints about 
vegetation and soil moisture are still required for a stable solution. 

2.2. Vegetation constraints 

In general, vegetation has seasonal variation and undergoes smooth 
evolution in time. The periodic variation can be modeled to relate the 
vegetation dynamic and σ0 changes, being either used to correct the time 
series σ0 (Pierdicca et al., 2010) or integrated into the long-term change 
detection algorithms (Wagner et al., 1999a). Vegetation indices, e.g., the 
Normalized Difference Vegetation Index (NDVI), were commonly used 
to provide the vegetation dynamic. Despite the success of these re-
lationships, the vegetation dynamic cannot be directly integrated into 
the proposed multi-temporal inversion scheme because existing vege-
tation scattering models and Eq. (2) are not compatible with such in-
formation. Alternatively, Kim et al. (2017) estimated VWC climatology 
using time series NDVI and took the retrieved VWC values as the inputs 
of a cost function like Eq. (2). Reliable estimation of VWC climatology 
however is as challenging as the soil moisture retrieval. 

In contrast, the existing short-term multi-temporal methods assume 
time-invariant vegetation for a short retrieval window (Balenzano et al., 
2011; He et al., 2017; Ouellette et al., 2017; Zhu et al., 2019b), resulting 
in: 

VWC1 = VWC2 = … = VWCNt (3)  

Eq. (2) thus becomes well-constrained at the expense of introducing 
extra uncertainties from the potential vegetation changes. Although 
most of these studies were confined to a short retrieval period of 1–5 
weeks (2–8 Sentinel-1 acquisitions), substantial VWC changes can occur 
with their impact on retrieval being unclear. Apart from investigating 
the effect of VWC temporal variation, a “soft” variant of Eq. (3) was 

proposed in this study, inspired by the modelling of vegetation dy-
namics. Given any two time-instances i and j with NDVIi ≤ NDVIj, the 
VWCi and VWCj in Eq. (2) was forced to meet: 

VWCmin ≤ VWCi ≤ VWCj ≤ VWCmax, i, j ∈ (1, 2,…,Nt) (4)  

where VWCmin and VWCmax were taken as 0 and 4 kg/m2 respectively, 
being consistent with the bounds of LUTs. Eq. (4) is a safer but weaker 
constraint compared to Eq. (3), because the time-invariant vegetation is 
replaced by observed vegetation evolutions but Nt unknows of VWC 
need to inverted from Eq. (2). 

2.3. Soil moisture constraints 

The most widely used soil moisture constraint is the minimum and 
maximum soil moisture of the retrieval scenario. While the range of soil 
moisture can vary substantially across a watershed, a fixed minimum 
value (e.g., 0.03 m3/m3) and/or a maximum value (e.g., 0.5 or 0.6 m3/ 
m3) have been commonly applied (Balenzano et al., 2021; Zhu et al., 
2022). Such bounds have been either used to constrain the numerical 
inversion of scattering models or used as the bounds of LUTs. Since the 
soil moisture range of the LUTs was 0.03–0.47 m3/m3, Eq. (2) includes 
an inherent constraint of: 

0.03 ≤ mvi ≤ 0.47 (5)  

Obviously, this can substantially overestimate the range of soil moisture 
for dry and/or wet seasons, with many studies reporting the importance 
of an accurate soil moisture bound for short-term change detection 
methods (Al-Khaldi et al., 2019; Balenzano et al., 2021; He et al., 2017; 
Ouellette et al., 2017; Zhu et al., 2022). Consequently, its effect on 
scattering-model-based methods (Eq. (2)) was investigated in this study. 
The sophisticated coarse resolution passive microwave data and hy-
drological models can provide an effective guess of soil moisture in 
regional soil moisture retrieval (Kim and Van Zyl, 2009; Mattia et al., 
2006; Mattia et al., 2009; Zhan et al., 2006), with the SMAP L3 passive 
product (36 km) being used in this study considering its relatively better 
accuracy than other coarse resolution soil moisture products (Cui et al., 
2017; Wang et al., 2021a). Given a retrieval time window of k to k + Nt, 
all of the SMAP soil moisture products collected were used to determine 

Fig. 1. The retrieval scheme for time se-
ries soil moisture maps: a sliding window 
(e.g., Nt = 4) was used to determine the 
input time series data; an ensemble (e.g., 
Ne = 2) of sub-series were arbitrarily 
selected with random polarization combi-
nations; soil moisture was retrieved inde-
pendently using each sub-series. The 
sliding window was moved forward, 
resulting in Nt × Ne soil moisture maps at 
each time instance k except the first and 
last Nt − 1 instances. The soil moisture 
maps were averaged for each time instance 
as the output.   
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the: 

mvmin = min
(

mvSMAP
i ,…,mvSMAP

j ,mvSMAP
ave

)
, k ≤ i ≤ j ≤ k+Nt (6)  

mvmax = max
(

mvSMAP
i ,…,mvSMAP

j ,mvSMAP
ave

)
, k ≤ i ≤ j ≤ k+Nt (7)  

where mvave
SMAP is the mean of all SMAP measurements of the corre-

sponding retrieval area. Eq. (6) and Eq. (7) were demonstrated to esti-
mate reliable soil moisture bounds in the Yanco area, Australia (Zhu 
et al., 2022). 

Similar to the temporal constraint of vegetation (Eq. (4)), the soil 
moisture can be further constrained by the temporal evolution of the 
SMAP passive products. Given any two time-instances i and j with mvi

S-

MAP ≤ mvj
SMAP, the mvi and mvj in Eq. (2) was forced to meet: 

mvmin ≤ mvi ≤ mvj ≤ mvmax (8)  

Since irrigation or small-scale rainfall events lead to different temporal 
variation of soil moisture within a SAMP passive grid, Eq. (8) was 
removed when σi − σj ≥ 1 dB to avoid the exclusion of soil moisture 
“anomalies” (Zhu et al., 2022). 

2.4. Inversion and evaluation methods 

The main contribution of this study is a global validation of the po-
tential constraints on multi-temporal soil moisture retrieval methods. A 
total of 4 constraints were presented above, with the time invariant VWC 
(Eq. 3) conflicting with the VWC trend (Eq. 4). Accordingly, 9 multi- 
temporal retrieval algorithms were considered as outlined in Table 1, 
and compared with their ensemble alternative (Fig. 1). Each algorithm 
invariant was expressed as four letters of T (True) and/or F (False) for 
simplification (Table 1), with the applied constraints labeled as T. For 
example, the algorithm without any constraint was labeled as FFFF. 

Apart from the constraint of soil moisture bounds, the use of multiple 
other constraints results in a conventional multi-objective optimization 
problem, with some sophisticated algorithms available (Deb, 2014). 
However, a multi-objective optimization can be extremely time 
consuming, and thus was simplified as a single objective optimization by 
integrating the cost-function of vegetation (fv) and/or soil moisture (fmv) 
into Eq. 2: 

F = fσfV fmv (9)  

fV =
∑k+Nt

i=k

⃒
⃒rVWC,i − rNDVI,i

⃒
⃒+ 1 (10)  

fmv =
∑k+Nt

i=k

⃒
⃒rmv,i − rSMAP,i

⃒
⃒+ 1 (11)  

where rVWC, i, rNDVI, i, rmv, i, rSMAP, i are the order of ith VWC, NDVI, mv 
and SMAP soil moisture in the corresponding time series, respectively. fv 

is 1 when the temporal trend of VWC completely matches that of NDVI, 
reaching the maximum value of 0.5Nt

2 + 1 when the two trends are 
reversed. A genetic algorithm was used to find the optimal solution of 
Eq. 10 for time series soil moisture retrieval. The number of chromo-
somes and the maximum generation (iteration) required in the genetic 
algorithm was 30 and 100 respectively. The outputs of the 100th iter-
ation were treated as the retrieved results regardless of the value of the 
cost function. The retrieval performance was evaluated using 4 widely 
used indicators including bias, correlation coefficient (R), root mean 
square error (RMSE) and unbiased RMSE (ubRMSE). The Student’s t-test 
was used to check the significance of performance difference. 

3. Data and preprocessing 

3.1. Soil moisture 

In this study, the soil moisture measurements available on the ISMN 
(Dorigo et al., 2021) were considered for validations. Since the forward 
LUTs were built on a single layer of random cylinders with a maximum 
VWC of 4 kg/m2, only the stations over bare soil, grassland, cropland or 
shrubland were used. The Copernicus Global Land Cover Layers was 
used to provide the landcover type of each station (Buchhorn et al., 
2020). All the 2016–2019 recordings with a sensing depth ≤ 5 cm were 
downloaded using the ISMN batch service (Dorigo et al., 2021). The 
Shuttle Radar Topography Mission Digital Elevation Data Version 3 
(SRTM DEM V3) was used to calculate the slope of each station, with 
these having a slope of >5◦ being removed, considering the challenging 
of terrain correction and flattening. Moreover, only high-quality re-
cordings were used, being these with a flag of “G”. 

As the measuring depths of shallow surface soil moisture (≤ 5 cm) 
varied across networks (e.g., at 0–5 cm, 2 cm and/or 5 cm), they were 
treated as independent estimations of the ≤5 cm soil moisture. 
Accordingly, all the recordings of a station collected within 5 cm was 
averaged as the daily averaged soil moisture. These beyond the LUTs 
(0.03–0.47 m3/m3) were then discarded. In order to get interpretable 
station-specific accuracy statistics, only the stations with ≥30 valid daily 
soil moisture measurements were used. After applying these filters, a 
total of 547 stations from 17 networks were used in this study (Table 2). 
Notably, the 34 OzNet stations were all located in the Yanco area, NSW, 
Australia (Fig. 2), being different from these in the ISMN. 

Extensive soil moisture samples collected from a 5 × 20 km area of 
SMAPEx-5 (the red rectangle in Fig. 2) was also used. The campaign was 
conducted in the Yanco area, Australia, as part of the SMAP global Cal/ 
Val scheme (Ye et al., 2020). The Yanco area is characterized as semiarid 
with an average annual precipitation of 300 mm. The soil texture is 
mainly clay to sandy soil, with the dominated land use being grazing and 
cropping. The vegetation type for grazing areas is natural grass, while 
the cropping area had seasonal transitions of crops and/or fallow (bare 
soil). The averaged soil moisture of all OzNet sites is depicted in Fig. 3, 
with clear inter-annual dry-wet cycle and droughts in 2018 and 2019. 

Nearly concurrent soil moisture samples were collected during the 
acquisition dates of two Sentinel-1 images (Sep. 15 and 27), with the 
time difference being <20 h. These soil moisture samples were made on 
an east-west oriented grid using the Hydraprobe sensor (Merlin et al., 
2007), with three replicate soil moisture readings of 0–5 cm at each plot 
(Fig. 2). Similarly, measurements <0.03 or > 0.47 m3/m3 were dis-
carded, with a total of 566 valid samples. Other surface parameters, e.g., 
VWC, vegetation structure parameters and soil surface roughness, were 
also measured in this area (Ye et al., 2020) and were used in the 
parametrization and calibration of surface and vegetation scattering 
models (Zhu et al., 2019a). 

3.2. Remote sensing data and preprocessing 

The SMAP L3 passive soil moisture product (Version 6, Neill et al., 
2019), Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 

Table 1 
Variants of the multi-temporal retrieval algorithm, with the applied constraint 
being labeled as True.  

Algorithms Time invariant 
VWC (Eq. 3) 

VWC trend 
(Eq. 4) 

mv bound (Eq. 
6 and 7) 

mv trend 
(Eq. 8) 

TFFF True False False False 
FFFF False False False False 
FTFF False True False False 
FFTF False False True False 
FFFT False False False True 
FFTT False False True True 
FTTF False True True False 
FTFT False True False True 
FTTT False True True True  
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products and Sentinel-1 Interferometric Wide (IW) ground range 
detected (GRD) products were used in this study. All the Sentinel-1 IW 
GRD acquisitions available on Google Earth Engine (GEE) were used in 
this study. The GEE Sentinel-1 GRD collection was produced by the 
Sentinel-1 Toolbox with the main steps including GRD border and 
thermal noise removal, radiometric calibration, and terrain correction 
(orthorectification). Radiometric terrain correction and flattening is not 
made because of the large uncertainty in the available DEM. The GRD 
data has two polarizations (VV and VH) and a spacing of 10 m. Since the 
IW data over a station can be collected from varying orbit passes 
(ascending/descending) and/or multiple relative orbits, the average 
revisit and the time interval between two successive acquisitions varied 
timely and spatially (Table 2). This means that the same Nt can have 
different lengths of retrieval widow in time across the 547 stations. The 

maximum time interval of two successive acquisitions was generally 
≤12 days expect some short special periods without data. In this study, 
the GEE GRD data with a pixel size of 10 m was resampled to 100 m 
using the “reduceResolution” method provided by GEE (https 
://developers.google.com/earth-engine/guides/resample). In brief, the 
10 m pixels were aggregated to larger pixels of 100 m on the Universal 
Transverse Mercator (UTM) local projection used in the Sentinel-1 data, 
e.g., the UTM 55S for the Yanco area. This is expected to substantially 
reduce the effect of speckle noise and result in a satisfactory radiometric 
accuracy of ~0.4 dB (Torres et al., 2012). 

The Terra and Aqua MODIS vegetation indices products (MOD13Q1 
and MYD13Q1, V6) were used to provide the time series NDVI required 
in Eq. 4. Since the two NDVI data sets were from two identical sensors, 
they were merged to an 8-day composite with an initial resolution of 

Table 2 
the 17 soil moisture networks used for evaluation. The A/D in the orbit pass refers to the ascending/descending.  

Network # stations # mv records # orbits Orbit pass Average revisit (days)* Incidence angle Reference 

AMMA-CATCH 5 474 1–2 A 5.2–12.4 31.0–44.7 (Galle et al., 2018) 
ARM 15 2490 1–2 A 5.7–15.1 33.0–44.9 (Cook, 2016) 
HOAL 18 4007 2 A/D 3.4–3.4 38.3–39.2 (Blöschl et al., 2016) 
HOBE 21 5577 4 A/D 1.8–2.3 30.0–45.2 (Jensen and Refsgaard, 2018) 
MAQU 11 376 2–3 A/D 6–12 32.8–46.1 (Su et al., 2011) 
NAQU 9 795 3 A/D 6.1 31.5–45.2 (Su et al., 2011) 
NGARI 15 1392 2–3 A/D 5.3–7.6 34.2–45.5 (Su et al., 2011) 
OzNet 34 4080 1 D 12 35.3–40.0 (Smith et al., 2012) 
PBO_H2O 94 4752 1–4 A/D 3.7–17 30.3–45.7 (Larson et al., 2008) 
REMEDHUS 16 5556 2–3 A/D 3.2–6.1 30.5–42.1 (González-Zamora et al., 2019) 
RISMA 23 2354 2–3 A/D 6–12 31.1–43.7 (Ojo et al., 2015) 
RSMN 12 5678 2–4 A/D 1.7–3.3 30.2–45.1  
SCAN 127 16,814 1–4 A/D 4.5–16.5 30.4–45.6 (Schaefer et al., 2007) 
SMN-SDR 27 1770 3–4 A/D 3.8–5.2 30.6–44.1 (Zhao et al., 2020) 
SMOSMANIA 11 4931 2–4 A/D 2.2–3.9 30.5–45.4 (Calvet et al., 2016) 
SOILSCAPE 35 449 2–3 A/D 5.7–6.1 30.8–43.4 (Moghaddam et al., 2016) 
USCRN 74 10,055 1–4 A/D 3.5–16.5 30.4–45.6 (Bell et al., 2013) 
Total 547 68,468       

* Average values for 2016–2019. The absence of a few acquisitions resulted in a revisit > the 12-day nominal revisit. 

Fig. 2. The Yanco area and OzNet soil moisture stations as well as the SMAPEx-5 ground soil moisture samples collected nearly concurrently with the two Sentinel-1 
acquisitions; Sep. 15 and Sep. 272,015. 
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250 m. This composite was then resampled and re-projected to the grid 
of the pre-processed Sentinel-1 data using the nearest neighbor method. 
The time series NDVI for all Sentinel-1 acquisition dates then were 
interpolated using a using a spline function. The time series SMAP L3 
passive soil moisture over each station was extracted first based on the 
36 km SMAP grids. Similarly, the soil moisture of each station on all 
Sentinel-1 acquisition dates were then interpolated with a spline 
function. 

Fig. 3 shows the mean and standard deviation of OzNet, SMAP, 
NDVI, Sentinel-1 VV and VH across the 34 OzNet sites as well as the 
correlation heatmap. As expected, the OzNet soil moisture time series 
showed high correlation with Sentinel VV backscatter and SMAP soil 
moisture. The OzNet soil moisture also had a high correlation with the 
NDVI, being the main stress for the vegetation in this area. An abrupt 
increase of soil moisture can result in an abrupt increase of NDVI in dry 
seasons e.g., April to October 2018. 

4. Results 

4.1. The effect of vegetation constraint and assumption 

The retrieval algorithm with time invariant vegetation (TFFF), time 
variant vegetation (FFFF) or temporal vegetation constraint (FTFF) was 
evaluated and compared across the 547 stations, first to show the effect 
of vegetation constraints (Fig. 4). The length of retrieval time window 
(Nt) ranged from 2 (≤ 12 days) to 12 (≤ 132 days) Sentinel-1 acquisi-
tions with an interval of 2 (≤ 24 days) acquisitions. The TFFF variant 
achieved the worst results in all cases of Nt with the ubRMSE being 
>0.11 m3/m3. The retrieval performance was improved after removing 
the assumption of time invariant vegetation (i.e., the FFFF variant) even 
for a short retrieval period of ≤12 days (Nt = 2). As Nt was increased, the 
ubRMSE of the FFFF variant slightly decreased at the expense of 
underestimating the standard deviation of the retrieved soil moisture. 
The algorithm using a temporal vegetation constraint (FTFF) achieved 
similar but slightly better results compared to the FFFF variant, with a 
larger decrease in retrieval standard deviation for a larger Nt. 

The retrieved time series soil moisture, VWC and RMS heights of the 
34 OzNet stations are depicted in Fig. 5, further illustrating the joint 
effect of Nt and the vegetation constraints. The VWC retrieved by the 
TFFF variant showed a smoother temporal evolution than that of the 
other two methods. The time invariant vegetation together with the 
sliding window processing (Fig. 1) was similar to a 1-dimension sliding 

averaging filter with a size of Nt. The retrieved VWC maintained the four 
main vegetation peaks using a Nt of 4, while only the largest peak of Jul. 
– Oct. 2016 was captured with a Nt of 12. As a result, all the short-term 
vegetation variations were removed by the TFFF variant and the effect of 
such variations on backscattering was mis-interpreted as the change of 
roughness and/or soil moisture, being the main reason for the poor re-
sults and the relatively larger soil moisture variations (Fig. 4). In 
contrast, the time series VWC retrieved by the FFFF method can be 
decomposed into seasonal variations and abrupt changes. The later was 
observed to be accompanied by abrupt soil moisture changes (Fig. 3), 
which can be partly explained by the abrupt water supply from the soil 
moisture. Moreover, VWC and soil moisture can be overestimated 
concurrently to meet the real radar observations in the ill-posed 

Fig. 3. Time series of OzNet, SMAP L3 soil moisture, NDVI and Sentinel-1 observations on the acquisition dates of Sentinel-1 (a) and their correlation heatmap (b). 
The solid line and envelope represent the average and standard deviation of the 34 OzNet sites. 

Fig. 4. Comparison of the retrieval algorithms with time invariant vegetation 
(TFFF), time variant vegetation (FFFF) and vegetation temporal constraint 
(FTFF); a-f refer to the results using a Nt varying from 2 to 12 with an interval of 
2. The results for grass, crop and shrub and the results for all networks can be 
found in the supplementary document (Fig. S1 and S3), with similar patterns. 
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inversion of the FFFF variant, being another reason of the abrupt 
changes. 

After applying the temporal vegetation constraint (i.e., the FTFF 
variant), the short-term temporal variation of retrieved VWC was further 
increased. In the inversion process of the FTFF variant, the cost function 
term representing VWC trends converged faster (Eq. 10) than the fσ, and 
the VWC values were forced to meet the “correct” trend first. The range 
of VWC was observed to increase gradually before convergence, leading 
to a large inner-window variation. A larger Nt led to a larger variation in 
VWC which resulted in a larger inter-annual variation in soil moisture. 
The three vegetation temporal constraints thus act like “zoom in” to 
“zoom out” operations of soil moisture variation, with their effects being 
enhanced using a larger Nt. 

The retrieved roughness showed limited temporal variation (Fig. 5) 
except the peak in the middle of 2016, generally ranging from 0.5 to 0.8 
cm. Notably, the retrieved roughness values were effective values and 
can therefore be substantially different from the ground measurements, 
as a result of the uncertainty of the scattering models (Baghdadi and 
Zribi, 2011; Lievens et al., 2011; Zhu et al., 2016). The retrieved RMS 
heights followed the trend of the VWC in the results of the TFFF and 
FFFF method, playing a similar role of VWC in the optimization process. 
A more comprehensive analysis on the 457 stations is provided in 
Fig. S4. This confirmed that assuming a time invariant roughness for a 
long retrieval period is also questionable, not only for the potential 
changes in ground roughness, but also for the requirement of varying 

effective roughness values in the optimization process. 

4.2. The effect of soil moisture constraint and assumption 

The retrieval algorithms with soil moisture bounds (FFTF), soil 
moisture temporal constraint (FFFT) and both soil moisture constraints 
(FFTT) were evaluated across the 547 stations, with the FFFF being 
included as the benchmark (Fig. 6). The comparison of the FFFF and 
FFTF methods showed that the use of reliable soil moisture bounds can 
substantially improve the retrieval performance. The average ubRMSE 
decreased from 0.103 to 0.087 m3/m3, while the average R increased 
from 0.40 to 0.59. In contrast, single use of the temporal soil moisture 
constraint led to deterioration in accuracy, with an average decrease of 
0.06 in R. The joint use of the two soil moisture constraints (FFTT) 
achieved the best results, with an average ubRMSE and R of 0.086 m3/ 
m3 and 0.61 respectively. While the difference in ubRMSE and R was 
marginal for different Nt, the standard deviation of retrieved soil mois-
ture gradually decreased as Nt increased for all algorithms, being 
consistent with the results of Fig. 4. The FFTT method showed the 
smallest sensitivity to Nt, suggesting a relatively stable performance for a 
longer retrieval window. 

Fig. 7 shows the average soil moisture, VWC and RMS heights of the 
34 OzNet stations retrieved by three algorithms using different soil 
moisture constraints. The FFFT failed to capture the general trend of soil 
moisture and substantially overestimated the short-term (2–4 weeks) 

Fig. 5. Average soil moisture (mv), vegetation water content (VWC) and RMS height (s) of OzNet sites retrieved by the algorithm with time invariant vegetation 
(TFFF), time variant vegetation (FFFF,) and vegetation temporal constraint (FTFF) as well as the average NDVI and OzNet measurements. The left and right column 
are the results of using Nt = 4 and 12 respectively. 
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temporal variations. Specifically, the retrieved soil moisture within each 
retrieval window achieved a similar range of 0.1–0.3 m3/m3 for the case 
of Nt = 4, which extended to 0.1–0.5 m3/m3 when Nt = 12. This suggests 
that the effect of the soil moisture temporal constraint on retrieval is 
similar to that of the vegetation temporal constraint, substantially 
increasing the short-term temporal variation of soil moisture and thus 
VWC. In contrast, the FFTF method well captured the general trend and 
accurately reflected the soil moisture ranges of various periods. For 
example, the FFTF had smaller underestimation of the high soil moisture 
observed in the Australian winter of 2016 than retrievals without the 
soil moisture bounds. However, the retrieved soil moisture of FFTF 
showed smaller short-term variations compared to that of the FFFF 
method (Fig. 5) and the OzNet observations (Fig. 3). Therefore, the time 
series soil moisture retrieved by the FFTT seemed to be a compromise of 
the FFTF and FFFT methods. In view of a signal, the time series retrieved 
by the FFFT and FFTF methods were like the high and low frequency 
components of the FFTT time series respectively. Moreover, the ampli-
tude of the high frequency components could be amplified using a longer 
retrieval window, while the low frequency components could also be 
enhanced by depressing the high frequency components with a longer 
retrieval window. 

4.3. The joint effect of constraints and ensemble 

The bias, R, RMSE and ubRMSE of all sites were calculated for the 
single retrievals and ensemble retrievals (Fig. 8), with the single re-
trievals using the full time series of Sentinel-1 (i.e., Ne = 1 in Fig. 1). For 
simplicity, only the results of Nt = 4 are presented as it is the default 
value for various time series methods (Al-Khaldi et al., 2019; Balenzano 
et al., 2021; He et al., 2017; Ouellette et al., 2017; Zhu et al., 2022). The 
4 algorithms with soil moisture bounds (i.e., FFTF, FFTT, FTTF and 
FTTT) achieved a near-zero median bias (<0.007 m3/m3) on both single 
and ensemble retrieval modes, being significantly lower than that of the 
other methods without soil moisture bounds (0.026–0.042 m3/m3). 
Apart from a smaller bias, the use of soil moisture bounds resulted in 
significant higher R, lower RMSE and ubRMSE. The average improve-
ment in R, RMSE and ubRMSE from using soil moisture bounds is 0.277, 
0.033 m3/m3 and 0.027 m3/m3 respectively for the single retrievals, 

which is 0.286, 0.029 m3/m3 and 0.023 m3/m3 for the ensemble re-
trievals. This further suggests that the soil moisture bounds are the most 
useful constraint. 

Among the four algorithms using the soil moisture bounds, the FFTT 
method achieved the best results in median RMSE and R (0.072 m3/m3 

and 0.643), followed by the FTTT (RMSE: 0.072 m3/m3, R: 0.641), FTTF 
(RMSE: 0.073 m3/m3, R: 0.609) and FFTF (RMSE: 0.074 m3/m3, 
R:0.603). This suggests that extra use of the soil moisture and/or 
vegetation temporal constraint can lead to better but insignificant re-
sults. However, the joint use of two temporal constraints without the soil 
moisture bounds (i.e., the FTFT method) led to the worst results among 
the algorithms that used multiple constraints. This can be explained by 
that either the soil moisture or the vegetation temporal constraint can 
increase the short-term soil moisture variations (Fig. 5 and Fig. 7) which 
was further enhanced by the joint use of two temporal constraints. The 
ensemble retrievals outperformed the single retrievals on all algorithm 
variants in R, RMSE and ubRMSE, with the average improvement in 
median values being ~0.04, ~ 0.005 m3/m3 and ~ 0.005 m3/m3, 
respectively. As expected, the difference between single and ensemble 
retrievals in bias was negligible (< 0.001) as the ensemble average of 
multiple sub-retrievals retain the system bias. The difference in RMSE 
was only significant for 4 algorithm (TFFF, FFFF, FTFF and FTFT) and all 
these methods showed relatively higher RMSEs than the others. Simi-
larly, the difference in ubRMSE was insignificant for the two most 
powerful variants (FFTT and FTTT), suggesting that weaker algorithms 
can probably benefit more from ensemble retrievals. Same to the 
ensemble retrievals, the single retrieval using the FFTT method achieved 
the best results followed by the FTTT, FTTF and FFTF method, sug-
gesting that the use of ensemble retrieval cannot change the relative 
performance of the 9 variants. 

4.4. Evaluation over the SMAPEx-5 focus areas 

A further investigation was made on the SMAPEx-5 data set (Fig. 2). 
Similar to the results on the 547 stations, the ensemble retrievals ach-
ieved better results than the corresponding single retrievals on all 
methods except the FFTF method (Fig. 9). The average improvement of 
using the ensemble concept was ~0.007 m3/m3 in ubRMSE and ~ 0.05 
in R. These improvements were mainly from the reduced random un-
certainty contained in data, scattering models and assumptions, with the 
pattern of ground measured versus retrieved being less scattered 
(Fig. 10). This however is not always positive, probably overestimating 
the low values and underestimating the high values. Consequently, the 
improvement in R can be larger than that in RMSE as the bias can be 
increased, being consistent with Fig. 8. Different from the results on the 
global dataset, the use of soil moisture bounds and the two vegetation 
constraints contributed little, and even negatively to the SMAPEx-5 
scenario. For example, the TFFF method showed a competitive perfor-
mance to the FFTT method. The potential reasons include: 1) the range 
of soil moisture in SMAPEx-5 was close to the global soil moisture range 
of 0.03–0.47 m3/m3 and thus the use of SMAP based soil moisture 
bounds could not add any useful constraint and 2) the VWC during the 
SMAPEx-5 was nearly time-invariant (Ye et al., 2020) and thus the 
assumption of time-invariant VWC can be more reliable. 

Fig. 10 shows the soil moisture maps for the SMAPEx-5 focus area on 
Sep. 14, 2015. The retrieved soil moisture maps of the 9 algorithms had 
similar spatial patterns, which generally matched the pattern of ground 
measurements. The bare soil had smaller soil moisture values, followed 
by grass land and the areas with crops (mainly wheat). Consistent with 
the evaluation results on the global data set (Fig. 4 and 6), the soil 
moisture maps retrieved by different algorithms showed a similar 
average value but a large difference in standard deviation. The ensemble 
retrievals showed smaller spatial variations due to the ensemble average 
of multiple retrievals, in line with the evaluation on the SMAPEx-5 data 
set (Fig. 9). 

Fig. 6. Same as Fig. 4 but for soil moisture bounds (FFTF), soil moisture 
temporal constraint (FFFT) or both soil moisture bound and temporal con-
straints (FFTT). The results for grass, crop and shrub can be found in the sup-
plementary document (Fig. S3), with similar patterns. 
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5. Discussion 

The effect of four temporal constraints and the ensemble skill on time 
series soil moisture retrieval was investigated, providing some 
straightforward suggestions on how to constrain scattering-model based 
time series retrievals. The widely used assumption of time-invariant 
vegetation contributed negatively to the retrieval accuracy in the 
global validation, even for a short retrieval period of ≤12 days (Nt = 2 in 
Fig. 4 and Fig. S3). However, it still improved the retrieval accuracy for 
specific areas and periods, such as the SMAPEx-5 scenario (Fig. 9). The 
negative effect of the time-invariant vegetation can be partly ascribed to 
the vegetation changes, with a longer retrieval window meaning poorer 
results (Palmisano et al., 2020). Moreover, the assumption of time- 
invariant roughness and vegetation forced a smooth evolution of VWC 
and roughness in the retrieval process (Fig. 6), with the short-term 
variation of radar observations and scattering model uncertainties all 
being ascribed to the variation of soil moisture. The retrieved time series 
VWC may accurately reflect the variation of real vegetation but this is 
not necessary to result in better soil moisture retrieval, because effective 
values can be more favorable for inversing a moderate scattering model. 
Similarly, many studies found that the direct use of ground measured 
roughness in soil moisture retrieval is questionable and effective values 
based on scattering models can be more useful (Baghdadi and Zribi, 
2011; Lievens et al., 2011; Zhu et al., 2016). This suggests that an over- 
constrained inversion does not necessarily result in good results when an 
imperfect scattering model was used. 

The proposed two temporal constraints are qualitative descriptions 
of the temporal evolution of vegetation and soil moisture, being rela-
tively weaker constraints compared to the assumptions of time-invariant 
vegetation. Since these relationships are easier to be achieved and more 
reliable than empirical modelling of temporal vegetation or soil mois-
ture dynamics (Kim et al., 2017; Wagner et al., 1999a), they were ex-
pected to provide safer prior knowledge for improved soil moisture 
retrievals. However, single use of either constraint was found to 
contribute negatively to the retrieval accuracy in the global validation 
(Fig. 4 and 6), introducing substantial short-term variations in soil 
moisture. A conflicting conclusion was made in two previous studies 
where soil moisture after a rainfall event was forced to decrease 
monotonously (Zhu et al., 2019a, 2019b). The temporal constraints 
contributed positively if they were used together with soil moisture 
bounds (Fig. 8 and Fig. 10). The two previous studies inherently used the 
soil moisture bounds, because the real soil moisture bounds were close 
to those of the LUTs (Zhu et al., 2019a, 2019b), and thus the temporal 
constraint of soil moisture contributed positively. Moreover, time series 
multi-angular and multi-frequency data was used in the two previous 
studies with larger uncertainties in data and scattering models, being 
more challenging than the time series retrieval from a single data source. 
Consequently, a further investigation using a long time series of multi- 
angular and multi-frequency data (e.g., the joint time series of 
Sentinel-1 and SAOCOM-1) can be valuable for the use of these temporal 
constraints. 

The soil moisture range was confirmed to be critical for a successful 

Fig. 7. Same as for Fig. 5 but for the algorithm with soil moisture bounds (FFTF), soil moisture temporal constraint (FFFT) and both soil moisture bound and 
temporal constraints (FFTT). 
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retrieval, being consistent with the short-term change detection algo-
rithms (He et al., 2017; Ouellette et al., 2017). In this study, the global 
soil moisture range used is that of the LUTs (0.03 to 0.47 m3/m3), 
considering the typical calibration error of ground measurements (Smith 
et al., 2012) and the fact that the scattering model uncertainty (e.g., 2 
dB) can be much larger than the sensitivity of the radar signal to high 

soil moisture values. This range generally covers the natural soil con-
ditions observed from very dry to wet, with only a limited number of 
observations (150 out of 68,468; ~0.22%) from the 547 stations 
exceeding 0.47 m3/m3 for the study period. The range of time series 
coarse soil moisture products of SMAP (36 km) was used for a more 
reliable estimation of a specific retrieval window. Other model-based 

Fig. 8. Performance of the 9 algorithms using the single (Ne = 1 in Fig. 1 with full VV/VH time series) and ensemble retrieval mode (Ne = 10) on the 547 stations, 
with the top to bottom panel being bias, R, RMSE and ubRMSE respectively. The default Nt = 4 was used. 
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Fig. 9. Performance of ensemble (first and third column) and single (second and fourth column) retrievals on the SMAPEx-5 data set using a Nt = 4 retrieved 
according to the 9 retrieval algorithms (see Table 1). 
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soil moisture products (e.g., the fifth generation of ECMWF atmospheric 
reanalyzes, ERA-5) can be promising alternatives, with the advantage of 
providing long-term continuity; refer to the Fig. S7-S9 for a comparison 
of using ERA5-Land and SMAP L3 in soil moisture retrieval. Neverthe-
less, use of such coarse soil moisture products could not fully retain the 
large spatial and temporal variations of soil moisture at a grid size of 
100 m. Consequently, the retrieved soil moisture showed a smaller 
standard deviation both spatially (Fig. 10) and temporally (Fig. 6). 
Fortunately, extra use of the soil moisture temporal constraint could 
partly recover the temporal variation (Fig. 4 and 6). 

The effectiveness of the ensemble retrieval concept was demon-
strated in Zhu et al. (2020) using a synthetic data set with various 
incidence angles, polarizations, frequencies and uncertainty sources. Its 
effectiveness for a real scenario of a long time series data was first 
confirmed in this study, with the improvement in RMSE being up to 
0.013 m3/m3. While the improvement on 3 of the 9 algorithms was 
insignificant and the absolute improvement is limited, the ensemble skill 
has no interaction with the 4 constraints in the inversion process and 
thus can be compatible with any combination of the 4 constraints. 
However, the ensemble retrievals were prone to underestimate the 
range and spatial variation of soil moisture by removing the largest and/ 
or smallest estimations in the ensemble average (Fig. 9 and Fig. 10). The 
use of soil moisture bounds and the assumption of time-invariant 
vegetation also tended to result in a smoother temporal evolution and 

smaller spatial variation. The joint use of these constraints and the 
ensemble can further reduce the variation, e.g. the results of the FFTF 
method in Fig. 9. 

The length of retrieval window (Nt) is a key parameter of the pre-
sented multi-temporal inversion scheme as well as existing time series 
methods. Different from the simple conclusion that a larger Nt means 
larger retrieval error (Palmisano et al., 2020), the effect of Nt on soil 
moisture retrieval varied when different constraints were applied, as 
summarized in Table 3. The retrievals without constraint achieved 
better accuracy statistics from an increased Nt, which however led to a 

Fig. 10. The soil moisture maps of Sep. 14, 2015 retrieved by the 9 algorithms (see Table 1) with ensemble (top panel) and without ensemble (bottom panel). The 
landcover was from Ye et al. (2020). 

Table 3 
The effect of an increased Nt on the performance of algorithms using various 
constraints.  

Constraint Accuracy Variation of the retrieved soil 
moisture 

No constraint Increase Decrease 
Soil moisture bounds Decrease Decrease 
Time-invariant vegetation Unclear 

trend 
Unclear trend 

Vegetation temporal 
constraint 

Increase Decrease 

Soil moisture temporal 
constraint 

Decrease Increase  
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smaller and underestimated soil moisture variation. A similar behavior 
was observed for the retrievals with vegetation temporal constraints. 
Accordingly, the algorithms with a single constraint cannot benefit from 
an increased Nt. However, the joint use of two soil moisture constraints 
resulted in negligible difference in accuracy statistics and retained the 
variation of retrieved soil moisture for a Nt up to 12, suggesting that the 
FFTT and FTTT method can be used in a much longer retrieval window 
beyond the current experience of 1–4 weeks. 

Apart from the perspectives on how to constrain the inversion pro-
cess of time series retrieval, this study provided a near-operational time 
series scheme for soil moisture retrieval from Sentinel-1 IW GRD data. 
Some of the 9 algorithm variants achieved a competitive median RMSE 
and ubRMSE of ~0.072 and ~ 0.051 m3/m3 at a grid size of 100 m, with 
the performance of the best variant (FFTT) on the 547 stations being 
provided in the supplementary document (Fig. S7). The accuracy sta-
tistics can be further improved when retrieval or evaluated at a coarser 
grid of e.g., 1 km. Although the parametrization and calibration of the 
scattering models still required ground measurements, the LUTs initially 
built for the SMAPEx-5 were successfully applied for the entire period of 
2016–2019 and 547 worldwide stations without further calibration or 
modification. However, the large performance discrepancy among the 
547 stations (Fig. 8 and S7) and 17 networks (Fig. S6), suggested that the 
LUTs based on the SMAPEx-5 cannot fully represent the surface condi-
tions of all networks. The current LUTs only covered grass and crop 
types that were dominated by a single layer of vertical structure, with 
further extensions for other types being possible (Kim et al., 2014). The 
VWC was limited to <4 kg/m2, considering the limited soil contributions 
at larger values (Zhu et al., 2019a). However, this boundary and the 
validity of C-band for dense vegetated areas are still questionable, 
requiring a location mask based on landcover maps and thresholds for 
volume scattering dominated areas (Balenzano et al., 2021). 

6. Conclusion 

The effect of four temporal constraints and the ensemble skill on time 
series soil moisture retrieval was investigated using the soil moisture 
measurements of 547 stations from 17 networks along with intensive 
ground measurements from the SMAPEx-5. While the effect of these 
temporal retrieval skills varied across stations and networks, and was 
also related to the robustness of the scattering models, four empirical 
suggestions for global applications are made: 1) assuming time-invariant 
vegetation contributed negatively in the global validation as a result of 
potential vegetation changes and over-constrained inversion of moder-
ate scattering models; 2) reliable information of soil moisture bounds is 
critical for successful retrieval with the risk of underestimating the soil 
moisture variation; 3) the two temporal constraints of vegetation and 
soil moisture must be used together with the soil moisture bounds to 
maintain the variation of soil moisture; and 4) the use of an ensemble 
can benefit the soil moisture retrieval by partly removing uncertainties 
at the expense of underestimating the soil moisture variation. The pro-
posed time series inversion scheme with these inversion skills achieved a 
competitive retrieval accuracy (median RMSE: ~0.072 m3/m3, median 
R: 0.64) at a high resolution of 100 m, with its generalization capability 
confirmed for a long period of 4 years. 
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