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A B S T R A C T   

The feasibility of soil moisture retrieval from C-band Sentinel-1 data has been widely acknowledged, with pre- 
operational 1-km products currently available at regional and/or continental scale using the long-term (LTCD) or 
short-term change detection (STCD) methods. Both algorithms share the same assumptions of time-invariant 
roughness and vegetation, which can be questionable even for a short period of 4 Sentinel-1 acquisitions 
(18–36 days). An advanced change detection (ACD) method is proposed in this study for an improved soil 
moisture retrieval from Sentinel-1 data, including two main modifications with respect to the existing STCD 
methods: i) approximating the effect of temporal varying vegetation on the Sentinel-1 backscatter as a variation 
in the two-way attenuation, and ii) a temporal soil moisture constraint based on the coarse Soil Moisture Active 
Passive (SMAP) soil moisture product to partly remove the uncertainty caused by vegetation and/or roughness 
changes. The evaluation, based on time-series observations from 34 OzNet stations and ground samples collected 
during the Fifth Soil Moisture Active and Passive Experiment (SMAPEx-5) showed that the ACD improved the 
correlation coefficient (R), root mean square error (RMSE) and un biased RMSE (ubRMSE), achieving 0.66, 
0.071 m3/m3 and 0.071 m3/m3 at the point scale, 0.77, 0.063 m3/m3 and 0.051 m3/m3 at 1-km scale, 0.80, 
0.055 m3/m3 and 0.050 m3/m3 at 3-km scale. The contribution of the two modifications was further investigated 
using 559 stations from 22 networks across the world, showing that: i) the two modifications can increase R by 
0.08–0.13 and reduce the retrieval RMSE by 0.009–0.013 m3/m3 (10% - 15% relative), and ii) the retrieval over 
densely vegetated areas or areas with large temporal vegetation variation can benefit more from the proposed 
modifications. The ACD achieved stable performance for various Sentinel-1 orbits/passes and maintained a stable 
performance for retrieval windows up to 30 Sentinel-1 acquisitions, providing a promising alternative for 
achieving consistent soil moisture retrievals from Sentinel-1.   

1. Introduction 

Soil moisture products with high spatial (< 1 km) and temporal (2–3 
days) resolution are required in various sectors (Peng et al., 2020). 
Currently, globally available remote sensing soil moisture products 
include those produced from space-borne scatterometers (Bartalis et al., 
2007), radiometers (Entekhabi et al., 2010; Kerr et al., 2010) and/or 
their combinations (Dorigo et al., 2017; Yao et al., 2021), with a low 
spatial resolution of 10s km. Considerable effort on downscaling algo-
rithms has led to spatially enhanced soil moisture products, but they do 
not yet meet expectations (Peng et al., 2017; Sabaghy et al., 2018), 
particularly at kilometer resolution. 

Recent advances in space-borne Synthetic Aperture Radars (SAR), 
especially an enhanced revisit and emerging open data policy, enables a 
promising alternative. Pre-operational 1-km soil moisture products are 
now available at regional to continental scale using SAR data from the 
Sentinel-1 constellation (Balenzano et al., 2021; Bauer-Marschallinger 
et al., 2018). These SAR-based products involve time-series data and 
share an assumption of time-invariant roughness and vegetation, which 
can be roughly classified into three categories. 

The first category extends the snapshot methods of inversing scat-
tering models (Kornelsen and Coulibaly, 2013) to multi-temporal ones 
(Fan et al., 2021; Kim et al., 2012; Pierdicca et al., 2010; Zhu et al., 
2019b). Since the major unknowns representing the temporal variation 
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of roughness and vegetation were removed, the ill-posed inversion 
encountered in snapshot methods were converted into well-constrained 
inversions (Zhu et al., 2019a). To further constrain uncertainty of the 
data and scattering models, an ensemble retrieval framework was 
recently proposed where multiple soil moisture retrievals with moderate 
performance were first obtained using different channels and/or time 
instances, with the retrieved ensemble of results being the final output 
(Zhu et al., 2020b). Despite the satisfactory accuracy of these methods, 
reliable scattering models are still not readily available for large scale 
applications over a variety of landcover types at fine resolution. 

The change detection algorithm initially proposed by Wagner et al. 
(1999b) determines the soil wetness in % by linearly scaling the 
observed backscatter between that at the driest and wettest conditions, 
captured from a long archive of backscatter collected by the same radar 
and configuration (frequency, polarization, incidence and azimuth 
angle). This algorithm and its variants (Tomer et al., 2015; Wagner et al., 
1999a; Wagner et al., 1999b; Zribi et al., 2020) are thus also known as 
long-term change detection (LTCD) methods. In contrast, the alpha 
approximation method calculates absolute soil moisture by relating the 
ratio of two consecutive backscatter observations to the variation of soil 
moisture (Balenzano et al., 2011). To ensure time-invariant roughness 
and vegetation, the two consecutive observations are commonly 
collected within a short time interval (e.g., two weeks), with it thus 
known as the short-term change detection (STCD) method. The initial 
single polarization STCD has been extended to include multi-polarized 
data and various techniques to bound the radar-derived soil moisture 
(Al-Khaldi et al., 2019; Balenzano et al., 2021; Balenzano et al., 2013; He 
et al., 2017; Ouellette et al., 2017). 

The validity of the time-invariant roughness and vegetation 
assumption is the key to the success of these time series methods. 
Although soil roughness in agricultural fields changes gradually after 
soil tillage due to various erosion processes (Jackson et al., 1997), many 

field experiments have confirmed that such changes are negligible from 
a few weeks to an entire crop season (Callens et al., 2006; Njoku et al., 
2002; Ye et al., 2020). Accordingly, time-invariant roughness can be 
safely assumed in STCD methods and scattering model based time series 
methods, but is questionable for LTCD methods, especially at high 
spatial resolutions of <1 km. 

As for vegetation, its water content (VWC) and structure change 
much more quickly than soil roughness. For example, the growth of 
wheat can be roughly divided into six stages, each spanning 10–40 days 
(Acevedo et al., 2002). While many SAR constellations can collect tens of 
acquisitions within a growth stage, e.g., the Cosmo SkyMed, they are of 
little value for operational soil moisture mapping due to the data 
acquisition strategy. Sentinel-1 is currently the most advanced SAR 
mission to support a surface soil moisture product with high spatial 
resolution, having a revisit of 6 or 12 days depending on the availability 
of acquisitions from one or two satellites (Torres et al., 2012). The 
capability of Sentinel-1 for soil moisture retrieval has been widely 
acknowledged using change detection methods (e.g., Gao et al., 2017; 
Palmisano et al., 2020), machine learning (e.g., Cui et al., 2021; Paloscia 
et al., 2013) and/or scattering model based methods (e.g., Bousbih et al., 
2018; Cui et al., 2021) at a resolution up to 30 m. Existing applications of 
STCD methods are mostly confined to 4 Sentinel-1 acquisitions (Balen-
zano et al., 2021; Palmisano et al., 2020), resulting in a retrieval time 
window of 18 or 36 days. The potential vegetation variation within 36 
days would therefore have a substantial effect on the STCD methods. 

To overcome the above challenges, the STCD was reformulated in 
this study to partly include the effect of temporal vegetation evolution, 
for improved operational soil moisture retrieval using C-band Sentinel-1 
data. For the vegetated areas dominated by soil scattering, the effect of 
temporal vegetation variation on time series Sentinel-1 VV was 
approximated as the variation of two-way attenuation, which was then 
removed using a second order ratio of three consecutive backscatter 

Fig. 1. The Yanco area and OzNet soil moisture stations, as well as the four focus farms with the most OzNet stations, the Equal-Area Scalable Earth (EASE-2) 36-km 
grids labeled by its row and column number (r318c873 and r319c873), the focus area of SMAPEx-5 experiment. 
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Table 1 
Summary of the 22 networks used for the extended evaluation.  

Network (Reference or Website) # Station # mv measurements LULC* # time series 
Asc./ Des. 

Incidence angle** 

AMMA-CATCH (Galle et al., 2018) 7 635 3, 7, 8 10/0 41.0 ± 5.5 
ARM (Cook, 2016) 15 2490 2, 3 19/0 38.3 ± 3.6 
FLUXNET-AMERIFLUX (http://ameriflux.lbl.gov/) 5 1119 2, 3, 8 8/5 37.3 ± 4.2 
FMI (Ikonen et al., 2018) 16 6731 2, 6 48/48 37.2 ± 4.4 
FR_Aqui (Al-Yaari et al., 2018) 4 2369 2, 6, 8 4/8 36.5 ± 4.3 
HOAL (Blöschl et al., 2016) 31 6720 3 31/31 38.7 ± 0.3 
HOBE (Jensen and Refsgaard, 2018) 27 10,543 3, 6, 8 54/59 36.1 ± 4.6 
MAQU (Su et al., 2011) 5 254 2 5/2 36.9 ± 1.1 
NAQU (Su et al., 2011) 7 1036 2 14/7 37.6 ± 4.9 
NGARI (Su et al., 2011) 14 1398 2, 5 13/15 36.5 ± 1.9 
OzNet (Smith et al., 2012) 34 1039 2, 3 0/34 37.9 ± 1.7 
PBO_H2O (Larson et al., 2008) 30 1947 1, 2, 3, 8 36/17 38.2 ± 4.0 
REMEDHUS (González-Zamora et al., 2019) 20 10,574 1, 2, 3, 8 31/20 38.5 ± 4.2 
RISMA (Ojo et al., 2015) 22 2194 2, 3 39/0 36.9 ± 4.4 
RSMN (http://assimo.meteoromania.ro) 19 9999 3, 4, 7, 8 33/33 38.9 ± 4.6 
Ru_CFR 1 48 7 0/1 34.7 ± 0.0 
SCAN (Schaefer et al., 2007) 168 21,832 1, 2, 3, 4, 5, 6, 7, 8 216/96 38.4 ± 4.2 
SMOSMANIA (Calvet et al., 2016) 21 12,749 1, 3, 8 33/32 38.0 ± 4.5 
TAHMO (https://tahmo.org/) 4 159 1, 4, 6 4/0 39.1 ± 3.2 
TERENO (Zacharias et al., 2011) 4 2509 3, 8 6/8 38.1 ± 4.6 
USCRN (Bell et al., 2013) 99 14,675 1, 2, 3, 5, 6, 7, 8 135/68 38.3 ± 4.4 
iRON (Osenga et al., 2019) 6 817 2, 6, 8 10/8 39.2 ± 4.7 
Total 559 111,837  749/492   

* : 1–8 refers to shrubs, grass, crop, bare, urban, evergreen forest, deciduous forest and mixed forest, respectively. 
** : Average value± Standard deviation. 

Table 2 
Summary of the change detection algorithms compared in this study.  

Algorithm Linear equations Constraints 

Sort term change detection (STCD) Eq. 5 0.03 ≤ mv ≤ 0.5 
STCD with soil moisture bounds (STCD_B) Eq. 5 mvmin

SMAP ≤ mv ≤ mvmax
SMAP 

STCD_B with time-varying vegetation (STCD_V) Eq. 9 mvmin
SMAP ≤ mv ≤ mvmax

SMAP 

STCD_B with temporal constraints (STCD_T) Eq. 5 Eq. 14 and 15 
Advanced change detection (ACD) Eq. 9 Eq. 14 and 15  

Fig. 2. (a) Retrieved soil moisture versus OzNet observations, with the solid line and dashed lines indicating 1:1 and the ± 0.06 m3/m3 margins respectively. (b) 
Retrieval statistic of each station, with the red line and value being the average of all stations. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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acquisitions and the corresponding time series of normalized difference 
vegetation index (NDVI). Moreover, the soil moisture active passive 
(SMAP) L2 passive only soil moisture product was used to provide a 
temporal constraint of the inversion process, as an extension of the 
constraints proposed by Ouellette et al. (2017) and Zhu et al. (2019b). 
The STCD method with the two modifications was named the advanced 
change detection (ACD) method. It is expected to provide more reliable 
soil moisture retrievals than the existing STCDs while maintaining the 
capability of global application in an operational manner. 

The proposed ACD was first evaluated using in-situ soil moisture data 
collected in the Yanco agricultural area, including time series observa-
tions from 34 OzNet stations and ground samples collected during the 
Fifth Soil Moisture Active and Passive Experiment (SMAPEx-5). More-
over, the ACD, the two STCD variants using each of the two modifica-
tions separately, and the two existing STCD variants (Balenzano et al., 
2013; Ouellette et al., 2017) were compared to each other and evaluated 
on 559 stations from 22 soil moisture monitoring networks, providing a 
deep investigation of the proposed modifications, including the effect of 
vegetation, incidence angle and orbit direction (ascending and 
descending). 

2. Methodology 

2.1. Short-term change detection (STCD) 

The short-term change detection method is also known as the alpha 
approximation approach for soil moisture retrieval (Balenzano et al., 
2011), starting from a first-order approximation of the radiative transfer 
(RT) theory. The total backscattering coefficient at VV polarization can 
be expressed as the sum of three terms in linear units as: 

σtotal
VV = σs

VVγ2 + σv
VV +σsv

VV (1)  

where the first term of the right side is the soil surface scattering 
attenuated by the vegetation canopy, with the γ2 being the two-way 
vegetation attenuation. The second and third terms are the volume 
scattering from the vegetation canopy and the multiple scattering be-
tween the vegetation and soil surface, respectively. A preprocessing step 
of removing areas dominated by volume scattering (Satalino et al., 
2014) can therefore be applied to simplify Eq. 1 to: 

σtotal
VV ≈ σs

VVγ2 = |αVV(ε, θ) |2⋅Ω⋅γ2 (2)  

where αVV(ε,θ) is the reflection coefficient, representing the effect of soil 
permittivity (ε) and incidence angle (θ). The term Ω represents the in-
fluence of soil surface roughness. Since roughness and vegetation can be 
assumed time-invariant for a short period, the backscatter ratio of two 
subsequent VV acquisitions Si+1,i at DoY i and DoY i + 1 is: 

Si+1,i =
σtotal

VV,i+1

σtotal
VV,i

≈
σs

VV,i+1γ2

σs
VV,iγ2 ≈

⃒
⃒αVV,i+1(ε, θ)

⃒
⃒2

⃒
⃒αVV,i(ε, θ)

⃒
⃒2 (3)  

with 

|αVV(ε, θ) | =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(ε − 1)(sin2θ − ε(1 + sin2θ) )
(

εcosθ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε − sin2θ

√ )2

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(4) 

For simplicity, α is used to represent αVV(ε,θ) hereafter. Given a time 
series of N Sentinel-1 VV acquisitions, the time series of α can be solved 
using: 

⎡

⎢
⎢
⎣

−
̅̅̅̅̅̅̅
S2,1

√
1 0 ⋯ 0 0

0 −
̅̅̅̅̅̅̅
S3,2

√
1 ⋯ 0 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 −

̅̅̅̅̅̅̅̅̅̅̅̅̅
SN,N− 1

√
1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

α1
α2
…

αN− 1
αN

⎤

⎥
⎥
⎥
⎥
⎦
= 0→ (5)  

where 0→ is the null vector with a length of N -1. Obviously, Eq. 5 is 
underdetermined, with N -1 equations and N unknowns. To constrain 
this underdetermined stochastic system, be constrained by applying a 
set of linear can be applied: 

αmin ≤ αi ≤ αmax, i = 1…N (6)  

where αmin and αmax are calculated from the soil texture properties. In 
the Soil MOisture retrieval from multi-temporal SAR data (SMOSAR) 
proposed by Balenzano et al. (2012), N is set as a fixed value of 4 
considering the tradeoff between the validity of the time invariant as-
sumptions and the fact that a longer time series introduces more ob-
servations. However, substantial vegetation changes can occur within 
the 18 days or 36 days time span of 4 Sentinel-1 acquisitions. 

2.2. Advanced change detection (ACD) 

Similar to the STCD, the proposed advanced change detection 
method applies to bare or vegetated soils dominated by attenuated 
surface scattering. Roughness is also assumed to be time invariant as it is 
relatively stable for a crop season (a few months). However, the varia-
tion of two-way vegetation attenuation is considered to reflect the effect 
of vegetation variation in time. The two-way vegetation attenuation 
(Attema and Ulaby, 1978) can be expressed as: 

γ2 = exp( − 2AVsecθ) (7)  

where A is an empirical parameter depending on the radar configuration 
and vegetation type, and V is a bulk vegetation descriptor, which can be 
leaf area index (LAI), vegetation water content (VWC) or NDVI (Joseph 
et al., 2010; Qiu et al., 2019). Considering the attenuation, Eq. 3 
becomes: 

Si+1,i ≈

⃒
⃒αVV,i+1

⃒
⃒2exp( − 2AVi+1secθ)

⃒
⃒αVV,i

⃒
⃒2exp( − 2AVisecθ)

(8) 

Since V can be obtained from other remote sensing data or products 
and the parameter A is independent of time, it is possible to write a 
linear underdetermined system of N - 2 equations with N unknowns ln 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 2 2ω3,1 + 2 − 2ω3,1 0 … 0 0 0

0 − 2 2ω4,2 + 2 − 2ω4,2 … 0 0 0

… … … … … … … …

0 0 0 0 … − 2 2ωN,N− 2 + 2 − 2ωN,N− 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ln(α1)

ln(α2)

…

ln(αN)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ln
(
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)
− ω3,1ln

(
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)

ln
(
S3,2
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− ω4,2ln

(
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)

…

ln
(
SN− 1,N− 2
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− ωN,N− 2ln

(
SN,N− 1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)   
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(αN) (see appendix for the complete derivation and the case Vi+2 = Vi+1):  

with 

ωi+2,i = (Vi+1 − Vi)
/
(Vi+2 − Vi+1), (Vi+2 ∕= Vi+1) (10) 

Obviously, Eq. 9 requires at least 3 consecutive SAR acquisitions and 
Eq. 5 can be treated as a special case of Eq. 9 when ωi+2,i equals to 0: 
⎡

⎢
⎢
⎣

− 2 2 0 … 0 0
0 − 2 2 … 0 0
… … … … … …
0 0 0 0 − 2 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ln(α1)

ln(α2)

…
ln(αN)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

ln
(
S2,1

)

ln
(
S3,2

)

…
ln
(
SN,N− 1

)

⎤

⎥
⎥
⎦ (11) 

This suggests that Eq. 9 is also valid for bare soil, time invariant 
vegetation and retrieval periods with bare-vegetation transitions, except 
the case that only one vegetated time instance is available because at 
least two vegetated time instances are required to remove the parameter 

A. While various bulk vegetation descriptors (V) can be directly used in 
Eq. 9, a preprocessing step of identifying the crop season is required for 
vegetation indices (e.g., NDVI). 

It is widely acknowledged that an accurate initial estimate of the 
upper and lower bound soil moisture values is crucial for successful soil 
moisture retrieval (Al-Khaldi et al., 2019; Balenzano et al., 2021; He 
et al., 2017; Ouellette et al., 2017). Use of the full range (0.03–0.5 m3/ 
m3) in Eq. 6 tended to underestimate soil moisture, with most retrievals 
being near the minimal bound (Ouellette et al., 2017). Accordingly, in 
this study the minimum and maximum soil moisture derived from SMAP 
products were used to determine the αmin and αmax (Ouellette et al., 
2017). Specifically, given a retrieval period with N SMAP observations 
the minimum and the maximum soil moisture were determined as: 

mvmin = min
(
mvSMAP

1 ,…,mvSMAP
N ,mvave

)
, (12)  

mvmax = max
(
mvSMAP

1 ,…,mvSMAP
N ,mvave

)
, (13) 

Fig. 3. Averaged OzNet observations within each 3-km focus farm (blue) and the corresponding retrieved soil moisture (black). Envelopes represent the standard 
deviation related to the average value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where mvave is the average soil moisture of all historical SMAP records of 
the area of interest. The assumption behind this constraint is that the 
coarse soil moisture range of a retrieval period is similar to the range of 
high-resolution soil moisture within the coarse grid. For a long enough 
retrieval period (e.g., 3 years), the use of minimum and maximum soil 
moisture is similar to the LTCD method (Wagner et al., 1999b), which 
involved the driest and wettest scenarios. This was found to over-
estimate the ranges for dry or wet seasons (Ouellette et al., 2017) and 
thus only the SMAP observations collected during the retrieval period 
were used. However, the coarse soil moisture of a short period in dry 
(wet) seasons can be a constantly low (high) value, substantially 
underestimating the range of the soil moisture at high resolution. 
Consequently, the mvave was included in the calculation of bounds, 
which is expected to provide a relatively large range for a dry or wet 
season and thus “anomalies” (e.g., high values after irrigation in a dry 
season) at a fine resolution can be captured. 

The time series of α is also forced to follow the soil moisture trend of 
the SMAP products, being a variant of the dry down constraint proposed 
in Zhu et al. (2019b). Given two time-instances i and j with mvj

SMAP ≥

mvi
SMAP, a set of linear constraints can be used to further constrain the 

retrieval, such that: 

αmin ≤ αi ≤ αj ≤ αmax, i, j ∈ (1, 2,…,N) (14) 

The rationale is that soil moisture within a 36-km grid can share a 
similar monotonic dry down process after a rainfall event. However, 
farm-scale irrigation events and/or sub-grid scale rainfall can result in 
different soil moisture trends within a 36-km grid. The empirical rule 
proposed by Bazzi et al. (2020): 

σi+1 − σi ≥ 1 dB and mvSMAP
i ≥ mvSMAP

i+1 (15)  

was used to detect highly confident sub-grid scale soil moisture anom-
alies. For a pixel meeting Eq. 15, irrigation or rainfall may occur at this 
pixel, resulting in a different temporal evolution for this pixel and the 
36-km grid cell. Thus the minimum-maximum constraint of Eq. 6 was 
used instead of the temporal constraint (Eq. 14). 

In implementing the proposed ADC, NDVI was selected as the 
vegetation descriptor due to its simplicity and the limited difference 

when using other vegetation indices in the water cloud model (El Hajj 
et al., 2016; Qiu et al., 2019). An empirical rule of NDVI >0.2 was used 
to identify vegetated soils (Montandon and Small, 2008), with the 
vegetated soil dominated by volume scattering being removed using a 
fixed empirical threshold of HV > -14 dB (Satalino et al., 2014). A time 
series of ln(αN) can then be achieved by solving Eq. 9 using a least- 
squares optimization with the constraint of Eq. 14. Time series soil 
moisture was then calculated by inverting the Dobson et al. (1985) 
empirical model. 

Following the multi-temporal retrieval scheme of Balenzano et al. 
(2013), given a time series of M > > N acquisitions, a temporal moving 
window with a temporal step of 1 was used to extract M - N + 1 subsets 
of N acquisitions, and the soil moisture retrieved for each subset. The 
results of each subset were then averaged to yield the retrieved soil 
moisture. A default N of 4 was selected to be consistent with the existing 
STCDs (Al-Khaldi et al., 2019; Balenzano et al., 2021; Balenzano et al., 
2013; He et al., 2017; Ouellette et al., 2017)., with the effect of larger N 
analyzed in Section 5.3. 

3. Data and preprocessing 

3.1. Soil moisture data and preprocessing 

The soil moisture collected in the Yanco agricultural area, Australia 
were used in this study (Fig. 1). The Yanco area is a semi-arid cropping 
and grazing area, with the landcover type of grazing area being mainly 
grassland. The land cover type of cropping area has complex transitions, 
mainly including wheat in winter, corn and soybean in summer, and the 
possibility of fallow (bare soil with/without short grass) in any season. 
An extensive soil moisture monitoring network (OzNet) was established 
in this area since 2001, specifically for soil moisture remote sensing 
studies, with three main upgrades being in 2003, 2009 and 2018 (http 
://www.oznet.org.au). A total of 34 OzNet stations were used in this 
study (Fig. 1), covering a 4.5-year period from 1 August 2015 to 31 
December 2019. Most of these stations were deployed in two 36-km 
Equal-Area Scalable Earth (EASE-2) grids (Fig. 1), i.e., r318c873 and 
r319c873 where r and c are row and column number of the 36-km EASE- 

Fig. 4. Time series OzNet observations, retrieved soil moisture and SMAP data of two 36 km EASE grids (r319c873 and r318c873) from 2016 to 2019. Envelopes 
represent the standard deviation related to the average value. 

L. Zhu et al.                                                                                                                                                                                                                                      

http://www.oznet.org.au
http://www.oznet.org.au


Remote Sensing of Environment 279 (2022) 113137

7

2 grid, respectively. A total of 14 soil moisture monitoring sites, located 
in the cropping area, were mainly clustered in two 3-km focus farms 
(YA4 and YA7). The size of crop fields ranged from 0.15 km2 to 0.5 km2 

with the stations being deployed near the edges of individual fields. In 
contrast, the 20 stations on grassland are scattered in a relatively larger 
area, with the two YB focus farms containing 8 stations. The daily soil 
moisture at each station was first calculated by averaging the hourly 
measurements for the top 5 cm. Daily averaged soil moisture <0.03 m3/ 
m3 or > 0.5 m3/m3 were then removed, considering the typical cali-
bration error of 0.03 m3/m3 for stations (Smith et al., 2012). 

Ground soil moisture measurements collected in the SMAPEx-5 were 
also used for evaluation, with a focus on spatial consistence. The 
SMAPEx-5 was conducted from 7 to 27 September 2015 for the 

calibration and validation of the SMAP concept (Ye et al., 2020). In the 
selected SMAPEx-5 focus area (5 × 20 km, the grey rectangle in Fig. 1), 
soil moisture was measured in the three 3-km focus farms YA4, YA7 and 
YE on a west-east oriented grid with a spacing of 250 m. Three replicate 
near surface (0–5 cm) soil moisture measurements were taken within 1 
m distance at each sampling location using the Hydraprobe Data 
Acquisition System (HDAS, (Merlin et al., 2007), and averaged to ac-
count for spatial heterogeneity and sampling uncertainty. Two Sentinel- 
1 acquisitions were available for this period, being 15 and 27 September 
2015 (UTC + 11) respectively, with nearly concurrent soil moisture 
measurements in YA4 and YE on the 14 and YA7 on 27 September. 
Similarly, measurements beyond the range of 0.03 to 0.5 m3/m3 were 
removed, resulting in a total of 608 soil moisture samples. Soil surface 

Fig. 5. SMAPEx5 intensive in-situ versus retrieved soil moisture at a resolution of 100 m (a) and 1000 m (b). The black circles in (a) are farms with irrigation on 27 
September 2015. The solid lines on the scatter plots indicate the 1:1 line, while the dashed lines represent the ±0.06 m3/m3 margins. The points in the red circle in 
(b) are those with large underestimation caused by the scale mismatch between the in-situ and 1-km grid. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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roughness and vegetation samples were also collected in the focus farms 
and were found to change little over the duration of the campaign (Ye 
et al., 2020). 

All the 0–5 cm soil moisture observations from the international soil 
moisture network (ISMN, (Dorigo et al., 2021) were considered in this 
study for a comprehensive evaluation. The soil moisture measurements 
collected during 2016–2019 were batch downloaded from the ISMN 
except those from Alaskan stations. Among the 1343 available stations, 
the 367 SNOTEL stations were filtered out because they were all 
installed in areas with complex terrain features, and accurate terrain 
correction and flattening was not undertaken for this study. Moreover, 
only the measurements with a quality flag of “G” (good) were used. 
Since the sensing depths varied across the stations, they were all 
assumed to represent the average soil moisture of the top 5 cm. As for the 
preprocessing of OzNet data, the daily soil moisture of each station was 
first calculated by averaging the hourly measurements of all sensors 
with a sensing depth of ≤ 5 cm. Any daily averaged soil moisture re-
cordings out the range of 0.03–0.5 m3/m3 were then removed. 

The land cover of each ISMN station was extracted from the Coper-
nicus Global Land Cover Layers (CGLS-LC100 Collection 3, Buchhorn 
et al., 2020) using the Google Earth Engine (GEE); all the stations were 
observed to have consistent land cover types throughout the retrieval 
period of 2016–2019. The stations located in wetland and urban were 
then also removed, resulting in 559 stations from 22 networks (Table 1). 
For simplicity, the original 13 land cover types were categorized into 8 
types, being shrubs, grass, crop, bare, urban, evergreen forest, deciduous 

forest and mixed forest. Refer to https://github.com/rszlj/global_valida 
tion_of_soil_moisture_algorithm for the GEE based preparation of all the 
input data over the 559 stations. 

3.2. Remote sensing data over the Yanco area 

Three kinds of remote sensing data are required by the proposed 
ACD, being i) the Sentinel-1 backscatter data, ii) SMAP coarse soil 
moisture and iii) NDVI products. A total of 120 Sentinel-1A descending 
Interferometric Wide (IW) Ground Range (GRD) scenes acquired be-
tween 1 August 2015 and 31 December 2019 were used in this study, 
with a local incidence angle of around 38.5 deg. A standard GRD pre- 
processing workflow (Filipponi, 2019) was applied to each acquisition 
based on the Sentinel Application Platform (SNAP) and Geospatial Data 
Abstraction Library (GDAL), including i) apply orbit file; ii) thermal and 
GRD border noise removal; iii) radiometric calibration; iv) speckle 
filtering using a 5 × 5 median filter; v) terrain correction; and vi) 
splitting into granules (36 km × 36 km) based on the EASE-2.0 36-km 
grid. The preprocessed time series stacks of VV and VH backscatter co-
efficients were finally stored according to the 6 granules shown in Fig. 1 
with a pixel size of 100 m. These data have ~100 looks with an expected 
radiometric accuracy of ~0.4 dB (Torres et al., 2012). 

The SMAP L3 passive soil moisture product (Version 6, Neill et al., 
2019) was used to provide the soil moisture constraints. The time series 
soil moisture of the 6 SMAP radiometer grid cells, i.e., r318c872, 
r318c873, r318c874, r319c872, r319c873, and r319c874 in Fig. 1, were 

Fig. 6. Performance of the ACD, STCD_B, STCD, STCD_T, and STCD_V using different Sentinel-1 acquisitions. (a) and (b) are the average and standard deviation of 
statistics of 559 stations respectively. 
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extracted first. The coarse soil moisture estimates on the 120 Sentinel-1 
acquisition dates was then interpolated from the original SMAP time 
series using a spline function. In the soil moisture retrieval, each inter-
polated SMAP time series was used to constrain the high resolution re-
trievals within the 36-km SMAP grid cell. 

The Terra and Aqua Moderate Resolution Imaging Spectroradi-
ometer (MODIS) NDVI (MOD13Q1 and MYD13Q1) Version 6 were used 
to represent the variation of vegetation. The two NDVI sets were pro-
duced from optical data collected by two identical sensors, with a spatial 
resolution of 250 m. Each product used the best available pixel value 
from all the acquisitions over the 16-day period, eliminating the effect of 
clouds. In this study, the NDVI data were first combined to have a revisit 
of 8 days. The composite NDVI were then resampled to 100 m using the 
nearest neighbor method and re-projected to the EASE-2 36-km grid. 
The NDVI of each pixel on each Sentinel-1 acquisition date was then 
calculated using pixel-wise temporal interpolation with a spline 
function. 

3.3. Remote sensing data over the ISMN stations 

The GEE was used to prepare the remote sensing data over the 559 
stations available from the ISMN, because of its convenience to extract 
time series data over a large number of stations without downloading 
and processing the entire tiles/acquisitions of remote sensing images. All 
the Sentinel-1 IW VV + VH GRD data over each station was extracted 
from the GEE Sentinel-1 GRD product, which was preprocessed in a 
similar way to the standard GRD pre-processing workflow (Filipponi, 
2019) without terrain correction and flattening. Since the spacing size of 
GEE Sentinel-1 GRD is 10 m, a buffer of 50 m was used to create the 
point geometry of each station, and the 10 m pixels within the point 
geometry averaged to result in an equivalent area of 100 × 100 m2. A 
comparison of the GEE based preprocessing and the preprocessing used 
for Yanco area showed a root mean square difference of <0.05 dB on the 
34 OzNet stations. For some stations, the Sentinel-1 data was collected 
from different platforms (1A and 1B), orbit passes (ascending or 
descending), relative orbits (1–175) and thus various incidence and 
azimuth angles. The extracted time series was thus split into a few sub- 

series according to the relative orbit and pass direction to avoid the 
effect of periodic features and varying incidence angle. Notably, a sub- 
series of <30 Sentinel-1 acquisitions was removed in order to use a 
maximum N of 30. A summary of the extracted Sentinel-1 time series 
over each network is provided in Table 1. 

The same NDVI products (MOD13Q1 and MYD13Q1 Version 6) were 
available on the GEE and thus the time series NDVI of each station was 
extracted and preprocessed in the same way as that for the Yanco area. 
Since the SMAP products were not available on the GEE, the coarse soil 
moisture estimates of the ISMN stations were preprocessed locally, being 
consistent with that of Yanco. 

4. Evaluation setup and scenarios 

The proposed methods were evaluated under two main scenarios; i) 
the Yanco agricultural area and ii) globally using the stations available 
on the ISMN. At Yanco the retrieval performance of the ACD was eval-
uated with a default N of 4 at point, 1-km, and 3-km scales and compared 
with the SMAP time series. The widely used bias, correlation coefficient 
(R), root mean square error (RMSE) and unbiased RMSE (ubRMSE) were 
selected as the indicators of retrieval performance. Globally the ACD 
was assessed for the effect of temporal vegetation conditions and the 
extra temporal constraint in soil moisture, along with the effect of 
vegetation, incidence angle and Sentinel-1 orbit pass using 559 stations. 
Specifically, five algorithms using different linear equations and con-
straints were compared, with the details of each algorithm summarized 
in Table 2. 

The STCD method was initially proposed by Balenzano et al. (2011), 
and modified to include soil moisture bounds (STCD_B) from SMAP 
products by Ouellette et al. (2017). This study augmented the STCD_B 
with time-varying vegetation (STCD_V) to remove the assumption of 
time-invariant vegetation, and the STCD_B with temporal constraints 
(STCD_T) to force the retrieved soil moisture to follow the trend of SMAP 
products. The ACD included both the STCD_V and STCD_T modifications 
with respect to the STCD_B. 

Fig. 7. Examples of soil moisture bounds derived from the SMAP products using an N of 4, 10, 16 and 30. The upper and lower boundaries of in-situ station 
measurements refer to the 10th and 90th percentiles of the OzNet stations. 
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5. Results 

5.1. Evaluation using the OzNet data sets 

Soil moisture was retrieved using the ACD and compared with the in- 
situ soil moisture of 34 OzNet stations (Fig. 2a). Acceptable accuracy 
was achieved with an R and RMSE of 0.664 and 0.072 m3/m3, respec-
tively. While the ACD achieved a negligible bias of 0.01 m3/m3, sub-
stantial overestimation and underestimation was observed at the low 

and high end respectively. This may be partly caused by the smaller 
ranges achieved from the SMAP products. Moreover, the relatively poor 
performance of high values can be explained by the reduced sensitivity 
of radar observations to high values. The corresponding Bias, R, RMSE 
and ubRMSE of the SMAP products were 0.02 m3/m3, 0.683, 0.081 m3/ 
m3 and 0.079 m3/m3 respectively. The improvement in statistics can be 
mainly from the higher retrieval resolution of ACD. Fig. 2 b depicts the 
statistics for each station. The RMSE and R of most stations ranged from 
0.04 to 0.08 m3/m3 and 0.5 to 0.8, with an average value of 0.071 m3/ 

Fig. 8. The normalized performance of ACD, STCD_T, and STCD_V with respect to the STCD_B on the 22 networks using the default Nt = 4.  
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m3 and 0.68 respectively. The stations in cropping areas showed a 
higher RMSE and lower R than those in the grazing area. Fifty percent of 
the cropping stations showed an RMSE of >0.08 m3/m3, which is 14% 
for grazing stations. The soil moisture of grazing stations was generally 
overestimated, with 19 out of 22 stations having a positive bias. Since 
the the detailed information of the crop transitions and the crop type 
from 2016 to 2019 was not available, the effect of vegetation on the 
retrieval accuracy was investigated using the 559 stations. 

Fig. 3 shows the averaged in-situ observations of four 3-km farms 
(YA4, YA7, YB5, and YB7) and the corresponding averaged soil moisture 
retrieved by the ACD. In general, the retrieved time series of the four 3- 
km farms matched well with the in-situ values, resulting in an average R 
and RMSE of 0.805 and 0.055 m3/m3 respectively. However, the ACD 
underestimated the spatial variation of soil moisture for all four focus 
farms, with a smaller retrieved standard deviation in most instances. 
This partly resulted from the mismatch between the real soil moisture 

bounds and the bounds achieved from the SMAP products (see the sec-
tion 5.2). Moreover, stations in cropping areas were all deployed near 
the edges of individual fields, while the retrieved soil moisture over each 
site at a resolution of 100 m were often close to the average value of two 
nearby fields. Therefore, extremely high soil moisture can be recorded 
by a station after an irrigation event, but a much lower value can be 
achieved because of the non-irrigated field nearby. This can be another 
reason for the substantial underestimation observed in YA7 during the 
period of April 2017 to January 2018. 

Fig. 4 shows the averaged in-situ observations of two 36-km EASE- 
2.0 grids (r318c873 and r319c873) and the corresponding SMAP and 
retrieved soil moisture. Similar to the comparison over the four 3-km 
farms, the retrieved soil moisture successfully captured the temporal 
variation of soil moisture, but failed to fully reflect the inner grid spatial 
variation. Not surprisingly, the retrieved soil moisture maintained good 
consistency with the SMAP soil moisture as a result of applying the 

Fig. 9. The performance of ACD with respect to the average of NDVI (a); The performance difference between the ACD and STCD_B versus the average of NDVI (b) 
and the standard deviation of NDVI (c), with each point representing 1 of the 559 stations. The four-year NDVI of each station was used to calculate the site specific 
NDVI statistics. 
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SMAP based temporal constraints (Eq. 14). The root mean square dif-
ference (RMSD) between the retrieved and SMAP soil moisture was 
0.038 m3/m3 and 0.040 m3/m3 for the r318c873 and r319c873 
respectively. The largest difference was observed in the rainy season of 
2016 when the SMAP soil moisture had much higher values than 
retrieved and in-situ values. This suggests that the use of mvave in the 
calculation of soil moisture bounds (Eq. 12 and 13) can help to maintain 
a large soil moisture range for a wet season. 

5.2. Evaluation using the SMAPEx-5 dataset 

Evaluation using the SMAPEx-5 dataset was focused on the spatial 
distribution of soil moisture at a spatial resolution of 100 m (Fig. 5a) and 
1 km (Fig. 5b), with the soil moisture of 1 km being upscaled from that of 
0.1 km. Although the evaluation at a fine scale of 0.1 km showed a large 
RMSE of 0.095 m3/m3, the produced soil moisture maps generally 
captured the distribution of ground soil moisture measurements. The 
high soil moisture caused by irrigation events on 27 September were all 
successfully detected, but at a slightly lower value than the ground 
measurements. The main reason of such underestimation is likely that 
the Sentinel-1 acquisition of 27 September (~7 am UTC + 11) was 
collected at the early stage of the irrigation process whilst the in-situ 
measurements were collected after irrigation was completed. More-
over, the VWC of these irrigated fields were up to 4 kg/m2 during the 
SMAPEx-5, being another reason of the underestimation. 

The soil moisture maps at 1-km resolution generally had consistent 

spatial patterns with the ground truth except for a few pixels located in 
the boundaries of the 3-km farms or that contained irrigated farms. The 
boundary pixels can only include 1–2 ground samples, while a 1-km 
mixed pixel of irrigated and non-irrigated areas may not be accurately 
represented. The scale mismatch between the in-situ and 1-km grid cell 
was the main reason for the underestimation in comparison (the points 
in the read circle of Fig. 5b). Accordingly, the real RMSE at 1 km reso-
lution should be much smaller than the reported value of 0.063 m3/m3, 
being 0.044 m3/m3 after excluding the points in the red circle. 

5.3. Effect of retrieval constraints 

The performance of the ACD on the 559 ISMN stations was compared 
with that of the STCD, STCD_B, STCD_T and STCD_V (Table 2) using 
different N varying from 4 to 30 (Fig. 6 a). The corresponding retrieval 
time windows ranged from 18 days to 348 days, covering all potential 
scenarios of time series retrievals. In general, the ACD achieved the best 
results, followed by the STCD_T, STCD_V, STCD_B and STCD. For the 
default retrieval scenario of N = 4, the R and RMSE of STCD were 0.233 
and 0.115 m3/m3 respectively. Accordingly, the soil moisture was sub-
stantially underestimated by the STCD with a bias of − 0.055 m3/m3, 
which was compensated by applying SMAP soil moisture bounds 
(STCD_B). The accuracy was further improved in view of RMSE by 
considering the time-varying vegetation (STCD_V) and/or using the 
temporal soil moisture constraint (STCD_T). For other cases of N > 4, the 
RMSE of all five methods increased as N increased, in line with the 

Fig. 10. The effect of incidence angle and orbit direction on the retrieval accuracy of ACD (a, b) and the improvement of using the proposed modifications (c, d). 
Each point represents a retrieval using a time series with the same incidence angle and orbit direction. A total of 749 ascending and 492 descending time series 
(Table 1) were used. 
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results of Palmisano et al. (2020). The methods without the temporal 
constraint (STCD_V and STCD_B) were more sensitive to N than the ACD 
and STCD_T. A larger N means more observations and thus reduced 
uncertainties in solving the linear equations (Eq. 6 or Eq. 9). However, 
the uncertainty caused by the temporal variation of vegetation and/or 
soil roughness increased as well. Moreover, the difference between the 
SMAP soil moisture bounds and the real soil moisture bounds (e.g., the 
minimum and maximum soil moisture of OzNet stations) increased as N 
increased (Fig. 7), especially for dry seasons, resulting in poorer 
retrievals. 

Different relationships between R and N were observed for the fives 
methods, which can be classified into three categories with different soil 
moisture constraints. The R of the second category (STCD_B and 
STCD_V) gradually decreased as N increased, consistent with the 
behavior of RMSE. The R of the first category (STCD) showed a contrary 
trend, being monotonically increasing from 0.23 to 0.30. As the length 
of retrieval window increased, the real soil moisture bounds became 
closer to the default bounds of 0.03 to 0.5 m3/m3 (Fig. 7), contributing 
positively to the R of STCD. This however had a negative effect on the 
other methods because the soil moisture bounds achieved from the 
SMAP products had the best estimation of the real soil moisture bounds 
at N = 4, as shown in Fig. 7. Specifically, the STCD becomes the same as 
STCD_B when the default bounds equal to the SMAP soil moisture 
bounds in a long enough time window, being the main reason why the R 
of STCD and STCD_B gradually approached the same value of ~0.30 as N 
increased. 

Different from the first and second category without the temporal 

soil moisture constraints, the third category (ACD and STCD_T) achieved 
a stable R as N increased, in line with the trend of RMSE. The retrieved 
soil moisture was forced to follow the SMAP time series (Eq. 14) in the 
ACD and STCD_T, with the error caused by abrupt roughness and/or 
vegetation changes and the accumulated uncertainty of a long retrieval 
time window being partly removed. The STCD_V achieved a smaller 
RMSE than the STCD_B for all cases of N, confirming the effectiveness of 
the modification to account for time-varying vegetation. However, the 
ACD only slightly outperformed the STCD_T for a short retrieval window 
of <10 overpasses. 

All five methods achieved large standard deviations for the default 
retrieval scenario of N = 4 (Fig. 6 b), being ~0.08 m3/m3 in bias, ~0.2 in 
R and ~ 0.05 m3/m3 in RMSE. As N increased to 30, a limited difference 
in standard deviation was observed and only the R of STCD showed a 
large increase, being ~0.08. This may suggest that all five methods had 
poor stabilities across the 559 stations, being insensitive to the length of 
retrieval window. 

The performance of the ACD, STCD_T, STCD_V, and STCD_B was 
further analyzed on each network using a default N of 4, with the 
STCD_B being selected as the benchmark. In the comparison of ACD and 
STCD_B (Fig. 8), the ACD outperformed the STCD_B on 20 out of the 22 
networks in ubRMSE, with the difference being <0.02 m3/m3 on most 
stations. The ACD showed smaller improvements in R, winning on 15 
networks. These 15 networks all had relatively smaller R (< 0.65), 
suggesting that stations with poorer performance can benefit more from 
using the proposed modifications than those which already had satis-
factory performance in STCD_B. The ACD and STCD_B showed similar 

Fig. 11. The retrieved soil moisture time series for the HOBE network, with the six subplots being the results of 5 different orbits and their ensemble average (bottom 
right). Each time series was the average of the 27 stations of the HOBE network. 
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biases on all networks, with the bias difference being <0.01 m3/m3 on 
21 networks. Similar patterns were observed in the STCD_T versus 
STCD_B (the second row of Fig. 8) and STCD_V versus STCD_B (the third 
row of Fig. 8). The STCD_T and STCD_V outperformed 20 and 18 net-
works in ubRMSE respectively, and the improvement of using either 
single modification was <0.02 m3/m3 on most networks. The similar 
patterns observed in Fig. 7 (a-c) may be explained by the marginal utility 
of either modification when multiple modifications were used. 

5.4. Effect of vegetation, incidence angle and look direction on retrieval 
accuracy 

Fig. 9b shows the benefit of using the proposed modifications (i.e., 
the difference between ACD and STCD_B) under various vegetation 
status in view of 4-year averaged NDVI. The difference between ACD 
and STCD_B over bare to sparse vegetation (NDVI <0.4) was smaller 
than that over more densely vegetated areas (NDVI >0.4). The average 
improvement in R and ubRMSE was 0.06 and 0.005 m3/m3 respectively 
for the stations with an average NDVI <0.4, while it was 0.09 and 0.011 
m3/m3 for stations with an average NDVI ≥ 0.4. This confirms that the 
retrieval over dense vegetation can benefit more from the proposed 
modifications. Since the ACD is expected to partially address the effect 
of temporal vegetation variations, the relationship between the 
improvement and the temporal variation of NDVI was investigated in 
Fig. 9c. For stations with an NDVI standard deviation of <0.1, the 
average improvement in R and ubRMSE was 0.06 and 0.005 m3/m3 

respectively, while it was 0.08 and 0.01 m3/m3 for the rest of the sta-
tions. This further confirmed that areas with larger temporal vegetation 
variations can benefit more using the ACD. 

The effect of incidence angle and orbit direction (ascending and 
descending) was investigated in Fig. 10. In general, the ACD achieved 
similar performance on time series data collected from various incidence 
angles (29◦ to 46◦). The average R and ubRMSE of the 749 ascending 
time series were 0.588 and 0.055 m3/m3 respectively, which was 0.589 
and 0.052 m3/m3 for descending time series. Similarly, the performance 
difference between ACD and STCD_B was insensitive to the incidence 
angle and orbit direction, with the difference between ascending and 
descending being 0.015 in R and ~ 0 m3/m3 in ubRMSE. 

The HOBE network located in Denmark (Jensen and Refsgaard, 
2018) was selected to provide a comparison of the retrieved time series 
from various orbits (Fig. 11), considering the larger number of available 
Sentinel-1 orbits at relatively high latitude. The main landcover of the 
27 HOBE stations was crop, evergreen forest and mixed forest, with an 
average NDVI of 0.6. In general, the time series retrieved from 5 orbits 
well captured the temporal trend of ground measurements. Limited 
difference was observed among the time series of the 4 orbits with an 
incidence angle <41◦. The time series of orbit 66 showed relatively 
poorer accuracy statistics and underestimated the short-term temporal 
variations. This may be explained by the relatively larger effect of 
vegetation on a larger incidence angle of 45◦. The average of the 5 time 
series showed acceptable accuracy for the network (bottom right of 
Fig. 11). 

6. Conclusion and discussions 

An advanced change detection method (ACD) was presented, partly 
considering the effect of temporal vegetation variation and including an 
extra temporal constraint in soil moisture with respect to the existing 
STCD methods (Balenzano et al., 2021; Ouellette et al., 2017). At the 
default scenario of N = 4, the ACD achieved an acceptable RMSE of 
0.071 m3/m3, < 0.063 m3/m3 and 0.055 m3/m3 at the point, 1-km and 
3-km scales respectively in the Yanco agriculture area. The ACD per-
formed slightly worse than the multi-temporal methods based on well 
calibrated scattering models at the same research area (Zhu et al., 
2020b; Zhu et al., 2019a), but is more promising for operational appli-
cations because of its simplicity. While two extra auxiliary data sets 

(SMAP soil moisture and MODIS NDVI) are required in the ACD, both 
are globally available and can be easily prepared using the GEE, 
allowing the ACD to retain the capability of global operational 
applications. 

The two proposed extensions can be used independently, with their 
effectiveness confirmed in a comprehensive evaluation using time series 
observations from 559 stations world-wide. Consideration of either the 
temporal (STCD_T) or the of time-varying vegetation (STCD_V) 
constraint can improve the retrieval accuracy with respect to the exist-
ing STCD methods. However, the increment in accuracy from using the 
two modifications was smaller than that from using either modification 
alone (Fig. 6). This can be explained by i) the benefits of the two mod-
ifications being not independent and so the joint benefit is smaller than 
the summation of the two single modifications alone; and ii) the joint 
uncertainty of the two modifications is larger than that of either modi-
fication. This has also been observed in many other remote sensing 
applications. For example, the added value of using more spectral bands 
gradually decreased and evendegraded image classification, being 
known as curse of dimensionality (Bazi and Melgani, 2009). Although 
the ACD showed limited improvement with respect to the STCD_T, it is 
still valuable to use both modifications because implementation of the 
ACD is as simple as STCD_T or STCD_V alone. 

The accuracy statistics of the ACD and other STCD variants on the 
559 stations are not particularly satisfying due to the high RMSE (>
0.085 m3/m3). However, the reported RMSE contains spatial represen-
tative error, i.e. the error caused by the mismatch between the point 
measurements and the retrievals at a 100 m pixel. Such error can be 
0.02 m3/m3 for validations at 1 km resolution using a single point 
measurement (Balenzano et al., 2021). This assertion that results are 
adversely impacted by spatial representation is supported by the 
detailed evaluation in the Yanco area, where the evaluation for a 1-km 
grid cell with multiple stations and ground measurements showed an 
RMSE of <0.063 m3/m3. 

The ACD achieved similar performance on data collected from 
different orbits and/or orbit directions and maintained relatively stable 
performance for a retrieval window of up to 30 Sentinel-1 acquisitions, 
being promising for a consistent soil moisture product from different 
orbits (see Fig. 11 for an example) without cumbersome angular 
normalization. This can be partly explained by the fact that the crop and 
soil periodic features change little in a crop season except for abrupt 
changes caused by, e.g., typhoons. The effect of row features in a short 
retrieval period on time series backscatter is similar, which is minor in 
the proposed method. However, both the vegetation and roughness row 
structures can change substantially during the transitions of crop sea-
sons (Zhu et al., 2020a). The effect of such changes on SAR observations 
will be erroneously ascribed to the variations of soil moisture, resulting 
in large errors in retrieval (Zhu et al., 2019c). Moreover, the crop row 
orientation varies spatially and thus has different scattering mechanisms 
compared to the same orientation scenario. The effectiveness of the 
model assumptions also varies spatially, resulting in different retrieval 
performances. 

Despite the advantages of the proposed ACD, Eq. 8 only accounted 
for the varying vegetation attenuation in time, being still questionable 
for densely vegetated areas. The sensitivity of Sentinel-1 data to soil 
moisture and the effectiveness of the existing STCD methods over 
densely vegetated areas have been comprehensively evaluated (Balen-
zano et al., 2011; Palmisano et al., 2020). For the area dominated by low 
density vegetation (e.g., native grass), the attenuated surface scattering 
dominated the total scattering at C-band VV polarization (Stiles et al., 
2000; Zhu et al., 2019a). However, the attenuation caused by low 
density vegetation was generally small and thus the consideration of 
time-varying attenuation in Eq. 8 had limited contribution to soil 
moisture retrieval (Fig. 9). For the densely vegetated area, the received 
scattering was dominated by the attenuated soil scattering at C-band VV 
polarization at the early growth stages (Toure et al., 1994), resulting in a 
similar retrieval scenario of low density vegetation. Moreover, the 
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double-bounce and volume scattering can be increasingly important as 
the plant grows, being equivalent to the soil attenuated scattering at the 
mature stage for an incidence angle >40◦ (Brown et al., 2003; Palmisano 
et al., 2020). While an increase in double bounce scattering may 
maintain the sensitivity of soil moisture (Palmisano et al., 2020), an 
important effect of increasing volume scattering on soil moisture 
retrieval is its similarity to that of vegetation attenuation, i.e., reducing 
the sensitivity of soil moisture to the received backscatter. Accordingly, 
the use of time-varying attenuation (Eq. 8) can partly compensate the 
negative effect of time-varying volume and double bounce scattering on 
change detection methods. However, increasing volume and double 
bounce scattering can also reduce the correlation between soil moisture 
and backscatter, which is still unresolved. 

Consistent with the existing STCDs, the ACD is not expected to work 
well for densely vegetated areas. The empirical threshold of − 14 dB was 
therefore used to remove periods dominated by volume scattering, 
which was based on a few field experiments under various vegetation 
conditions with incidence angle ranging between 19 and 35◦ (Satalino 
et al., 2014). However, the incidence angles in this study ranged from 29 
to 41◦ for the 559 stations, being larger than the data source of the 
threshold.A more reliable modeling or identification of the volume- 
dominated area is still challenging due to its multiple dependence on 
soil surface (row features, moisture), vegetation (types, structure, row 
orientation, density, phenology), and radar observation geometry. 
Further studies based on reliable scattering models and ground mea-
surements are thus required to identify the validity range of the pro-
posed method. Alternatively, the empirical relationships between the 
NDVI and retrieval accuracy (Fig. 9 a) across the 559 stations can be 
used to suggest the validity of the ACD. Although the effect of time- 
varying vegetation was not fully considered, Eq. 8 may be the 
“optimal” extension to the existing STCD methods considering the 
tradeoff between the complexity of modeling the time-varying vegeta-
tion scattering and the feasibility of operational soil moisture retrieval. 
Since ground vegetation samples of a complete crop season were not 
available for the Yanco area, the contribution of ACD under different 
vegetation conditions were investigated using 559 worldwide stations, 
confirming that the retrievals over densely vegetated area or areas with 
large temporal vegetation variation can benefit more from the ACD. 

It's worth highlighting the disadvantages of the SMAP soil moisture 
bounds and the temporal constraint (Eq. 14) though it substantially 
improved the retrieval accuracy (Fig. 6). The SMAP soil moisture over 
the retrieval period was found to provide a reliable estimation of the soil 
moisture bounds observed by the OzNet stations (Fig. 7). However, the 
global minimum soil moisture of SMAP was larger than that of OzNet, 
resulting in a substantial overestimation in low values. Moreover, the 
relatively smaller range of SMAP soil moisture at the suggested scenario 
(N = 4) resulted in a smaller retrieved soil moisture range (Fig. 2 a and 
Fig. 5 a) and a smaller spatial variation (Fig. 3 and Fig. 4). This was 

especially true for irrigated farms in dry seasons (e.g., the period of April 
to July 2017), where the range of SMAP soil moisture was much smaller 
than that of real soil moisture (Fig. 7). The use of historical averaged 
SMAP (the mvave in Eq. 12 and 13) was found to partly compensate the 
mismatch between the range of SMAP soil moisture in time and the 
range of real soil moisture spatially, being still insufficient for the 
aforementioned special cases. 

The empirical threshold of VV > − 1 dB was used to detect highly 
confident irrigation and sub-grid rainfall events, based on empirical 
studies over part of Europe (Bazzi et al., 2020). However, a small rainfall 
event may slightly change the soil moisture, with the increase in back-
scatter <1 dB. Similarly, the empirical threshold of NDVI >0.2 can 
introduce uncertainty in identifying vegetated areas, but can have 
limited effect on the retrievals considering the limited attenuation at the 
soil-vegetation transition regime. Fig. 9 shows limited performance 
difference between ACD and STCD_B near the NDVI threshold of 0.2. 
Sophisticated methods for detecting the irrigation, rainfall, vegetation 
and areas dominated by volume scattering are a favorable alternative 
(Zhu et al., 2019c) but can be too complex for integration in the ACD. 
Consequnetly, the main reason for using these literature-based empirical 
thresholds is in maintaining the ability of operational application, which 
is as important as improvement in accuracy, with this capability being 
demonstrated on 559 world-wide stations. 
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Appendix A. Appendix 

Given a time series of N Sentinel-1 VV acquisitions, N – 1 temporal ratios of S2,1, … Si+1,i, … SN,N-1 can be calculated using Eq. 8: 

Si+1,i ≈
|αi+1|

2exp( − 2AVi+1secθ)
|αi|

2exp( − 2AVisecθ)
(A1) 

After applying the log transform on both sides, Si+1,i was written in a linear form: 

ln
(
Si+1,i

)
− 2ln(αi+1)+ 2ln(αi) = − 2A(Vi+1 − Vi)secθ (A2) 

Together with the linear form of Si+2,i+1, the incidence angle θ and empirical parameter A were eliminated: 

ln
(
Si+1,i

)
− 2ln(αi+1) + 2ln(αi)

ln
(
Si+2,i+1

)
− 2ln(αi+2) + 2ln(αi+1)

=
Vi+1 − Vi

Vi+2 − Vi+1
,Vi+2 ∕= Vi+1 (A3)  

or 
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ln
(
Si+2,i+1

)
− 2ln(αi+2) + 2ln(αi+1)

ln
(
Si+1,i

)
− 2ln(αi+1) + 2ln(αi)

=
Vi+2 − Vi+1

Vi+1 − Vi
,Vi+1 ∕= Vi (A4) 

The matrix form of Eq. A3 and Eq. A4 thus are: 
[
− 2 2ωi+2,i + 2 − 2ωi+2,i

]
[ ln(αi) ln(αi+1) ln(αi+2) ]

Τ
= ln

(
Si+1,i

)
− ωi+2,iln

(
Si+2,i+1

)
(A5)  

with 

ωi+2,i = (Vi+1 − Vi)
/
(Vi+2 − Vi+1), (Vi+2 ∕= Vi+1) (A6)  

or 

[ 2ωi+2,i − 2 2 − 2ωi+2,i ][ ln(αi) ln(αi+1) ln(αi+2) ]
Τ
= ln

(
Si+1,i

)
− ωi+2,iln

(
Si+2,i

)
(A7)  

with 

ωi+2,i = (Vi+1 − Vi)
/
(Vi+2 − Vi), (Vi+2 = Vi+1) (A8) 

For a special period of bare soil or soil covered by time-invariant vegetation (i.e., Vi + 2 = Vi + 1 = Vi), two equations can be obtained: 

[ − 2 2 0 ][ ln(αi) ln(αi+1) ln(αi+2) ]
Τ
= ln

(
Si+1,i

)
(A9)  

and 

[ 0 − 2 2 ][ ln(αi) ln(αi+1) ln(αi+2) ]
Τ
= ln

(
Si,i− 1

)
(A10) 

The Eq. A5 – A10 can then be used to build a linear underdetermined system of N – 2 or N – 1 equations with N unknowns ln(αN) according to the 
time series vegetation descriptors (V1, … Vi, … VN). In this study, the function “lsqlin” with the default setups provided in the MATLAB was used, 
which is a subspace trust-region method based on the interior-reflective Newton method. 
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