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A B S T R A C T   

It has been over ten years since the successful launch of the first-ever dedicated satellite for global soil moisture 
monitoring; Soil Moisture and Ocean Salinity (SMOS). Looking towards the future, P-band (0.3–1 GHz) is a 
promising technique to replace or enhance the L-band (1.4 GHz) SMOS and SMAP (Soil Moisture Active Passive) 
missions because of an expected reduction in roughness and vegetation impact, leading to an improved soil 
moisture accuracy over rougher soil surfaces and more densely vegetated areas. Accordingly, this investigation 
evaluated the tau-omega model at P-band (0.75 GHz) using a tower-based experiment in Victoria, Australia, 
where brightness temperature observations were collected concurrently at P- and L-band over bare and wheat- 
covered flat and periodic soil surfaces. The potential to retrieve soil moisture without discriminating periodic and 
flat surfaces was investigated by applying the roughness and vegetation parameters calibrated for flat soil to 
retrieve the moisture of periodic soil. Results showed that P-band had a comparable RMSE across different 
roughness configurations (variations less than 0.016 m3/m3) for both bare and wheat-covered soil, while the L- 
band RMSE was only comparable for wheat-covered soil, indicating that periodic surfaces did not need to be 
discriminated in such scenarios. Conversely, a difference of 0.022 m3/m3 was observed for L-band with bare soil. 
A reduced vegetation impact was also demonstrated at P-band, with an RMSE of 0.029 m3/m3 achieved when 
completely ignoring the wheat existence with under 4-kg/m2 vegetation water content, whereas at L-band the 
RMSE increased to 0.063 m3/m3. This study therefore paves the way for a successful P-band radiometer mission 
for obtaining more accurate global soil moisture information.   

1. Introduction 

The amount of water in the Earth’s soil is around just 17,000 km3 

(Oki and Kanae, 2006), merely accounting for 0.05% of the total 
freshwater and 0.001% of the total water on/in the Earth (Shiklomanov, 
1993). However, this small amount of water plays a crucial role in the 
Earth system because it nourishes vegetation, animals, and billions of 
humans. Moreover, soil moisture (SM) is a key parameter in the hy-
drological cycle that influences infiltration, runoff, and 

evapotranspiration (Seneviratne et al., 2010). Furthermore, it controls 
the division of the available energy at the land surface into sensible and 
latent heat fluxes (Koster et al., 2004). 

To meet the growing need for global soil moisture data in hydrology, 
precision agriculture, drought, and flood forecasting, weather predic-
tion, climate change, etc., the Soil Moisture and Ocean Salinity (SMOS) 
satellite (Kerr et al., 2010) and the Soil Moisture Active Passive (SMAP) 
satellite (Entekhabi et al., 2010) were launched in 2009 and 2015, 
respectively. Both use L-band (1.4 GHz/21-cm wavelength) radiometers 
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to measure the microwave emission from the Earth in the form of 
brightness temperature (TB), which is a function of the emissivity and 
physical temperature of the target. The emissivity of bare soil varies 
from approximately 0.5 for smooth and very wet soil to close to 1 for 
rough and very dry soil (Ulaby et al., 1982), being the primary link 
between soil moisture and TB. 

Soil roughness is well known to complicate the interpretation of 
microwave radiometer data and reduce the sensitivity of TB to soil 
moisture (Choudhury et al., 1979; Newton and Rouse, 1980). As a result, 
Wang and Choudhury (1981) developed a tractable semi-empirical 
model (referred to as the HQN model) to simulate the random rough-
ness impact, which is currently being used in the SMOS (Kerr et al., 
2019) and SMAP (O’Neill et al., 2021a) algorithms. Compared to flat 
soil, periodic (e.g., sinusoidal) row structures, a common type of soil 
tillage used for cultivation purposes, are less likely to be correctly 
modeled as a quasi-specular surface with random roughness (Ulaby 
et al., 1986). 

Apart from roughness, the vegetation canopy attenuates (absorbs 
and scatters) the soil emission and adds its own contribution to the 
overall emission, resulting in a noticeable reduction in the sensitivity of 
TB to soil moisture (Jackson et al., 1982). The tau-omega (τ-ω) model 
proposed by Mo et al. (1982) models the TB response of vegetation- 
covered soil. Optical depth τ and single scattering albedo ω charac-
terize the vegetation extinction and scattering, defined as τ =

∫
0
hκedx 

and ω = κs/κe, respectively, where extinction coefficient κe is the sum of 
absorption coefficient κa and scattering coefficient κs, and h is the canopy 
height. The τ is directly proportional to the vegetation water content 
(VWC, in kg/m2) of the canopy, while the ω primarily depends on the 
type of vegetation (Mo et al., 1982). 

The tau-omega model is essentially a zero-order solution of the 
radiative transfer equations where multiple scattering is neglected, with 
applicability and accuracy being widely evaluated (Gao et al., 2018; Li 
et al., 2020). Many retrieval algorithms have been developed based 
upon this practical model, e.g., the single channel algorithm (SCA, 
Jackson, 1993) and the dual channel algorithm (DCA, Njoku and Li, 
1999; Njoku et al., 2003) for SMAP, the L-band microwave emission of 
the biosphere (L-MEB) model (Wigneron et al., 2007) for SMOS, the land 
parameter retrieval model (LPRM, Owe et al., 2001), and the multi- 
temporal dual channel algorithm (MT-DCA, Konings et al., 2016; Kon-
ings et al., 2017). 

The advancement of satellite observations and retrieval algorithms 
has made global soil moisture maps available every three days or less 
with satisfactory accuracy. For example, according to an evaluation of 
the SMAP Level 2 Soil Moisture Passive (L2SMP) Version 8 using in-situ 
validation sites (O’Neill et al., 2021b), the SCA V-polarization (SCA-V) 
and the DCA had the same best overall performance of ~0.036 m3/m3 in 
unbiased root-mean-square error (ubRMSE), fulfilling the 0.04-m3/m3 

target accuracy of SMAP. However, the DCA showed better ubRMSE 
than the SCA at two agricultural sites. Consequently, the DCA has been 
adopted as the SMAP baseline algorithm since October 2021 (O’Neill 
et al., 2021a), with the SCA-V having been the baseline algorithm from 
the launch of SMAP (Chan et al., 2016). 

Despite the above-mentioned achievements, global soil moisture 
sensing is still facing a few challenges. First, the moisture retrieval depth 
of the current L-band missions is believed to be 5 cm or even shallower 
(Escorihuela et al., 2010; Liu et al., 2012; Zheng et al., 2019), which 
limits direct application of the data in disciplines that require deeper soil 
moisture information, e.g., weather prediction and climate research. 
Second, the accuracy of these satellite products varies for different land 
surfaces. As an example, although the SMAP radiometer-based soil 
moisture data meets its overall target accuracy, errors for croplands are 
considerably larger (Chan et al., 2016; Colliander et al., 2017; Walker 
et al., 2019). Third, current SMAP and SMOS algorithms do not specif-
ically consider any correction of the periodic row structure because of 
the lack of global information on temporally varying row shape, height, 
and orientation. In addition, there is currently no basis for how to 

upscale such field information to satellite footprint scales. 
P-band (0.3–1 GHz/100–30-cm wavelength) is a promising candi-

date for conquering some of the difficulties faced at L-band due to its 
longer wavelength. It is a widely held understanding that a longer 
waveband should have a deeper moisture retrieval depth and reduced 
impact from surface roughness and vegetation (Ulaby et al., 1986), 
resulting in a more useful contributing depth and an overall higher soil 
moisture retrieval accuracy over vegetated rough/periodic soil surfaces. 
Accordingly, a recent P-band radar study known as the Airborne Mi-
crowave Observatory of Subcanopy and Subsurface (AirMOSS), has been 
conducted for retrieving root-zone soil moisture and moisture profiles 
(Tabatabaeenejad et al., 2014; Crow et al., 2018; Tabatabaeenejad et al., 
2020). Alemohammad et al. (2019) concurrently collected P- and L-band 
backscatter observations using AirMOSS and the NASA/JPL’s Unin-
habited Aerial Vehicle SAR (UAVSAR), respectively, and demonstrated 
reduced vegetation scattering at P-band. In addition, P-band satellite 
signals of opportunity has been proven to have a potential for sensing 
subsurface soil moisture (Yueh et al., 2020). These findings have moti-
vated a spaceborne P-band-radar mission for mapping global forest 
biomass, i.e., Biomass (Le Toan et al., 2011) scheduled for launch in 
2023, and the SigNals of Opportunity: P-band Investigation (SNoOPI) 
for soil moisture mapping scheduled for launch in early 2022 (Garrison 
et al., 2021). 

In terms of microwave radiometry, no observational evidence has 
been reported to demonstrate the postulated benefits of using P-band TB 
observations until the P-band Radiometer Inferred Soil Moisture 
(PRISM, see https://www.prism.monash.edu) project of Monash Uni-
versity. This project comprises a long-term tower experiment 
(2017–2021) and four airborne campaigns (2017, 2018, 2019, and 
2021) to concurrently collect P- and L-band TB measurements over a 
range of roughness and vegetation conditions for investigating the 
potentially superior capability of a P-band radiometer over an L-band 
radiometer for soil moisture sensing. Taking advantage of the PRISM 
tower-based dataset, Shen et al. (2021) and Shen et al. (2022) have 
demonstrated a larger moisture retrieval depth and a reduced roughness 
impact at P-band compared to L-band over bare soil. 

Following Shen et al. (2021) and Shen et al. (2022), this paper ex-
tends the investigation to wheat-covered soil with flat and periodic 
surfaces. For the first time, the tau-omega model was implemented at P- 
band to evaluate the vegetation effects at P- and L-band by comparing 
the retrieval errors before and after accounting for the wheat canopy in 
the forward model. Furthermore, the possibility of retrieving soil 
moisture over bare and wheat-covered soil without discriminating pe-
riodic and flat surfaces was investigated, by applying the roughness and 
vegetation parameters calibrated in flat soil to retrieve the soil moisture 
of periodic soil with the SMAP SCA and DCA. This demonstration sug-
gests that an improved global soil moisture dataset may be possible 
using the longer wavelength P-band observations, even if the same al-
gorithms as those of SMAP are used. 

2. Experimental data 

A tower-based site was established at Cora Lynn, Victoria, Australia 
(Fig. 1a) from October 2017 to May 2021, to investigate the potential of 
P-band radiometry in soil moisture remote sensing. The field was 160 m 
by 160 m in size and divided into four quadrants (Q1-Q4 from the 
northwest clockwise). A ten-meter-high tower was located at the center 
of the paddock (Fig. 1b), on which the two radiometers were installed, 
namely the Polarimetric P-band Multi-beam Radiometer (PPMR, Fig 1d) 
and the Polarimetric L-band Multi-beam Radiometer (PLMR, Fig. 1e). 
The PPMR and PLMR on the tower were rotated and tilted on a schedule 
so that they alternately observed the four quadrants at a variety of 
incidence angles (Fig. 1c). 

PPMR and PLMR operate at dual linear (horizontal (H) and vertical 
(V)) polarizations (H- and V-pol), with 30◦ and 15◦ beamwidth, 
respectively. For a 40◦ incidence angle, the spatial resolution of the 3-dB 
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footprints of PPMR and PLMR were approximately 8.2 × 7.0 m and 4.0 
× 4.0 m, respectively. Both PPMR and PLMR have a calibration accuracy 
of better than 1.5 K; please refer to Shen et al. (2021) for more details 
about PPMR and PLMR. Unless otherwise noted, the terms “P-band” and 
“L-band” hereafter refer to the frequencies at which PPMR and PLMR 
operate. 

Stations 126 and 127 (Figs. 1a and 2a) continuously recorded soil 
moisture and temperature at 5-cm intervals down to 60 cm, as shown in 

Fig. 2b. The top probe was installed vertically from the surface, while the 
others were installed horizontally (Fig. 2b). Fig. 2d shows how the 
spatial surface soil moisture (top ~5 cm) was measured at the locations 
shown in Fig. 1a using a system developed in-house, known as the 
Hydra-probe Data Acquisition System (HDAS, Merlin et al., 2007). These 
HDAS measurements were not used in the formal analysis but were used 
for checking the homogeneity of the soil moisture across the field and 
the representativeness of the stations. The hydra-probes used in this 

Fig. 1. Illustrations of the tower-based experiment at Cora Lynn, Victoria, Australia, including a) location map of the site; b) the tower carrying PPMR and PLMR; c) 
the four-step tower rotation cycle; d) PPMR operating at 0.742–0.752 GHz; and e) PLMR operating at 1.401–1.425 GHz. 

Fig. 2. Illustrations of the ground measurements, including a) station 126 monitoring soil moisture, temperature, and rainfall evolution; b) a diagram showing the 
station installation; c) soil surface roughness measurement with the pin-profiler; d) surface soil moisture measurement using HDAS; and e) an example of vegetation 
destructive sampling. 
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study were calibrated according to Merlin et al. (2007) and checked on- 
site using gravimetric samples. Soil texture samples obtained across the 
field were found to be a silt loam with 18.0% clay, 10.9% sand, and 
71.1% silt. The soil bulk density of the surface soil layer in this site was 
0.87 kg/m3. 

Quadrants 1–4 were plowed with varied roughness structures for the 
wheat-growing cycle from July to December 2019 to compare the 
random roughness of flat soil and the periodic roughness of furrowed 
soil (Fig. 3). Table 1 shows the roughness measurements taken during 
the whole wheat-growing period. On each sampling day, a pin-profiler 
with an ~0.5-cm pin interval was used to take three consecutive 1-m 
measurements (totaling 3-m) in two perpendicular directions in each 
quadrant (Fig. 2c). These roughness measurements were not used in the 
formal analysis but to support that the roughness parameters can be 
assumed constant over the entire study period. 

Azimuth is the angle between the radiometer look direction and the 
row direction; period is the row spacing; and amplitude is half of the 
vertical distance between the bottom and the top of the row. For the 
periodic soil in Q1, Q3, and Q4, the roughness measurements across the 
rows were used to calculate the “periodic roughness” in the table, while 
those along the rows were used to calculate the “random roughness” in 
the table. For Q2, the measurements in two perpendicular directions 
were averaged to calculate the roughness statistics. Q3 and Q4 were 
plowed in one pass and had the same roughness structure (just different 
orientations relative to the tower look direction), and therefore the 
measurements in these two quadrants were averaged. 

In this study, two periods in the entire wheat-growing cycle were 
used: 1) the bare soil period from July 17 to 31, 2019, before wheat 
germination (Fig. 3; top row) - details of this were presented by Shen 
et al. (2022); and 2) the wheat-covered soil period (Fig. 3; middle row) 
from November 13 to December 21, 2019, when matured wheat was 

senescing (a data example is plotted in Fig. 4). The current study used 
the daily TB observations at 40◦ incidence angle for P-band and at 38◦

incidence angle for L-band (Fig. 4a), in order to approximate the fixed 
40◦ incidence angle of SMAP (Entekhabi et al., 2014). Moreover, Zhao 
et al. (2020) provide support by showing that 40◦ to 45◦ provided the 
best retrieval accuracy. Each of the TB observations in Fig. 4a was 
averaged from approximately 300 readings collected over a five-minute 
interval at around 6 am, because the soil temperature and dielectric 
profiles are likely to be more uniform at 6 am than other times of the day 
(Basharinov and Shutko, 1975). In addition, the difference between soil 
and canopy temperature is also minimized (Entekhabi et al., 2014). 

Fig. 4b and c show the time series of soil moisture and temperature, 
respectively, collected from stations 126 and 127. This investigation 
follows the precedent of Shen et al. (2022) by using station 126 as the 
reference in Q2 and station 127 as the reference for Q1, Q3, and Q4 
based on the agreement between HDAS measurements and the station 
soil moisture in flat and periodic quadrants respectively (Fig. 4b). The 
station observations were considered representative of the radiometer 
footprints because the HDAS measurements were relatively uniform 
across each quadrant and agreed with the corresponding station mea-
surements (Fig. 4b). The destructive vegetation samples were taken 
weekly (Fig. 2e) at the locations shown in Fig. 1a. Accordingly, Fig. 4d 
presents the VWC measurements as boxplots and a fitted quadratic 
polynomial function to represent the VWC evolution. 

While P-band was found to have a greater moisture retrieval depth 
(~7 cm) than L-band (~5 cm) over bare soil (Shen et al., 2021), given 
the difficulty in continuously measuring soil moisture at 5–7-cm depths, 
and the highly correlated soil moisture between neighboring layers, the 
daily mean soil moisture at around 6 am in the 0–5-cm layer from the 
station (Fig. 4b) was used for both P- and L-band evaluation in this 
paper. 

Fig. 3. Photos before the germination (top row) and at the maturity (middle row) of wheat, and diagrams of soil surface profiles (bottom row) of the four quadrants 
for the data used in this paper. Quadrants 3 and 4 were plowed in one pass and had the same roughness structures but with different orientations (perpendicular and 
parallel, respectively) relative to the tower look direction. 
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3. Forward model 

The well-known tau-omega model (Mo et al., 1982) characterizes the 
brightness temperature of the thermal emission (TBP, where subscript P 
denotes either H- or V-pol) from a vegetated soil surface with four terms, 
i.e., 1) the direct upward emission from vegetation (TBP

v_up); 2) the 
downward vegetation emission reflected by the soil and attenuated by 
the canopy layer (TBP

v_down); 3) the upward soil emission attenuated by 
the canopy layer (TBP

s), and 4) the downwelling sky emission (TBsky_-

down) reflected by the soil and attenuated twice by the canopy layer 
(TBP

sky), formulated as (Ulaby et al., 2014) 

TBP = TBv up
P +TBv down

P +TBs
P +TBsky

P

= (1 − ω)(1 − γP)T
v
eff +(1 − ω)(1 − γP)γPΓPTv

eff +(1 − ΓP)γPTs
eff

+TBsky downΓPγ2
P,

(1)  

where γP and Teff
v are the transmissivity and effective temperature of the 

vegetation canopy, and ΓP and Teff
s are the reflectivity and effective 

temperature of the soil. The Teff
v was assumed to be equal to the physical 

soil temperature in the 0–5-cm layer because the difference between 

canopy and soil temperature is minimal at 6 am (Fagerlund et al., 1970). 
Moreover, TBsky_down was assumed to be constant and calculated to be 
13.9 K at P-band and 5.3 K at L-band (ITU, 2015). The γP was computed 
from the optical depth τP using Beer’s law such that 

γP = exp
[

−
τP

cos(θ)

]

. (2) 

For bare soil, Eq. (1) can be simplified to 

TBP = TBs
P +TBsky

P = (1 − ΓP)Ts
eff +TBsky downΓP, (3)  

where ΓP can be computed using the HQN model (Choudhury et al., 
1979; Wang and Choudhury, 1981; Prigent et al., 2000) 

ΓP =
[
(1 − QR)Γ*

P +QRΓ*
Q

]
exp

[
− HRPcosNRP (θ)

]
, (4)  

where ΓP* is the specular reflectivity calculated from the Fresnel equa-
tions as a function of the relative soil dielectric constant εr (εr = εr

′ −

jεr
′ ′), including real (′) and imaginary (′ ′) parts, such that 

Table 1 
Characterization of the roughness in the four quadrants.  

Quadrant Row structure Periodic roughness Random roughness 

No. of profiles Azimuth (◦) Period (cm) Amplitude (cm) No. of profiles RMS height (cm) Correlation length (cm) 

1 Sinusoidal bench 6 90 165 10.5 ± 1.3 6 1.1 ± 0.5 9.2 ± 4.3 
2 Flat – – – – 16 0.9 ± 0.2 9.5 ± 2.7 
3 Sinusoidal 7 90 80 9.8 ± 1.2 7 0.8 ± 0.3 9.0 ± 4.2 
4 Sinusoidal 7 0 7  

Fig. 4. Collected data including a) TB observations at 6 am in Q1 as an example, with the data gaps resulting from the tower being lowered due to high wind on those 
days; b) station time-series soil moisture with HDAS measurements (boxplots); c) station time-series soil temperature; and d) observed (boxplots) with fitted (black 
line) vegetation water content in Q1 as an example. For clarity only the data collected from the top 3 sensors are plotted in b) and c). Corresponding to the soil 
moisture evolutions of station 126 (in blue) in Q2 and station 127 (in red) in Q1, 3 and 4, the blue and red boxplots in b) show the maximum, 75% percentile, median, 
25% percentile, and minimum of the spatial HDAS measurements in Q2 as well as Q1, 3 and 4, respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Γ*
H =

⃒
⃒
⃒
⃒
⃒

cos(θ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

cos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

⃒
⃒
⃒
⃒
⃒

2

(5)  

Γ*
V =

⃒
⃒
⃒
⃒
⃒

εrcos(θ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

εrcos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

⃒
⃒
⃒
⃒
⃒

2

. (6) 

The dielectric constant was related to soil moisture in this paper by 
the model of Mironov et al. (2013b), given that it accounts for the 
interfacial (Maxwell-Wagner) relaxation of soil water at P-band. This 
model neglects temperature dependence on the dielectric constant by 
assuming a constant temperature of 20 ◦C. Since the soil temperature 
was close to 20 ◦C at 6 am for most days of the study period (Fig. 4c), and 
that the dielectric constant of moist soil does not change substantially 
from 10 to 30 ◦C (Wagner et al., 2011), it is believed that using this 
model was reasonable for this research rather than the one developed 
specifically for SMOS at L-band (Mironov et al., 2013a). In this current 
investigation, the daily mean soil moisture at around 6 am in the 0–5-cm 
layer from the station (Fig. 4b) was used to simulate TB and evaluate the 
retrieved soil moisture at both P- and L-band. 

According to radiative transfer theory, Teff
s can be computed as 

(Choudhury et al., 1982) 

T s
eff =

∫ ∞

0
T(z)α(z)exp

[

−

∫ z

0
α(z′

)dz
′

]

dz, (7)  

where T(z) is the soil temperature at depth z, and α(z) is the power 
absorption coefficient depending on the soil dielectric constant εr and 
the observation wavelength λ written as (Ulaby et al., 1986) 

α(z) = 2∙(2π/λ)∙
⃒
⃒
⃒Im

[ ̅̅̅̅̅̅̅̅̅̅
εr(z)

√ ] ⃒
⃒
⃒, (8)  

where Im[ ] represents the imaginary part. In this paper, the effective 
soil temperature was calculated using Eqs. (7) and (8), as well as the soil 
moisture and temperature measurements. The soil was modeled as a 
semi-infinite medium, with the soil moisture and temperature below 60 
cm assumed to be the same as those observed in the 55–60-cm layer. 

4. Methodology 

Given that the same mono-angular configuration as SMAP (~40◦) 
was adopted in this research, the SMAP SCA and DCA approaches were 
implemented to evaluate the tau-omega model over bare and wheat- 
covered flat and periodic soil surfaces at P- and L-band. Additional to 
applying the default SMAP parameters to the soil moisture retrieval, 
roughness and vegetation parameters were locally calibrated in Q1-Q4 
by feeding the forward model with coincident TB and soil moisture 
measurements. Subsequently, the calibrated parameters over the flat 
soil (Q2) were applied to the soil moisture retrieval over the periodic soil 
surfaces (Q1, Q3 and Q4), taking Q2 as calibration data and Q1, Q3 and 
Q4 as validation data. Finally, the retrieval performance for Q1, Q3 and 
Q4 was compared to Q2 as a benchmark. 

Roughness and vegetation parameters can compensate for each other 
and thus cannot be calibrated together to achieve a robust result (Njoku 
and Chan, 2006; Patton and Hornbuckle, 2012; Martens et al., 2015). To 
disentangle roughness and vegetation effects, Wigneron et al. (1995) 
separately calibrated roughness and vegetation parameters by using the 
data before and after the vegetation canopy development, respectively. 
A similar methodology was also employed in this research. The rough-
ness parameters calibrated over the bare soil period were therefore 
applied to the wheat-covered soil period because the surface roughness 
was found to have little change throughout the entire period, as indi-
cated by the small standard deviation in Table 1. 

4.1. SCA 

The SCA (Jackson, 1993) retrieves soil moisture using the TB 
observation at either H- or V-pol with all roughness and vegetation 
parameters known (Table 2). The b in Table 2 is an empirical parameter 
that builds a linear relationship between τ and VWC (Jackson and 
Schmugge, 1991), and thus τ can be estimated from 

τ = b∙VWC. (9) 

As in the SMAP SCA (O’Neill et al., 2021a), this research assumed the 
parameters in Table 2 were invariant throughout the study period. 

Inversion of the forward model used the SLSQP (Sequential Least 
SQuares Programming, Kraft, 1988) algorithm to iteratively minimize a 
cost function (CF) computed from the differences between the observed 
TB (TBP

obs) and the simulated TB (TBP) at either H- or V-pol, expressed 
as 

CF =
(
TBobs

P − TBP
)2
. (10) 

The initial value of soil moisture was set to zero to avoid any 
potentially misleading prior knowledge in the retrieval. A bound of 0–1 
m3/m3 was imposed on the retrieved soil moisture to ensure reasonable 
values were obtained. 

4.2. DCA 

The DCA (Njoku and Li, 1999; Njoku et al., 2003) uses dual-pol TB 
observations to retrieve two parameters. Unlike the SCA, the SMAP DCA 
uses a global map of HR to concurrently retrieve soil moisture and τ. The 
HR values vary from pixel to pixel, so no specific HR value can be referred 
to in this paper. In addition, while NRP is assumed to be 2 as in the SCA, 
QR is no longer assumed to be a constant value. Accordingly, HR and QR 
were calibrated locally in Q1-Q4 using the bare soil data prior to un-
dertaking retrieval. Afterward, soil moisture and τ were concurrently 
retrieved using the dataset for the wheat-covered period and the cali-
brated HR and QR in Q2. The ω was assumed to be the same as in the 
SMAP DCA for both P- and L-band, being 0.6. 

The CF minimized by the SLSQP algorithm using dual-pol TB at ~40◦

incidence angle during the retrieval period was 

CF =
(
TBobs

H − TBH
)2

+
(
TBobs

V − TBV
)2

+
(τini − τ)2

σ(τ)2 , (11)  

where τini and τ are the initial and retrieved values of the optical depth, 
and σ(τ) is the parameter to balance the weight of the retrieved pa-
rameters for the optimization process to converge. The initial values of 
soil moisture and τ were set to zero. The same σ(τ) value as in the SMAP 
DCA was adopted, i.e., 0.05 (O’Neill et al., 2021a). 

5. Results 

5.1. SCA – the HQN model for bare soil 

Since Shen et al. (2022) found that the default SMAP parameters 
cannot fully account for the periodic roughness impact, especially at L- 
band, the HR values were calibrated using the bare soil data (Fig. 5). A 

Table 2 
The default SMAP SCA parameters for crop-
lands (O’Neill et al., 2021a).  

Parameter Value 

HR 0.108 
QR 0 
NRP 2 
b 0.11 
ω 0.05  
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range of HR values were used to simulate the TB for P- and L-band and H- 
and V-pol respectively using the bare soil model (Eq. (3)). The HR values 
that produced the minimum RMSE between the simulated and observed 
TB were considered the optimum, marked as the dots with annotated 
values in Fig. 5. 

Compared to L-band, the HQN model performed better at P-band 

based on its lower RMSE. For example, the minimum RMSE in Q1 and 
Q3 was no higher than 6 K at P-band, while that at L-band was higher 
than 10 K. Moreover, at L-band V-pol, the RMSE in Q3 and Q4 was a 
minimum at HR = 0 and will further decrease if negative HR is allowed. 
These phenomena can be attributed to the substantial impact of periodic 
row structures and the inapplicability of the SMAP SCA configuration (i. 

Fig. 5. RMSE (K) between the observed and simulated TB using a range of HR values at H-pol (top row) and V-pol (bottom row) over the bare soil in each quadrant. 
The model for bare soil (Eq. (3)) was adopted as the forward model. The dots with values indicate the minimum RMSE and the corresponding HR values for P-band (in 
blue) and L-band (in orange). The parameters QR and NRP were assumed to be the same as in the SMAP SCA at both P- and L-band, being 0 and 2, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Retrieved versus observed soil moisture for H-pol (top row) and V-pol (bottom row) over the bare soil in each quadrant, using the SCA (Eq. (10)) with the bare 
soil forward model (Eq. (3)). Calibrated HR values from the period of bare flat soil in Q2 were used for all quadrants here, i.e., 0.125 and 0.171 for P-band H- and V- 
pol, respectively, and 0.327 and 0.081 for L-band H- and V-pol, respectively. The parameters QR and NRP were assumed to be the same as those from the SMAP SCA at 
both P- and L-band, being 0 and 2, respectively. 
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e., QR = 0 and NRV = 2) for periodic roughness at L-band. For both P- and 
L-band and both H- and V-pol, Q2 had the lowest calibration residual 
across the four quadrants with only one exception (L-band H-pol in Q4), 
indicating the more considerable roughness impact of periodic surfaces 
than from the flat surface in Q2. Importantly, the HR in the four quad-
rants was more comparable at P- than L-band at V-pol, with the standard 
deviation being 0.046 and 0.068, respectively. 

To evaluate the induced retrieval error from applying the calibrated 
HR in flat soil to periodic soil, the optimal parameters calibrated in Q2 
(Fig. 5) were used to retrieve the soil moisture in all four quadrants for 
both bands and both polarizations, with the comparison of the retrieved 
and observed soil moisture plotted in Fig. 6. As expected, Q2 was seen to 
have the best retrieval performance across all four quadrants because HR 
was calibrated in Q2, which was done intentionally to get a benchmark 
accuracy that can be compared to for the other three quadrants with 
periodic soil surfaces. P-band was found to perform better than L-band in 
RMSE in all quadrants except Q4 for H-pol. In Fig. 6, V-pol had better 
retrieval accuracy than H-pol at both P- and L-band. Focusing on V-pol 
(Fig. 6 bottom row), P-band had similar RMSEs across all four quadrants, 
whereas L-band showed higher RMSE over periodic soil (0.031–0.040 
m3/m3) than that over flat soil (0.018 m3/m3), indicating the reduced 
roughness impact at P-band. 

5.2. SCA – the tau-omega model for wheat-covered soil 

The default SMAP SCA parameters for croplands (Table 2) were 
evaluated at P- and L-band and H- and V-pol over the wheat-covered soil 
with different roughness structures using the tau-omega model (Eq. (1)), 
with the simulated and observed TB compared in Fig. 7. L-band was 
found to substantially outperform P-band in all cases, indicating the 
inapplicability of the default SMAP SCA parameters (Table 2) at P-band. 
Similar to Figs. 5 and 6, Fig. 7 also shows a superior performance at V- 
over H-pol. More specifically, the RMSE at L-band was no higher than 3 
K at V-pol, demonstrating that the default SMAP SCA parameters were 
applicable to a wide range of roughness and vegetation conditions with 
satisfactory accuracy. In the following, only V-pol was analyzed due to 
its superiority over H-pol according to Figs. 6 and 7. 

The SMAP SCA parameters were demonstrated to work very well at 

L-band with low RMSE shown in Fig. 7, and therefore only the vegeta-
tion parameters (b and ω) at P-band were calibrated in Fig. 8. The soil 
moisture measurements collected over the wheat-covered soil were 
adopted to simulate TB, using the tau-omega model with calibrated HR 
(Fig. 5) and varying b and ω. Overall, the b and ω values differed slightly 
across quadrants, ranging from 0.099 to 0.150 and from 0.119 to 0.137, 
respectively (Fig. 8). The varied b and ω can be partially attributed to the 
different residuals of the roughness calibration (Fig. 5) that were left to 
be compensated by b and ω. Comparing the default and calibrated pa-
rameters, ω differed more considerably than other parameters, being 
0.05 in the default configuration (Table 2) and ~ 0.12–0.13 after cali-
bration (Fig. 8). 

The minimum RMSE was no higher than 2 K, indicating a good 
performance of the tau-omega model over the wheat-covered random 
and periodic soil. Additionally, even though the b and ω values denoted 
by the yellow circles in Fig. 8 are technically the calibrated parameters, a 
range of adjacent values can still be used if a certain calibration residual 
(e.g., 2 K) is tolerated. 

Soil moisture was subsequently retrieved at P- and L-band V-pol 
using the tau-omega model (Fig. 9). While the roughness (Fig. 5) and 
vegetation (Fig. 8) parameters were calibrated at P-band in all four 
quadrants, only the parameters calibrated in Q2 (HR = 0.171, b = 0.099, 
and ω = 0.134) were used for the soil moisture retrieval at P-band 
(Fig. 9). At L-band, the SMAP SCA parameters (Table 2) were applied to 
the soil moisture retrieval (Fig. 9). It can be seen from Fig. 9 that the 
RMSEs/ubRMSEs were similar across all four quadrants either at P- or L- 
band (variations no more than 0.016 m3/m3), suggesting the possibility 
to ignore the different roughness structures underneath vegetation when 
retrieving soil moisture. 

5.3. DCA 

Before applying the DCA soil moisture retrieval to the vegetated 
period, the full-time-series TB and soil moisture during the bare soil 
period were used to calibrate the roughness parameters, i.e., HR and QR 
at P- and L-band in each quadrant, shown in Fig. 10. The HR and QR 
values that produced the minimum RMSE were considered as the cali-
brated values, marked as the yellow circles with annotated values in 

Fig. 7. Comparison of TB simulations against observations for H-pol (top row) and V-pol (bottom row) over the wheat-covered soil in each quadrant, using the SCA 
(Eq. (10)) with the tau-omega model (Eq. (1)). The default SMAP SCA parameters in Table 2 were used for all quadrants, both bands, and both polarizations. 
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Fig. 10. 
Similar to Fig. 5, Fig. 10 also shows a lower RMSE at P- than L-band 

in the four quadrants, being 2.6–4.8 K and 5.4–10.8 K, respectively. This 
indicates that the HQN model performs better at P-band due to the 
reduced roughness impact. Q2 had the lowest calibration residual across 
the four quadrants for both P- and L-band because of its relatively 
smooth surface compared to the periodic soil surfaces in Q1, Q3 and Q4. 
While QR is usually assumed to be zero (e.g., Wigneron et al., 2001; 
Martens et al., 2015), this assumption was only found to be valid at P- 
band but not at L-band in Q2 when using dual-pol TB, confirming the 
studies with non-zero QR values at L-band (e.g., Lawrence et al., 2013). 
Moreover, Fig. 10 supports that non-zero QR should apply for periodic 
surfaces when performing a DCA retrieval. It is also worth noting that HR 
and QR were larger in Q4 than Q3, particularly at L-band, indicating that 
the periodic surface with parallel structures might have a larger impact 
than that with perpendicular structures at ~40◦ incidence angle, in spite 
of the same row spacing and height. 

Fig. 11 presents the comparison of the observed and retrieved soil 
moisture when applying the HR and QR calibrated in Q2 (Fig. 10) to all 
four quadrants. P-band was found to perform better than L-band in all 
metrics. Similar to the SCA result in Fig. 9, the RMSEs and ubRMSEs 
shown in Fig. 11 at either P- or L-band were comparable across the four 
quadrants, with variations of no more than 0.011 m3/m3. 

While the SMAP baseline algorithm has recently changed to the DCA 

from the SCA-V due to the improved performance in some agricultural 
areas (O’Neill et al., 2021b), based on Figs. 9 and 11 in this research, the 
DCA showed higher RMSE (e.g., 0.028 m3/m3 at P-band and 0.062 m3/ 
m3 at L-band in Q2) than the SCA-V (e.g., 0.009 m3/m3 at P-band and 
0.018 m3/m3 at L-band in Q2). These results are consistent with the 
earlier validation results of SMAP (Chan et al., 2016). 

5.4. Estimation of vegetation impact 

To investigate whether P-band had a reduced vegetation impact at P- 
band, the soil moisture was retrieved over the wheat-covered soil in Q2 
without considering the vegetation impact in the model (Fig. 12), i.e., 
using the bare soil model (Eq. (3)) with the calibrated HR parameters in 
Fig. 5, being 0.171 for P-band and 0.081 for L-band. P-band was found to 
outperform L-band substantially in RMSE, being 0.029 and 0.063 m3/m3 

for P- and L-band, respectively. The default SMAP HR values for the SCA 
(0.15 for bare soil and 0.108 for croplands) were also investigated for 
both P- and L-band (not shown), and no discernable difference in RMSE 
was found compared to that in Fig. 12. 

Fig. 8. RMSE (K) between the observed and simulated TB using a range of b and ω values for P-band V-pol over the wheat-covered soil in each quadrant. The tau- 
omega model (Eq. (1)) was adopted as the forward model. The yellow circles indicate where the minimum RMSE was reached, with the three values showing b, ω, 
and the minimum RMSE, respectively. The calibrated HR values at P-band V-pol from the period of bare soil, i.e., 0.174, 0.171, 0.070, and 0.092, were used for Q1- 
Q4, respectively. The parameters QR and NRP were assumed to be the same as in the SMAP SCA, being 0 and 2, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, using the SCA-V (Eq. (10)) with the tau-omega model (Eq. (1)). The 
default SMAP SCA QR and NRP and the calibrated HR, b, and ω parameters in Q2 (flat soil) were used for P-band in all quadrants here, i.e., QR = 0, NRP = 2, HR =

0.171, b = 0.099, and ω = 0.134. The default SMAP SCA parameters in Table 2 were used for L-band in all quadrants. 
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6. Discussion 

6.1. Do periodic surfaces need to be discriminated in soil moisture 
retrieval at P- and L-band? 

For the bare flat and periodic soil, the HQN model worked better at P- 
than L-band, supported by the lower RMSE at P-band in the simulation 
results of Figs. 5 and 9. In terms of soil moisture retrieval, P-band was 
also shown to have lower RMSE than L-band in Fig. 6. Shen et al. (2022) 
pointed out that the default SMAP and SMOS parameters induced larger 
errors over periodic surfaces than flat surfaces. In the current investi-
gation, the HR was calibrated in Q2 and then applied to retrieve the soil 
moisture in all four quadrants, with the result showing that P-band had a 
reduced error compared to L-band (Fig. 6). This evidence collectively 

confirms the conclusion by Shen et al. (2022) that P-band was less 
impacted by random and periodic roughness than L-band. 

For the wheat-covered soil with different roughness structures, the 
default SMAP SCA parameters were found to work very well at L-band 
but not at P-band (Fig. 7). Moreover, the calibrated parameters at P- 
band led to an RMSE similar to that obtained at L-band using the default 
SMAP SCA parameters, being no higher than 3 K (Figs. 7 and 8). From 
the aspect of soil moisture retrieval, no substantial variation across 
different quadrants was observed at both P- and L-band whether using 
the SCA (Fig. 9) or the DCA (Fig. 11), indicating that the same param-
eters can be used for wheat-covered soil with different roughness 
structures. 

In summary, P-band did not need to have the periodic surfaces 
discriminated for either bare or wheat-covered soil, while L-band 

Fig. 10. RMSE (K) between the observed and simulated dual-pol TB using a range of HR and QR values for P-band (top row) and L-band (bottom row) over the bare 
soil in each quadrant. The model for bare soil (Eq. (3)) was adopted as the forward model. The yellow circles indicate where the minimum RMSE was reached, with 
the three values showing HR, QR, and the minimum RMSE, respectively. The NRP was assumed to be 2, the same as in the SMAP DCA, at both P- and L-band. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, using the DCA (Eq. (11)) with the tau-omega model (Eq. (1)). The 
default SMAP DCA NRP and ω were used for both P- and L-band, i.e., NRP = 2 and ω = 0.06. The calibrated HR and QR from the period of bare flat soil in Q2 were used 
for all quadrants, i.e., HR = 0.136 and QR = 0 for P-band and HR = 0.231 and QR = 0.144 for L-band. 
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needed differently calibrated parameters for bare periodic surfaces 
compared to bare flat surfaces due to the more considerable roughness 
impact. However, when the wheat canopy covered the soil, the peri-
odicity of the surfaces no longer needed to be considered at L-band. A 
possible explanation is that the mature wheat canopy “masked” the 
roughness structures below. 

6.2. Can low-to-intermediate vegetation be omitted in soil moisture 
retrieval at P- and L-band? 

When using one TB observation to retrieve one soil moisture using 
the tau-omega model (i.e., the SCA), prior vegetation information (e.g., 
VWC, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area 
Index, Yadav et al., 2020), etc.) is required to estimate τ using Eq. (9). 
When such information is not available, the use of P-band observations 
can still achieve an acceptable performance (0.029 m3/m3 in RMSE) 
when completely ignoring the vegetation impact by using the bare soil 
model (Fig. 12). In contrast, the corresponding RMSE at L-band was as 
high as 0.063 m3/m3, demonstrating that the impact of low-to- 
intermediate vegetation (under 4 kg/m2) can be neglected at P-band 
but not at L-band. 

Neglecting the vegetation resulted in underestimating the soil 
moisture observations (Fig. 12) because the vegetation contribution was 
mistakenly considered as a soil contribution, increasing the soil emis-
sivity and thus decreasing the soil moisture. This phenomenon was 
particularly prominent for high soil moisture (Fig. 12) when the VWC 
was also high (Fig. 4). Consequently, it can be postulated that the 
advantage of P- over L-band in reducing the vegetation impact will 
become more considerable when the VWC achieves a higher range, e.g., 
corn (Hornbuckle and England, 2004). 

6.3. Are model parameters comparable across different frequencies? 

Directly comparing the model parameters (i.e., HR, QR, b, and ω) 
across different frequencies seems to be a straightforward way to judge 
the reduced roughness and vegetation impact at a specific frequency 
compared to others. However, this might not actually make sense. Gao 
et al. (2017) calibrated the HR and b at L-, C- and X-band by assuming ω 

= 0.05 and found HR and b increased with increasing frequency. On the 
contrary, Wang et al. (1983) discovered that HR did not have a definitive 
relation to frequency. While Mo et al. (1982) obtained higher HR and b 
values at C-band than those at L-band, consistent with Gao et al. (2017), 
they found ω was higher at L-band, contradictory to microwave radi-
ometry theory which suggests that a longer wavelength band should 
have reduced scattering effects. Additionally, considering the results in 
this paper (Figs. 5, 8, and 10) where no explicit frequency-dependence 
was found for the parameters HR, b, and ω, it might be concluded that 
these model parameters should not be compared across different 
frequencies. 

Two reasons can be attributed to the incomparability of those model 
parameters. First, the tau-omega and the HQN models are semi- 
empirical, approximating the rigorous physical process by linking the 
model parameters (i.e., HR, b, and ω) to some measurable variables (e.g., 
rms height, correlation length, and VWC). Meanwhile, many assump-
tions have been made to develop simplified analytical equations, 
including the homogeneity of soil moisture in space and with depth, the 
scattering isotropy of soil and vegetation, and the negligibility of the 
high-order scattering. Therefore, these parameters have to be considered 
as effective rather than physical (Wigneron et al., 2017). 

Second, the mismatch between the sampling depth of the soil 
moisture measurements and the theoretical moisture retrieval depth 
may also lead to an incomparability of model parameters. The moisture 
retrieval depth is dependent on frequency and moisture profile and is 
thus a time-variant variable (Shen et al., 2021), making it impractical to 
calibrate the model parameters using the soil moisture observations 
exactly within the moisture retrieval depth, let alone the challenge to 
measure the continuous soil moisture in a very thin layer, e.g., 1–2 cm. 

The QR was found to be a possible exception from both the literature 
and current results when estimated to be non-zero. Fig. 10 presents that 
the QR values at P-band were lower than those at L-band in all four 
quadrants. Similarly, Wang et al. (1983) has reported that while HR is 
not correlated to frequency, such a relation exists for QR, being 0.01, 
0.15, and 0.20 at 1.4, 5, and 10.7 GHz, respectively, for a soil surface 
with 0.73-cm rms height. However, such a conclusion is drawn with 
much caution, given that relevant studies mostly assumed constant QR 
(e.g., Wigneron et al., 2001; Martens et al., 2015) and thus more evi-
dence is still required. 

6.4. What are the challenges of a successful P-band-radiometer mission? 

While it has been demonstrated that P-band is a promising proposi-
tion to replace or enhance the current L-band SMOS and SMAP missions 
in the forthcoming years, so as to obtain deeper and more accurate soil 
moisture information (Shen et al., 2021; Shen et al., 2022), there remain 
four challenges: aperture size, radio frequency interference (RFI), 
receiver design and calibration, and ionospheric and celestial emission 
effects (Johnson et al., 2021). 

With the spatial resolution of a radiometer determined by the size of 
the antenna relative to the observing wavelength for a given orbit alti-
tude, the aperture of a 0.75-GHz radiometer needs to be enlarged by 
1.87 times to retain the same 40-km spatial resolution of the 1.4-GHz 
radiometer of SMAP, i.e., increasing from the 6-m-diameter antenna of 
SMAP to an 11.22-m-diameter antenna. Moreover, unlike L-band 
(1.400–1.427 GHz) that is exclusively allocated for radio astronomy use, 
P-band (0.3–1 GHz) is heavily occupied by television broadcast, com-
munications, and other applications (National Research Council, 2010), 
easily causing RFI and corrupting radiometric measurements from the 
target. Additionally, at 0.75 GHz, the amount of Faraday rotation and 
ionosphere-specific attenuation is approximately 3.5 times as large as at 
1.4 GHz, which needs to be corrected. 

Nowadays, large deployable antennas (e.g., Meguro et al., 2009) and 
highly developed downscaling techniques (Peng et al., 2017; Sabaghy 
et al., 2018; Sharma et al., 2021) make higher spatial resolution at P- 
band possible. Moreover, RFI mitigation techniques are becoming 

Fig. 12. Observed versus retrieved soil moisture over the wheat-covered soil in 
Q2, using the SCA-V (Eq. (10)) with the bare soil forward model (Eq. (3)). 
Calibrated HR values from the period of bare flat soil in Q2 were used here, i.e., 
0.171 for P-band and 0.081 for L-band, while QR and NRV were assumed to be 
the same as those from the SMAP SCA at both P- and L-band, being 0 and 2, 
respectively. 
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increasingly mature (Skou et al., 2009; Huang et al., 2018; Jin et al., 
2019). The ultra-wideband software defined microwave radiometer 
(UWBRAD) is a successful example in this regard for demonstrating how 
a future P-band-radiometer mission might address the RFI issue (John-
son et al., 2016; Yardim et al., 2021). The UWBRAD detects and filters 
RFI by segmenting the observed bandwidth (from 0.5 to 2 GHz) into 12 
channels, each of which is further resolved into 512 subchannels, so that 
the RFI-free portions of the spectrum can be identified and integrated. 
These advancements in aerospace and remote sensing technologies pave 
the way for a successful P-band-radiometer mission in the near future. 

7. Conclusion 

This paper evaluated the tau-omega model over bare and wheat- 
covered flat and periodic surfaces at P- and L-band to demonstrate the 
potential improvement in soil moisture retrieval from using the longer 
wavelength P-band observations. For the bare flat and periodic soil 
surfaces, V-pol was less impacted by roughness impact than H-pol at 
both P- and L-band in terms of both TB simulation and soil moisture 
retrieval. Evaluating the SCA-V retrieval results showed that P-band had 
a more comparable RMSE than those at L-band across different rough-
ness configurations, with variations being up to 0.012 and 0.022 m3/m3 

for P- and L-band, respectively. 
For the wheat-covered soil, the default SMAP SCA parameters for 

croplands were found to simulate TB satisfactorily at L-band V-pol but 
not at L-band H-pol or P-band. Therefore, at P-band V-pol, the roughness 
and vegetation parameters were calibrated in Q2 (flat soil) and applied 
to retrieve the soil moisture in all four quadrants, while the default 
SMAP parameters were applied to retrieve the soil moisture in all four 
quadrants at L-band V-pol. The RMSE between observed and retrieved 
soil moisture showed that neither P- or L-band had substantial perfor-
mance variation across different quadrants for the SCA or DCA. How-
ever, the DCA had a degraded retrieval performance compared to the 
SCA-V. 

In short, P-band had a reduced roughness impact and was thus able 
to model both the flat and periodic soil using the calibrated parameters 
from the flat soil, for both bare and wheat-covered soil. Conversely, L- 
band could only treat the different periodic surfaces like a flat surface 
when covered by a mature wheat canopy. Moreover, a lower RMSE at P- 
band (0.029 m3/m3) than L-band (0.063 m3/m3) was observed when 
omitting vegetation effects in the forward model, confirming that P- 
band observations were relatively unaffected by the wheat canopy. 
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