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Using the airborne Polarimetric L-band Imaging Synthetic aperture radar (PLIS) the impact of high revisit cycle
and full polarimetric acquisitions on biomass retrieval was investigated by means of backscatter-based multi-
temporalmethods. Parametric and non-parametricmodelswere used to relate reference biomass levels obtained
from field plot measurements and high point density lidar data to backscatter intensities or polarimetric target
decomposition components. Single-date retrieval using multiple independent variables provided lower estima-
tion errors when compared to models using one independent variable with errors decreasing by 2% to 15%.
The multi-temporal aggregation of daily biomass estimates did not improve the overall retrieval accuracy but
provided more reliable estimates with respect to single-date methods. Backscatter intensities improved estima-
tion accuracies up to 10% compared to polarimetric target decomposition components. Using all four polariza-
tions increased the estimation accuracy marginally (2%) when compared to a dual-polarized system. The
biomass estimation error was considerably reduced (up to 30%) only by decreasing the spatial resolution and
was related to decreasing forest variability with increasing pixel size. These results indicate that, at least in
semi-arid areas, future L-band missions would not significantly improve biomass estimation accuracy using
backscatter-basedmodeling approaches despite their better spatial resolution, higher revisit cycles and the avail-
ability of fully polarimetric information.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The past decades havewitnessed an unprecedented development of
remote sensing techniques for land monitoring. Passive sensors had a
head start with the launch of the first Landsat satellite early in the
1970's. The development of active sensors such as synthetic aperture
radar (SAR) was slower with the first missions being launched in the
early 1990s. The first space borne platforms carried single-band
single-polarization sensors with the European Remote Sensing (ERS)
satellite, Japanese Earth Resource Satellite-1 (JERS-1) andRadar satellite
(RADARSAT-1) among the pioneer SAR satellites. The subsequent
satellite-borne sensors had improved characteristics, such as multiple
polarizations, different acquisition modes, and higher spatial resolu-
tions. Recently, the use of SAR constellations has significantly increased
the revisit cycle (e.g., Cosmo Sky-Med) or simultaneously acquired data
with multiple spacecrafts (i.e., TerraSAR/TanDEM-X mission). The in-
creasing availability of SAR data has enabled research in numerous
fields which has in turn led to the development of diverse applications
such as ship detection (Eldhuset, 1996), earth displacement measure-
ments (Yague-Martinez, Eineder, Xiao Ying, & Minet, 2012), sea-ice

mapping (Curlander, Holt, & Hussey, 1985), fire impact assessment
(Tanase, de la Riva, Santoro, Le Toan, & Perez-Cabello, 2010; Tanase,
Santoro,Wegmüller, de la Riva, & Perez-Cabello, 2010), land-use change
detection (Tanase, Le Toan, de la Riva, & Santoro, 2009) and biomass es-
timation (Dobson, Pierce, Sarabandi, Ulaby, & Sharik, 1992; Englhart,
Keuck, & Siegert, 2011; Morel et al., 2011; Rignot, Zimmermann, & van
Zyl, 1995; Robinson, Saatchi, Neumann, & Gillespie, 2013; Santoro,
Eriksson, Askne, & Schmullius, 2006; Tanase et al., in press).

Biomass estimation is undoubtedly one of the most pressing re-
search topics currently, since information on forest spatial distribution,
biomass levels and dynamics is needed for accurate greenhouse gases
flux estimation, and thus policy development and implementation
(Gibbs, Brown, Niles, & Foley, 2007). The last two decades have been
strongly focused on the extraction of forest biomass estimates from
SAR data, with the most recent research employing L-band data due to
its greater sensitivity to biomass levels and the data availability from
satellite missions such as JERS-1 and Advanced Land Observing Satellite
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR)
(Morel et al., 2011; Santoro et al., 2006; Santoro et al., 2009). The poten-
tial of L-band radar backscatter to estimate aboveground biomass (AGB)
has been studied for most forest types, ranging from boreal to tropical
regions using airborne and/or space borne sensors (Harrell, Bourgeau-
Chavez, Kasischke, French, & Christensen, 1995; Imhoff, 1995; Kasischke,
Christensen, & Bourgeau-Chavez, 1995; Le Toan, Beaudoin, & Guyon,
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1992; Lucas et al., 2010; Pulliainen, Kurvonen, & Hallikainen, 1999;
Santoro et al., 2006).

A number of biomass retrieval strategies were adopted including
initially empirical (Harrell, Kasischke, Bourgeau-Chavez, Haney, &
Christensen, 1997; Lucas, Milne, Cronin,Witte, & Denham, 2000; Ranson,
Saatchi, & Sun, 1995; Sandberg, Ulander, Fransson, Holmgren, & Le Toan,
2011), subsequently semi-empirical (Lu, 2006; Pulliainen, Mikkela,
Hallikainen, & Ikonen, 1996; Santoro et al., 2006) and, more recently
numerical (Burgin, Clewley, Lucas, & Moghaddam, 2011; Lucas,
Moghaddam, & Cronin, 2004) models. The empirical models have
related radar backscatter to AGB using a range of functional forms,
including linear (Sandberg et al., 2011), logarithmic (Moreau & Le
Toan, 2003), exponential (Englhart et al., 2011; Moreau & Le Toan,
2003) and higher degree polynomials (Dobson, Ulaby, Le Toan,
Beaudoin, & Kasischke, 1992), while semi-empirical models have
frequently been based on the water cloud model (Attema & Ulaby,
1978). Machine learning algorithms adapted to regression problems
were also recently used for the retrieval of bio-geophysical parame-
ters from polarimetric SAR data (Neumann, Saatchi, Ulander, &
Fransson, 2012). Although consensus on the best models for biomass
retrieval is yet to emerge, parametric models are frequently used
(Harrell et al., 1995; Harrell et al., 1997; Neumann et al., 2012;
Robinson et al., 2013; Saatchi, Halligan, Despain, & Crabtree, 2007;
Saatchi, Houghton, Dos Santos, Soares, & Yu, 2007; Saatchi, Marlier,
Chazdon, Clark, & Russell, 2011; Sandberg et al., 2011).

In recent years, polarimetric interferometry, tomography and polar-
imetric coherence tomography have been used to estimate forest char-
acteristics such as height or vertical structure (Cloude, 2006, 2007;
Cloude & Papathanassiou, 1998). Such methods have shown promising
results but their implementation at wider scale has remained limited
due to the lack of suitable satellite sensors or observation scenarios
(Garestier, Dubois-Fernandez, & Papathanassiou, 2008; Hajnsek, Kugler,
Lee, & Papathanassiou, 2009; Tebaldini & Rocca, 2012). Their potential
also remains to be demonstrated over a wide range of forest conditions
and especially in semi-arid areas where trees are generally small and
significant penetration through canopy gaps occurs (Cronin, 2004; Le
Toan et al., 1992; Rignot et al., 1995).

L-band SAR sensors cannot measure biomass directly since the
backscattered waves interact mostly with the canopy layer (leaves/
needles and branches), which contains only a fraction of the total tree
biomass. However, canopy biomass is often a reliable indicator of total
tree biomass, allowing for indirect relationships to be formed between
radar and forest inventory data. Fully polarized radar datasets have
the advantage of enabling a complete description of the scattering pro-
cess, thus providing information on the entire scattering matrix which
can bedecomposed into ground, volume, and ground–volume contribu-
tions, thus allowing some of the vertical forest structure to be retrieved.
It is assumed that such information better relates to forest biomass since
the influence of the underlying ground is reduced for some of these
components. Coherent polarimetric decompositions can separate the
scattering matrix into simpler scattering responses. However, since
the scattering matrix is only able to characterize pure scatterers, such
decompositions are less useful for the characterization of distributed
scatterers, such as forests, due to the presence of speckle noise. Forested
areas are better characterized using second order (i.e., covariance or co-
herency matrices) polarimetric representations through incoherent,
model-based decompositions (Cloude & Pottier, 1996). The Free-
man–Durden decomposition (Freeman & Durden, 1998) was
among the first developed for separating three scattering compo-
nents related to surface, double bounce and volume scattering using
physical models. A fourth component was later added (Yamaguchi,
Moriyama, Hiroyoshi, & Shinji, 2005) to compensate for limitations in
the Freeman–Durden model for areas with topographic slope. Recently,
both methods have been reformulated (van Zyl, Arii, & Kim, 2011) to
avoid nonphysical negative powers obtained for some polarization
combinations.

In the near future new sensors with greater capabilities will be de-
ployed, both to replace aging/defunct sensors, and to create new constel-
lations.With the next generation L-band SAR sensors featuring improved
spatial resolution (down to 3m in range and 1 m in azimuth), higher re-
visit cycles (down to eight days), and fully polarized acquisitions, there is
a need to evaluate towhat extent such capabilities could improve the bio-
mass estimation accuracy using current or novel (i.e., multi-temporal)
backscatter-basedmodeling approaches. Although a variety of polarimet-
ric model-based decomposition techniques are currently available, the
limited availability of fully polarized datasets has restricted their use
and validation under a wide range of forest and environmental condi-
tions. Similarly, limited availability of high temporal frequency SAR
datasets has restricted the development of multi-temporal biomass re-
trieval techniques based on dense data series. Most polarimetric decom-
position studies were undertaken for classification purposes (Dong,
Milne, & Forster, 2001; Maghsoudi, Collins, & Leckie, 2012; Trisasongko,
2010) rather than direct biomass estimation (Gonçalves, Santos, &
Treuhaft, 2011). To the knowledge of the authors, the use of specific
scattering components for model parameterization and direct biomass
estimation has only been investigated recently (Neumann et al., 2012),
while biomass estimation from dense multi-temporal polarimetric SAR
data series remains to be explored. Consequently, the objectives of this
study were to: i) evaluate whether improved forest biomass estimates
can be obtained from high temporal frequency SAR data as opposed to
single date retrieval algorithms in semi-arid environments, ii) investigate
the use of polarimetric target decomposition components for direct
model parameterization, and iii) assess the impact of available polariza-
tions and forest variability on the biomass retrieval error.

2. Study area and ground data

The study area is located in thewestern plains of theMurrumbidgee
catchment, a semi-arid environment, near the township of Narrandera,
NewSouthWales, Australia (Fig. 1). The area is characterized by agricul-
tural and grazing farms interspersed with forests. The precipitation is
evenly distributed throughout the year with a mean annual rainfall of
440mm. The meanmaximum temperature is 33 °C and occurs in Janu-
ary while the mean minimum temperature is 3 °C and occurs in July. A
small forest area, approximately 1800 ha in size, and dominated by
white cypress pine (Callitris glucophylla) with dispersed (10%) grey
box trees (Eucalyptus microcarpa) was the focus of this investigation.
The topography is nearly flat with elevation ranging from 140 m to
190 m and slopes being less than 5° for most of the forest.

A biometric survey was conducted using 60 circular plots (500 m2

each, 12.62 m in radius) clustered in 12 sites, with the data collected
in September 2011 (Fig. 1 and Appendix A). A cluster site consisted of
a central plot with four surrounding plots whose centers were spaced
at a distance of 35 m in the cardinal directions. The GPS coordinates,
diameter and height were recorded for 2251 trees with a diameter at
breast height (dbh) of 5 cm and above, whereas smaller trees were
counted and only their average height recorded. Information on grass
cover and average height was also collected for 10 additional plots
that have relatively sparse vegetation. The biomass of the trunk,
branches and leaves as well as the total AGB were estimated for each
tree using species-specific allometric equations (Burrows, Hoffman,
Compton, & Back, 2001; Hamilton, Brodie, & O'Dwyer, 2005). These
values were subsequently aggregated to plot level. For white cypress
pine both dbh- and height-based allometric equationswere considered.
The only equations available for this species (Burrows et al., 2001) were
developed for the south-central Queensland region (1000 km north of
the study area) which is characterized by higher annual average precipi-
tations (600mm). Since the Burrows' models consistently overestimated
tree heights as a function of tree diameter for this study area (Fig. 2), the
biomass values obtained from dbh- and height-based allometric equa-
tions were averaged. The total AGB for individual plots varied between
1.5 and 179.5 Mg ha−1.
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Ancillary information on soil moisture, soil roughness, wood density
and leafwater contentwas also collectedduring thefield campaign for sev-
eral sites. Soilmoisturedecreased fromthebeginning to theendof the cam-
paignby an average of 7%while leafwater content decreasedby30%. Trunk
water content was relatively stable (around 35%) during the second half of
the campaign when such measurements were taken. The average surface
roughness was 0.7 cm with a standard deviation of 0.27 cm across eight
sites where measurements were taken using a 1-m long contact profiler.

3. Remote sensing data

The remote sensing data were acquired in the context of the Soil Mois-
tureActive Passive Experiment (SMAPEx),whichwas focused onproviding
airborne and ground data for algorithm development for the upcoming
NASA Soil Moisture Active Passive mission (Panciera et al., 2013). Al-
though the SMAPEx experiment consisted of three different field
campaigns undertaken in 2010 and 2011, the forest survey and
over-flights were only carried out during SMAPEx3 (5–23 September
2011). The present study only uses data from two of the sensors that
acquired airborne information during these campaigns: the Polari-
metric L-band Imaging Synthetic aperture radar (PLIS) and the

Riegl Airborne Laser Scanning (ALS) Q560 (Hug, Ullrich, & Grimm,
2004).

3.1. SAR data

The PLIS is a full polarimetric sensor with a radar frequency of
1.26 GHz which uses micro-strip antennas mounted either underneath
or on the wings of light aircrafts. Typically, PLIS operates between 300
and 3000 m aboveground level at aircraft speeds of 40–120 m/s with a
pulse repetition frequency between 2 and 8 kHz. Using a dual channel
receiver both H and V polarizations are sampled simultaneously. The
sensor illuminates the ground on either side of the aircraft with an inci-
dence angle varying from 15° to 45° across the swath. Using a 30 MHz
bandwidth, the single look slant range resolution is 6 m. The azimuth
resolution is 0.8 m. More information about the PLIS sensor is found in
Gray et al. (2011). During the SMAPEx3 campaign the sensor was
flown over the study area nine times with a temporal frequency of
two to three days. However, in one of the flights (18 September 2012)
the GPS timestamp over the forest was not correctly recorded and the
data could not be processedwhich left only eight days available for anal-
ysis (Table 1). The sensor was flown at an altitude of 3000 m, giving a
nominal ground swath of 2200 m on either side of the aircraft.

The PLIS polarimetric calibration was accomplished using a mod-
ified version (Goh, Preiss, Gray, & Stacy, 2007) of the method de-
scribed by Ainsworth, Ferro-Famil, and Lee (2006). The forest area
was used as a distributed target to estimate cross-talk parameters
and cross-polarized channel imbalance while the co-polarized chan-
nels imbalance was estimated from six Passive Corner Reflectors
(PCRs) deployed in a nearby homogeneous grassland field. Polarimetric
calibrated data showed, over the PCRs, a mean ratio of the co-polarized
channels of around 1 dB and a mean phase difference of 3° and 6°
depending on the antenna. The absolute radiometric calibration coeffi-
cient was estimated as the difference between the backscattering coef-
ficients obtained from PCRs and their theoretical radar cross-sections.
After radiometric calibration, the difference between observed and
theoretical PCR cross sections was an average of 0.9 dB with a standard
deviation of 0.8 dB.

Fig. 1. Study area (black square in panel A) and field data sampling locations (B) together with the airborne data acquired by the PLIS (D) sensor. The inset (C) shows the separation of
sampled plots at each site, the tree height and the position of the trees measured in the field for an example site. Panels B and D have as the background a Landsat ETM+ panchromatic
image acquired on 24 October 2003. Panel E presents the reference biomass map obtained from filed plots and Lidar data through multiple regression.

Fig. 2. Observed vs. predicted height for white cypress pine. The predicted height was
computed as a function of dbh using Burrows et al. (2001) allometric equations. The
dashed line is the 1:1 line that indicates perfect agreement.
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The SAR metrics derived from PLIS observations were divided into
two groups. The first group corresponds to the backscatter intensity
(BI) metrics which includes the intensity of the individual channels
(i.e., HH, HV, VH and VV). The second group corresponds to backscatter-
ing components obtained through polarimetric target decomposition
(TD). Pauli representation was used to separate the scattering matrix
into simpler scattering responses related to single bouncing (HH + VV),
double bouncing (HH−VV) and volume (2HV) scattering. By using inco-
herent polarimetric decompositions the coherency matrix was modeled
as a function of three scattering mechanisms; surface scattering, double-
bounce or dihedral scattering, and volume scattering (i.e., Freeman &
Durden (1998), Yamaguchi et al. (2005), and van Zyl et al. (2011)). In
addition, an eigenvector–eigenvalue decompositionwas used to generate
the entropy (H), anisotropy (A) and mean alpha angle (α) from the co-
herency matrix (Cloude & Pottier, 1997).

To reduce noise, backscatter intensities were estimated after multi-
looking in range and azimuth by2 and 14, respectively. The same factors
were used tomulti-look the coherencymatrix. In addition, the coheren-
cy matrix was filtered using a 5 × 5 window (Lee, Grunes, Schuler,
Pottier, & Ferro-Famil, 2006). The ground pixel spacing after multi-
lookingwas around 10m. All SARmetricswere geocoded to the Univer-
sal Transverse Mercator (UTM) coordinate system using a lookup table
that described the transformation between the radar and the map ge-
ometries (Wegmüller,Werner, Strozzi, &Wiesmann, 2002). The lookup
table was generated using a digital elevation model (DEM) and the
flight information. To correct for possible inaccuracies in the input
data, a refinement of the lookup table was applied, in the form of offsets
between the PLIS images and a reference imagemosaic derived from X-
band SAR images provided by the Terrasar/Tandem-Xmission. The geo-
metric accuracy of the single look slant range complex data from the
Terrasar satellite, and by extension of the co-registered Terrasar/
TandemX product, was estimated to be better than 1 m (Fritz &
Einder, 2010; Nonaka et al., 2008). High resolution representations of
the backscatter intensity and van Zyl et al. (2011) target decomposition
components are shown in Figure S2 and Figure S3 for the first day of the
field campaign (5 September 2011).

3.2. Lidar data

Aircraft light detection and ranging (Lidar) acquisitions are useful
for developing statistical or physically based models to spatially ex-
tend local measurements (Goetz & Dubayah, 2011). Lidar-based
measurements were used to provide enough samples across variable
forest structures to facilitate the development of remote sensing
algorithms based on radar data. The full waveform-digitizing laser
scanner Riegl Q560/240 kHz was flown over the forest area at an
altitude of about 400m at the beginning and the end of the SMAPEx3
campaign. The system, recording all echo pulses within a small
footprint (~15 cm), was flown from two different directions (N–S
and E–W) with a 50% swath overlap that resulted in the same area
of the ground being covered four times. An average first return
pulse density of 40 pulses per square meter (ppm) was obtained
after combining all flight lines. The Riegl software package RiAnalyze
was used to extract discrete returns from the raw lidar data. These
returns were then combined with the navigation data to yield geo-
referenced point clouds. Accuracies of data resulting from this proce-
dure are approximately 0.4 m horizontally and 0.15 m vertically,
with higher relative accuracies within individual scans. The point

clouds were then classed into ground and non-ground returns with
all non-ground returns being considered vegetation since no
human-made features were located within the forest perimeter.

4. Methods

The study was structured in three parts. First the forest inventory
and point cloud Lidar data were used to produce a reference biomass
map. Second, backscatter intensities and polarimetric target decomposi-
tion components from multi-temporal airborne acquisitions were used
to retrieve biomass through parametric and non-parametric modeling.
Third, the influence of polarization and forest variability on biomass re-
trieval errors was investigated. The use of a reference Lidar based
biomass map was necessary from two reasons: obtaining a representa-
tive number of samples for error analysis over the area covered by the
airborne radar sensor (i.e., some field plots were outside the SAR swath
— Fig. 1B and D panels) and obtaining plots of variable size centered at
the same coordinates for studying the effect of plot size and forest var-
iability on biomass estimation error. A flowchart (Fig. 3) is presented to
make the methods used in this study clear. A straight up analysis of
field biomass and L-band airborne data was carried out recently
within a comparative study (Tanase et al., 2014). The study
concluded that although Lidar data is overall twice as accurate when
compared to L-band SAR data, for some biomass intervals SAR data
could provide fundamentally similar results to Lidar when estimating
forest biomass at high spatial resolution.

4.1. Lidar-based biomass reference map

Canopy height is an important forest attribute that can be used as
a predictor variable for parameters such as biomass and forest vol-
ume (Lefsky et al., 2005; Nelson, Swift, & Krabill, 1988). However,
lidar response to a forest canopy is not only a function of tree height,
but also a function of canopy closure and density; the latter could be
further used as a predictor of the forest structure and ultimately AGB
(Arp, Griesbach, & Burns, 1982; MacLean & Krabill, 1986).

Multiple linear regression was used to produce a spatially contin-
uous biomass map using lidar metrics and the field plots. Over 65
grid metrics were produced from lidar point cloud data at 5 m spatial
resolution: i) canopy closure at 1, 2, 4, 6, 8, 10 and 12 m height,
ii) canopy closure and forest density for specific strata (i.e., 1–4,
1–6,1–8, 1–10,1–12, 1–16, 1–24, 2–4, 2–6,…. 8–16, 8–24 m), and
iii) overall metrics such as maximum height, canopy surface area
and volume under the canopy surface. Canopy closure metrics were
defined as the proportion of first returns over a specific height
threshold. Strata specific canopy closure and forest density metrics
were defined as the proportion of first returns and respectively all
returns falling within specific height thresholds. The grid metrics
were correlated with the ground-based plot information to select
an appropriate subset for biomass prediction. The selected grid met-
rics were used to derive spatially explicit AGB estimates for the area
covered by the lidar flight. Arcsine and log transformations were
used to normalize the distribution of the lidar-based metrics and
the plot-based biomass, respectively. Since cross-validated error
magnitudes are far more valuable and indicative of true accuracy the
regression parameterization was performed using 75% of randomly se-
lected sample data, with the remaining 25% retained for validation
(Goetz & Dubayah, 2011). The calibration process iterated the dataset

Table 1
Acquisition dates of the SAR data and the cumulative precipitation (three days prior to acquisition) recorded at the closest meteorological station (Narrandera airport— 10 km north).
Rainfall (mm) recorded during the SAR acquisition day is provided in parentheses.

Sensor Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

PLIS 05.09.2011 07.09.2011 10.09.2011 13.09.2011 15.09.2011 19.09.2011 21.09.2011 23.09.2011
Rainfall (mm) 0.2 (0.2) 3.6 (3.4) 1.6 (1.6) 1.6 (0) 0 (0) 0 (0) 0 (0) 0 (0)
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10 timeswith the dataset being randomly split into training and validation
subsets to allow a robust estimation of the error of the AGB referencemap.

4.2. SAR based estimation of biomass from multi-temporal L-band data

Biomass estimationwas undertaken by decomposing the PLIS polar-
imetric data into surface, double bounce and volume contributions and
subsequently using the metrics obtained within parametric and non-
parametric models. Although recent studies (Mitchard et al., 2009;
Sandberg et al., 2011) showed that models based on multiple polariza-
tions (i.e., HH, HV, VV) do not significantly improve biomass estimation
accuracy, it was decided to corroborate these results for a significantly
different environment characterized by relatively short trees and low
biomass levels. Previously, several models were investigated for the
retrieval of biomass from space borne L-band SAR data, starting from
simple regression based parametric models to semi-empirical water
cloud-like models or non-parametric models (Tanase et al., in press).
Since similar model types provided comparable results it was decided to
present only one model in each category (i.e., parametric and non-
parametric). The parametric models selected for biomass retrieval (Eqs. 1
and 2) were modified from the Sandberg et al. (2011) model by allowing
for the effect of the incidence angle variation from near- to far-range
to be considered in the estimation. In this study, the average inci-
dence angle at each sample plot was included as a predictor variable.

√AGB ¼ a0 þ a1 � SARm1 þ a2 � cosθ ð1Þ

√AGB ¼ a0 þ a1 � SARm1 þ a2 � SARm2 þ a3 � SARm3 þ a4 � cosθ ð2Þ

where:

AGB–aboveground biomass Mg ha−1
� �

a0a1a2a3a4–unknown model coefficients

SARmx–SAR BI or TD metric logarithmic scaleð Þ

θ–average local incidence angle at the sample plot:

The non-parametric model selected to estimate AGB levels was the
random forest (RF). Up to three SAR metrics (e.g., HH, HH and HV, sur-
face, and dihedral and volume scattering) and the incidence angle were
executed in the RF model to retrieve biomass. RF regression (Breiman,
2001) uses ensemble learning methods by constructing a large number

of decision trees from the training data which are subsequently used to
derive overall predictions as the average response from all individually
trained trees.

After model parameterization and inversion, daily AGB estimates
become available for each validation sample and radar metric. Such
daily estimates were viewed as different attempts to “guess” the
biomass level. Without a priori information it is impossible to deter-
mine which of these “guess” estimates are closest to the real bio-
mass levels. However, by aggregating daily AGB estimates one
could decrease the uncertainty in biomass estimation associated
with the daily values. Several methods were used to combine the
daily biomass estimates by SAR metric: i) simple averaging (Da),
ii) averaging only the values within 1.5 standard deviations of the
local mean and iii) weighted average with more weight being given
to the dates showing higher dynamic range from bare soil to dense for-
est. Since all of these aggregation methods provided very similar
values, only the results obtained for the simple averaging (Da) are pre-
sented in the following sections. The aggregation of all daily biomass
estimates obtained from the BI or TD metrics was also used to obtain
a final AGB value. The method involved averaging the biomass esti-
mates obtained for all days and all SAR metrics (Da-all) by metric type.

Biomass estimates based on multi-temporal (MT) data were ob-
tained by i) simultaneously using all daily backscatter values for a
given SAR metric when parameterizing the RF model (MT-all) and
by ii) averaging daily backscatter into one unique multi-temporal
value, by SAR metric, followed by the parameterization of the
various models (MT-ma). The coefficient of determination (R2),
the root mean squared error (RMSE) and the relative RMSE (ratio
between RMSE and mean biomass — RMSE%) were used to assess
which SAR metric and aggregation method are best suited for bio-
mass retrieval.

4.3. Factors that influence biomass retrieval

Two factors influencing biomass retrieval from SAR system were
investigated in this study: available polarizations and the mapping
unit area. Biomass estimation from fully polarimetric and dual polar-
ized data was evaluated by using BI metrics and the RMSE%was com-
pared. The RMSE% was computed after averaging all daily biomass
estimates (Da-all) obtained from single parametric model inversion
for the two or four polarizations. In addition, the benefit of a full po-
larization sensor was further inferred by comparing the R2, RMSE,
and RMSE% obtained for BI and TD metrics.

Random plots at various radii were used to assess the effects of
mapping unit area to the AGB retrieval accuracy. For forest biophysical
characteristic retrieval from radar data the selection of an appropriate
estimation scale has major impacts related to decreasing radar speckle

Fig. 3. Flowchart of biomass retrieval from SAR data.
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with increasing area and decreasing forest heterogeneity. Such ef-
fects result in better estimations of the backscatter values and small-
er forest variability. SAR backscatter metrics and lidar-based biomass
were extracted at corresponding locations using 10, 15, 25, 50, 75,
and 100 m radius plots, which are equal to 0.003, 0.07, 0.2, 0.8, 1.8,
and 3.1 ha, respectively. The RMSE% was related to forest variability
expressed by the coefficient of variation for each plot size. RMSE%
was computed by averaging all daily biomass estimates obtained
from single parametric model inversion (i.e., Da-all aggregation
method).

5. Results

5.1. Biomass reference map

For each forest stratum one lidar metric was retained to derive the
biomass reference map (Fig. 1 panel E and Figure S1): the pulse density
of the 1–12mheight stratum (D1–12) was selected to describe the dense
understory layer while for the overstory layer the canopy percent cover
in the 6–8mheight stratum (C6–8) was retained. As a general descriptor
of the plot structure the volume under the forest canopy surface was
used (Cvol). This metric had the highest correlation with all biomass
components and was always included as a predictor variable by a
stepwise regression analysis. At plot level, the error of the lidar-based
biomass reference map was estimated as 17.2 Mg ha−1 for average
biomass levels of 60 Mg ha−1. When analyzed at the site level the
error decreased to 13.2 Mg ha−1. This decrease was explained by the
lower forest variability at such spatial scales, the higher confidence in
the ground measured biomass aggregates, and the reduced effect of
the plot positioning errors.

5.2. SAR based estimation of biomass from multi-temporal L-band data

Although several parametric and non-parametric models were eval-
uated for biomass retrieval only results obtained formodels (1), (2) and
RF are presented (Tables 2 and 3). Similarly, only results obtained for the
van Zyl et al. (2011) polarimetric target decomposition method are pre-
sented since it provided the highest biomass retrieval accuracy when

compared to the remaining decomposition models (i.e., Freeman–
Durden, Yamaguchi and Cloude–Pottier) or the Pauli basis representa-
tion. A total of 131 random sample plots were used to extract co-
located lidar based AGB estimates and SAR BI and TD metrics for
model parameterization/validation. At 15 m radius the reference AGB
for the selected random plots varied between 2.0 and 156.0 Mg ha−1

with over 93% of thembeing below100Mg ha−1. Themean plot biomass
was 47.8Mgha−1with a standard deviation of±29.8Mgha−1. At 100m
radius the maximum AGB was 120.2 Mg ha−1. The mean plot biomass
was 50.0 Mg ha−1 with a standard deviation of ±22.2 Mg ha−1. De-
pending on the flight day the estimated AGB ranged from 0.2 to
103.1 Mg ha−1 with a mean value of 46.0 Mg ha−1 when using the
fully polarized parametric model within single date retrieval for 15 m
radius plots. For multi-temporal retrieval through aggregation (i.e.,
Da) the estimated AGB ranged from 0.71 Mg ha−1 to 88.2 Mg ha−1.
The daily temporal change of the retrieved biomass for three typical
plots is shown in Fig. 4.

For BI metrics Table 2 shows that daily RMSE% can fluctuate up to
10% depending on metric selection and modeling approach. The lowest
daily difference, 2 to 4%, was observed for parametric models. Single
metric models showed roughly similar estimation errors while a
marginal improvement of up to 2% was observed for the model con-
taining multiple polarizations. When using non-parametric models
the selection of the SAR metric played a more important role, with
the maximum daily variation of the RMSE% reaching 5 to 10%. In
addition, a model including multiple polarizations did not improve
the estimation accuracy on a consistent basis. Similar results were
observed for TD metrics (Table 3). The main difference with respect
to BI metrics was the larger overall fluctuation, up to 15%, and the
smaller difference, up to 1.5%, between models containing one or
several target decomposition metrics. Generally, TD metrics that re-
lated to volume scattering mechanisms provided better results with
higher R2 and lower RMSE and RMSE% being observed when com-
pared to using metrics related to dihedral and surface scattering.
When comparing BI and TD metrics results showed that BI metrics
were generally more accurate when using parametric models, and
less accurate when using non-parametric models. The aggregation
of the daily biomass estimates did not improve the retrieval

Table 2
Indicators of biomass retrieval accuracy from backscatter intensity (BI) metrics (0.07 ha plots). Da and Da-all refer to different aggregation methods of daily biomass estimates (see
Section 4.3). Multi-temporal (MT) refers to calibration of models using the average of the daily SAR metrics (MT-ma) while MT-all refers to calibration of random forest (RF) models
by simultaneously using all daily values for a given SAR metric.

Model SAR metric Daily models and multi temporal averages of biomass estimates MT-ma

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Da Da-all

R2

(1) HH 0.591 0.536 0.573 0.554 0.558 0.565 0.557 0.596 N/A 0.588
HV 0.542 0.529 0.528 0.524 0.537 0.535 0.568 0.577 N/A 0.567
VV 0.534 0.447 0.548 0.530 0.529 0.496 0.578 0.543 0.560

(2) HH, HV, VV 0.610 0.589 0.608 0.595 0.597 0.586 0.623 0.625 0.621

RMSE (Mg ha−1)
(1) HH 21.2 22.7 22.2 22.5 22.4 22.3 22.6 21.1 21.8 21.5 21.7

HV 22.9 22.7 23.1 23.2 22.8 23.0 22.2 21.7 22.3 22.3
VV 22.9 22.5 23.2 23.1 22.8 23.1 22.1 21.7 22.3 21.9

(2) HH, HV, VV 21.1 21.6 21.3 21.8 21.6 22.0 21.1 20.7 21.1 N/A 21.1

RMSE%
(1) HH 44.4 47.6 46.4 47.0 46.8 46.7 47.3 44.2 45.5 45.1 45.3

HV 47.8 47.5 48.4 48.5 47.8 48.2 46.5 45.5 46.8 46.7
VV 48.0 47.1 48.6 48.5 47.7 48.5 46.3 45.5 46.7 45.8

(2) HH, HV, VV 44.2 45.3 44.7 45.6 45.2 46.1 44.2 43.4 44.2 N/A 44.1

Non-parametric RMSE%
Daily models MT-all MT-ma
RF HH 47.6 55.0 54.4 55.4 54.6 53.0 55.0 51.9 44.3 50.5

HV 49.6 50.5 49.4 51.1 51.9 49.3 47.8 46.0 N/A 48.1 48.9
VV 46.3 48.7 48.4 46.8 47.0 48.3 44.6 49.3 45.8 45.0
HH, HV, VV 42.5 49.0 47.3 49.2 47.7 48.5 46.4 44.3 N/A 40.0
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accuracy. However, it did provide more reliable estimates since the
overall RMSE% of the biomass aggregates were close to the lowest
daily RMSE%. Finally, models based on multi-temporal data (i.e.,
MT-all and MT-ma) did not improve the biomass estimation accura-
cy significantly, with RMSE% being close to the values obtained for
some of the most accurate daily models.

5.3. Factors that influence biomass retrieval

The difference in relative error (Da-all aggregation method) when
using PLIS full polarized data as compared to only using two polarizations
(i.e., HH and HV) is shown in Fig. 5. The errors are shown for plot sizes
corresponding to the different extraction radii used. AGBestimation accu-
racy increased up to 0.5% when using full polarized data especially for
smaller plots. With increasing plot size the difference in AGB estimation
error decreases with dual polarized data reaching the same accuracy as
fully polarized data for the 0.8 ha plot size.

The influence of the pixel size on themodeled relationships between
HV polarization and AGB is shown in Fig. 6 while the relationship
between the relative retrieval error and forest variability for different
plot sizes is shown in Fig. 7. Forest variability was expressed by the

coefficient of variation (CV) of the reference AGB. A significant influence
of the plot size was observed for all models and SAR metrics with the
estimation error decreasing according to increasing plot size. Depend-
ing on the plot size, SAR metric, day and aggregation method the
decrease varied between 10% and 30%. A very strong correlation
(R2 = 0.95, p b 0.001) between the AGB estimation error and forest
variability was also observed (Fig. 6).

6. Discussion

Previous studies have shown biomass estimation errors from SAR
data to be around 45 to 80% with respect to the reference values
(Harrell et al., 1997; Rignot, Way, Williams, & Viereck, 1994; Sandberg
et al., 2011). With the exclusion of older stands or the selection of
more homogeneous ones the estimation errors have been as low as
25% to 40% (Rignot et al., 1994; Santoro et al., 2006). This study has
shown that AGB estimation errors can vary between 30% and 50% in
semi-arid areas depending on the spatial resolution at which the esti-
mates are needed. For relatively high spatial resolutions (i.e., 25m) bio-
mass estimation error reached 45% when using backscatter intensity
metrics, and increased by another 2–3%,when using polarimetric target

Table 3
Indicators of biomass retrieval accuracy from target decomposition (TD)metrics (van Zyl et al. (2011) decomposition, 0.07 ha plots). Da and Da-all refer to different aggregationmethods
of daily biomass estimates (see Section 4.3). Multi-temporal (MT) refers to calibration of models using the average of the daily SAR metrics (MT-ma) while MT-all refers to calibration of
random forest (RF) models by simultaneously using all daily values for a given SAR metric.

Model SAR metric Daily models and multi temporal averages of biomass estimates MT-ma

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Da Da-all

R2

(1) Surface (S) 0.473 0.350 0.386 0.391 0.461 0.445 0.471 0.481 N/A 0.485
Double (D) 0.411 0.424 0.512 0.486 0.454 0.456 0.494 0.445 N/A 0.470
Volume (V) 0.518 0.500 0.506 0.521 0.504 0.496 0.509 0.519 0.514

(2) S, D, V 0.556 0.526 0.550 0.543 0.547 0.546 0.555 0.568 0.551

RMSE (Mg ha−1)
(1) Surface (S) 23.0 25.3 24.9 24.9 23.3 23.5 23.6 22.8 23.0 22.7 23.2

Double (D) 24.9 24.5 23.2 23.5 24.5 24.4 23.8 24.5 23.7 24.0
Volume (V) 23.3 23.4 23.6 23.3 23.6 23.9 23.5 23.2 23.4 23.4

(2) S, D, V 22.3 23.0 22.7 22.8 22.6 22.6 22.6 22.1 22.4 N/A 22.6

RMSE%
(1) Surface (S) 48.2 52.9 52.2 52.1 48.7 49.1 49.3 47.7 48.2 47.5 48.6

Double (D) 52.2 51.4 48.5 49.2 51.4 51.2 49.8 51.2 49.6 50.3
Volume (V) 48.8 49.0 49.4 48.8 49.3 50.0 49.3 48.6 49.0 48.9

(2) S, D, V 46.7 48.2 47.4 47.8 47.3 47.4 47.3 46.2 46.9 N/A 47.3

Non-parametric RMSE%
Daily models MT-all MT-ma
RF Odd (O) 49.2 53.3 52.4 50.5 49.6 52.4 48.3 50.5 50.6 51.6

Double (D) 57.0 57.4 51.0 56.3 58.8 55.4 52.0 58.1 N/A 53.6 54.2
Volume (V) 47.2 45.7 47.2 47.0 48.2 47.8 45.3 46.8 50.4 48.2
O, D, V 43.6 46.2 44.3 45.8 44.0 46.4 43.1 44.2 N/A 44.9

Fig. 4. Daily temporal changes in biomass retrieval for three representative plots (3, 10 and 42) spanning the entire biomass range.
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decomposition components or their linear combinations (e.g., ratio
between volume and surface scattering). The analysis showed that,
in semi-arid areas, retrieval accuracy of forest biomass from L-band
radar backscatter observations is relatively stable, within 10%, for
images acquired at short intervals and depends little on the selected
SAR metric (i.e., BI or TD) or modeling approach (i.e., parametric or
non-parametric). It is noted that during the airborne PLIS acquisitions
moderate changes in soil moisture and canopy water content were
observed, with soil moisture decreasing by an average 7% and the leaf
water content decreasing by an average 30%. However, such changes
were not systematically related to changes in biomass retrieval (Table 1
and Fig. 4).

Neither the aggregation of daily biomass estimates nor the use of
multi-temporal based models improved the retrieval accuracy be-
yond the most accurate daily estimate for a given metric. However,
a priori knowledge of the true biomass value is not usually available
since it is the quantity being estimated. By using aggregation
methods of multi-temporal data the average estimation error with
respect to the worst daily estimate improved by up to 5%. In addition,
for 45% of the samples the daily estimates presented higher errors
when compared to the error recorded for the aggregated value.
Therefore, multi-temporal data has the potential to provide more re-
liable values with respect to single-date approaches. This could be
especially valid when variations of the environmental conditions
are large, which was not the case in the current study.

Contrary to other studies (Harrell et al., 1997; Le Toan et al., 1992;
Rignot et al., 1994; Sandberg et al., 2011) slightly lower errors, 1–2%
less, were obtained for the co-polarized channels as compared to
the cross-polarized channels. This could be attributed to the specific
forest structure of this study area, which is characterized by a rela-
tively low height overstory layer and large gaps among tall trees.
Such forest structures coupled with the long L-band wavelength

allow for greater canopy penetration by microwaves and thus more
interactions with the ground surface, to which the co-polarized chan-
nels are more sensitive.

Other studies (Sandberg et al., 2011) have shown that there is little
to be gained when simultaneously using co- and cross-polarized chan-
nels within a common model. The results of this study confirm such
findings in semi-arid environments, not only for parametric but also
for non-parametric modeling approaches. An average improvement of
3% in biomass retrieval accuracy, as observed by this study, provides lit-
tle incentive for acquiring fully polarized SAR datasets which usually
come at the expense of spatial resolution or coverage. Furthermore,
model parameterization using polarimetric target decomposition met-
rics obtained from fully-polarimetric data did not result in improved
biomass estimation accuracies for our study area. Special attention
was given to polarimetric target decomposition metrics since both of
the near-term L-band missions (i.e., ALOS PALSAR-2 and SAOCOM),
will feature fully polarized sensors. The sensitivity to biomass level
was comparable between TD and BI metrics. Although produced for a
different environment and forest type, the results of the present study
confirm the findings in Neumann et al. (2012), which state that
L-band data produce better correlations with AGB from backscatter
intensities than PolSAR-derivedmetrics. However, it is noted that no at-
tempt wasmade to usemore advanced techniques such as polarimetric

Fig. 5. AGB relative retrieval error (RMSE%) when using full and dual polarized PLIS data.

Fig. 6. Influence of plot size on AGB estimation error for HV polarized PLIS data.

Fig. 7. Relationship between relative retrieval error and forest variability (top). Observed
decline in biomass prediction error with decreasing spatial resolution (bottom).
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interferometry. For L-band SAR data, polarimetric interferometry might
provide better results when combined with BI and/or TD metrics
(Neumann et al., 2012).

It is well know that errors tend to decline with increasing plot size
(Frazer, Magnussen, Wulder, & Niemann, 2011; Mascaro, Detto,
Asner, &Muller-Landau, 2011; Zolkos, Goetz, & Dubayah, 2013). Spa-
tial averaging of the errors might contribute to this observation
(Goetz & Dubayah, 2011). However, this study shows that such ob-
servations are related to forest heterogeneity. With increasing
plot size, forest variability decreases which directly translates into
lower estimation errors. Therefore, a general rule of thumb regarding
the optimum plot sampling size is far from straightforward since for
highly homogeneous forest such as plantations small plot sizes could
be sufficient to capture the entire forest structural variability. For re-
mote sensing missions a 20% error is commonly employed as an ob-
jective (Zolkos et al., 2013). Such an objective could be reached using
radar backscatter-based modeling when forest variability decreases
below 40%. However, for such high accuracy to be achieved the sam-
pling effort could become substantial in highly heterogeneous
forests.

Previous studies have demonstrated that at very coarse spatial reso-
lutions (i.e., 1 to 10 km) the estimation errors could reach 20–25%
(Saatchi, Houghton, Dos Santos, Soares, & Yu, 2007; Santoro et al.,
2011). Such accuracies are most probably related to the significant re-
duction in forest variability expected at such spatial scales. The im-
provement of goodness-of-fit/evaluative statistics associated with
coarser spatial resolution must be interpreted cautiously, however.
There is an extensive body of literature on the modifiable area unit
problem (MAUP) that arises when analysis is undertaken at multiple
spatial resolutions (Holt, Steel, Tranmer, & Wrigley, 1996; Openshaw,
1984; Unwin, 1996). Correlations among spatial phenomena regularly
improve as pixel size increases. As noted, this is partly related to the
decrease in variability caused by averaging. It can also be related,
however, to a decrease in the number of observations such as occurs
when 100 “small” pixels are compressed into 10 “big” pixels, al-
though this is less important if the number of big pixels remains
large (n = 50+). Because of the MAUP, interpretation of analytical re-
sults must be constrained to the pixel size used in the analysis.

The results of this study show that substantial improvements of
the retrieval accuracy are possible at much higher spatial resolutions
(i.e., 150–200 m) by reducing the uncertainty of the reference biomass
estimates, the SAR metrics' signal-to-noise ratio, and the possible
co-registration errors among datasets. Such enhancements were
possible by decreasing the spatial resolution of the input datasets
which is equivalent to increasing the radius of the plots used for
data extraction from both the lidar-based reference map and the
geocoded SAR metrics. Thus, by increasing the plot size to approxi-
mately 3 ha (i.e., 175 m pixels) the forest variability decreases by
approximately 20% in our study area, which in turn facilitated a
more accurate AGB estimation, although the resulting estimates
are only applicable to larger areas — i.e., at the coarser spatial reso-
lution as noted above. At such pixel size the biomass estimation
error decreased to 30% from the more than 50% recorded for 20 m
pixels.

Relatively few studies (Robinson et al., 2013; Saatchi et al., 2011)
have tried to assess forest variability and its effects on biomass retrieval
using radar data. Although both studies observed a decrease in RMSE
with increasing plot size they were somewhat limited by the low num-
ber of samples available within the sensitivity-to-biomass interval of
L-band. Saatchi et al. (2011) ascribed the decrease in RMSE to speckle
noise reduction and reduced geolocation errors. Although speckle and
geolocation errors might affect the biomass/backscatter relationship,
we have shown that while speckle noise is relatively low (i.e., 42
looks for 10 m radius plots of PLIS data) the RMSE is still substantial.
Robinson et al. (2013) recognized that the sensitivity to AGB may im-
prove at large spatial scaleswhen effects of forest structure are averaged

out. This was demonstrated by the current study which has shown that
even fine resolution SAR imagery contains considerable noise which
was mainly caused by inherent forest structural variability: 95% of the
RMSE errors encountered for decreasing plot size were explained by
forest variability. Such noise can be eliminated by decreasing the vari-
ability related to the sampling plots when products at lower spatial
resolutions are sufficient. However, high spatial resolution products
sometimes are necessary, especially for highly fragmented forest
areas. Users of such research results must be aware of the trade-off
between a stronger relationship that is only applicable for large pixels
(i.e., increased R2 and decreased errors for larger mapping area), or a
weaker relationship and higher errors at a more spatially explicit scale.

In studies such as the present one, field data are commonly recorded
for relatively small plots (b1 ha) due to labor costs and time constraints.
Although not an objective, this paper demonstrated the value of
having local reference AGB estimates at the scale of observation re-
quired. In this study such estimates were obtained from lidar data.
The availability of lidar-based local AGB estimates assisted the re-
trieval algorithms, providing sufficient data for both model parame-
terization and validation at different spatial resolutions. The recent
dismissal of NASA's Deformation, Ecosystem Structure and Dynamics
of Ice (DESDynI) lidar mission means that high quality lidar-based
AGB estimates will not be available for future SAR missions. This
will hinder large-scale biomass retrieval since models calibrated
with local data could provide better retrieval accuracies than more
universal models.

7. Conclusions

This paper studied the potential of upcoming L-bandSARmissions to
improve forest biomass retrieval accuracy in semi-arid environments.
Multi-temporal SAR data were acquired every two to three days over
threeweeks using an airborne fully polarized L-band sensor. Parametric
and non-parametric models were calibrated to retrieve AGB from back-
scatter intensities and polarimetric target decompositionmetricswithin
single and multi-date retrieval approaches.

The most reliable biomass estimates were obtained when using
multi-temporal data. However, the multi-temporal biomass estimates
did not improve the retrieval accuracy beyond the most accurate daily
estimate. Fully polarized systems improved biomass estimation accura-
cy onlymarginally over dual-polarized systemswhen using backscatter
intensity metrics. Polarimetric target decomposition-based retrieval
showed similar sensitivity to biomass levels as when using backscatter
intensities. Overall, parametric models performed slightly better for
both single and multi-metric retrieval. The most significant improve-
ment in biomass retrieval accuracywas achieved by reducing the spatial
resolution at which the estimates were produced. At lower spatial reso-
lutions the forest spatial variability reduces allowing for decreasing the
estimation error to up to 30%. The 1:1 relationship between forest var-
iability and biomass estimation error has considerable implications
since even high spatial resolution sensors would not be sufficient to
produce very accurate biomass maps at fine scales (i.e., 10 or 20 m
pixel size).
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