
1 

 

 

Evaluation of the Bayesian Downscaling Algorithm 

for Achieving Higher Resolution Soil Moisture Data 
 

Xiaoling Wu, Jeffrey P. Walker, Nan Ye 
 

 

Abstract—The NASA-launched Soil Moisture Active Passive 

satellite mission (SMAP) had the objective to globally 

characterize soil moisture with an intermediate resolution (9 km), 

through the integration of radar (3 km) and radiometer (36 km) 

observations. The SMAP team has evaluated various 

downscaling techniques to achieve this goal. This study examined 

the performance of an additional downscaling technique, the 

Bayesian merging method, as an alternative candidate approach. 

This method breaks from the standard linear downscaling 

techniques of SMAP, opting instead for a more innovative 

approach based on Bayes' Theorem. Here the intermediate 

resolution soil moisture is achieved via the incorporation of a 

background estimate, which is refined through comparison 

between observed and predicted brightness temperatures and 

backscatter coefficients that link the high and low-resolution 

data. However, it is crucial to assess the robustness of the 

Bayesian method using actual satellite observations, in addition 

to its prior evaluation using synthetic datasets. The fourth Soil 

Moisture Active Passive Experiment (SMAPEx-4), conducted in 

Australia, represented the sole occasion for concurrent high-

resolution airborne observations during operation of the SMAP 

radar. As such, this study employed the Bayesian algorithm using 

the SMAP datasets throughout the SMAPEx-4 period. 

Downscaled soil moisture products from this method, as well as 

from the official baseline and enhancement techniques, were 

compared. The average RMSE and R2 of the 9 km downscaled 

soil moisture were found to be 0.035 cm3/cm3 and 0.55 for the 

Bayesian method, 0.093 cm3/cm3 and 0.35 for the baseline, and 

0.069 cm3/cm3 and 0.41 for the enhancement method. 

 
Index Terms—SMAPEx, soil moisture retrieval, resolution 

improvement, active and passive. 

 

I. INTRODUCTION 

OIL moisture data at a medium resolution of 

approximately 9 km on a global scale can greatly 

contribute to various hydrological and meteorological 

applications, such as flood forecasting, drought 

assessment, weather forecasting, and agriculture 

administration [1].  The primary challenge in utilizing remote 

sensing technologies for soil moisture measurement lies in 

balancing the trade-off between resolution and radiometric 
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precision. While microwave radiometry is widely recognized 

as the most effective technique for accurately retrieving 

surface soil moisture, its low resolution of approximately 40 

km restricts its usage for regional-scale applications [2, 3]. 

Conversely, the radar microwave sensing technique, which 

boasts a higher resolution being better than 3 km, often 

struggles to accurately retrieve global soil moisture because of 

the high level of noise. Consequently, the Soil Moisture 

Active Passive (SMAP) mission of NASA aimed to address 

the limitations of both the radar and radiometer technologies 

by incorporating both into its design. This combination was 

intended to result in soil moisture products of intermediate 

resolution, being approximately 9 km [4, 5].  

Apart from radar, high resolution data from other sensors 

including optical and thermal also offers a potential solution to 

disaggregating large pixels into smaller ones [6-8]. Moreover, 

additional information on factors controlling soil moisture 

variability, such as soil properties, vegetation characteristics, 

or meteorological observations could be used to disaggregate 

the low resolution passive microwave observations, using 

either physical models or empirical relationships [9]. 

However, intermediate resolution soil moisture retrievals from 

the above mentioned downscaling algorithms are limited by 

the availability of the soil and vegetation properties required 

as inputs by the methods at global scale and high resolution. It 

should also be noted that the use of optical data is limited to 

clear sky conditions, while the active-passive microwave 

approach has the advantage of being applicable under all 

weather conditions. 

The active-passive method is commonly implemented 

through the integration of both radiometer and radar data 

utilizing a linear downscaling technique. Two methodologies, 

namely the SMAP official baseline algorithm and the optional 

downscaling algorithm, have been put forward as potential 

solutions [10, 11]. These methods, in conjunction with an 

additional linear downscaling method referred to as the change 

detection method [12], were assessed using pre-launch data 

[13]. Comparison of those methods indicated that the optional 

downscaling method produced the most favourable outcome in 

terms of retrieving soil moisture at an intermediate resolution. 

Given that all three active-passive downscaling algorithms are 

linear in nature, relying on the premise of linear correlation 

between passive and active data, it is advisable to evaluate 

other possible active-passive combination approaches for the 

SMAP mission. 

One such alternative is the Bayesian merging method, 

which uses a nonlinear approach to retrieve soil moisture at 

medium resolution [14]. Such evaluations should be 

conducted within a comparable experimental framework to 
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ensure a fair comparison of results. According to [14] the 

Bayesian method demonstrated encouraging outcomes in the 

retrieval of soil moisture at the resolution of 9 km, with a 

Root-Mean-Square-Error (RMSE) of 0.027 cm3/cm3 when 

utilizing synthetic data with low-level noise, and 0.044 

cm3/cm3 when utilizing synthetic data with high-level noise. 

The low- (0.1 – 1.0 dB) and high-level (1.0 – 2.0 dB) 

scenarios were simulated due to limited knowledge about 

actual radar noise levels. However, the development and 

implementation of the synthetic data used in [14] were based 

on numerous assumptions that may not be thoroughly 

justified. Hence, the aim of the current study was to assess the 

validity of the Bayesian method using actual observations 

from the SMAP satellite's radar and radiometer data. This was 

achieved through comparison with the officially released 

SMAP downscaled products, including those obtained through 

the baseline algorithm and the resolution enhancement 

method.  

II. DATA SET AND STUDY AREA 

As listed in Table 1, two main data sets were used in this 

study: the actual SMAP radar and radiometer data, and the 

field data obtained from the extensive field campaign in NSW 

Australia, namely the 4th Soil Moisture Active Passive 

Experiment (SMAPEx-4). Accordingly, the satellite data 

analyzed in this study were acquired in May 2015, during the 

period when the SMAP radar sensor was still operational, 

allowing the Bayesian downscaling technique to be assessed 

using seven days of airborne observations: 2nd, 5th, 10th, 11th, 

18th, 19th, and 21st of May 2015.  

The SMAP data used includes the 36 km resolution 

brightness temperature (Tb) from the radiometer at h-pol and 

v-pol and its retrieved soil moisture at the same resolution, the 

3 km resolution backscatter (σ) from the radar at hh-pol, vv-

pol and hv-pol, the retrieved soil moisture at the same 

resolutions, the ancillary data used for both the radar and 

radiometer retrieval models, the active-passive downscaled 9 

km soil moisture product, and the Backus-Gilbert enhanced 

soil moisture product posted onto the 9 km grid. The ancillary 

data utilized in this study encompass the vegetation 

parameters such as vegetation water content (VWC) and the 

parameter b that is dependent on the type of vegetation, 

surface roughness parameter h, and surface temperature Tsurf, 

all of which are incorporated in the forward modelling of 

brightness temperature and backscatter within the context of 

the Bayesian downscaling framework. It is noteworthy to 

mention that the accuracy of these parameters has the potential 

to impact the accuracy of the downscaled soil moisture 

produced.  

Figure 2: Map of land use (left) and map of surface roughness h 

(right) for the SMAPEx-4 study area. 

 

 

Figure 1: Location and coverage of the SMAPEx-4 field 

campaign. The campaign was conducted in Yanco, NSW 

Australia from 1-22 May 2015. The flight area (in orange) for 

SMAP is ~72 km x 85 km. Rectangle in black with the size of 

~36 km x 36 km is the main study area where the ground 

sampling activities were conducted.  
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The field data, used here as the reference data only, was 

collected from the SMAPEx-4 field campaign conducted in 

the township of Yanco in New South Wales in Australia from 

1 May to 22 May 2015 (Figure 1). The SMAPEx field 

campaign was crafted with the objective of acquiring airborne 

microwave data including active and passive observations, 

along with ground collected soil moisture data and any 

relevant ancillary parameters, during SMAP overpasses. This 

was done to provide reference observations of both microwave 

and soil moisture data for the SMAP mission. 

The study site was chosen for SMAPEx due to its 

favourable conditions, including a flat topography, widespread 

availability of in-situ stations for soil moisture monitoring, and 

its representation of typical surface conditions such as soil 

type, vegetation, and land use found in semi-arid 

environments. Maps of land use and surface roughness are 

shown in Figure 2. The site is situated within the grazing and 

semi-arid agricultural region of the Murrumbidgee River 

catchment of south-eastern Australia and is part of the broader 

Murray-Darling basin. Descriptions of the SMAPEx site and 

its monitoring schedules can be found from [15], with 

complete details of the experimental workplan available on the 

experiment website (www.smapex.monash.edu.au). Airborne 

observations collected during SMAPEx-4 covered an area 

equivalent to four SMAP-sized radiometer footprints, which 

measured approximately 71 km × 85 km at that latitude. 

Please note that only results on the black rectangle in Figure 1 

(with a size of ~36 km × 36 km) are shown and discussed in 

the following sections, as this is the area where the ground 

sampling activities had taken place. 

The main sources of field data utilized in this study include 

the airborne observations obtained from the Polarimetric L-

band Multibeam Radiometer (PLMR). These data included 

brightness temperature at both h- and v-polarization, with a 

resolution of 1 km, as well as the derived soil moisture. Both 

the observed brightness temperature and the inversed soil 

moisture data were further aggregated to 3 km resolution and 

9 km resolution in order to evaluate the performance of the 

downscaling algorithm at these resolutions. This retrieved soil 

moisture from PLMR has been validated against the ground 

soil moisture which was collected using a handheld instrument 

(Hydraprobe Data Acquisition System) at 250 m resolution. 

The airborne data underwent a series of processing steps, 

including calibration, temperature correction, and angle 

normalization, to serve as a reference dataset prototype for the 

SMAP mission [16]. Ancillary parameters regarding the 

vegetation, surface roughness, surface temperature and etc 

were also used here for soil moisture retrieval from the PLMR 

observations. 

III. METHODOLOGY 

The total area consists of approximately four SMAP 

radiometer footprints. The Bayesian downscaling procedure 

was implemented for each footprint and a brief overview is 

provided here, with comprehensive information provided in 

[14]. Within each 36 km × 36 km area the optimal soil 

moisture estimates, θ(F), at a given resolution "F" (in this 

study, either 3 km or 9 km) can be calculated from an initial 

background soil moisture estimate, θb, using the Kalman filter 

update equation [17]. Accordingly, this background estimate is 

updated based on the discrepancy between the observation Z 

and the estimated observation (brightness temperature and 

backscatter) given by h([θb]), as seen in the following practical 

application of Bayes' Theorem: 

             [θ(F)] = [θb] + [K]×{[Z] - h([θb])}.          (1) 

Figure 3 shows a flowchart of this downscaling method.  The 

final retrieved soil moisture [θ(F)] is a vector of values for 

each 3 km pixel within a SMAP radiometer footprint in the 

study area. Meanwhile, [θb], denoting the vector of 

background soil moisture, is also represented in the same 

manner, at each 3 km pixel within the same footprint.  

The [θb] can be obtained through two alternative approaches, 

which have been evaluated in this implementation. The first is 

obtained from the 36 km resolution SMAP Tbh, via a single-

channel passive microwave retrieval method [18-19]. The 

second source is acquired from the 3 km resolution SMAP 

backscatter that utilizes a fusion of three active microwave 

retrieval models [20-22]. 

The observation function, h([θb]), considers the soil covered 

Table 1 

Summary of datasets used in this study, including data from the SMAP satellite and from the SMAPEx-4 field campaign in 

Australia during May 2015. 

Name Resolution Description Source of data 
SMAP Tbh, Tbv 36 km Brightness temperature at h- and v-pol SMAP L1B_TB 

SMAP σhh, σvv, σhv 3 km Radar sigma0 at hh-, vv- and hv-pol SMAP  L1A_Radar 

SMAP_SM_A   3 km  Radar soil moisture SMAP L2_SM_A 

SMAP_SM_P  36 km  Radiometer soil moisture SMAP L2_SM_P 

SMAP_SM_AP  9 km  SMAP active-passive soil moisture SMAP L2_SM_AP 

SMAP_SM_P_E  9 km  SMAP radiometer  enhancement soil moisture SMAP L2_SM_P_E 

SMAP ancillary data  3 km SMAP VWC, b, h, Tsurf SMAP L2_SM_A 

PLMR Tbh, Tbv 1, 3, 9 km SMAPEx-4 PLMR brightness temperature  at h- and v-pol SMAPEx-4 

PLMR  SM 1, 3, 9 km SMAPEx-4 PLMR soil moisture SMAPEx-4 

SMAPEx-4 SM 250 m SMAPX-4 ground sampled soil moisture SMAPEx-4 

SMAPEx-4 ancillary data 1 km SMAPEx-4  VWC, b, h, Tsurf SMAPEx-4 
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by vegetation, and so predicts the brightness temperature and 

backscatter using the forward models with the background soil 

moisture on a 3 km resolution grid. In terms of [Z], it contains 

SMAP observations including 36 km resolution brightness 

temperature at h- and v-pol, as well as 3 km resolution 

backscatter σ at hh, vv, and hv-pol. The Kalman gain, [K], is 

derived from uncertainties in the observations and the 

background states through  

[K] = [P][HT] / ([H][P][HT] + [R]),               (2) 

where the matrix [P] symbolizes the error covariance of the 

background soil moisture, the matrix [R] symbolizes the error 

covariance of the observations, and the matrix [H] is the linear 

form of the function h([ ]) that relates the observations vector 

to the background state vector. Here [P] was estimated 

through two methods: i) by comparing the background soil 

moisture vector [θb] to the reference soil moisture from the 

airborne PLMR sensor, or ii) as the difference between SMAP 

radar-based background and SMAP radiometer-based 

background soil moisture. The comparison of results from 

both methods aimed to determine assess the practical approach 

for estimating [P] in an operational context from the second 

approach, with those of the best available estimate from the 

first approach. As [R] is founded on the instrument parameters 

and the precision of the data processing, particularly the 

accuracy of calibration as outlined in the SMAP Algorithm 

Theoretical Basis Documents.  Moreover, [H] was represented 

by the first derivative (Jacobian) of the observation function 

h([θb])  

[H] = δh([θb]) / δ[θ].  (3) 

  For a single pixel-wise implementation, the vector [Z] 

encompasses 434 observations in this study, including two 

SMAP brightness temperatures at 36 km being h- and v-pol, 

and backscatter at three polarisations including hh-, vv- and 

hv-pol taken at each of the 144 3 km × 3 km pixels. The 

elements of the observation vector [Z], the predicted 

observation vector h([θb]), and the matrix [H] are represented 

as follows: 

 

[𝑍] =
[𝑇𝑏ℎ  𝑇𝑏𝑣  𝜎ℎℎ,1 𝜎𝑣𝑣,1 𝜎ℎ𝑣,1 … 𝜎ℎℎ,144 𝜎𝑣𝑣,144 𝜎ℎ𝑣,144]434×1

𝑇             

(4) 

 

ℎ([𝜃])

=
[𝑇𝑏ℎ(𝜃𝑏)  𝑇𝑏𝑣(𝜃𝑏)  𝜎ℎℎ,1(𝜃𝑏) 𝜎𝑣𝑣,1(𝜃𝑏) 𝜎ℎ𝑣,1(𝜃𝑏)

…  𝜎ℎℎ,144(𝜃𝑏) 𝜎𝑣𝑣,144(𝜃𝑏) 𝜎ℎ𝑣,144(𝜃𝑏)]
434×1

𝑇

 

(5) 

[𝐻] =

[

𝛿𝑇𝑏ℎ/𝛿𝜃𝑓,1 ⋯ 𝛿𝑇𝑏ℎ/𝛿𝜃𝑓,144

⋮ ⋱ ⋮
𝛿𝜎ℎ𝑣,144/𝛿𝜃𝑓,1 ⋯ 𝛿𝜎ℎ𝑣,144/𝛿𝜃𝑓,144

]

434×144.

𝑇

    (6) 

 

[𝑃] = [

𝜃𝑏_𝑃−𝜃𝑏_𝐴,1  ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜃𝑏_𝑃−𝜃𝑏_𝐴,144

]

144×144.

𝑇

               (7) 

In Eq. (4)-(6), Each SMAP radiometer footprint consists of 

144 3 km × 3 km pixels, with a total of 434 observations made 

for each footprint. These observations include one brightness 

temperature measurement for both h- and v- polarizations, as 

well as 144 backscatter measurements for each of the three 

polariszations hh-, vv-, and hv. The error covariance of the 

background soil moisture field constituted the 144 diagonal 

values of [P], while zeros were assigned to all off diagonal 

elements as shown in Eq. (7), with the assumption of 

uncorrelated soil moisture error among the 3 km pixels. In 

terms of the matrix [R], the 434 diagonal elements were set as 

the observation accuracy of SMAP for the passive (1.3 K for 

both h- and v-pol) and active data (1 dB for hh-, and vv-pol, 

1.5 dB for hv-pol) while the off diagonal elements were also 

assigned zeros, with the assumption that observation errors 

were independent of each other in both spatial and polarisation 

domains. 

  The resulting soil moisture values obtained through the 

downscaling process [θ(F)] were compared to the soil 

moisture reference map with a resolution of 3 km, derived 

from high-resolution PLMR observations with a resolution of 

1 km [23]. The Bayesian algorithm's performance was then 

assessed by comparing its results to the SMAP baseline 

algorithm in [13], and the SMAP resolution enhancement 

method. The SMAP resolution enhancement method is based 

on the Backus-Gilbert optimal interpolation technique which 

utilises the information contained in the oversampling to 

produce a slightly enhanced spatial resolution (27 km rather 

than 36 km), and posted onto a 9 km grid. Accordingly, the 

accuracy of this product at an assumed 9 km spatial resolution 

was assessed, along with the downscaled results at a 9 km. 

Two distinct approaches can be used to obtain the downscaled 

results at 9 km resolution: (i) by linearly upscaling the 

downscaled data from 3 km to 9 km resolution, and (ii) by 

utilizing the SMAP radar backscatter aggregated to 9 km 

resolution directly as the input of [Z]. The performance of both 

approaches was evaluated. 

   The Bayesian algorithm present here have been previously 

studied by [14] and [24]. [14] has shown the feasibility of this 

algorithm for acquiring medium-resolution soil moisture 

product by using synthetic radar and radiometer data; while 

[24] evaluated the same approach but using data from 

SMAPEx-3 field campaign. Data from SMAPEx-3 2011 were 

firstly processed to mimic SMAP data (which were not 

launched by then) and then analysis was performed on 

different soil moisture retrieval methods. But in this paper, the 

novelty is that it is the first ever evaluation of Bayesian 

downscaling algorithm using real SMAP radiometer and radar 

data. Reference data from SMAPEx-4 2015 provided the only 

opportunity while SMAP radar was still functioning and 

therefore worth investigating of the Bayesian algorithm with 

such realistic satellite data. 
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IV. RESULTS AND DISCUSSION 

A. Estimation of the background soil moisture field 

Estimating the background soil moisture was achieved by 

directly inverting either i) the 36 km resolution SMAP 

brightness temperature or ii) the 3 km resolution SMAP 

backscatter. Thus, there are four different sources for 

estimating the background field: from the 36 km SMAP 

brightness temperature and SMAP ancillary data (Type 1); 

from 3 km SMAP radar and SMAP ancillary data (Type 2); 

from 36 km SMAP radiometer and actual ground ancillary 

data (SMAPEx field data; Type 3); or from 3 km SMAP radar 

and actual ground ancillary data (Type 4). The soil moisture 

values for Type 1 and Type 2 were obtained directly from 

SMAP published products, while the background soil moisture 

value for Type 3 was calculated in this study from h-pol Tb 

utilizing the single channel τ-ω model [19], and the soil 

moisture value for Type 4 was computed using the active 

retrieval model, as described in [14], based on hh-pol 

backscatter. Comparison between Type 1 and Type 3 

background fields across the seven days is displayed in Table 

1. An example of the SMAP radar observation and the 

retrieved soil moisture on D1, D4, and D7 (D refers to day) is 

illustrated in Figure 4. The spatial variation in surface 

roughness (as shown in Figure 2) and vegetation structural 

characteristics have been shown to have a notable impact on 

the accuracy of soil moisture retrievals using the active remote 

sensing. Therefore, it is crucial to consider these factors when 

estimating soil moisture at a fine spatial resolution through 

downscaling, as their effects can propagate through the 

retrieval process and potentially result in substantial errors in 

the derived soil moisture values. 

 

Figure 3: Flowchart of the Bayesian downscaling method. 
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Table 2 

Time series of observed brightness temperature (Tb, in K) and estimated brightness temperature (from radiometer inversed 

background soil moisture) at h-pol and v-pol at 36 km resolution, and their first derivatives (Jacobian) across the 7 days of the 

airborne campaign. Also shown are the background soil moisture values (cm3/cm3) retrieved via the single channel passive 

microwave retrieval method, including Background soil moisture #1: from 36 km SMAP radiometer and SMAP ancillary 

data (Type 1); and Background soil moisture #3: from 36 km SMAP radiometer and actual ground ancillary data (SMAPEx 

field data; Type 3). 

 

D1 D2 D3 D4 D5 D6 D7 

Observed Tbh (K) 251 244 230 205 217 240 250 

Observed Tbv (K) 274 263 252 241 248 265 273 

Estimated Tbh (K) 262 255 243 233 234 248 263 

Estimated Tbv (K) 282 270 269 264 267 269 282 

Jacobian of Tbh 

(K/(cm3/cm3)) 

-271 -251 -220 -192 -222 -265 -280 

Jacobian of Tbv 

(K/(cm3/cm3)) 
-131 -145 -128 -141 -149 -151 -122 

Background soil moisture #1 

(cm3/cm3) 

0.100 0.123 0.203 0.261 0.23 0.166 0.09 

Background soil moisture #3 

(cm3/cm3) 

0.089 0.097 0.175 0.196 0.195 0.136 0.077 

 

 

Figure 4: The 3 km resolution SMAP radar backscatter at hh-pol on D1, D4 and D7 together with the soil moisture (cm3/cm3) 

maps derived from those backscatter data. 
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Type 1 and Type 2 background soil moisture data are 

discussed in the following context. First the most appropriate 

background soil moisture value was selected between the 

active and passive soil moisture retrieval models. Next [P] 

was calculated as the error covariance by comparing the 

background soil moisture against the reference soil moisture 

obtained from PLMR.   

Utilizing the background soil moisture obtained from the 

SMAP radiometer or SMAP radar, the Tb and σ were then 

calculated through the forward models. Their first derivatives 

(Jacobian) were also calculated accordingly. Table 2 shows 

the time series of the estimated Tb and associated Jacobians 

across the 7 days of the field campaign, with the estimated σ 

and Jacobian on D1 illustrated as an example in Figure 5, 

when the SMAP radiometer inversed soil moisture at 36 km 

was used as the background field. Consequently, by 

comparing to the observed brightness temperature the RMSE 

of the estimated brightness temperature was around 14 K at h-

pol and 13 K at v-pol across the 7 days; and the RMSE of the 

estimated backscatter was approximately 2.9 dB at hh-pol, 2.1 

dB at vv-pol and 12.6 dB at hv-pol. In contrast, Table 3 

displays the changes of estimated Tb and their Jacobians 

across the 7 days; the estimated σ and Jacobian on D4 are 

presented in Figure 6 as an example, when the SMAP radar-

derived soil moisture at 3 km was taken as the background. 

The RMSE of the estimated brightness temperature in this 

circumstance was found to be higher, at approximately 10 K at 

h-pol and 8 K at v-pol, and the RMSE of the estimated 

backscatter was approximately 3.6 dB at hh-pol, 3.0 dB at vv-

pol and 14.1 dB at hv-pol, than when adopting the radiometer 

inversed soil moisture as the background.  

Evaluation on all seven days was conducted, with consistent 

results obtained for each day. Figures 5-7 presents the results 

obtained for day D1 as an example. When the background soil 

moisture inversed from the SMAP radiometer, the 9 km 

resolution RMSE against the reference soil moisture on D1 

was 0.021 cm3/cm3. The correlation coefficient between the 

downscaled and reference soil moisture was approximately 

0.38. Conversely, when using the background soil moisture 

retrieved from the SMAP radar, the resulting RMSE was 

0.165 cm3/cm3, which is higher than when using the soil 

moisture inversed from the radiometer. The correlation 

coefficient (R2) in this case was approximately 0.11. Similar to 

the findings on D1, the results on other days also demonstrated 

that background soil moisture from the SMAP radiometer 

yielded much higher accuracy in downscaled soil moisture 

compared to that from the SMAP radar. The inadequate 

performance from the radar-based estimation of soil moisture 

may be due to the use of SMAP's default ancillary parameters 

for retrieval and forward estimation, resulting in an inaccurate 

background soil moisture. Consequently, based on the 

comparison of these two methods, the SMAP radiometer for 

background soil moisture retrieval was selected for further 

assessment of the Bayesian downscaling approach. 

B. Downscaling performance and discussion 

The analysis conducted above indicated that the SMAP 

radiometer retrieval of soil moisture provided the most 

suitable soil moisture background for the subsequent 

predictions of brightness temperature and backscatter values. 

Therefore, this method was chosen for further modelling and 

analysis. The error covariance [P] was calculated by 

comparing the soil moisture estimates retrieved from both the 

radiometer and radar methods, since the actual soil moisture 

measurements were not available for the SMAP application. A 

comparison was conducted between the estimated [P] and the 

"true" [P] obtained from the difference between the 

background and reference maps. This comparison allowed for 

a more rigorous evaluation of the accuracy of the background 

soil moisture used in the SMAP analysis. The average 

difference between the RMSE of the estimated and "true" 

Table 3 

Time series of observed brightness temperature (Tb, in K) and estimated brightness temperature (from forward model using  

3 km radar inversed background soil moisture) at h-pol and v-pol at 36 km resolution, and their first derivatives (Jacobian) 

across 7 days. Also shown are average soil moisture values (cm3/cm3) estimated from radar backscatter (σhh). 

 

D1 D2 D3 D4 D5 D6 D7 

Observed Tbh (K) 251 244 230 205 217 240 250 

Observed Tbv (K) 274 263 252 241 248 265 273 

Estimated Tbh (K) 243 237 225 216 220 231 234 

Estimated Tbv (K) 272 265 260 250 257 272 264 

Jacobian of Tbh (K/(cm3/cm3)) -217 -202 -170 -147 -144 -189 -197 

Jacobian of Tbv (K/(cm3/cm3)) -145 -142 -132 -128 -135 -148 -143 

Background soil moisture 

(cm3/cm3) 

0.127 0.149 0.222 0.268 0.241 0.187 0.159 

 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3366886

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 

 

 

diagonal elements of [P] was 0.052 cm3/cm3 across the 7 days 

of SMAPEx-4. Due to there being no true map of soil 

moisture at high resolution from SMAP, the downscaling 

procedure presented here relies on the estimated [P]. 

Nevertheless, in order to evaluate the influence of [P] 

estimation on the downscaling performance, the findings are 

juxtaposed with those obtained using the actual diagonal 

elements of [P].  

The Bayesian downscaling was performed for each of the 7 

days. Additionally, results at 9 km resolution were acquired 

through two methods, as described before, by: i) linearly 

upscaling the downscaled results at 3 km to 9 km; and ii) 

directly utilising the aggregated SMAP radar observations at 9 

km resolution as the input rather than the original 3 km 

resolution. Only minor differences were found in terms of the 

downscaling accuracy between two methods, being less than 

0.003 cm3/cm3. As a result, the following figures and statistics 

are all based on the linear aggregation approach. 

To assess the performance of downscaling, three days (D1, 

D4, and D7) were selected from the full 7-day experimental 

period as an example. Those three days were selected as they 

captured the changes in vegetation and surface roughness 

throughout the entire SMAPEx-4 period. The downscaling 

results for the selected three days are in Figures 8-10, after 

excluding waterbodies and townships in a pre-processing step.  

Upon comparison of the downscaled soil moisture with the 

reference map, it was observed that the downscaling error in 

the western areas of the SMAPEx-4 site was greater than in 

any other area, possibly owing to the influence of varying land 

cover types. The north-western area of the site, which was 

primarily used for cropping, exhibited greater variability in 

surface conditions including surface roughness, vegetation 

types and heights, biomass, and vegetation water content, as 

compared to the eastern area, which was predominantly 

covered by uniform grasslands. The non-uniform vegetation 

cover in the cropping-dominated western area affected the 

accuracy of radar observations in capturing the spatial 

distribution of soil moisture across the entire site, in contrast 

to the relatively homogeneous grassland in the eastern area. 

The impact of surface conditions on downscaling accuracy 

was found to decrease from 3 km to 9 km. As shown in Figure 

2, the heterogeneity in vegetation and surface roughness, 

which affected the accuracy of the radar observations at 3 km, 

was effectively mitigated by pixel averaging at 9 km. 

Accordingly, the error in downscaling was reduced when 

applied at coarser resolutions. A comparison of the pattern 

 

Figure 5: Example of the observed and estimated radar backscatter, and first derivatives (Jacobian) at hh-pol, vv-pol and hv-pol 

at 3 km resolution on D1, using the background soil moisture derived from the 36 km resolution SMAP radiometer on the same 

day.  
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matching between the downscaled soil moisture maps and 

reference maps revealed that the results for D7 were the 

poorest among the three selected days. The soil moisture 

variability was found to be higher across the SMAPEx site in 

the reference map shown in Figure 10 at a resolution of 3 km, 

which could be attributed to a rainfall event that occurred in 

the northeast region. Conversely, the results for D1 and D4 

exhibited a better match with the reference map as compared 

to D7, since the heterogeneity across the site was reduced.  

 

Figure 6: Example of the observed and estimated backscatter and first derivatives (Jacobian) at hh-pol, vv-pol and hv-pol at 3 

km resolution on D1, using the background soil moisture derived from the SMAP radar on the same day. 
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Results for the 7 days can be found in Table 4. It has been 

observed that towards the end of the campaign, there was an 

increase in the error of downscaling, which could be attributed 

to a corresponding increase in variation of the surface 

conditions (raining event in some part of study area near the 

end of the campaign). Results from the other two methods are 

also shown in Table 4. Accordingly, the SMAP baseline 

algorithm produced the least satisfactory results, due to a poor 

linear relationship and/or different patterns displayed by the 

radar and radiometer observations. The resolution 

enhancement method gave the next best results. While in this 

study the downscaling method that relied upon Bayes' 

Theorem and the enhancement method had a similar Mean 

Absolute Error (MAE), the Baseline method showed the 

largest average MAE across the 7 days. However, in terms of 

RMSE, the best results was found from the Bayesian method, 

with an improvement of approximately 0.058 cm3/cm3 over 

the baseline algorithm and 0.034 cm3/cm3 over the resolution 

enhancement method at 9 km resolution.  

In addition to evaluating the performance on individual days, 

the three methods were compared by combining the results 

from all 7 days, as presented in Table 4 ("Combined"). The 

MAE, RMSE and correlation coefficient R2 were obtained by 

comparing downscaled soil moisture to the reference soil 

moisture map over the 7-day period. Again, the baseline 

method demonstrated the weakest relationship between 

downscaled results and the reference soil moisture map. 

 

Table 4 

Comparison of downscaling results in terms of Root-Mean-Square-Error (RMSE, in cm3/cm3), Mean Absolute Error (MAE, 

in cm3/cm3) and Correlation Coefficient (R2) at 9 km resolution across 7 days of SMAPEx-4 among three downscaling 

methods: SMAP Baseline algorithm, Bayesian merging method and SMAP Enhancement algorithm. Also shown are the 

“Average” and “Combined” RMSE and R2 of all 7 days data.   

 

 D1 D2 D3 D4 D5 D6 D7 Average Combined 

Baseline 

RMSE 0.168 0.124 

 

0.07 0.087 0.055 0.062 0.085 0.093 0.116 

R2 0.12 0.28 0.45 0.52 0.38 0.29 0.41 0.35 0.38 

MAE 0.085 0.092 0.11 0.064 0.062 

. 

0.039 0.077 0.075 0.075 

Bayesian 

RMSE 0.021 0.027 0.03 0.024 0.019 0.055 0.072 0.035 0.044 

R2 0.38 0.52 0.58 0.46 0.61 0.63 0.66 0.55 0.61 

MAE 0.038 0.042 0.050 0.037 0.022 0.068 0.082 0.048 0.048 

    

Enhancement        

RMSE 0.121 0.072 0.055 0.063 0.043 0.058 0.071 0.069 0.074 

R2 0.41 0.46 0.31 0.65 0.43 0.47 0.21 0.41 0.44 

MAE 0.078 0.058 0.029 0.064 0.031 0.042 0.054 0.05 0.05 

 

 

Figure 7: Spatial plots of downscaled soil moisture (cm3/cm3) and reference soil moisture (obtained from PLMR Tb via the 

single channel method) at 3 km resolution on D1, and the difference in soil moisture between those two.  The background field 

was inversed either from 36 km resolution SMAP brightness temperature (Tb), or from 3 km resolution SMAP backscatter.  
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V. DISCUSSION 

 The results above indicated that the supposition of a linear 

association between radiometer and radar data might require 

re-examination, particularly over mixed cropping areas. The 

resolution enhancement method had a slightly better 

performance over the baseline method, attributed to the fact 

that radiometer data is more correlated to soil moisture and 

less impacted from vegetation than radar. The 9 km resolution 

soil moisture achieved through the Bayesian merging 

algorithm exhibited an RMSE of approximately 0.035 

cm3/cm3. Regarding correlation between the 9 km resolution 

downscaled product and the reference soil moisture map, the 

Baseline and Enhancement methods exhibited similar 

performance, while the Bayesian algorithm exhibited slightly 

better performance. 

The spatial distribution of RMSE and R2 has been analysed 

for all three methods by comparing downscaled soil moisture 

to the reference across the 7 days at each pixel. These results 

can be found in Figure 11. The resulting RMSE and R2 across 

the entire study area indicated that the western region 

dominated by crops presented a higher RMSE and lower R2 

than the eastern grassland in Bayesian results, possibly 

attributed to the influence from vegetation characteristics and 

surface roughness parameter on radar observations. However, 

the discrepancy in RMSE and R2 across the whole region 

decreased when the results were averaged to larger scales. 

Particularly at 9 km resolution, the Bayesian downscaling 

algorithm demonstrated some favourable outcomes. 

Analysis and discussions above are all based on Type 1 or 

Type 2 background soil moisture, which only used the SMAP 

ancillary parameters over the Australian region. Given that the 

radiometer-based background had a better performance than 

the radar-based background, Type 4 was not actually 

considered, and thus only Type 3 (combining SMAP 36 km 

radiometer Tb and SMAPEx-4 field ancillary data) was 

actually tested. The resulting RMSE based on Type 3 was 

0.029 cm3/cm3 (averaged) for the Bayesian merging method, 

confirming that an improved accuracy of ancillary data for 

estimating the background field does indeed have the potential 

to improve the downscaling performance. 

V. CONCLUSION 

 

Figure 8: Spatial plots of downscaled soil moisture (cm3/cm3) from Bayesian merging algorithm, reference soil moisture map and 

their absolute differences at 3 km and 9 km resolution respectively. Data used here were collected from D1.  

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3366886

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12 

 

 

The efficacy of the Bayesian merging approach as a 

medium-resolution soil moisture mapping technique was 

evaluated through the use of both coarse radiometer data and 

fine resolution radar data. Moreover, the applicability of this 

downscaling method to the SMAP satellite mission was 

evaluated in this study by utilizing real satellite data obtained 

from SMAP official active and passive products, and the field 

campaign named SMAPEx-4 conducted in Australia, in place 

of the synthetic data used during the development phase of the 

satellite mission. The accuracy of the Bayesian algorithm 

largely depends on the accuracy of radar-based inversion of 

soil moisture at high resolution. Accordingly, a more 

advanced radar retrieval algorithm is expected to further 

improve the performance of the Bayesian method. However, 

compared to other methods used for determining soil moisture 

at an intermediate resolution, the non-linear algorithm based 

on Bayes’ theorem even with the radar model applied in this 

research exhibited superior outcomes in terms of RMSE and 

correlation R2 at 9 km resolution, outperforming the SMAP 

official baseline algorithm and the resolution enhancement 

method. One potential drawback of the Bayesian algorithm as 

applied here was its reliance on default parameters during 

radar-based soil moisture retrieval. As such, it is believed that 

the adoption of a more sophisticated radar model would 

increase the Bayesian merging method's ability to produce a 

more accurate medium-resolution soil moisture product, 

 

Figure 10: As for Figure 8 but on D7  

 

 

 

 

 

Figure 9: As for Figure 8 but on D4  
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surpassing the performance of currently proposed alternative 

methods. Unfortunately, the SMAP radar failed shortly after 

launch and so the true value of using L-band radar for 

retrieving soil moisture has never been fully realised. It is 

anticipated that radar data from the series of SMAPEx field 

campaigns could contribute to the development and 

demonstration of radar soil moisture retrieval models, 

especially the availability of multi angular and multi temporal 

radar datasets which may help investigate the impact from 

vegetation and other surface conditions in future studies.  
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