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Abstract—This paper extends the application of an existing
change-detection-based, time-series soil moisture retrieval algo-
rithm to non-concurrent active and passive measurements from
WindSat/AMSR2 and the Soil Moisture Active Passive radar,
which was active from late April until mid-July on 2015. A
time-series of L-band radar backscatter observations was used
to populate an under-determined matrix equation whose optimal
solution was derived via a bounded linear least squares estimator,
and whose bounds were derived from a time-series of radiometer-
derived soil moisture estimates (taken by either WindSat or
AMSR2). Surface soil moisture estimates are compared with in-
situ measurement probes, which were treated as ground truth.
Error statistics and time-series results for the validation sites are
presented here and conclusions derived therefrom. The overall
RMSE and un-biased RMSE for the retrieval algorithm, taken
across all reference pixels considered in the study, were 0.070
m3/m3 and 0.067 m3/m3 respectively, when using WindSat to
constrain the algorithm. When using AMSR2 to constrain the
algorithm, the RMSE and un-biased RMSE were 0.093 m3/m3

and 0.090 m3/m3 respectively.

Index Terms—Change detection, data fusion, hydrology, radar,
radiometer, remote sensing, retrieval algorithm, soil moisture,
time-series.

I. INTRODUCTION

THERE exists a long precedent for using radiometer
brightness temperature for surface soil moisture (SSM)

remote sensing, particularly at L-band frequencies [1]–[4].
Radar backscatter has also become a popular tool for SSM
retrieval algorithms, in part due to the comparatively higher
spatial resolution that radar systems can achieve. This study
expands on previous work in the domain of combined ac-
tive/passive (radar/radiometer), approaches to retrieving SSM
from vegetated surfaces using space-borne sensors [5]. In
particular, this work demonstrates the utility in combining
non-simultaneous, frequency-diverse measurements to provide
stable, accurate, high-resolution SSM data products.
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In a previous study, it was shown that a radiometer-
constrained radar change detection algorithm could be used
to combine simultaneous time-series observations from an
L-band radiometer and an L-band radar on-board the Soil
Moisture Active Passive (SMAP) satellite to form accurate,
high-resolution (3 km) SSM products [5] during the SMAP
radar’s operation from late April until mid-July of 2015. The
strength of this algorithm, whose formulation is detailed in
the next section, lies in its simplicity: the radar portion of
the algorithm does not require any parameter/curve fitting or
forward modeling, and the hybrid radar-radiometer algorithm
does not require ancillary input data. The lack of forward
modeling, curve fitting, or ancillary data requirements indeed
differentiates this algorithm from many existing radar-based
SSM retrieval techniques [6]–[8]. Accordingly, this study used
the same change-detection-based approach to fuse data from
the WindSat polarimetric radiomter and Advanced Microwave
Scanning Radiometer 2 (AMSR2) sensor suites and the
SMAP L-band radar (independent of the SMAP radiometer) to
demonstrate that radar and radiometer observations need not
be simultaneous in order for the algorithm to achieve accurate
results. WindSat and AMSR2 were chosen to constrain the
radar algorithm. Although WindSat and AMSR2 retrievals
were somewhat less accurate than passive SMAP retrievals
for the validation sites considered here, this study has shown
that in most cases, WindSat or AMSR2 observations were still
good enough to guide the radar retrieval algorithm.

The remainder of the paper is organized as follows. Section
II describes the hybrid radar-radiometer SSM retrieval algo-
rithm. Section III displays the error performance of the algo-
rithm for four diverse validation sites, where retrieved SSM
is compared with aggregates of in-situ probe measurements.
Section IV presents the conclusions of this work.

II. ALGORITHM FORMULATION

This section describes the radar- and radiometer-based
algorithm for SSM estimation. The radiometer algorithms
remain independent of radar observations, and utilize the τ -
ω approximation as a forward model to derive SSM from 1)
the multi-frequency, polarimetric WindSat radiometer suite [9],
[10] and 2) dual-polarized, single frequency measurements
(h and v at 6.9 GHz) from the AMSR2 radiometer suite.
The radar portion of the algorithm was a time-series change
detection approach whose solution space was locally bounded
by radiometer-derived lower and upper limits for the SSM.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3219259

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

A. Radar SSM Retrieval Algorithm

The algorithm used in this study is applied to a time-
series of 3-km-resolution SMAP L-band radar backscatter
observations, and is originally derived from the so-called
“alpha approximation” [11]. The alpha approximation is based
on the assumption that for a given observed scene, the ratio
of consecutively-measured, co-polarized radar backscatter co-
efficients (measured at times t1 and t2) is equivalent to the
squared ratio of corresponding alpha coefficients, such that
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Note that for a fixed, known incidence angle, the soil permittiv-
ity can be directly inverted from (2). In turn, the SSM content
for the observed scene can be derived from the soil permittivity
via a dielectric mixing model (DMM). The DMM used in
this study is the Peplinski-Ulaby-Dobson model [12]. Given a
revisit time on the order of days, (1) approximates the surface
roughness and vegetation biomass in the observed scene to be
the same for times t1 and t2, and further approximates the
vegetation contribution as only a multiplicative contribution
to the signal scattered from the soil surface [5]. In addition,
soil surface roughness contribution is also assumed to be
strictly multiplicative, as is the case in first-order analytical
rough surface scattering theories such as the Small Pertur-
bation Method and the first-order Small Slope Approximation
[13]. Therefore, under the alpha approximation’s assumptions,
changes in consecutive radar backscatter measurements at
a particular incidence angle for a particular scene can be
entirely attributed to changes in SSM content. The hh- and vv-
polarized radar backscatter coefficients can be organized into
a matrix equation to solve for the unknown alpha coefficients
at each element of the time-series, such that
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where M0 is the zero matrix, N is the number of radar
observations in the time-series, and
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Note that the matrix in (3) is a rectangular, 2(N − 1) × 2N
matrix, i.e. the matrix equation is underdetermined. A bounded
linear least squares regression was therefore applied to solve
(3). Previous studies have shown that the alpha approximation
algorithm performs poorly when bounded only by extremely
dry and extremely wet soil conditions (0.03 m3/m3 and 0.45
m3/m3 respectively) [5], [11]. Hard bounds for this linear least
squares optimization were thus derived from coarser resolu-
tion (25 km) WindSat/AMSR2 SSM data products. Solving
(4) via bounded linear least squares required the conversion
of these minimum and maximum SSM bounds into alpha
coefficient bounds. This conversion was performed by first
inverting the Peplinski-Ulaby-Dobson DMM (with ancillary
soil texture information) to derive relative soil permittivities
from SSM values, then using those permittivities to derive
alpha coefficients via (2).

B. Radiometer SSM Retrieval Algorithms

The WindSat and AMSR2 SSM retrieval algorithms have
each been used to derive local minimum and maximum bounds
for SSM over the 84-day time-series containing observations
of SMAP L-band radar data. SMAP and WindSat sensor data
have been collected from a polar orbit with an average revisit
time of three days for the study regions considered here,
but these observations seldom share a temporal overlap with
each other. For AMSR2’s polar orbit, the average revisit time
was two days. The discrepancy between radiometer and radar
spatial resolutions was resolved by using the radiometer pixel
which whose center point was closest to that of the radar pixel.

WindSat’s land surface algorithm simultaneously retrieves
SSM, vegetation water content (VWC) and land surface tem-
perature (Ts) by comparing multi-channel radiometer bright-
ness temperature with a forward model. The AMSR2 al-
gorithm works similarly, but uses a dual-polarized, single-
frequency algorithm for each radiometer frequency band to
simultaneously derive SSM and vegetation optical depth. The
authors have chosen to use the lower C-band (6.9 GHz)
channel due to its theoretical capacity to better penetrate
foliage. The forward model used for both sensors was the τ -
ω approximation, which assumes the surface brightness tem-
perature for p-polarization T ′

Bp (unmodified by atmospheric

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3219259

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

attenuation or scattering) is given by

T ′
Bp =Tsesp exp (−τc)

+ Ts(1− ωp)(1− exp (−τc))[1 + rsp exp(−τc)],
(5)

where esp and rsp = 1−esp are respectively the soil emissivity
and soil reflectivity, ωp is an empirically-derived parameter
accounting for scattering and emission from vegetation, and
τc is the slant optical depth of the vegetation canopy. The
measured brightness temperature TBp is a modification of T ′

Bp

which accounts for atmospheric effects, such that

TBp = TBu + exp(−τa)(T
′
Bp + rspTBd), (6)

where TBu and TBd are the upwelling and downwelling
atmospheric emission and τa is the slant atmospheric opacity.
The WindSat SSM algorithm uses linear polarimetric data
from WindSat’s 10.7, 18.7, and 37 GHz channels [9], [10]
while the AMSR2 algorithm uses dual-polarized (h and v)
data at 6.9 GHz [14].

III. RESULTS AND DISCUSSION

Figures 1 and 2 show the algorithm performance at a
representative 3 km reference pixel for each validation site
used in this study, with Figure 1 corresponding to the
WindSat-bounded algorithm and Figure 2 showing results us-
ing AMSR2. The four validation sites, in order of their appear-
ance in Figures 1 and 2, are respectively located in Yanco, New
South Wales, Australia [15], Walnut Gulch, Arizona, USA
[16], Kenaston, Manitoba, Canada [17], and Fredricksburg,
Texas, USA [18]. These validation sites were chosen for their
high densities of hydra-probes, making comparisons with 3
km SSM products feasible and meaningful. Measurements
for individual in-situ dielectric hydra-probes (represented by
the thin, dotted-and-dashed curves in Figures 1 and 2) were
linearly averaged to form a composite in-situ measurement
for each 3 km pixel at each validation site (represented by the
bold, solid green curves in Figures 1 and 2). This 3 km average
provided the baseline against which the retrieval algorithm’s
SSM estimates (represented by the dark blue circles in Figures
1 and 2) were assessed.

The results in Figure 1 suggest the SMAP-WindSat retrieval
algorithm was qualitatively and quantitatively effective over
a broad range of observation conditions. Qualitatively, the
retrieval algorithm appeared to effectively track day-to-day
changes in SSM for each of the validation site reference
pixels in Figure 1. The magnitude of the algorithm’s bias for
volumetric estimates was below 0.04 m3/m3 in each case.
For each reference pixel, the RMSE ranges between 0.022
m3/m3 to 0.066 m3/m3 and the R-value (a measure of the
correlation between retrieved and measured SSM) above 0.5
for every pixel except the one in Kenaston. Figure 2, which
showcases results from the SMAP-AMSR2 algorithm, displays
similar performance to the SMAP-WindSat case, but slightly
worse results for the Kenaston site. This could be because
the AMSR2 algorithm is a single-frequency-channel algorithm
whose vegetation optical depth measurements are less reliable
than those from a multi-frequency-channel algorithm.

For both WindSat- and AMSR-2-derived constraints, the
algorithm performance at the Kenaston site was noticeably
worse than for the other validation sites, partly due to a number
of precipitation events which were not captured by the hydra-
probes due to their soil depth. Further discrepancies can be
explained by the heterogeneity of the agricultural landscape
and its effect on the orbit-to-orbit radar backscatter signal
[17], [19]. Each of the instruments observed in this study
was conically scanned, and strong scan-to-scan and/or orbit-to-
orbit fluctuations due to heterogeneity would certainly intro-
duce significant errors into a change-detection-based retrieval
algorithm. The algorithm was shown to display less significant
errors from airborne, side-looking SAR measurements taken in
a similar environment during the SMAPVEX12 experimental
field campaign [5].

Figure 3 shows the overall error performance for each
validation site, computed over all 3 km reference pixels at
each site. The RMSE for each site was reported within the
figure. The overall RMSE for the SMAP-WindSat retrieval
algorithm, taken across all reference pixels considered in
the study, was 0.070 m3/m3, while the un-biased RMSE
was 0.067 m3/m3. For the SMAP-AMSR2 algorithm, the
overall RMSE was 0.093 m3/m3 and the un-biased RMSE
was 0.090 m3/m3. Examining Figure 3, the larger RMSE for
the SMAP-AMSR2 case seems to be driven by the relatively
poor performance of the algorithm at the Kenaston site. The
Kenaston site shows poorer error performance compared with
the remaining validation sites for the aforementioned reasons,
with the algorithm tending toward the lower- and upper-limits
derived from both WindSat and AMSR2 radiometer estimates.

For reference, the 25 km passive WindSat SSM retrievals
are shown as a function of 25 km in-situ probe averages
in Figure 4 (top). Passive AMSR2 retrievals versus ground
truth are shown in Figure 4 (bottom). Note that the TxSON
and Yanco sites have proven especially problematic for the
WindSat retrievals. Being that 10.7 GHz was the lowest ra-
diometer frequency channel used for the WindSat soil moisture
product, topographic effects and vegetation in these areas
likely obscured upwelling radiation from the underlying soil
surface. L-band microwave frequencies are less sensitive to
these conditions, hence the higher sensitivity of SMAP active
and passive obervations to changes in surface soil moisture.
AMSR2 tends to over-estimate soil moisture in both the
TxSON and Kenaston study regions, likely due to issues
arising from estimating vegetation optical depth using a single-
frequency algorithm. Despite their shortcomings in the study
regions, WindSat and AMSR2 observations seem generally
sufficient to guide the alpha approximation retrieval algorithm
toward a fairly accurate solution.

IV. CONCLUSION

This paper has presented an error analysis of a SSM
retrieval algorithm that was designed to receive input data
in the form of a time-series of polarimetric radar backscatter
and radiometer brightness temperature observations. In this
study, the algorithm used input data from the SMAP L-band
synthetic aperture radar and derived constraints from either

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3219259

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

Fig. 1. Time-series data for a representative 3 km reference pixel within each
of the four validation sites. Data for individual in-situ measurement hydra-
probes are shown as thin, dotted-and-dashed lines in each plot. The linear
average of probe measurements for each reference pixel is represented by the
solid, dark green curves. SSM retrievals using the SMAP radar and WindSat
radiometer are plotted as blue circles. The error bias (m3/m3), un-biased
RMSE (m3/m3), RMSE (m3/m3), and R-value are reported at the top of
each plot. Refer to Figure 4 (top) for information on the constraints derived
from WindSat and applied to the SMAP radar data.

the WindSat multi-frequency polarimetric radiometer suite
or the AMSR2 C-band (6.9 GHz) radiometer channel. The
algorithm uses a time-series of ratios between consecutive
radar backscatter measurements, cast as a matrix equation
and constrained by radiometer-derived lower- and upper-limits
to the retrieved SSM. The radiometer retrieval algorithms,
which were used to derive these constraints, both utilized
a zeroth-order approximation to the radiative transfer equa-
tion commonly known as the τ -ω model. The hybrid radar-
radiometer retrieval algorithm’s performance was assessed
against four soil moisture validation sites, consisting of dense
in-situ networks of hydra-probes. SMAP-WindSat algorithm
error performance exhibited an RMSE of 0.070 m3/m3 and
an un-biased RMSE of 0.067 m3/m3 across all validation sites.

Fig. 2. Same as Figure 1, except the retrievals use the SMAP radar and
AMSR2 radiometer, which are plotted as blue circles. The linear average of
probe measurements for each reference pixel is represented by the solid, dark
green curves. Data for individual in-situ measurement hydra-probes are shown
as thin, dotted-and-dashed lines. The error bias (m3/m3), un-biased RMSE
(m3/m3), RMSE (m3/m3), and R-value are reported at the top of each plot.
Refer to Figure 4 (bottom) for information on the constraints derived from
AMSR2 and applied to the SMAP radar data.

SMAP-AMSR2 algorithm error performance was found to
exhibit an RMSE of 0.093 m3/m3 and an un-biased RMSE of
0.090 m3/m3 across all validation sites. The SMAP-WindSat
algorithm error performance is comparable to the SMAP active
baseline algorithm in both RMSE and unbiased RMSE [19],
though SMAP-AMSR2 is somewhat worse. The methodology
described herein achieved reasonable results without the aid
of ancillary information or the need for training data, and
furthermore demonstrated synergy between disparate and non-
simultaneous microwave remote sensing observations.
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Fig. 3. Active/passive retrieved SSM versus in-situ measurements (3 km
average) for every 3 km reference pixel within every validation site. RMSE
and un-biased RMSE are reported for each site, across all its reference pixels.
Top: SMAP/WindSat; bottom: SMAP/AMSR2.
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Fig. 4. Passive retrieved SSM versus in-situ measurements (25 km average)
for every 25 km reference pixel within every validation site. RMSE and un-
biased RMSE are reported for each site, across all its reference pixels. Top:
WindSat; bottom: AMSR2. Note there are many more AMSR2 measurements
than WindSat measurements due to AMSR2 having a slightly higher revisit
time and fewer quality control flags.
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