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A B S T R A C T   

This study presents the first evaluation of using commercial microwave link (CML) data for rainfall measure-
ments in Australia, with the test site being the greater Melbourne Metropolitan area. More than 100 CMLs with 
microwave frequency ranging between 10 and 40 GHz have been used for the rainfall retrieval. The 15-minute 
received signal levels (RSLs) for each CML based on two sampling strategies (average and minimum/maximum) 
collected for 2 years provided a unique dataset to compare performances of rainfall retrievals. The open source 
algorithm RAINLINK was used for deriving rainfall from the 15-minute RSL data. From two years of data, a 
subset of 30 rainy days distributed across this period were used for calibrating the RAINLINK parameters, with 
the remaining data used for validation. For this study, only path-averaged rainfall intensities were validated 
based on a gauge-adjusted radar product serving as the reference. The result of the wet-dry classification showed 
that the minimum and maximum RSL data performed better, with lower probability of false detection and higher 
Matthews correlation coefficient than average RSL data. For the rainfall retrieval, both datasets showed similar 
correlation with the gauge adjusted radar product. However, based on other statistics (RMSE, bias and CV) 
minimum and maximum RSL data outperformed average for the rainfall retrieval. Overall, this study highlights 
the robust accuracy of commercial microwave links for rainfall retrieval while using only minimum and 
maximum RSL data.   

1. Introduction 

Accurate and timely rainfall information is crucial for real-time flood 
forecasting and various agricultural management activities. Wherever 
available, dense rain gauge networks combined with operational 
weather radars are currently considered as the most reliable source of 
temporal and spatial rainfall estimates at ground level (Russell et al., 
2010). However, deployment of such infrastructure for national 
coverage is costly, and most low-to middle-income countries are not able 
to afford such equipment. Moreover, there are a number of limitations 
with this rainfall measurement approach. For example, conventional 
rain gauges provide only discrete point observations which may be 
biased due to wind and splash effects(Muller and Kidd, 2006). While 

radar rainfall products provide integrated observations with a large 
spatial coverage, they do not directly measure rainfall close to the 
ground. Instead, their measurements are based on an indirect mea-
surement of reflected microwave energy from hundreds of meters above 
the ground making them subject to large uncertainties in their retrieval. 
These include hardware calibration, beam broadening, attenuation due 
to rain, ground clutter, anomalous propagation, and wind effects 
(Doviak, 1984; Joss et al., 1990; Germann et al., 2006; Berne and Kra-
jewski, 2013). Alternatively, satellites provide a nearly global spatial 
coverage of rainfall, but they do not provide a direct measurement of 
rainfall near the ground either. Rather, they provide an indirect estimate 
based on cloud top temperatures or emitted or reflected microwave 
energy. Thus these data still need to be calibrated using ground 
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measurements, which limits the stand-alone use of satellite products for 
operational applications (Kucera et al., 2013). 

In contrast to the traditional methods outlined above, commercial 
microwave links (CMLs) operated by mobile network operators (MNOs) 
have proven to be a complementary source of rainfall information 
(Messer, 2018; Uijlenhoet et al., 2018; Chwala and Kunstmann, 2019). A 
CML includes a transmitter on one backhaul tower and a receiver on 
another backhaul tower. Depending on the number of transmitters and 
receivers on these towers, a CML could include a single link or multiple 
links at the same or different frequencies and/or polarisations, known as 
“sub-links”. The commonly called “duplex links” are a CML that includes 
two sub-links permitting two-way data transmission. In addition, 
redundant links may be installed to back up the existing operational link 
during a failure. The primary objective of these CMLs is to provide 
telecommunication services, but the information they collect to main-
tain their network could be utilized for retrieving rainfall rates (Messer 
et al., 2006; Leijnse et al., 2007).This technique of rainfall measurement 
has been proven useful in areas where there are no other sources of 
rainfall information, but also in densely populated cities where the 
existing infrastructure does not provide reliable means of observation 
(Overeem et al., 2011; Pastorek et al., 2019). In such cities, it is usually 
problematic to find the appropriate location to install rain gauges among 
high-rise buildings according to the official World Meteorological 
Organisation requirements, with the high-rise buildings also creating 
ground clutter for weather radars. The CMLs which are widespread in 
urban areas typically transmit the microwave signals over distances of a 
couple of hundred meters to a few tens of kilometres, at tens of meters 
above the ground, thus providing path-integrated rainfall information 

close to the ground (Overeem et al., 2016b; Gazit and Messer, 2018). 
CML-derived rainfall estimates are based on the fact that the trans-

mitted signal is attenuated as it passes through the rain medium. This 
attenuation in the signal is more pronounced at higher frequency bands, 
e.g. it typically becomes significant above 10 GHz. This phenomenon 
was widely studied by the telecommunication engineering community 
in the early 1960 s to design an optimal spacing between microwave 
towers for efficient and reliable communication (Hogg, 1968). Later, 
various experimental studies using microwave links showed that 
inversion of the technique could be used for rainfall retrieval (Atlas and 
Ulbrich, 1977; Giuli et al., 1991; Christopher et al., 1996; Mello et al., 
2002; Holt et al., 2003). However, application of this technique was 
limited until the early 2000 s, when Messer et al. (2006) and Leijnse 
et al. (2007) concomitantly demonstrated the use of CML signal atten-
uation for rainfall measurement. This was a major breakthrough toward 
demonstrating the potential to use the more than 4 million commercial 
microwave links in the world (Ericsson, 2017) for rainfall monitoring 
purposes. Subsequently, this technique gained popularity with feasi-
bility and validation studies undertaken for a variety of locations around 
the world including: Brazil (Rios Gaona et al., 2015), Burkina Faso 
(Doumounia et al., 2014), Czech Republic (Fencl et al., 2013; Fencl 
et al., 2017), Germany (Chwala et al., 2012; Chwala et al., 2016; 
Smiatek et al., 2017; Graf et al., 2020), Israel (Messer et al., 2006; 
Goldshtein et al., 2009), Italy (Roversi et al., 2020) , The Netherlands 
(Leijnse et al., 2007; Overeem et al., 2011; 2013; 2016b; de Vos et al., 
2019), Pakistan (Sohail Afzal et al., 2018) and Switzerland (Bianchi 
et al., 2013). 

These validation studies have been conducted based on a few links to 

Fig. 1. Location of commercial microwave links for greater Melbourne with a frequency above 10 GHz. The density of such links decreases from the central business 
district towards the outer suburbs. There are a total of 2,290 unique microwave links in this region (Source: Australian Communication and Media Authority (ACMA) 
database, 2019). 
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a couple of thousand links covering an entire country such as The 
Netherlands (Overeem et al., 2013) and Germany (Graf et al., 2020). The 
temporal resolution of such CML rainfall estimates typically varies from 
a few seconds to 15 min, with most telecommunication operators sam-
pling the received signal level (RSL) at 10 Hz but storing it at a much 
coarser temporal resolution. In most studies, 15-minute minimum and 
maximum RSL data, as stored operationally by the MNO’s network 
management systems, were used for rainfall retrieval (Leijnse et al., 
2007; Goldshtein et al., 2009; Overeem et al., 2011; 2016b; Rios et al., 
2017). There have been a few studies using 1-min and even higher 
temporal resolution, up to a second, instantaneous RSL data for rainfall 
estimation (Doumounia et al., 2014; Chwala et al., 2016). Overeem et al. 
(2016b) evaluated 2.5 years of microwave link rainfall estimates for the 
Netherlands with more than 3000 microwave links (using 15-minute 
minimum–maximum sampling) against gauge-adjusted radar rainfall 
data, showing a relative underestimation of 9% for 15-min interpolated 
rainfall maps with a 74 km2 resolution. However, the interpolated 
hourly rainfall map using CMLs outperformed automatic rain gauges 
compared with gauge adjusted radar data. Similarly, Chwala et al. 
(2012) used 1-minute averaged RSL data recorded with data loggers for 
five microwave links, showing a good correlation between link and 
radar-derived rainfall. 

Some of the MNOs also provide instantaneous RSL (periodic snap-
shots) data over the 15-minutes: de Vos et al. (2019) compared the 
performance of instantaneous versus minimum and maximum RSL data 
for The Netherlands. Even though this comparison was based on data 
from two different periods, each having a different network, the use of 
minimum and maximum sampled data outperformed the instantaneous 
15-minute data. Similarly, average sampling of the received signal level 
over the 15-minute interval is also common for telecommunication 

operators in some parts of the world, but this has not been evaluated 
against the widely used minimum and maximum RSL strategy. 
Accordingly, this study tests this alternative strategy, while demon-
strating for the first time the capability of rainfall retrieval using CML 
signal attenuation data in the Australian continent 

To date, there has not been a study evaluating the errors introduced 
by the minimum–maximum sampling as opposed to average sampling. 
This study explores the capability of rainfall retrieval using CML signal 
attenuation data for the Greater Metropolitan area of Melbourne, the 
second largest city in Australia, with a population of 4.48 million 
(Australian Bureau of Statistics, 2016). This study compares the per-
formance of rainfall retrieval using two commonly sampled datasets for 
the same period, where data based on minimum–maximum and average 
sampling from the same link paths are compared. A total of 135 mi-
crowave links are used, covering approximately 2 years of data. These 
CML data were stored by the network monitoring system (NMS) every 
15-minute based on10 Hz sampling data. This 15-minute data includes 
the minimum, maximum and average over 15-min intervals with the 
constant transmitted power. 

2. Study area, data and methods 

2.1. Description of the study area 

The study area covers the greater Melbourne region in the Australian 
state of Victoria. This region has a temperate oceanic climate (Cfb, 
Köppen-Geiger classification), with an annual average rainfall (based on 
29 years of rainfall data from 1990 until 2018 for 73 stations) varying 
from 500 mm in the west of Melbourne to 1400 mm in the Dandenong 
ranges towards the eastern part of the city, with a standard deviation of 

Fig. 2. Locations of commercial microwave links from one of the operators for greater Melbourne. Red lines indicate microwave links having a microwave frequency 
greater than 10 GHz (which were used for this study). Green lines indicate microwave links with frequencies lower than 10 GHz (which were not used for this study). 
On the top left is a plot of the microwave frequency of the microwave links f (GHz) against the path length L (km) for the 144 sub-links used for this study. A small 
subset on the top right shows the microwave links at the Melbourne Central Business District. There were 80 unique link paths including both 64 duplex and 16 single 
links. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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175 mm. Most of the rainfall occurs during southern hemisphere winter 
(June, July and August) and spring (September, October and 
November). On average, there are 110 days each year with at least 1 mm 
of rainfall. The average temperature (based on the same period with 21 
stations) of the study area varies between 18 ◦C and 24 ◦C for summer 
and varies between 6 ◦C and 12 ◦C for winter season. The elevation of 
the study area ranges from sea level to 1803 m. Fig. 1 shows the study 
area with location of radar, rain gauge, and the microwave links above 
10 GHz from all telecommunication operators. The density of these 
microwave links ranges from 0.27 to 2.15 km per km2. 

2.2. Data 

2.2.1. Commercial microwave link data 
Received signal level (RSL) data from one of the telecommunication 

providers were collected for this study within a radius of approximately 
200 km around the Melbourne central business district. Data from a total 
of 178 sub-links (64 duplex links and 50 single links) for the period 
ranging from 15 July 2017 to 31 July 2019 were collected as shown in 
Fig. 2. This dataset contains minimum, maximum and average received 
signal level (RSLs) over 15-min intervals with a resolution of 0.1 dB, 
based on a 10 Hz sampling rate. Hereafter, the sampling strategy 
providing minimum and maximum RSLs over 15-minutes is named 
“MinMax” and the strategy providing average RSLs over the 15-minute 
interval is named “Average”. These 178 links represent the data 
collected by only one of the MNOs in the area. The total density of links 
within this area (all operators) is quite high as shown in Fig. 1. These 
178 links have frequencies ranging from 6 to 39 GHz with path lengths 
ranging from 0.2 km to 57 km. Among the 178-microwave links, only 
links with frequencies above 10 GHz (144 links) were retained for the 
present study. Among these selected 144 links, 9 links were horizontally 
polarized while all other links were vertically polarized. The majority 
(128 links) were duplex (transmitter and receiver at both ends) with 
only 16 links being single channel, thus forming 80 unique link paths. 
The transmitting powers of all retained links were constant through 
time. 

Fig. 3 shows timeseries of 15-minute Average and MinMax RSL for a 
selected event. In both cases, the received power levels decreased pro-
portionally with the observed rainfall rate, however the power level still 
fluctuated during the dry periods. This fluctuation is seen more in the 
minimum and maximum compared with the average power level. The 
values of the minimum and maximum power levels over the 15-minute 
intervals obviously reached more extreme values (larger maximum and 
lower minimum). Since the RSL was sampled at 10 Hz, the minimum and 
maximum are the extremes of a distribution of values or the outlier of 
that distribution (Pudashine et al., 2020). 

Among the 144 retained links, 138 contained more than 90% of the 
maximum available data, equivalent to a total of 15,722 h of data. The 
other 6 links had more than 70% available data, equivalent to a total of 
12,748 h. Among this dataset, a subset of 30 rainy days spread over the 
2-year period was used for calibration of the rainfall retrieval algorithm 
parameters. This subset was chosen in such a way that it includes a 
maximum number of available microwave links and total wet time in-
tervals and maximum rainfall intensity on a daily basis. The details of 
this subset are presented in Appendix 1; the remaining data were used 
for validation which includes 128 rainy days. 

2.2.2. Weather radar 
An S-band weather radar operated by the Bureau of Meteorology 

collected data over the study area during the 2 years of this study. This 
radar was located at Laverton (37◦51′36′′ S, 144◦45′36′′ E), 44 m above 
sea level. A gauge-adjusted radar data product named Rainfields (Seed 
et al., 2008) was obtained from the Bureau of Meteorology with a spatial 
resolution of 0.5 km × 0.5 km and a temporal resolution of 5 min. 
Rainfields is a comprehensive framework, which provides real-time 
quality-controlled quantitative precipitation for the operational 
Australian weather radar network. This framework follows a series of 
quality control measures including removal of ground and sea clutter, 
interferences, bright band correction and partial beam blocking. This 
filtered observation is then converted to surface rainfall maps estimating 
the reflectivity at the earth surface using a three-dimensional kriging 
interpolation technique (Wesson and Pegram, 2006), which was then 

Fig. 3. Time series of a rainfall event on the 16th to 19th June 2018 showing: (a) 15-min average received signal level; (b) 15-min minimum and maximum received 
signal levels; and, (c) Path-averaged observed rainfall rate along the microwave link. 
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converted to rainfall rates at ground-based on static Z-R relationship and 
finally correcting bias the bias by using near-real-time rain gauge in-
formation (Seed et al., 2008). For the real-time rain gauge observation, a 
total of 261 rain gauges were used for this radar. For this analysis, 
Rainfields (gauge-adjusted radar) data were used as a reference to 
compare with the rainfall retrievals from CMLs. The path-average 
rainfall rates were calculated based on the weights of the intersecting 
CML paths for each radar pixel. 

3. Methodology 

3.1. Preliminary data processing and quality check 

The CML dataset was delivered by the operator in two separate files: 
one with 15-min RSL data for all the links stored daily, and the other 
with the corresponding metadata. These files were received on a 
monthly basis at the end of each month. Metadata included the location 
of transmitter and receiver nodes, the elevation of the antennas, the 
assigned microwave frequencies (including frequency bandwidth), the 
polarization of the signal, path lengths and the IP addresses of each 
transmitter and receiver. Using the IP address as a unique identifier in 
the CML data and metadata, merged RSL data with necessary fields 
(frequency, latitude, longitude, and polarization) were prepared for 
further processing. 

Among all 144 links, there were nine links that showed some sus-
picious behaviour in the data. Three distinct behaviours were identified 
in these links: (a) presence of noise in the dataset; (b) a sudden drop in 
the signal level during dry periods; and (c) a gradual increase/decrease 
in the signal level. Examples are shown in Fig. 4. These suspicious links 
were excluded from further analysis manually. As in this case, there 
were only a limited number of links; thus, it was possible to verify this 

manually. However, for large scale studies with thousands of links, an 
automated statistical analysis as proposed by Graf et al. (2020) could be 
used. 

3.2. Use of RAINLINK 

After pre-processing the data, the freely available RAINLINK package 
developed by Overeem et al. (2016a) was used for retrieving rainfall 
rates. Originally, RAINLINK was designed for handling minimum and 
maximum RSL data with a constant transmitting power. de Vos et al. 
(2019) describe the pre-processing necessary to handle instantaneous 
received signal level data, where the transmitted power is allowed to 
vary. Studies employing average RSL data have not been published to 
date. This study is therefore the first to use average RSL data in RAIN-
LINK for retrieving rainfall. Here average and minimum/maximum RSL 
data were processed separately. Further details of the RAINLINK pack-
age can be found in Overeem et al. (2016a). 

The RAINLINK package includes the following processing steps:  

1) Pre-processing of the data. Duplicated link identifiers, identifiers 
with inconsistent metadata, and links with frequencies outside the 
range 10–40 GHz are excluded from the analysis.  

2) Dry/wet classification. Rainy periods are identified based on 
spatial correlation. When at least half the nearby links (default radius 
of 15 km) experienced a drop in the minimum or average signal level, 
the time interval was considered as “wet”. This radius was increased 
to 20 km (in contrast to the default value of 15 km) based on the 
spatial distribution of the microwave links in the Melbourne 
metropolitan area. This drop in the signal level was calculated based 
on the difference between the RSL data as compared with the 
maximum value of the link over the previous 24-hour period, both as 

Fig. 4. Example of some suspicious microwave link data: (a) There is noise observed in the minimum (green) and maximum (yellow) RSL; (b) There is a sudden drop 
in the received power level even if the transmitted power remains constant. Blue lines indicate observed rainfall rates from Rainfields. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a difference and difference divided by the path length. If the median 
of all nearby links was less than the predefined threshold median 
QmP(dB) for the difference and QmPL(dBkm− 1) for the difference per 
kilometre link path, the link was labelled as “wet” for that interval.  

3) Reference signal level. Based on the moving median of the signal 
level during the previous 24-hour dry period the reference signal 
level (Pref) was determined. The difference between this reference 
level signal and actual signal level provided the attenuation due to 
rainfall.  

4) Outlier removal. Based on a filter that relies on the principle of the 
rainfall distribution over space (Overeem et al., 2016a) outliers were 
removed. This filter discards the time interval of a link for which the 
cumulative difference between its specific attenuation and that of the 
surrounding links (default radius of 15 km, although for this study 
increased to 20 km) over the 24 h becomes lower than the outlier 
filter threshold value.  

5) Attenuation level. The corrected minimum (PCor/min), maximum 
(PCor/max) and average (PCor/avg) attenuation level was calculated for 
each time interval as: 

PCor/min =

{
Pmin if wet AND Pmin < Pref
Pref otherwise (1)  

PCor/max =

{
Pmax if PCor/min < Pref AND Pmax < Pref
Pref otherwise (2)  

PCor/avg =

{
Pavg if wet AND Pavg < Pref
Pref otherwise , (3)  

where Pmin, Pmaxand Pavg are the raw minimum, maximum and average 
attenuation, respectively.  

6) Wet antenna attenuation. A constant wet antenna attenuation (Aa)

was deducted from the corrected total attenuation. This attenuation 
was later divided by the path length to obtain the specific attenuation 
(k).  

7) Rainfall estimation. The rainfall rate R was calculated from k using 
the power law equation proposed by Olsen et al. (1978): 

R = akb, (4) 

where the values of the parameters a and b in Eq. (4) were derived for 
Melbourne using data obtained from an OTT PARSIVEL1 optical dis-
drometer, as described in Guyot et al. (2019), and shown in Fig. 5. 
Extinction cross sections were estimated based on the T-matrix method 
developed by Mishchenko and Travis (1994) using a python interface 
developed by Leinonen (2014) being the most comprehensive and 
computationally efficient method for the calculation of electromagnetic 
scattering of particles of arbitrary shape. This was later used to derive 
the specific attenuation, which were related to rainfall rates using the 
power law model based on the least squares method. For the case of 
using MinMax, the weighing factor α was used to calculate the average 
rainfall from Rmin and Rmax. 

R = α.Rmax +(1 − α).Rmin (5) 

However, for the case of using average sampling, this α parameter 
was obviously not required. 

3.3. Calibration of the RAINLINK parameters 

RAINLINK has 14 parameters for rainfall retrieval, including those 
related to wet-dry classification, reference signal determination, outlier 
filter, wet antenna attenuation and rainfall retrieval using the power 
law. The optimal values of these parameters are likely to differ between 
different climatic conditions and microwave link networks (e.g. 
regarding sampling strategy, spatial link density, and resolution of the 
RSL data), thus it is recommended to calibrate the most important pa-
rameters on a subset of the data (de Vos et al., 2019). For this study, 
based on a sensitivity analysis using one month of dataset, the three 
parameters QmP,QmPL and Aa for both the Average and MinMax dataset 
were identified as most important for the overall rainfall retrieval. 
Additionally, α parameter was also identified as the most important for 
MinMax RSL data. For the sensitivity analysis, the cost function pro-
posed by de Vos et al. (2019) was used, which includes the Probability of 
Detection (POD), Probability of False Alarm (POFA) or False Alarm 
Ratio, Coefficient of variation(CV), percentage bias and correlation. 

Fig. 5. (a) Coefficients a and (b) exponent b of the power-law relation between R and k for both horizontally and vertically polarized signals for frequencies ranging 
from 1 to 70 GHz. The values recommended by the International Telecommunication Union, Radio communication (ITU-R, 2005) for computing specific attenuation 
for given rain rates for world wide application are shown in dotted and dashed lines. 

Table 1 
List of variables used for calibration of RAINLINK. Here, the alpha coefficient 
provides the weightage between the minimum and maximum rainfall. The pa-
rameters a and b used in this relationship are based on a local disdrometer data.  

Variable description Symbol Unit 

Threshold median QmP  dB 
Threshold median per unit length QmPL  dB km -1 

Wet antenna attenuation Aa  dB 
Alpha coefficient α – 
Prefactor of rainfall-attenuation relationship a mm h− 1 dB-b kmb 

Exponent of rainfall-attenuation relationship b –  
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Besides these, two additional parameters a and b are required; based 
here on local drop size distribution data from Guyot et al. (2020). More 
information on these parameters is provided in Table1. A subset of 30 
rainy days spread over the 2-year period was selected for the calibration 
of the RAINLINK parameters. This subset was selected such that there is 
high availability of RSL data from microwave links during the selected 
periods, also ensuring that data from different seasons were included. 
This subset represents a total rainfall amount of 390 mm, ranging from 3 
mm to 33 mm per day. The details of the calibration dataset are shown in 
Table 6 in Appendix 1; the remaining data were used for validation 
which includes 128 rainy days. 

3.3.1. Parameters for the average RSL 
The optimised values of the three most important parameters QmP,

QmPL and Aa for the average RSL data have been identified using the 
optimization procedure in de Vos et al. (2019). The detail of the cali-
bration procedure is described later in this section. The radius for nearby 
links was increased from 15 km to 20 km, as the density of the links was 
lower for the present case, as compared to The Netherlands. Other pa-
rameters besides these were kept at their default values in the RAINLINK 
package. Based on the calibration dataset, hourly rainfall estimates were 
calculated for the various combinations of values of QmP,QmPL andAa. 
Here, hourly rainfall estimates were considered to minimize the sam-
pling error caused by the measurement lag in the radar, due to its 
providing measurements aloft that usually take a couple of minutes for 
the rainfall to reach the earth’s surface. Accordingly, QmP was varied 
from − 2.5 to − 0.1 dB, QmPL was varied from − 2.0 to − 0.1 dB km− 1 and 
Aa was varied from 0.5 to 3 dB (steps of 0.1 for all parameters). The 
sensitivity of each of these parameters are shown in Fig. A1. The results 
obtained for each of the combinations were evaluated against the gauge- 
adjusted radar product, also accumulated to path-averaged hourly 
values. The path-averages were calculated based on weights of the 
intersecting CML paths for each radar pixel. 

3.3.2. Parameters for minimum/ maximum RSL 
For the minimum and maximum RSL data, an additional parameter α 

is required in the optimization process of the rainfall retrieval (Overeem 
et al., 2016a). The value of α was varied between 0.10 and 0.50 (with 
steps of 0.01). The other three parameters, including wet antenna 
attenuation Aa, were obtained in a similar manner as for the average 
RSL. Even though the Aa is physically related to the types and materials 
of the antenna cover it is expected to behave non-linearly because of 
dependence on rain rate and temporal variations within a time interval. 
This implies that the optimal value will vary between sampling strate-
gies and that Aa also has a negative correlation with the value of α. Thus, 
the optimized value of Aa from Average may not be entirely suitable for 
application in MinMax.” 

3.4. Performance metrics 

The overall performance of the path-average rainfall retrieval was 
assessed based on a series of evaluation criteria, covering the two main 
steps in the rainfall retrieval: (a) Wet-dry classification and; (b) Rainfall 
retrieval.  

(a) Wet-dry classification 

This provides a measure of how well the link observations correctly 
estimate the occurrence of rainfall. The following criteria (de Vos et al., 
2019; Graf et al., 2020) were used to assess the performance of the 
classification based on the confusion matrix as shown in Table 2. 

1) The probability of detection (POD) provides a measure of pro-
portion of actual wet periods that are identified by both the CML and 
the radar. In this case, POD is defined as the percentage of wet pe-
riods identified using the nearby link approach when both Rlink and 
Rradar detect rainfall. The POD is given as: 

POD =
TP

TP + FN
× 100%. (6) 

The POD value ranges from 0 to 100%, with 100% being a perfect 
score and 0% being the worst.  

2) The Probability of False Alarm (POFA) provides a measure of the 
proportion of the identified wet periods that are incorrectly identi-
fied (Barnes et al., 2009). This is also knownas the False Alarm Ratio 
(FAR) and is used in reporting the performance of dry-wet classifi-
cation (de Vos et al., 2019). The POFA is given as: 

POFA =
FP

FP + TP
× 100%. (7) 

Similarly, the POFA value also ranges from 0 to 100 %, but with 
100% being the worst score and 0% being the best score.  

3) The Probability of False Detection (POFD) provides a measure of 
the proportion of the actual dry periods that are incorrectly identi-
fied as being wet. This is also known as the False Alarm Rate. The 
POFD is given as: 

POFD =
FP

FP + TN
× 100%. (8) 

POFD value also ranges from 0 to 100%, but with 100% being the 
worst score and 0% being the best score.  

4) The Matthews correlation coefficient (MCC) provides a measure 
of quality of the binary classification (wet-dry in the case of classi-
fication for CMLs) (Matthews (1975). This is considered as one of the 
best ways to report the result of the confusion matrix: 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ . (9) 

The MCC value ranges from 0 to 1, with 1 being the best score and 
0 being the worst. 

5) The Error rate (ERR) or misclassification rate provides the per-
formance measure of binary classification based on the miss- 
classification from both positive and negative classes and is calcu-
lated as: 

ERR =
(FP + FN)

(TP + TN + FP + FN)
. (10) 

Similarly, ERR ranges from 0 to 1 with 0 being the best score and 1 
being the worst score.  

(b) Rainfall retrieval 

This set of evaluation parameters provides a measure of how well the 
CML-derived rainfall relates to the reference rainfall depths (in this case 
the gauge-adjusted radar). 

Table 2 
Confusion matrix based on gauge adjusted radar and CML.    

Gauge adjusted radar (Rainfields).   
Wet (0) Dry (1) 

CML Wet (0) True Positive (TP) False Positive (FP) 
Dry (1) False Negative (FN) True Negative (TN) 

TP: True positive (both Rlink and Rradar detect rainfall), 
TN: True negative (both RlinkandRradar show no rainfall), 
FP: False positive (Rlink detects rainfall but Rradar shows no rainfall), 
FN: False negative (Rlink shows no rainfall but Rradar detects rainfall). 
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1) The Pearson correlation coefficient (ρ) provides the correlation 
between rainfall depths measured by the link Rlink and the gauge- 
adjusted radar (Rradar). It is given as: 

ρ =
cov(Rlink,Rradar)

std(Rlink)std(Rradar)
, (11)  

where cov (x, y) is the covariance between × and y and std(x) is the 
standard deviation of x. ρ values range from 0 to 1, with 1 being the best 
and 0 the worst performance. 

2) The coefficient of variation (CV) provides a measure of the disper-
sion of data points between the rainfall intensity derived by the link 
(Rlink) and the gauge-adjusted radar (Rradar). It is given as: 

CV =
std(Rres)

Rradar
, (12)  

where Rres = Rlink − Rradar and Rradar is the mean of the gauge adjusted 
radar data. The smaller the CV the better the performance.  

3) The relative bias provides the average error between the rainfall 
intensity measured by the link Rlink and the gauge-adjusted radar 
(Rradar). It is given as: 

Rres

Rradar
× 100%, (13)  

where, Rres is the mean of the residual. Similarly, values closer to 0 are 
better, however positive values indicate overestimation and negative 
values indicate underestimation compared with the reference. 

4. Results 

4.1. Calibration 

Table 3 shows the calibration results for the four most important 
RAINLINK parameters. Two parameters, threshold median (QmP) and 
threshold median per unit length (QmPL), are related to the wet-dry 
classification while the remaining two, wet antenna attenuation (Aa)

and Alpha (α), are related to rainfall retrievals. For Average, both QmP 

and QmPL are less negative compared to the default values of RAINLINK 
while the Aa value is also lower compared to MinMax, but higher 
compared to instantaneously sampled data. For MinMax, the threshold 
median is slightly higher, but the threshold median per unit length is less 
negative than the default value. This indicates that the time interval is 
more likely to be classified as wet, with the threshold median per unit 
length being closer to 0 than the default value, which is also the case for 

Table 3 
Calibration results for a selection of four of the RAINLINK parameters and 
comparison with values obtained for The Netherlands. The default parameters 
for MinMax data were − 1.4 dB, − 0.7 dB km− 1, 2.30 dB and 0.33 for QmP, QmPL, 
Aa,and α respectively.  

Dry/ wet classification parameters Rainfall retrieval parameter 
Threshold Median, 
QmP(dB)  

Threshold Median 
L,QmPL (dB km− 1)  

Wet antenna 
attenuation, Aa (dB)  

Alpha,α 

Average data 
− 0.7 − 0.2  1.6  – 
MinMax data 
− 1.50 − 0.40  1.4  0.29 
Instantaneous RSL data (de Vos et al., 2019) 
− 0.6 − 0.4  1.4  –  

Table 4 
Performance criteria for the calibration period for Average and MinMax.  

Dataset  Dry/ Wet classification Rainfall retrieval 
POD POFD POFA MCC Relative Bias (%) CV ρ  

Average  68.25  10.25  35.45  0.47  0.20  1.41  0.67 
MinMax  64.62  7.38  30.39  0.55  − 0.68  1.12  0.68  

Fig. 6. Time-series of (a) average RSL; (b) minimum and maximum RSL; and (c) gauge adjusted radar rainfall intensities for a selected rainfall event for LinkID 62. 
The wet-dry classification using the calibrated parameters is shown as shaded colours. 
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the threshold median for Average. 
Table 4 shows the performance for the calibration dataset for both 

the Average and MinMax data presented at an hourly timescale. For dry/ 

wet classification, MinMax had a better performance when compared to 
Average data, although its POD value was lower. For the rainfall 
retrieval, both datasets showed similar performance for ρ. MinMax had a 

Table 5 
Performance of wet-dry classification for 15-min average and 15-min minimum/maximum RSL data.  

Data set Threshold for time interval to be wet 
0 mm h− 1 0.1 mm h− 1 0.5 mm h− 1 

POD POFD POFA MCC POD POFD POFA MCC POD POFD POFA MCC 

Average  64.34  8.76  42.63  0.38  68.05  8.94  45.25  0.38  77.91  9.57  50.57  0.35 
MinMax  53.58  3.70  36.23  0.42  57.34  3.84  39.01  0.46  68.41  4.35  45.78  0.45  

Fig. 7. Normalized confusion matrix for wet-dry classification for (a) Average data; and (b) MinMax data.  

Fig. 8. Box plots showing the performance criteria for the wet-dry classification using the nearby links methods with: (a) Probability of detection (POD); (b) 
Probability of False Detection (POFD); (c) Matthew correlation coefficient (MCC); and (d) Error rate (ERR) for Average and MinMax data. 
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small negative bias compared to the almost unbiased Average data, and 
had a much lower value for CV. Hence, MinMax resulted in the best 
overall performance. 

5. Validation result 

After processing the dataset (excluding the data used for calibration), 
the number of data points containing results for the two sampling 
strategies (MinMax and Average) were of different sizes, because the 
outlier filter used in processing the raw data removed different time 
intervals for specific links from MinMax and Average data. Thus, in 
order to make a fair comparison, the time intervals with available data 
for both strategies were retained. Also, to note that all the performance 
evaluation was based on the path-average rainfall depths against the 

reference. 

5.1. Performance of wet-dry classification 

Fig. 6 shows the time series of RSL with corresponding rainfall in-
tensities for a selected event, together with the wet-dry classification for 
one of the microwave links. For both the Average and MinMax data, 
most of the wet periods with higher rainfall intensities were identified 
correctly as shown by the true positives. However, some time intervals 
with low rainfall intensities during a wet period were classified as dry, i. 
e. false negatives. There were instances where the time intervals are 
incorrectly classified as wet even though there was no rain observed on 
the ground, indicated by the false positives. These false positives were 
observed during time-intervals where the RSL dropped below the 

Fig. 9. Probability of detection (POD) based on a reference rainfall rate. Here five thresholds (0, 0.1, 0.5, 1.0 and 5.0-mm h− 1) for the gauge adjusted radar data are 
used to filter the data, thus this result provides POD result for only wet intervals. 

Fig. 10. Validation criteria showing the ability of CMLs to detect rainy periods against gauge-adjusted radar data; (a) POD, POFD and POFA; and. (b) Matthew 
correlation coefficient (MCC) and Error rate (ERR). All four parameters were calculated for Average and MinMax for various accumulation intervals, using a 
threshold of 0.1 mm h− 1 to detect rain occurrence. 
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Fig. 11. Validation of path-average CML-rainfall against gauge-adjusted radar rainfall. Scatter density plot of link-derived rainfall with radar over intervals of: (a) 15 
min; (b) 1 h; (c) 3 h; and (d) 24 h. This plot includes both false positives and false negatives only leaving out the dry-dry cases. 
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baseline signal level due to reasons other than rain. For this event, 
Average data correctly identified wet intervals with a POD of 90% and 
slightly lower POD of 84% for the MinMax data. Also, for the Average 
data 18% and for the MinMax only 9% of the dry periods were incor-
rectly classified as wet. Similarly, 10% and 16% of the wet intervals 

were missed by the Average and MinMax data respectively. 
Table 5 shows the performance summary of the wet-dry classifica-

tion for three threshold values used to distinguish each of the time in-
tervals between wet and dry periods based on the gauge-adjusted radar 
data for all the dataset. Average data showed a higher probability of 
detection (64%) as compared to MinMax (54%). Also, 9% and 4% of the 
dry periods were incorrectly classified as wet based on the Avg and 
MinMax data, respectively (see Fig. 7). For all thresholds, Average data 
showed a higher probability of detection (POD) when compared with 
the MinMax data. However, at the same time it also showed a much 
POFD and POFA, meaning there were a larger number of time intervals 
that were misclassified as wet as compared with MinMax. Based on the 
MCC values, for all the threshold values MinMax data outperformed the 
Average data. 

As a further investigation of the performance for wet-dry classifica-
tion, Fig. 8 shows the box plot for four different statistics (POD, POFD, 
MCC and ERR with the wet-dry threshold of 0.1 mm h− 1). Considering 
all four statistics, three of the values showed better performance of 
MinMax compared with Average data. Although the POD value was 
higher for Average, there were a higher number of both positive and 
negative misclassifications, which is reflected in the higher value of 
ERR. The wider range of all four statistics suggests that some of the links 

Table 6 
Validation of 15-min and 1-hour accumulation link-derived rainfall against 
gauge-adjusted radar rainfall (reference) on a seasonal basis.  

Dataset 15-minute 1-hour 
Relative bias (%) CV ρ  Relative bias (%) CV ρ  

Summer (Dec, Jan, Feb) 
Average  15.75  2.87  0.29  15.80  1.92  0.69 
MinMax  9.05  2.85  0.32  9.05  1.90  0.69 
Autumn (Mar, Apr, May) 
Average  12.73  2.81  0.30  12.71  2.60  0.52 
MinMax  13.68  2.65  0.29  13.70  2.32  0.51 
Winter (Jun, Jul, Aug) 
Average  9.56  2.52  0.22  8.78  2.21  0.53 
MinMax  3.60  1.38  0.23  3.62  1.90  0.56 
Spring (Sep, Oct, Nov) 
Average  7.92  2.71  0.32  8.12  1.90  0.71 
MinMax  7.26  2.58  0.33  7.51  1.72  0.72  

Fig. 12. Scatter density plots of path-average CML-rainfall against gauge-adjusted radar rainfall for 342 rainfall events.  

Fig. 13. Double mass curves all links: (a) Link-derived cumulative rainfall using Average data versus cumulative gauge-adjusted radar rainfall; and (b) Link-derived 
cumulative rainfall using MinMax data versus cumulative gauge-adjusted rainfall data. 
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were performing poorly. Graf et al. (2020) obtained similar statistics in 
their study for Germany, where they found the median MCC value of 
0.47, which is slightly higher than that obtained for MinMax data here. 
In their case, they used data with a temporal resolution of 1 min for the 
wet-dry classification. 

In order to further investigate the performance of the wet-dry clas-
sification for different rain rates, the POD was calculated for each of the 
different classes of data exceeding certain threshold rain rates from the 
reference data as shown in Fig. 9. The probability of detecting rain in-
creases with higher rain rates, reaching more than 90 % when 5 mm h− 1 

was used as a threshold rain rate rather than a lower rainfall rate. This 
suggests that the correct detection rate of wet periods is better under 
more intense rainfall conditions. 

Similarly, Fig. 10 shows the accuracy of the links in determining 
rainfall occurrence for various accumulation intervals. Here, a threshold 

of 0.1 mm h− 1 was used to distinguish wet from dry periods using the 
gauge-adjusted radar data. Although the POD increased and both POFD 
and POFA decreased as the considered intervals became longer, the 
error rate simultaneously increased. This is due to a decrease in the 
relative proportion of true negative (TN) values compared with the 
lower accumulation interval. The increase in MCC values suggests that 
the performance increases for longer accumulation intervals for both 
Average and MinMax data. 

5.2. Performance for the rainfall retrievals 

Fig. 11 shows the comparison of link-derived rainfall with gauge- 
adjusted radar data for 15-min, 1-hour, 3-hour and 1-day accumula-
tions for both MinMax and Average. The accuracies of the link-derived 
rainfall increase for longer durations for both sampling strategies. This 

Fig. 14. Double mass curves for all links during only the wet period (no false alarm included) for: (a) Average, and (b) MinMax data.  

Fig. 15. Comparison of link-derived rainfall retrievals using 15-min Average vs MinMax RSL data for: (a) wet periods only; and, (b) all time intervals with false 
alarm only. 
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can be seen by the decrease in the value of CV (for Average RSL 2.84 to 
1.49 and for MinMax 2.70 to 1.22), and the increase in the value of the 
correlation coefficient (for 

Average 0.29 to 0.75 and MinMax 0.30 to 0.79). A systematic 
overestimation in link-derived rainfall estimates with respect to gauge- 
adjusted radar data was found for all accumulation intervals for both 
sampling strategies. The lower values of RMSE and CV for MinMax, the 
smaller overestimation and generally similar values for the correlation 
coefficient indicate that it outperforms Average. 

In addition, Table 6 shows the results for the performance of the 
rainfall retrieval on a seasonal basis. For both sampling strategies 
(Average and MinMax), link-derived rainfall is overestimated for all four 
seasons, with the largest overestimation occurring during the Summer 
and Autumn. This larger magnitude of overestimation is mainly attrib-
uted to precipitation events with the higher intensity of rainfall during 
these two seasons. The performance in terms of bias and CV was better 
for winter and spring for both sampling strategies compared with the 
other two seasons. This result differs from the result presented by Graf 
et al. (2020) for the winter season in Germany. They obtained the lowest 
performance during the winter month (with the highest overestimation 
and higher CV values of 16.04) due to the presence of both mixed and 
solid precipitation which is not the case for this study. Further, this 
overestimation during other seasons was most likely due to dew for-
mation on the antenna covers as solid/melting snow does not occur in 
the study area. Similarly, for all seasons link-derived rainfall corre-
sponded well to the validation data for hourly accumulations. The best 
performance in terms of correlation coefficient and CV was found in the 
Spring followed by the Summer. Based on the two sampling strategies, 
MinMax had a lower overestimation and a better CV value compared 
with Average data. 

To have a better understanding of the performance of CML rainfall 
retrievals, event-based results were also analysed for CML-derived and 
gauge-adjusted radar rainfall data as shown in Fig. 12. Here, a rainfall 
event was defined as a rain period separated by a 1-hour or longer rain- 
free period and having each 15-min time interval with minimum rainfall 
rate of 0.1 mm h− 1. There were altogether 342 such rainfall events with 
periods lasting from 45 min to 29.25 h. Compared to the results pre-
sented in Fig. 11, correlation coefficients were significantly higher, with 
values of 0.86 for both Average and MinMax data. In terms of relative 
bias Average was closer to the reference gauge-adjusted radar dataset 
compared with MinMax. However, other statistics (RMSE and CV) were 
lower for MinMax, showing the better performance. 

In order to further investigate the continuous performance of link- 
derived rainfall estimation, double mass curves between link-derived 
and gauge-adjusted radar rainfall are shown as accumulation plots in 
Fig. 13. Intervals where either link or radar had missing data were 
excluded. Most of the links rainfall were passing through the 1:1 black 
line indicates a good agreement between the link-derived rainfall and 
the gauge-adjusted radar reference data. In overall comparison, both 
Average and MinMax showed a positive bias of about 15 %. However, 37 
links for Average and 40 links for MinMax showed a mean negative bias 
of 19.30% and 17.34%, respectively. There were almost similar numbers 
of links (11 links for Average and 10 links for MinMax) for both RSL data 
types showing overestimation above 50% and up to 135%. 

The results presented in Fig. 13 for the rainfall retrieval include both 
timesteps with the false-positives and false-negatives. As there was a 
significant difference in the false alarm rate between the two datasets 
(Average and MinMax), to further investigate the performance for only 
wet periods, the double mass curves for all links are plotted in Fig. 14 by 
including only time intervals which have non-zero rainfall for both the 
links and the radar. In terms of bias, Average data showed better 

performance with a negative bias of 3.96% compared with MinMax data 
showing a stronger negative bias of 15.18 %. For a higher number of 
links (35 links), there was an overestimation based on Average data 
compared with only 18 links for MinMax data. However, other statistics 
(RMSE, ρ, CV) suggest that MinMax performed slightly better compared 
with average RSL. 

Fig. 15 provides more insights regarding the performance of rainfall 
retrieval by the two sampling strategies. The average link-derived 
rainfall using the MinMax data was lower than the Average RSL 
(Fig. 12(a)) for time intervals where it was wet according to both sam-
pling datasets (not involving the reference). Furthermore, almost all 
heavy rainfall depths were underestimated by the MinMax data. In 
addition, Fig. 12(b) shows the density scatter plot of link-derived rainfall 
during all the periods when there was a false alarm for both sampling 
strategies when compared to the reference. This result suggests that the 
mean rain rate obtained from MinMax data was higher compared with 
Average data even though the heavy rainfall depths were lower. So, on 
average overestimations during false alarms were higher for MinMax, 
but higher for Average in the case of larger rainfall depths. 

6. Discussion 

6.1. Optimized parameters for RAINLINK 

Among the parameters used in RAINLINK, only the four most sen-
sitive parameters were optimized for this Melbourne dataset, specifically 
the threshold median(QmP), the threshold median per unit length (QmPL), 
wet antenna attenuation (Aa) for Average RSL data and the alpha (α) for 
MinMax RSL data. In addition, two parameters, a and b, were obtained 
based on local disdrometer data from the study of Guyot et al. (2020), 
and are the most critical for rainfall retrieval of all the parameters. In the 
absence of these parameters, one needs to use the generalized values 
from the ITU recommendations (ITU-R, 2016) or, when available, those 
from other studies from a similar climate. QmPand QmPL, which are 
related to dry/wet classification, were obtained separately for the 
Average and MinMax datasets. For Average RSL data, QmP and QmPL 

were found to be − 0.7 dB and − 0.2 dB km− 1 (no reference is available 
for comparison using the Average RSL data). For the MinMax RSL data, 
QmP and QmPL were found to be -1.50dB and − 0.40 dB km− 1, which is 
less negative compared with a similar dataset for The Netherlands. This 
means using the new parameter values enabled corresponding time in-
tervals to be classified as wet with a lower deviation in median and 
median per unit length values. The average POD and POFA for the 
MinMax reported in this study were in the similar range to the values for 
RAINLINK reported by de Vos et al. (2019). 

The optimized value of parameter Aa was found to be 1.6 dB and 1.4 
dB for the Average and MinMax data respectively, and was within the 
range of values suggested by Overeem et al. (2011) (1.2–1.9 dB) for 
MinMax data. However, for the MinMax data, Overeem et al. (2013) 
used Aa = 2.3 dB, which is higher than the value obtained for the 
Melbourne dataset. In their case, Aa and α was optimized for the rainfall 
after determining the parameters for the wet-dry classification sepa-
rately and is therefore different than the case presented herein as both 
wet-dry and rainfall were optimized together. Also, the weighing factor 
(α = 0.29) for the minimum and maximum attenuation for the Mel-
bourne dataset was slightly lower than obtained by Overeem et al. 
(2013). 

There are other parameters in RAINLINK (like the minimum number 
of available links, the period over which the reference level has to be 
determined, the minimum number of hours that should be dry in the 
preceding period, the outlier filter threshold, and the radius for finding 
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nearby links) which have not been altered from the original values of 
RAINLINK. These parameters are more likely to remain constant and 
have less dependency on the dataset and climatology of the study area. 
However, the radius for finding the nearby links was increased from 15 
km to 20 km, as the density of links in the employed dataset for the 
Melbourne metropolitan area was low compared to other studies in The 
Netherlands. 

6.2. Effect of sampling type on overall rainfall retrievals 

For the wet-dry classification, the Average RSL showed a higher POD 
when compared with the MinMax RSL data, but at the same time the 
POFD and POFA values were also higher for the Average RSL data. This 
means that the Average RSL missed less rain, but the higher POFD shows 
that often false alarms are provided during dry periods, whereas the 
MinMax RSL strategy indeed has a lower POD but also a lower POFD. 
This is mainly because for each of the time intervals, the MinMax RSL 
contains additional information of 15-minute data characteristics as 
opposed to the Average RSL data. Similar result has been reported by de 
Vos et al. (2019) for the MinMax data from the Netherlands. They ob-
tained a POD of 38% and a POFA of 35% for a threshold of 0 mm, a POFA 
of 50% and a POFA of 40% for a threshold of 0.1 mm. Also, taking into 
account the MCC and ERR, the MinMax data outperformed the Average 
RSL strategy for the wet-dry classification. 

For the rainfall retrieval, the Average data performed similarly to the 
MinMax data. In a few cases, considering relative bias, Average data 
performed slightly better. However, other statistics, such as the CV and 
RMSE support the MinMax sampling strategy. Thus, in the overall 
comparison, the MinMax outperformed Average data. The main reason 
behind this is that the MinMax data had better wet-dry classification 
compared with Average data. Even though for some cases results favours 
Average data, for the overall rainfall retrieval process both wet-dry 
classification and rainfall retrieval are necessary steps. There are no 
other studies to date that compare the performance of Average versus 
MinMax data, but the MinMax, the performance is quite similar to the 
results of Overeem et al. (2016b). 

6.3. Limitations of using gauge-adjusted radar data as a reference 

In this study, gauge-adjusted radar data were considered as truth, 
even though radar rainfall estimates are not a direct rainfall measure-
ment close to the ground. This is especially so in this study, where 
Rainfields interpolated the radar volume at 1 km height, is used as a 
reference. This product is therefore better compared with other similar 
studies and hence the representativeness error would be smaller as well. 
Importantly, rainfall measured aloft takes a couple of minutes before the 
rainfall reaches the earth’s surface, and thus advection of rainfall and 
changes in rainfall intensity between the radar volume and the Earths’ 
surface are other issues associated with the radar rainfall measurements. 
Thus, these differences in sampling compared to ground-based sensors 
can lead to considerable differences in observations that could be 
interpreted as an error in the CML estimates herein. As CMLs provide a 
path-integrated rainfall measurement, which is compared with the mean 
rainfall derived from radar cells that overlap the link path, this could 
also add some errors in the comparison. This is also because there are 
representativeness errors in radar data at such short time and length 
scales. Thus, it is also important to present daily results. 

7. Conclusion 

This study presents rainfall retrievals over the greater Melbourne 
Metropolis using 135 commercial microwave links operating at fre-

quencies ranging from 10 to 40 GHz and path lengths of 0.2 km to 25 
km. This study is the very first to conduct a comparison of rainfall 
retrieval using CML data with two different sampling strategies over the 
same link paths (average and min/max RSL data over 15 min). For this, 
the RAINLINK package was used and a new set of parameters was 
derived for rainfall retrieval across Melbourne. For the wet-dry classi-
fication using the nearby link approach, Average data was found to 
perform better, with a higher POD and a similar POFA compared with 
the MinMax data. Other statistics including MCC and ERR suggested that 
the use of MinMax data achieved fewer false alarms. While the Average 
data had similar rainfall retrieval performance to using MinMax data 
when compared for different accumulation intervals, MinMax data 
provided the best performance based on statistics (relative bias, CV, 
RMSE and ρ) and double mass curve. 

This study used the current optimization approach based on a cost 
function that considers both dry/wet classification and rainfall retrieval 
using the specific weights for each of the performance metrics. However, 
some of the performance metrics are correlated with each other. As an 
example, a lower POFA could be achieved with a lower POD, but an 
increased POFA might be stronger associated with a positive bias than 
increased POD. Thus, for future studies, it is recommended to separate 
the optimization for dry/wet classification and rainfall retrieval as a 
two-step process in Wolff et al. (2021). 

As the primary purpose of CMLs is to provide reliable communication 
services rather than contribute to rainfall monitoring, utilising available 
data that are not optimised for this purpose will remain challenging. 
Understanding the feasibility and improvement in rainfall measurement 
from CML datasets is crucial for future operational use of the data 
available from mobile network operators. 

This study has validated the use of more than 100 CMLs data for 
rainfall retrieval in the Melbourne metropolitan area, making it the very 
first large-scale study in Australia. Here, gauge-adjusted radar data were 
used as reference data even though there are limitations of such a radar- 
derived product. Thus, it is therefore recommended to compare with 
nearby gauge data for the link performance. Furthermore, it is recom-
mended that CML rainfall estimates be used as a complementary source 
of information where there are no radars or alternative rainfall mea-
surement instrument. At the city scale, CML-derived rainfall estimates 
can also help overcome data gaps due to radar clutter from high-rise 
buildings and absence of traditional rain gauges. Accordingly, there is 
great opportunity to combine the three datasets into a “merged prod-
uct”. Moreover, studying the performance of different sampling strate-
gies in detail with a dedicated microwave link data is expected to 
provide greater insight into the optimal sampling strategy. This may also 
contribute to an improved rainfall retrieval algorithm. 

8. Software and model codes 

Rainfall retrieval was undertaken using the R package RAINLINK 
version 1.2, which is freely available on GitHub (https://github. 
com/overeem11/RAINLINK). All other data processing and plotting 
was done using Python. 

9. Data availability 

The CML data is not publicly available due to a non-disclosure 
agreement. Other data are available upon request. 
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Appendix 

Table 6 
(Table 7) 

Table 7 
Dataset used for calibration of RAINLINK parameters.  

Day Time steps with rain Total rain (mm) Maximum rainfall intensity (mm/hr) 

2017–08-06 34  10.64  4.40 
2017–08-07 32  7.87  3.34 
2017–08-15 33  8.87  6.17 
2017–08-18 51  9.53  2.86 
2017–08-26 28  13.65  8.47 
2017–09-05 33  12.61  7.12 
2017–09-07 38  10.35  3.76 
2017–09-08 36  5.85  2.28 
2017–09-13 33  8.21  3.92 
2017–09-15 51  30.13  19.64 
2018–06-08 35  12.64  5.25 
2018–06-15 22  6.74  6.07 
2018–06-16 48  30.19  7.44 
2018–07-07 57  19.55  5.03 
2018–07-08 70  15.42  3.66 
2018–08-07 31  9.80  4.08 
2018–08-12 39  6.06  2.27 
2018–08-18 51  18.52  6.57 
2018–08-19 38  7.59  3.99 
2018–08-21 38  4.29  2.35 
2018–10-09 37  7.25  4.11 
2018–10-16 24  8.85  6.99 
2018–10-17 21  4.20  3.72 
2018–10-19 27  13.35  6.87 
2018–11-07 32  9.66  5.17 
2018–11-20 31  32.12  17.69 
2018–11-21 24  13.14  8.97 
2018–11-22 64  33.66  9.22 
2018–11-23 58  17.93  4.07 
2018–12-20 26  3.18  0.94  

Table 8 
Comparison of performance of rainfall retrieval using default and calibrated RAINLINK parameters (The parameters a and b for both RAINLINK default and calibrated 
were based on the local disdrometer data).   

RAINLINK default parameter RAINLINK calibrated parameters 

POD  27.20  50.10 
POFD  5.41  3.90 
MCC  0.30  0.45 
Correlation coefficient  0.29  0.30 
Percent bias  − 80.99  − 1.50  
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