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Abstract. Capturing evolution of density or void ratio during the compaction
of geomaterials (soils and unbound granular materials) is essential for improved
performance. This study developed a framework where the density evolution dur-
ing compaction can be estimated using advanced instrumentation. The frame-
work’s suitabilitywas validated using a simulated large-scale soil box (dimensions:
7.5m × 4m × 0.8m) experiment mimicking the field conditions. Well-graded
sand was compacted in 5 layers of 125 mm using a 1.5-tonne mini roller instru-
mented with Light Detection and Ranging (LiDAR) systems and a total station
tracking system for positioning.

The sand’s moisture content was homogenised at 8% (w/w) using a concrete
truck. The in-situ sampling for measuring density was carried out using Nuclear
Density Gauge (NDG) and sand cone test. The data from sensors were collected
using a Data Acquisition (DAQ) system connected to a laptop. The measurement
of the deformation in real-time provided an opportunity to estimate the density in
real-time, and it was estimated using a machine-learning artificial neural network
(ANN) model. The estimated density from deformation measured and NDG at
the end of compaction shows that estimated density NDG density with an R =
0.9 for one layer, and for other layers, R was more than 0.8. This novel instru-
mentation allows the density to be measured during compaction with very high
accuracy, which has a massive advantage over conventional approaches and con-
tribute to the true Intelligent Compaction (IC) with an advancement of automation
in construction.

Keywords: Compaction · Light detection and ranging · Nuclear density gauge ·
Density · Intelligent compaction

1 Introduction

Compaction of materials (soils and unbound granular materials) in the field are carried
out to ensure their superior performance under repeated traffic loads. Density is an
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indicator of compaction. Materials are usually compacted in the field at their Maximum
Dry Density (MDD) determined at Optimum Moisture Content (OMC) using Proctor
compaction in the laboratory. Achieving the desired MDD in the field is crucial, as
under-compacted layers could cause premature failure.

Conventional soil density measurements involve collecting physical samples, mea-
suring the mass and volume of the sample collected, and then calculating the density.
This process takes some time and often hinders the contractor who wants to compact
another layer of soil as soon as possible because delaying would mean spending extra
money for the equipment and labour [1]. The current density measurements are also
destructive, and do not cover the entire compacted area. These drawbacks have led
researchers and practitioners to develop other QA criteria for estimating the quality of
the earthwork; one of them is modulus-based QA [2]. The modulus-based QA is shown
to be quicker than density measurement and thus advocated as superior to density-based
QA. Modulus, which is considered to have a unique and direct correlation with density,
is considered to replace the density measurement; however, researchers have found the
correlation between density and modulus is not unique, preferably the correlation also
depends on the water content of the sample [3].

One important modulus-based technique is Intelligent Compaction (IC). IC was
developed in the 1970s, where the roller drums are fitted with accelerometers, and the
acceleration pattern is used to correlate with the degree of soil and asphalt compaction
[4–10]. It has already gained popularity in the United States and is accepted as an
alternative QA/QC for density measurement.

The IC roller is integrated with temperature, accelerometer, Global Positioning Sys-
tem (GPS) sensors, and a display monitor. The continuous recording of the GPS and
accelerometer data provides a user with real-time information about the compaction
degree.

The recorded drum response is used to calculate different Intelligent Compaction
Measurement Values (ICMVs), which are correlated with density and modulus. The
correlation between ICMVs and density is found to be poor; however, the correlation
between ICMVs and modulus is found to be suitable for some range of moisture content
of material [5, 11]. Recently, the U.S. Department of Transportation (DoT), Federal
HighwayAdministration (FHWA) andTheTranstecGroup, Inc., a pavement engineering
firm, published a technical brief detailing the levels of ICMV (Fig. 1) [12, 13]. At present,
the ICMV is developed till around level 3, a real-time estimation of density would mean
that there would be a jump from level 3 to level 5 as shown in terms of the development
of ICMV.

To solve the issues mentioned above with measuring density accurately, our research
established a unique methodology for non-destructively estimating the density of soils
and unbound granular materials in real-time during the compaction process. The process
comprised employing Light Detection and Ranging (LiDAR) sensors attached to rollers
to assess surface deformation and developing an ANNmodel based on machine learning
(ML) to relate the measured parameters to the density.
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Fig. 1. ICMV roadmap showing the different levels of development associated with IC.

2 Materials and Methods

The test entails compacting multiple layers of material with loose thickness of 125 mm.
The material was identified as sand with silty particles, with the remaining Geotechnical
parameters provided in Table 1.

Table 1. Geotechnical properties of the material used

Geotechnical property Value Standard

Specific gravity (GS) 2.70 AS 1289.3.5.2 [14]

Median diameter (D50)
mm

0.32 AS 1289.3.6.1 [15]

MDD modified Proctor
t/m3

2.08 AS 1289 5.2.1 [16]

OMC modified Proctor
(%)

8 AS 1289 5.2.1 [16]

Optimum degree of saturation
(Sropt) (%)

70 AS 1289.5.1.1 [17]

Percentage passing the No. 200 sieve 21 AS 1289.3.6.1 [15]

USCS classification SM AS 1289.3.6.1 [15]
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2.1 Test Bed

The test was conducted in a fabricated soil box with dimensions 7.5m × 4m × 0.8m.
The box was custom-made for this study and was kept in an indoor environment to
prevent outside influences from influencing the results.

Following steps were undertaken for the entire test:

1. A concrete mixer was used to condition the material to an adequate moisture level
(8 per cent w/w).

2. A bobcat was used to load thematerial into the test setup, then dispersed as uniformly
as possible with shovels and rakes (Fig. 2).

3. Before compaction, density measurements were performed with NDG.
4. An optical level and staff was used to map the initial layer thickness.
5. The instrumentation systemwas double-checked, the signal was zeroed, and the data

acquisition system (DAQ) was left on.
6. Next, the material was compacted using the instrumented roller (Fig. 3).
7. The density data from sand cone test was used to determine when compaction was

complete. Nuclear Density Gauge (NDG) was used to compare the results with the
sand cone apparatus at the end of the compaction process.

Fig. 2. Test site filled with material and levelled before compaction
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Fig. 3. Picture of Instrumented roller before compaction

3 Results and Discussion

Using the two LiDAR systems attached in front and back of the front vibrating drum,
the deformation was calculated using the diagram shown in Fig. 4.

Fig. 4. The methodology to calculate the surface deformation using the two LiDAR, the
deformation is calculated as Db - Da.
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The surface deformation measured was used to model the density measured from
NDG using a 3-layer artificial neural network (ANN) with one input, hidden and output
layer as shown in Fig. 5. The input parameters other than surface deformationwere initial
layer thickness and initial density. Python software and additional packages, including
Keras, TensorFlow, Pandas, Numpy, and Seaborn, were used to implement the ANN
model [18–23].

The other hyperparameters which includes number of hidden neurons, optimizer and
learning rate of the ANN model are listed in Table 2 and were tuned using the Keras
tuner [19]. Entire dataset was split into 80% training and 20% testing dataset which was
used for validation.

Fig. 5. Structure of the artificial neural network used for this study

The formulation of the ANN can be found below:

H = W1X + b1, (1)

Z = F(H ), (2)

Y = W2Z + b2, (3)

where, X is the input matrix H is the output matrix of the hidden layer, matrix Z is the
output after applying the activation function toH , and Y is the prediction from the ANN.
W1 andW2 are weights between input and hidden layer, between hidden and output layer
respectively and constitute the weight matrix W . Similarly, b1 and b2 are bias between
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input and hidden layer, between hidden and output layer respectively and constitute the
bias matrix b. F is the activation functions in the hidden layer, which was set to the
rectified linear unit (ReLU) [24].

The predicted output Y is then compared to the observed output (Yobs) using the loss
function MAE, which has been chosen for this study.

Loss function (MAE) =L(Yobs,Y ) = 1

len(Y )

∑len(Y )

i=1
|Y − Yobs|, (4)

where, len(Y ) represents the length of matrix Y . The loss L is minimised using the back-
propagation algorithm by changing the weight matrixW and bias matrix b. The trained
model is then used to forecast new data sets after it has been trained.

Table 2. Hyperparameter details of the ANN model developed for this study

Hyperparameter Value

No. of hidden layers (H ) 1

No. of nodes in the hidden layer 3

Optimiser Adam

Learning rate 0.1

Ten data points were used in each layer for NDG testing. Figure 6 shows the compar-
ison of estimated and measured density using NDG for one layer. The result shows that

Fig. 6. Comparison between measured and predicted density
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the predicted and the measured dataset are related with an R value of 0.9 for this layer.
The R value of training and test sets were 0.89 and 0.91 respectively for the layer the
comparison of performance of training and testing dataset was used for assessment of
generalization of the model. The correlation R between the predicted and the measured
dataset of all other layers was more than 0.8.

4 Conclusions

The primary purpose of this work was to explore an alternative method that could pro-
vide a better estimation of soil density in the field during compaction. The proposed
methodology for estimating the density assumes the reduction of the layer’s thickness
(surface deformation) during compaction as the vital indicator of the level of compaction
achieved. The hypothesis proposed for this study is that if the surface deformation during
compaction is capturedwith the help of a suitable technique, the density can be estimated
by correlating the surface deformation with the density.

The surface deformation wasmeasured using two LiDAR systems connected in front
and back of the front vibrating drum. The compaction of large areas and the surface
deformation measurement using LiDAR will have many data points. ANN model was
developed for density prediction, having surface deformation as an input parameter. The
result shows that the measured and predicted density correlates with an R2 of 0.9.

This work could be extended to optimising the operating modes with the input
received from the density estimation and therefore transforming the current design prac-
tice and contribute significantly in automation in construction. This technology will
become a cornerstone in the Industry 4.0 revolution of Intelligent Compaction, which is
embodied in Intelligent construction, and will propel it forwards at a quick pace.
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