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Performance of SMOS Soil Moisture Products Over
Core Validation Sites
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P. Richaume , A. Mialon, J. Asanuma , A. Berg , D. D. Bosch , T. Caldwell , M. H. Cosh,
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Z. Su, M. Thibeault , and J. P. Walker

Abstract— The European Space Agency (ESA) launched the
Soil Moisture and Ocean Salinity (SMOS) mission in 2009;
currently, multiple global soil moisture (SM) products are based
on the measurements of its L-band (1.4 GHz) radiometer.
We compared four SMOS products with each other: Level 2,
Level 3, IC (INRA-CESBIO), and near real-time products. The
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comparisons focused on core validation sites (CVS), whose spatial
representativeness errors allow the estimation of the SM product
performance for bias-insensitive metrics [unbiased root-mean-
square error (ubRMSE) and correlation (R), and anomaly R]
with negligible uncertainty and for bias-sensitive metrics [mean
difference (MD) and root-mean-square difference (RMSD)] with
acceptable uncertainty. When the products were compared with
CVS independently, the results showed that the ubRMSE, R,
and anomaly R of the IC product were better than those of the
other products, while the MD was larger. However, the differences
between the performances were smaller when the products were
assessed using only the data points when each product had a
valid retrieval. This indicates that the algorithms have similar
performance and that data screening and quality flagging of
the retrievals markedly affects the performance. The NASA Soil
Moisture Active Passive (SMAP) mission produces a similar SM
product as SMOS using an L-band radiometer. The closeness
of the ubRMSE, R, and the anomaly R performance of the
IC product and the SMAP product (0.039 versus 0.041 m3/m3,
0.80 versus 0.81, and 0.75 versus 0.75) demonstrate that the
SMOS and SMAP radiometers can achieve similar SM sensitivity.

Index Terms— Soil moisture (SM), Soil Moisture Active Passive
(SMAP), Soil Moisture and Ocean Salinity (SMOS), validation.

I. INTRODUCTION

CURRENTLY, two satellite missions are producing global
soil moisture (SM) products based on L-band (1.4 GHz)

brightness temperature (TB) with approximately the same
spatial resolutions (about 40 km) and revisit times (2–3 days
at the equator) on similar orbits (6 A.M./6 P.M. Sun syn-
chronous). These satellites are the European Space Agency
(ESA) led the Soil Moisture and Ocean Salinity (SMOS)
mission launched in late 2009 [1] and the National Aero-
nautics and Space Administration (NASA’s) Soil Moisture
Active Passive (SMAP) mission launched in early 2015 [2].
One of each mission’s main objectives is retrieving global
near-surface SM. L-band TB observations have been found
to provide the best combination of sensitivity to SM with
low sensitivity to atmospheric effects, vegetation, and surface
roughness (see [3], [4]). Several SM data products have
emerged from the SMOS and SMAP missions. Some of the
products translate the TB observations directly to SM at the
instrument footprint scale (see [5], [6], [7], [8], [9], [10]); some
use other data sources to improve the spatial resolution, which
comes with some compromise concerning the SM performance
(see [11], [12]); and some assimilate the TB with land surface
models (see [13]). Notably, some products use both SMOS
and SMAP observations in the retrieval of SM and vegetation
optical depth (VOD) (see [14], [15]).
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Fig. 1. Core validation site (CVS) locations.

Numerous studies have evaluated these products, both sepa-
rately (see [5], [6], [7]) and side by side (see [16], [18], [19]).
However, none of the studies have employed reference sites
that have multiple in situ measurement stations within an
area corresponding to the size of the radiometer footprint,
such as the core validation sites (CVSs) used by the SMAP
mission in its product validation [17]. The value of the CVS is
that they reduce the spatial representativeness errors for bias
sensitive [i.e., mean difference (MD) and root-mean-square
difference (RMSD] and render them essentially negligible
for bias-insensitive metrics [unbiased root-mean-square error
(ubRMSE), correlation (R), and anomaly R] [20].

This investigation aimed to assess and compare the perfor-
mance of four SM products based on the SMOS measurements
using 14 different CVS across the globe (see Fig. 1). In addi-
tion, the performance of these products was compared to that
of an SMAP SM product over the same sites.

II. DATA

A. SMOS L2 Soil Moisture Product

The SMOS L2 SM algorithm is based on the L-band
Microwave Emission of the Biosphere (L-MEB) radiative
transfer model [21]. The approach is to retrieve SM and
VOD by minimizing the difference between radiative transfer
estimates of the TB and actual satellite measurements. The
approach relies heavily on the multiangular measurements of
SMOS to separate the vegetation contribution from the surface
contribution [5]. The data are provided on the ISEA-4H9
grid (icosahedral Snyder equal-area projection with aperture 4,
resolution 9, and shape of cells as a hexagon), which provides
a uniform intercell distance of 15 km [22]. This analysis used
version V700 of the product (the latest available).

The data were filtered using the quality information con-
tained in the product. For assessing the potential degradation of
the sample to radio frequency interference (RFI), an indicator
was computed using the sum of the N_RFI_X and N_RFI_Y
fields divided by the M_AVA0 field [23]. The threshold of
the RFI indicator affects how many data points are available
for validation. Data points were flagged out if the fifth bit
of the confidence flag was set, the RFI indicator was over
0.1 [18], or the goodness of fit indicator (χ2

P) [24] was less
than 0.05 [23].

B. SMOS L3 Soil Moisture Product

The SMOS L3 SM product is produced by the Centre
Aval de Traitement des Données SMOS (CATDS). The L3SM

dataset, as the L2 SM, is based on the L-MEB forward
model, but three orbits within a one-week window are used to
constrain the solution, assuming that the optical depth due to
vegetation should be correlated in that period [6]. The product
is provided on the 25-km Equal-Area Scalable Earth Grid
version 2 (EASE-2) grid [25]. This analysis used version V330
of the product (the latest available).

The data were filtered using the quality information con-
tained in the product. The RFI indicator used for the L2 prod-
uct was computed using the same threshold (see Section II-A).
Moreover, the data points were flagged out if χ2

P was less than
0.05.

C. SMOS IC Soil Moisture Product

The SMOS IC product is also based on the original algo-
rithm developed for SMOS [26], which is the foundation used
for the L2 product [27]. IC (as for L2 and L3) retrieves VOD
and SM simultaneously from a two-parameter inversion of
the L-MEB model from the multiangular and dual-polarized
SMOS observations. In contrast to the L2 and L3 algorithms,
SMOS-IC retrievals are only made if TB is available for at
least a 10◦ incidence angle range within the [20◦, 55◦] interval.
This reduces the effective swath width and the number of
retrievals but increases quality as retrievals made from an
angular range narrower than 10◦ have a higher uncertainty,
and the incidence angles lower than 20◦ are only viewed in
the aliased field of view (see [28]). Consequently, improved
quality is obtained at the cost of degraded coverage and revisit
time. IC also differs from L2 and L3 in other respects, the
main one being the fact that it assumes each pixel to be
homogeneous: SM is retrieved over the whole pixel rather than
over a fraction with a specific landcover/water fraction on it,
as is done in L2 and L3. The data are provided on the 25-km
EASE-2 grid. This analysis used version 2 of the product (the
latest available).

The data were filtered using the quality information con-
tained in the product. Data points were flagged if the TB root-
mean-square error was more than 6 K or the Scene Flag was
greater than one [27].

D. SMOS Near Real-Time Soil Moisture Product

The SMOS near real-time (NRT) SM product is based on
a neural network trained with past SMOS L2 SM observa-
tions and uses the SMOS multiangular dual-polarized TB as
inputs [7]. The product is developed for accessing SM very
soon after the SMOS observation (less than 3.5 h), which
requires streamlining the algorithm and the input parameters.
The product is provided on the same ISEA-4h9 grid as the L2
product. Unlike the other SMOS products, the NRT is available
only starting January 2016. The analysis used version V100
of the product from 1 January 2016, until 8 August 2018, and
V200 from 8 August 2018, until 31 December 2020. These
are the versions available for those dates; while the version
may have some differences, here, they were assessed as one
continuous product as that represents what is available for
users.

The data were filtered using the quality information con-
tained in the product. Data points were flagged if SM uncer-
tainty was over 0.07 or the RFI probability was over 0.2.
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E. SMAP L2 Enhanced Soil Moisture Product

The SMAP L2 enhanced radiometer-based product [9], [29]
was used for additional comparison with the SMOS-based
SM products. The SM produced using the dual channel
algorithm (DCA), which is the current baseline algorithm for
the product, was used in the study [30]. The SMAP data are
available from 31 March 2015. The data are provided on the
9-km EASE-2 grid. The resolution of the product, however,
is defined by a 33 km2 based on the 3-km EASE-2 grid
matching the scale of the radiometer footprint [9]. The analysis
used version V5 (R18290) of the product (the latest available).

The data were filtered using the quality information con-
tained in the product. Data points were flagged if the
retrieval quality flag indicated that the quality was not rec-
ommended [31].

F. Core Validation Site Data

CVSs were used for ground reference in the study. They
include multiple SM monitoring stations within each satellite
resolution cell. Fig. 1 shows the locations of the CVS used
in the analysis (Table S1 lists more information on the sites).
The SM data were quality controlled as described in [32]. The
entire period of the analysis was 2011–2020. For some sites,
the data start later than in 2011 ([33] shows the periods of
availability for each site).

III. METHOD

In assessing the product performances over the CVS,
an overriding priority was to make the comparisons equitable
despite the varying alignment of the product grids with respect
to the SM stations. The standard upscaling approach would
compute the area average SM based on the stations within the
observed satellite footprint and how they are distributed within
that area. However, computing these values for each grid type
separately for each CVS would result in artificial differences.
Therefore, the same CVS SM value was used for all products;
in computing the upscaled SM value, the alignment of the
grids was accounted for. This was facilitated by defining a
so-called hybrid footprint for each CVS. Conceptually, the
hybrid footprint approximates a footprint for all products
without systematically favoring any of the products. The center
of the hybrid footprint was defined by the average of the
centers of the grid pixels of each product that matches the CVS
station distribution most accurately. The area of the footprint
was defined as a circle with a 43 km diameter around the center
point (see Fig. 2). The upscaled SM was computed using the
stations within this hybrid footprint. The upscaling used the
Voronoi diagram approach to avoid preferential weighting of
stations within the footprint caused by a potentially uneven
distribution of stations (i.e., clustering of stations) [32].

The upscaled SM was matched up to each satellite product
using the data from the grid pixel closest to the hybrid footprint
(the center of which was used in defining the hybrid footprint
area) and the overpass time of the satellites. Each product was
filtered based on the quality flagging approach mentioned in
Section II.

Fig. 2. Schematic of the hybrid footprint (the black circle indicates the
43 km diameter and the yellow dot indicates the center point), the station
locations (the black dots), and the product grids (the blue lines indicate the
25-km EASE-2 grid, the green lines indicate the ISEA-4H9 grid, and the red
lines indicate the 9-km EASE-2 grid).

The performance metrics were computed for each product
using the matchup time series. The assessment between the
SM products and the CVS was conducted using five metrics:
RMSD, ubRMSE, MD, Pearson correlation (R), and anomaly
R, which were computed similarly as in [17]. The statistical
confidence intervals were calculated for each metric following
the approach given in [17]. The confidence interval does
not represent the error in the CVS reference; it is only a
statistical metric indicating the range within which the result
is expected to fall based on the variability and amount of the
data points [34].

Two different periods were used: 1) 2016–2020 for com-
paring SMOS L2, L3, IC, and NRT products and the SMAP
product, and for comparing the four SMOS products for
overpasses when each product provided a valid value based
on their quality flagging and 2) 2011–2020 for comparing
SMOS L2, L3, and IC products over a more extended period
representing better the entire lifetime of the SMOS mission.
In both cases, only the morning overpasses (ascending part of
the orbit for SMOS and descending for SMAP) were used.

IV. RESULTS AND DISCUSSION

Fig. 3 shows the result of the CVS matchup for the 2016–
2020 period for all the products. The processing and flagging
choices used in the algorithms and the analysis affect the
conditions under which the retrievals were conducted and the
number of data points available for the evaluation. The right
of Fig. 3 shows the total number of retrievals used in the
computation. The L2 and L3 products have a similar number
with each other and with the SMAP product. The IC has
substantially fewer, and the NRT product has considerably
more data points. As explained in Section II-C, the screening
for the highest quality TB measurements reduces the num-
bers for the IC product. IC has the best ubRMSE, R, and
anomaly R performance (the IC average values are outside
the confidence intervals of the other products) compared to
the other SMOS products. However, the MD performance
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Fig. 3. Histograms for the CVS comparisons for 2016–2020 (ubRMSE for unbiased rms error, MD for mean difference, and RMSD for rms difference).
The solid blue/red lines show the mean of each metric, and the blue dashed/red lines show the statistical confidence intervals, which are also noted in the
brackets. N refers to the number of sites, and samples refer to the number of matchup data pairs used in the comparisons.

is substantially poorer than that for the L2, L3, and NRT
products (the average is outside of the confidence intervals
of the other products); consequently, the RMSD performance
is very similar for all products. The individual CVS results
are generally distributed closer to the mean value for the IC
product than the other products indicating greater consistency
for the retrieval performance across the sites. However, the
mean absolute bias (MAB) for IC is larger than that for the
other SMOS products.

The ubRMSE, R, and anomaly R performance of the IC
product are very similar to those of the SMAP product.
However, the SMAP product has an average MD closer to 0,
which resulted in a smaller RMSD value. Also, the MAB
value is the smallest despite a notable spread in the individual
MD values. The comparisons for each CVS are shown in the
Supplemental Material.

When the SMOS products are compared for data points
with a valid retrieval value for each product, the performance
differences are smaller [33]. The IC metrics are virtually
unchanged, and the L2, L3, and NRT products have somewhat
improved the ubRMSE performance, putting the IC average
ubRMSE within their confidence intervals (but the mean
values are still larger). The IC product benefits from using
only the highest quality TB at the expense of less coverage;
the other products gain part of that benefit when they are
restricted to the same data points as IC. However, considering
the susceptibility of SMOS to RFI, this also means that the
filtering strategy used by IC is more effective by estimating the
concurrent RFI impact [8], rather than using the probability
map of RFI occurrence used by L2 and L3.

For the 2011–2020 period, the relative performances of L2,
L3, and IC were very similar [33]. This indicates overall

stability in the performance of the products despite some year-
to-year changes shown by the time-series plots in Section IV
of the Supplemental Material.

Based on [20], the uncertainties (not to be confused with
the confidence intervals) for the bias-insensitive metrics are
very low, but for the bias-sensitive metrics, some nonnegli-
gible uncertainties remain depending on the site. The aver-
age MD between IC and L2, L3, and NRT was 0.017–
0.024 m3/m3, and the difference between SMAP and L2,
L3, and NRT was 0.030–0.037 m3/m3 (Fig. 3). These dif-
ferences are substantial even when considering the uncer-
tainties, therefore likely reflecting real differences between
the products.

The similarity of the NRT performance with the L2 perfor-
mance (Fig. 3) is a consequence of the fact that the NRT
product neural network was trained with the L2 product.
The approach used by the L2 and L3 algorithms to handle
landcover heterogeneities within pixels may also contribute to
the better ubRMSE performance of IC, as speculated in [27].

All metrics are combinations of both instrument and algo-
rithm performance. The SMOS IC product achieved essentially
the same SM sensitivity (ubRMSE, R, and anomaly R) as the
SMAP product, being evidence that the SMOS and SMAP
radiometers can achieve similar SM sensitivity. The result
shows that careful use of the SMOS TB angular data can
compensate for the inherently better TB snapshot sensitivity
and advanced RFI filtering of SMAP [35] for SM retrievals.
Because of the low uncertainty of the CVS for determining
bias-insensitive metrics, this result is particularly important.
The difference in MD of the SMAP and SMOS products is
therefore more likely attributable to the algorithm parameter-
ization choices than instrument performance.
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V. CONCLUSION

The SMOS L2, L3, IC, and NRT products were compared
over the CVS, allowing the estimation of bias-sensitive and
bias-insensitive metrics. The results showed that the IC product
had the best sensitivity (ubRMSE, R, and anomaly R) but the
worst MD; consequently, the RMSD of all SMOS products
was very similar. Five-year comparisons had the same result
as ten-year comparisons for the L2, L3, and IC products.
The performance of the SMOS products became more similar
when only those points having valid data available were used,
emphasizing the significance of filtering and flagging the data
in the retrieval process. Moreover, the IC sensitivity was
very close to that of the SMAP radiometer-based product,
which indicates that the SMOS and SMAP radiometers can
achieve similar sensitivity to SM. The discrepancy in the
MD performance is likely a consequence of the algorithm
parameterization approach rather than caused by performance
differences of the instruments.
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