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Abstract— As an emerging technique, P-band (0.3–1 GHz)
may improve soil moisture remote sensing compared to L-band
(1.4 GHz) Soil Moisture and Ocean Salinity (SMOS) and Soil
Moisture Active Passive (SMAP) missions, because of its greater
moisture retrieval depth resulting from its longer wavelength.
Consequently, a number of tower-based experiments were under-
taken in VIC, Australia, to understand and quantify potential
improvements. The study reported here has extended the eval-
uation of the tau-omega model to a scenario with a dense
corn canopy whose vegetation water content (VWC) reached
∼20 kg/m2, and compared the soil moisture retrieval performance
at P- and L-band. Based on the locally calibrated parameters, the
results from both the single-channel algorithm (SCA) and dual-
channel algorithm (DCA) approaches presented a clear reduction
in vegetation impact at the P-band compared to L-band. While
the root-mean-square error (RMSE) for the P-band did not
achieve the 0.04-m3/m3 target accuracy of SMOS and SMAP,
i.e., 0.054 m3/m3 for the SCA and 0.074 m3/m3 for the DCA,
this performance can be regarded as acceptable considering the
extremely high VWC. In comparison, the RMSEs at L-band were
larger than 0.1 m3/m3 for both the SCA and the DCA approaches.
Additionally, DCA performed better in correlation coefficient and
unbiased RMSE, while SCA performed better in RMSE at the
P-band due to the larger bias when using DCA. Moreover, the
calibrated vegetation parameters at the P-band were found to
apply to broader conditions than those at the L-band, likely due
to the reduced vegetation impact.

Index Terms— P-band, passive microwave, roughness, soil
moisture retrieval, vegetation.
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I. INTRODUCTION

SOIL moisture is an essential indicator of climate change,
controlling various processes in the water, energy, and

carbon exchanges between the atmosphere and the land sur-
face [1]. There are two L-band (∼21-cm wavelength/1.4 GHz)
satellite missions currently operating for observing global soil
moisture: the Soil Moisture and Ocean Salinity (SMOS) mis-
sion of the European Space Agency [2] and the Soil Moisture
Active Passive (SMAP) mission of the National Aeronautics
and Space Administration [3]. These state-of-the-art missions
make it possible to map global near-surface soil moisture
four times every three days or less, with a target accuracy
of 0.04 m3/m3. However, these measurements are limited to a
relatively shallow moisture retrieval depth, which is commonly
held to be within the top 5 cm at L-band. Moreover, the soil
moisture retrieval at L-band is degraded by the soil surface
roughness and vegetation canopy. However, radiative transfer
theory predicts that longer wavelength observations, such as at
P-band (100–30-cm wavelength/0.3–1.0 GHz), provide infor-
mation on a deeper depth of soil and a potentially improved
estimation accuracy as a result of the reduced impact of surface
roughness. Recently, the P-band Radiometer Inferred Soil
Moisture (PRISM, see https://www.prism.monash.edu) tower
project of Monash University, Clayton, VIC, Australia, has
experimentally verified this expectation [4], [5], [6].

The vegetation canopy is well-known for reducing the
brightness temperature (TB) sensitivity to soil moisture by
adding its contribution to the total emission and attenuating
the soil emission [7]. Consequently, the vegetation attenuation
becomes more substantial as the vegetation water content
(VWC) increases. It has been identified that the radiometric
sensitivity to soil moisture at 1.4 GHz at the nadir was 3.1 K
per 0.01 m3/m3 for bare soil and 1.1 K per 0.01 m3/m3 for a
corn canopy with 5-kg/m2 VWC [8]. However, when the VWC
increased to 6.3 kg/m2 for corn, the radiometric sensitivity to
soil moisture reduced to 1.0 K per 0.01 m3/m3 at 1.4 GHz
and V-polarization [9]. Moreover, the difference in vegetation
structure (i.e., the distribution of the dielectric constant) can
also contribute to the opacity of the vegetation canopy; Wang
et al. [10] observed no radiometric sensitivity to soil moisture
through a grass canopy with a biomass density of 8 kg/m2 at
1.4 GHz, whereas for a corn canopy with the same biomass
density, it was 1.0 K per 0.01 m3/m3 at V-polarization [9].
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Fig. 1. Data collected over the corn-growing cycle, including: (a) TB observations at 6 A.M., with the data gaps caused by the tower lowering due to high
wind in December 2020 and January 2021 and by the instrument removal due to the airborne experiment in March 2021; (b) station soil moisture together
with HDAS observations (boxplots); (c) station soil temperature; (d) rms height averaged from the roughness measurements in two perpendicular directions;
(e) observed (dots) with linearly interpolated (line) VWC; and (f) observed dry biomass. For clarity, only the data measured from the top three probes are
plotted in (b) and (c).

Mo et al. [11] proposed the tau-omega (τ − ω) model
to relate the TB of vegetation-covered soil to its moisture
content, where τ and ω are optical depth and single scattering
albedo, respectively. Based upon this model, the single-channel
algorithm (SCA) [12] and the dual-channel algorithm (DCA)
[13] have been developed for SMAP.

Shen et al. [4] undertook the first evaluation of the τ–ω

model at P-band. They identified that for low-to-intermediate
vegetation, i.e., wheat with under 4-kg/m2 VWC, the use of the
P-band achieved a similar retrieval performance to the L-band
when using the SCA-V approach with the τ–ω model. This
motivated an investigation of corn in this letter, which has a
similar vertical structure but a much higher VWC. This inves-
tigation managed to plant corn with an approximately 12-m−2

plant density resulting in the VWC peaking at 21.05 kg/m2.
Accordingly, the retrieval performance at P- and L-band was
evaluated and compared successively using the SMAP SCA-V
and DCA τ–ω approaches under a high VWC.

II. DATA

The PRISM tower site was established at Cora Lynn, VIC,
from October 2017 to May 2021. A ten-meter-high tower
was set up in the field, hosting two dual linear [horizontal
(H) and vertical (V)] radiometers, namely, the Polarimetric
L-band Multibeam Radiometer (PLMR) at 1.401–1.425 GHz
and the Polarimetric P-band Multibeam Radiometer (PPMR) at
0.742–0.752 GHz.

The study period in this letter is the corn-growing cycle
from November 24, 2020, to May 4, 2021, when the field was
managed with a flat surface condition. The corn was planted
very densely with approximately 12 plants per square meter
to achieve a high VWC, with a 45◦ angle between the row
direction and the tower look direction. A station measured

the soil moisture and soil temperature variation above the
60-cm layer at 5-cm intervals. Additionally, the hydra-probe
data acquisition system (HDAS) was used to detect the spatial
variation in 5-cm soil moisture across the field [shown in
the boxplots in Fig. 1(b)]. The agreement between HDAS
measurements and the station soil moisture confirmed the
representativeness of the station.

The P-band TB data at 40◦ and the L-band TB data at 38◦

incidence angle [Fig. 1(a)] were used in this letter. The ∼1-cm
root-mean-square height (rms height) measurements confirmed
that the soil was electromagnetically flat [Fig. 1(d)]. The soil
was a silt loam with 0.87-kg/m3 bulk density, 18.0% clay,
10.9% sand, and 71.1% silt. Please also refer to the preceding
studies [4], [5], [6] for more comprehensive descriptions of
the PRISM tower experiment.

The dataset used herein was divided into three segments
(Fig. 1): 1) the bare soil period from November 24 to
December 9, 2020, being before the corn emergence; 2) from
December 18, 2020, to March 7, 2021, being after the corn
emergence; and 3) from April 1 to May 4, 2021, when the
water content of corn was decreasing. The VWC and dry
biomass measurements estimated from destructive vegetation
samples are plotted in Fig. 1(e) and (f), respectively. Frequent
irrigation was conducted over the field to meet the corn’s
high water demands. The declined VWC in early February
was possibly attributed to paused irrigation and high air
temperature. After restarting irrigation on February 23, the
VWC rocketed to 21.05 kg/m2.

III. METHOD

Please refer to [4] for a full description of the forward
modeling. The τ–ω model [11] characterizes the thermal
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microwave emission (TBp, where subscript p denotes polar-
izations) from a vegetation-covered surface, formulated as

TBp = (1 − ω)
(
1 − γp

)
T v

eff + (1 − ω)
(
1 − γp

)
γp0pT v

eff

+
(
1 − 0p

)
γpT s

eff + TBsky_down0pγ
2
p (1)

where T v
eff and γp are the vegetation canopy’s effective temper-

ature and transmissivity, respectively, and T s
eff and 0p are the

soil’s effective temperature and reflectivity, respectively. The
TBsky_down was taken to be 5.3 K at the L-band and 13.9 K
at the P-band [14]. The HQN model was used to estimate 0p

[15], such that

0p =

[
(1 − QR)0∗

p + QR0∗

q

]
exp

[
−HRpcosNRp(θ)

]
(2)

where 0∗
p is the specular reflectivity calculated from the

Fresnel equations. The roughness parameters HRp, QR, and
NRp were assumed to be constant during the study period
because the surface roughness was found to have little change
according to Fig. 1(d).

The dielectric model by Mironov et al. [16] was used in
this investigation because it considers the interfacial relaxation
of soil water at P-band. The effective soil temperature was
calculated using the physical model by Choudhury et al.
[17], which does not contain any empirical parameter to be
determined. As in [4], the averaged soil moisture data collected
at roughly 6 A.M. in the 0–5-cm soil layer from the station
[Fig. 1(b)] were utilized for simulating TB and evaluating the
retrieval results in this letter.

The SMAP SCA-V and DCA approaches were successively
implemented, with the cost functions described in [4]. For the
SCA-V approach, τ was estimated by multiplying the VWC
by parameter b [18], and QR = 0 and NRV = 2 were assumed
based on the SMAP SCA baseline algorithm. A three-step
SCA-V approach was employed: 1) the HR parameter was
calibrated using the data collected over period 1; 2) based
on the HR from 1), the b and ω parameters were calibrated
using the V-pol TB, soil moisture, soil temperature, and VWC
observations collected in period 3; and 3) soil moisture was
retrieved using the calibrated parameters from the first two
steps and the V-pol TB observations collected in period 2. Note
that assuming constant parameters through different vegetative
stages may bring uncertainties [19].

In terms of the DCA, it was assumed that NRp = 2 and
ω = 0.06 for croplands as in the SMAP DCA imple-
mentation [20]. A two-step DCA approach was employed:
1) calibrate HR and QR using the data collected over period 1
and 2) retrieve soil moisture and τ using the HR and QR from
1) and the dual-pol TB observations from periods 2 and 3.

IV. RESULTS

Use of the SMAP SCA default parameters for croplands
(HR = 0.108, QR = 0, NR = 2, b = 0.11, and ω = 0.05)
was first evaluated at V-pol TB over periods 2 and 3 (result
not shown), with unacceptable retrieval performance at both
P- and L-band, i.e., ∼0.5-m3/m3 root-mean-square error
(RMSE). Therefore, the model parameters (HR, b, and ω)

needed to be calibrated at this site.

Fig. 2. RMSE between the simulated and observed emissivity at V-pol over
period 1 using different values of HR. The dots with values show the minimal
RMSE and the corresponding HR values. The values of QR and NRV were
assumed to be 0 and 2, respectively, at both P- and L-band.

Fig. 3. RMSE (K) between the simulated and observed TB at V-pol over
period 3 using different values of b and ω. The yellow circles represent where
the minimal RMSE was obtained, with the three values indicating b, ω, and
the minimum RMSE, respectively. The values of HR calibrated from period 1
were used, namely, 0.591 for P-band and 0.672 for L-band. The values of QR
and NRV were assumed to be 0 and 2, respectively, at both P- and L-band.

The first step of the SCA-V approach was performed to
calibrate HR using the data collected over period 1. The
V-pol emissivity was simulated using a number of HR values
for the bare soil in period 1. The optimal HR values are
marked as the dots in Fig. 2, which yielded the lowest RMSE
between the observed and simulated emissivity. Therefore, HR
was calibrated to be 0.591 and 0.672 at the P- and L-band,
respectively, with the calibration residuals being 0.04 at the
P-band and 0.013 at the L-band.

The second step of the SCA-V approach was performed
to calibrate b and ω using the data collected over period 3.
In Fig. 3, the soil moisture measurements collected over
period 3 were used to simulate TB with calibrated HR (Fig. 2)
and varying b and ω. As a result, b and ω were calibrated
to be 0.048 and 0.086 for P-band and 0.091 and 0.070 for
L-band. The calibration residual was 1.8 K at both P- and
L-band. Gao et al. [21] found that the b values increased
with increasing frequency, which was confirmed at P- and
L-band in Fig. 3. Microwave radiometry theory predicts that
ω reduces as frequency decreases since a longer wavelength
band is expected to have minor scattering effects. However, the
higher ω at P- than L-band calibrated in Fig. 3 is contrary to
the theory, as also reported in [8] and [11], potentially because
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Fig. 4. Observed versus retrieved soil moisture for period 2 of the
corn-covered soil, using the SCA-V with the τ–ω model [see (1)]. The color
indicates the VWC for each soil moisture measurement. The calibrated HR,
b, and ω parameters were used here, i.e., HR = 0.591, b = 0.048, and ω =

0.086 for P-band and HR = 0.672, b = 0.091, and ω = 0.070 for L-band.
The default SMAP SCA QR (=0) and NRV (=2) were used for both P- and
L-band.

ω became an effective parameter that is sensitive to higher
order scattering.

The third step of the SCA-V approach was performed to
retrieve soil moisture, with the results plotted against obser-
vations in Fig. 4. For VWC lower than 5 kg/m2, the scatter
points at L-band deviated further from the 1:1 line than those
at P-band (Fig. 4). When the VWC was higher than 10 kg/m2,
the retrieved soil moisture at P-band reasonably ranged from
0.1 to 0.25 m3/m3, while zero values were retrieved at L-band.
The RMSEs at P- and L-band were 0.054 and 0.154 m3/m3,
respectively; while the RMSE/ubRMSE did not achieve the
0.04-m3/m3 target accuracy of SMAP and SMOS, the perfor-
mance at P-band was acceptable considering the high VWC
of up to ∼20 kg/m2.

Although the correlation coefficient at the L-band (0.79)
was higher than that at the P-band (0.56), it was reduced
to 0.62 after excluding the zero values in calculating the
statistics at the L-band. The RMSE at the L-band was also
reduced to 0.101 m3/m3 after excluding the zero values,
being still substantially larger than that for the P-band. The
zero values of L-band retrieval in Fig. 4 are likely due to
different VWCs for the calibration and validation datasets,
being up to ∼15 and ∼20 kg/m2, respectively, and therefore,
the calibrated vegetation parameters might have incorrectly
constrained the calculation of the vegetation variables, e.g.,
τ and ω. Additionally, multiple scattering and/or the assumed
static ω could have led to the poor performance at the L-band.

When applying the calibrated vegetation parameters to the
validation dataset at the L-band, the modeled TB was lower
than the observed TB, even though the soil moisture was
zero at the beginning of the retrieval iteration. Therefore, the
soil moisture was bound to be zero since an increase in soil
moisture further decreases the modeled TB and thus enlarges
the cost function. This phenomenon indicated that at L-band
the calibrated parameters may not be transferred to applica-
tions with vegetation conditions substantially different from
the calibration dataset. Conversely, the calibrated vegetation

TABLE I
CALIBRATED DCA ROUGHNESS PARAMETERS

USING THE DATA FOR PERIOD 1

Fig. 5. Observed versus retrieved soil moisture for periods 2 and 3 of the
corn-covered soil, using the DCA approach. The color indicates the VWC
for each soil moisture measurement. The default values of NRp and ω in the
SMAP DCA algorithm were applied, namely, NRp = 2 and ω = 0.06, for both
P- and L-band. The values of HR and QR that were calibrated from period 1
(Table I) were used herein.

parameters at P-band were found to apply to a broad range of
conditions, likely due to the reduced vegetation impact.

According to the prior study on wheat with under 4-kg/m2

VWC [4], the RMSE achieved 0.029 m3/m3 for P-band and
0.063 m3/m3 for L-band V-pol when completely ignoring
the vegetation existence. After calibrating and applying the
τ–ω model, the RMSE at P- and L-band reached 0.009 and
0.018 m3/m3 for the SCA-V approach. This current investi-
gation over corn-covered soil confirmed that the difference
between the RMSEs for PPMR and PLMR became more
substantial when the vegetation was much denser.

The first step of the DCA approach was performed to
calibrate HR and QR using the data collected in period 1,
with the results shown in Table I. Subsequently, the DCA
soil moisture retrieval was conducted using the calibrated HR
and QR in Table I, with the comparison of the retrieved
and observed soil moisture plotted in Fig. 5. P-band was
found to have a similar R (0.90) as L-band (0.88), while a
better RMSE was found at P-band (0.074 m3/m3) than L-band
(0.110 m3/m3). In addition, the retrieved soil moisture for
P- and L-band underestimated observed soil moisture, with
biases being 0.071 m3/m3 at P-band and 0.106 m3/m3 at
L-band. When the VWC was lower than 5 kg/m2, the P- and
L-band scatter points seemed similar. However, when the
VWC was higher than 10 kg/m2, the scatter points at L-band
deviated further from the 1:1 line than those at P-band, with
RMSEs being 0.074 m3/m3 at P-band and 0.112 m3/m3 at
L-band. The retrieval error could be reduced if ω is locally
calibrated in future studies.
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V. CONCLUSION

In this letter, P- and L-band soil moisture retrieval was
performed using the τ–ω model and the SCA-V and DCA
approaches. L-band was found to have RMSEs higher than
0.1 m3/m3 for both approaches, while the RMSEs at P-band
were 0.054 m3/m3 for the SCA and 0.074 m3/m3 for the DCA,
which might be considered acceptable in such extremely high
VWC conditions. Accordingly, this letter lends confidence to
the use of even lower frequency (e.g., below 0.5 MHz) obser-
vations for sensing more accurate soil moisture. Moreover,
DCA performed better in correlation coefficient and unbiased
RMSE, while SCA performed better in RMSE at the P-band
due to the larger bias when using DCA.
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