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Spatially varying WIndow based maximum likelihood Feature 

Tracking (SWIFT) Method for Glacier Surface Velocity Estimations 

Glacier surface velocity is an important variable for glacier dynamics studies. 

Estimation of accurate surface velocity from remote sensing is a challenge, 

especially for glaciers with no in-situ observations. To overcome this challenge, a 

new method for glacier feature tracking named as SWIFT (Spatially varying 

WIndow based maximum likelihood Feature Tracking) has been proposed. This 

method utilises both optical data (to automatically determine the window size 

using the concept of Object Based Image Analysis) and Synthetic Aperture 

Radar (SAR) data (to perform feature tracking). The proposed method uses a 

spatially varying window size unlike other existing softwares that cannot provide 

the flexibility of a spatially varying window size. The proposed method has been 

tested and validated at three different glaciers (South Glacier, Canada; Chhota 

Shigri Glacier, India; and Tasman Glacier, New Zealand) for which field 

measured data were available. The obtained results for all three glaciers showed 

consistent improvement in estimated velocity by SWIFT when compared with 

spatially fixed window size-based estimates from normalized cross correlation-

based Correlation Image Analysis Software (CIAS).  Considering the data 

availability, the proposed SWIFT method has been implemented using a variety 

of SAR and optical satellite data to understand its performance/effectiveness for 

glacier surface velocity estimation. When validated against field measurements, 

the results from SWIFT gave an RMSE of 12.8 m/yr, 15.32 m/yr and 67.1 m/yr 

for South Glacier, Chhota Shigri Glacier and Tasman Glacier, respectively. 

Moreover, the RMSE of SWIFT estimates were observed to have an RMSE that 

was 19%-36% lower than the best performing spatially fixed window size. 

Keywords: Glacier surface velocity; Feature tracking approach; SAR; Optical; 

Automated window size 
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1. Introduction 

Glacier velocity is one of the paramount variables that impact glacier dynamics. Glacier 

velocity comprises three components: surface velocity, sub-surface velocity and basal 

sliding. Among these components, the glacier surface velocity can be monitored using 

remote sensing to overcome the challenge of inaccessibility and weather dependent data 

collection encountered in collecting field measurements. Moreover, glacier surface 

velocity at annual or decadal scale represents the overall stress regime of a glacier, 

which in turn is an indicator of its geometric characteristics like ice-thickness (McNabb 

et al., 2012). The surface velocity can also distinguish active from inactive ice on 

debris-covered glaciers, identify glacier surge events, and even infer basal conditions. 

However, there remain challenges to routine monitoring of glacier surface velocity 

globally.  

Existing approaches for glacier surface velocity monitoring include ground 

surveys, Interferometric Synthetic Aperture Radar (InSAR) techniques, and image 

matching techniques using either optical or Synthetic Aperture Radar (SAR) imagery. 

The ground-based survey is the most accurate method but confines the measurements to 

limited parts of a glacier due to logistical reasons and can only be conducted during a 

specific time of year and when there are favourable weather conditions. Studies have 

shown the potential of the InSAR technique for glacier velocity estimation (Palmer et 

al., 2010; Kumar et al., 2011; Sánchez-Gámez and Navarro 2017; Tong et al., 2018). 

Though the precision of velocity estimation through InSAR can reach to millimetres, its 

successful application is often limited by phase noise and large displacements over time 

(Pritchard et al., 2005; Joughin et al., 2010). Other techniques for glacier velocity 

estimation comprise of image matching based glacier feature tracking where the shift in 

a glacier is derived from the best match between corresponding pairs of images. Both 

SAR and optical imagery can be utilized by this technique. Using SAR, the glacier 

velocity can be estimated by tracking the amplitude (Derauw, 1999; Strozzi et al., 2002; 

Ciappa et al., 2010; Riveros et al., 2013), intensity (Ruan et al., 2013; Sanchez-Gamez 

and Navarro 2017; Yellala et al., 2019), speckle (Short and Gray 2005) or coherence 

(Strozzi et al., 2002) of the images. The SAR image pairs used in these studies are either 
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separated by a few days or a few months. Yellala et al. (2019) successfully 

demonstrated an application of SAR-based feature tracking using a SAR data pair at one 

year apart. Likewise, optical images have also been used for glacier feature tracking 

using the digital numbers that represent visual features on a glacier surface (Kaab et al., 

2002; Scherler et al., 2008; Heid and Kaab, 2012; Messerli and Grinsted, 2015, 

Fahnestock et al., 2016), but they often suffer due to presence of cloud cover over the 

glaciated regions.  

The studies using either SAR or optical data consider the correlation between 

two temporal images as a similarity measure to estimate the shift between images. 

Recently, there were some improvements in cross correlation-based glacier feature 

tracking using techniques like Particle Image Velocimetry (Patel et al., 2019) and thin 

plate smooth splines (Ruan et al., 2013) to eliminate erroneous velocity values. Apart 

from the correlation, other similarity measures such as maximum likelihood have been 

used to study glacier flow using remote sensing data, with Erten et al. (2009) and 

Deledalle et al. (2011) performing comparative studies to assess the accuracy of 

maximum likelihood-based tracking with classical correlation-based tracking, and found 

the former to be the more robust approach.  

Existing approaches for glacier feature-tracking using repeat satellite imagery 

allow displacements to be found with better precision than a single pair imagery. 

Although improved, these methods consume more resources (time and storage space) 

and are still prone to human error by requiring manual inputs (Ahn and Howat, 2011). A 

basic concern for any image matching based feature tracking method, including the 

aforementioned image matching based approaches is to determine an optimum window 

size for image matching. Studies by Huang and Li (2011) and Turrin et al. (2013) have 

shown that use of a different feature tracking window size leads to different velocity 

estimates for the same glacier. With an uncertain image matching window size, the 

velocity estimates have to be presented either at different window sizes (Huang and Li, 

2011; Schubert et al., 2013; Chen et al., 2017) or at a window size which is calibrated 

using known glacier velocity information (Riveros et al., 2013). At present, calibration 

of window size is a challenge where no glacier velocity measurements are available. 

This introduces a significant level of uncertainty in remote sensing-based glacier 
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velocity estimation (Kumari et al., 2019). In this respect, a spatially variable window 

size can help reduce the errors in glacier velocity estimation. Recently, large scale study 

on glacier velocity estimation demonstrated application of a spatially variable window 

size using auto Repeat Image Feature Tracking (auto-RIFT) (Dehecq et al., 2019), 

where they used three different search window sizes over a scene -- namely: 240 m×240 

m (image pixels located within a 2 km buffer of a glacier); 480 m×480 m (image pixels 

located more than 2 km from a glacier) and 960 m×960 m (for unsuccessful searches). 

However, here a variable window size was not explored within the glacier region. 

Similarly, other methods which are available within freely distributed software such as 

CIAS (Kaab and Vollmer, 2000), GIV (Van Wyk de Vries and Wickert 2021) and 

ImCorr (Scambos et al., 1992) have not used spatially variable windows. For a more 

glacier specific and realistic estimation, Dehecq et al., (2019) and Kumari et al., (2019) 

stated that the window size needs to be spatially variable (within a glacier) depending 

upon the glacier features or glacier size, but was not explored in their earlier studies.  

To address this issue of automatically determining a spatially varying window 

size for image matching, a simple innovative method based on the concept of Object 

Based Image Analysis (OBIA) is proposed. Here, the proposed method utilises various 

attributes of optical image features (or image segments). A wide range of researchers 

have used OBIA to segment and classify images, demonstrating the immense potential 

of this class of image analysis in remote sensing (Blaschke et al., 2010; Chen et al., 

2018). As compared to the pixel-based operations where the spatial attributes are not 

considered, the OBIA increases the image interpretation by considering different 

aspects of an image segment. It is important to note that this concept has not been 

exploited to date for glacier feature tracking studies. Therefore, this novel approach of 

window size determination is integrated with the remote sensing-based feature tracking 

method to estimate glacier surface velocity, with the proposed method conceptualized to 

extract useful information from both optical and SAR sensors. The first stage of the 

method is about automated window size determination from OBIA of an optical image, 

while the second stage is the implementation of a SAR based glacier feature tracking 

method using the maximum likelihood (ML) of SAR speckle as a similarity measure. 

This proposed method has been tested over three different glaciers from different 
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regions of the world, and its performance assessed in view of different satellite sensors 

and time of acquisition of imagery over certain topographical zones and glacier facies. 

Finally, a comparative analysis was done against the spatially fixed window size-based 

estimates, normalized cross-correlation based method (operating in spatial domain) as 

well as the field-based measurements.  

2. Study Glaciers 

Three glaciers namely South Glacier (SG), Chhota Shigri Glacier (CSG), and Tasman 

Glacier (TG) (Fig. 1) have been selected based on availability of datasets and variability 

in terms of glacier size, debris coverage, climatic region, and glacier complexity (Table 

1). 

Figure 1 comes here. 

South Glacier is located in Canada.  It is a small glacier of about 4 km long and 

around 700 m wide. This glacier is totally free of debris. With an average slope of 13°, 

it lies within the altitude range of 1,970-2,960 m. It is influenced by sub-arctic 

continental climate. Chhota Shigri Glacier is located in the western Himalayas, India. It 

is a medium sized glacier about 9 km long with an average width of 800 m. This glacier 

has mild debris cover. Its average slope is 17° and elevation range lies between 4,050 m 

and 6,263 m. This glacier is influenced by the Asian monsoon in summer and by the 

westerlies in winter. Tasman Glacier is located in the Southern Alps, the largest glacier 

of New Zealand. Extending up to a length of about 25 km with an average width of 

about 1300 m. The average surface slope of the glacier is 5.4° and the elevation ranges 

from 3,870 m to 5,500 m. The region is dominated by marine west coast climate. 

Surrounded by New Zealand's highest peaks, numerous tributary glaciers contribute to 

this glacier system. Frequent rock avalanches help sustain a relatively thick debris cover 

on this glacier, which terminates in the proglacial Tasman Lake (Fig. 1c).  

Table 1 comes here. 
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3. Data  

To test the proposed approach, only freely available or low-cost SAR and optical 

remote sensing data covering the study regions have been used. The time periods of 

satellite datasets were chosen according to the availability of field data measurements. 

Details of the optical, SAR satellite data and ancillary data such as Digital Elevation 

Model (DEM), glacier boundaries, and field-based velocity data used for validation are 

discussed. 

3.1 Optical Dataset 

The choice of optical image (and constituting bands) to find appropriate window size(s) 

for feature tracking is bound by the condition that the image should have a similar 

resolution to that of the SAR data, be cloud free, and close to the end of the ablation 

season (September for South Glacier and Chhota Shigri; March for Tasman Glacier) to 

achieve minimum snow cover over glaciers. However, due to the unavailability of any 

cloud free optical data that covers the South Glacier in the ablation period, data from a 

different season was used. It is expected that this would affect the accurate 

determination of the window size due to seasonal snow cover. The details of the optical 

dataset that was used are listed in Table 2. 

Table 2 comes here. 

3.2 SAR Dataset 

The SAR datasets from Sentinel-1 in Single Look Complex (SLC) format, ENVISAT in 

SLC format and ALOS PALSAR in Radiometric Terrain Corrected (RTC) format were 

used to perform maximum likelihood (ML) based glacier feature tracking. It shall be 

noted that the ALOS PALSAR data is freely available in RTC format and not in SLC. 

The datasets have been chosen to ascertain the acquisition over same area which is 

identified by track and frame number. The corresponding details are given in Table 3. 

Considering that the feature tracking is performed on SAR imagery, it is preferable to 

use L-band as compared to other bands (C-band and X-band) due to its better radar 

signal penetration, which adds to correlation between two long-term interval images 

(Rignot et al., 2001; Nakamura et al., 2007; Strozzi et al., 2006; 2008). However, the 
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limited availability of freely available L-band ALOS data across the study glaciers has 

led to the use of C-band as an alternative. 

Table 3 comes here. 

3.3 Other Datasets 

Apart from satellite imagery, other datasets such as Digital Elevation Model (DEM), 

glacier boundary, and field observations were also used. Freely available Shuttle Radar 

Topography Mission (SRTM) 1arc second DEM was used to orthorectify the Envisat 

SAR imagery for Chhota Shigri and Tasman Glacier. However, due to the lack of 

SRTM over 60° North, the Canadian Digital Elevation Model (CDEM) was used to 

orthorectify the SAR imagery of South Glacier. Glacier outlines were taken from the 

latest version of Randolph Glacier Inventory (RGI 6.0). The data used for validation 

consists of annual glacier velocity measured at different stakes locations over the study 

glaciers. For South Glacier, the velocity data was obtained from Flowers et al., (2011), 

which was collected during the years 2005-2010. For Chhota Shigri Glacier, the field 

measured glacier velocity information was obtained from Azam et al. (2012), which was 

collected during the year 2009-10. Likewise, for Tasman Glacier, the reference glacier 

velocity data as reported by Farinotti et al. (2017) and Purdie et al. (2018) was used for 

validation, which was collected during the years 2000-2011. 

4. Methodology 

The proposed feature tracking method named as SWIFT (Spatially varying WIndow 

based maximum likelihood Feature Tracking; Fig. 2) comprises two stages:  i) 

determination of the spatially varying window size from optical image based on the 

OBIA concept, and ii) image matching based feature tracking using the maximum 

likelihood of SAR speckle as similarity measure.  

4.1 Automated Determination of Spatially Distributed Window Size 

To find the optimum window size distribution for image matching, the concept of OBIA 

has been used. Using this approach, a glacier is divided into homogeneous regions 

called segments. This segmentation is done at a scale determined as optimum by the 
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approach presented in Dragut et al. (2010), where the optimal scale of segmentation was 

identified from the peak rate of change of local variance (ROC-LV) in the image. Here 

the segmentation was performed using a bottom-up approach of region-growing 

segmentation (Dragut et al., 2010), in which, starting from one pixel, the segment grows 

in size; the growth is defined by the scale that controls the homogeneity of the resulting 

segments. Once the segment properties exceed the heterogeneity threshold (as 

determined by the scale), this growth stops. Additional constraints can be provided by 

giving weight to shape and compactness of the resulting segments. The weights given to 

the shape factor indirectly signifies how much spectral information should be used. 

Conversely, the weight given to the compactness factor signifies the degree of 

compactness of the segments’ shape (Definiens Developer, 2007). 

Assuming that the glacier features can be of varying shapes, which are rarely 

compact, the shape and compactness of segments are not considered in the present 

study, thus giving weight only to the pixel values (also known as digital number) in the 

optical image. The image segmentation was performed on optical imagery falling in the 

same season as that of the SAR images to reduce any seasonal disturbances contributing 

to errors in the feature tracking.  

A segmented image contains different shape and size segments. To calculate the 

window size for image matching, geometric properties like length and width of 

segments have been utilized in the present study. To avoid complexity, instead of 

matching ‘segments’ which are irregular in nature, a simplified square size window was 

chosen to perform image matching without any major loss in information. The square 

window, which closely matches the segment’s geometry is referred to as the window 

size (WS). Since the segments may vary in geometry over a glacier, the window size 

was kept as a spatially varying parameter. The main advantage of having a spatially 

varying window size(s) over that of a fixed window size is that different sized features 

can be tracked more accurately, with window size(s) closely corresponding to actual 

features over a glacier surface. 

Figure 2 comes here. 
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Additionally, a constraint was applied to the window size distribution in which 

only window sizes less than or equal to the average width of the glacier (Wavg) were 

considered. Window sizes greater than this were discarded to avoid any unrealistic large 

values. Here, the average width of the glacier was calculated by taking the cross-

sectional width at different locations of the glacier’s main trunk to approximate the 

average width of the glacier. Thus, the final window size is calculated as, 

                  {
                     

                    
 (1) 

 

This step should not be interpreted as manual selection, as with the advent of GIS 

tools, and freely available remote sensing and glacier inventory datasets containing 

glacier polygons, automated calculation of glacier geometries such as length and width 

are possible (Pfeffer et al., 2014; James and Carrivick, 2016). Moreover, this window 

size selection technique is independent of glacier type or its environment setting, thus 

making it applicable to glaciers in any setting. 

4.2 SAR Feature Tracking 

A multiplicative speckle model-based SAR feature tracking method was implemented 

to estimate glacier surface velocities, where images are compared based on maximum 

likelihood of SAR speckle. Speckle, which is inherently present in every SAR image 

gives useful information about the glacier surface characteristics. This speckle can be 

tracked in time-lapse SAR imagery and thus helps estimate glacier flow. Before 

performing the SAR feature tracking, geometric distortions in SAR images due to side 

looking viewing geometry were corrected using the DEMs listed in section 3.3.  

Assuming that the blocks to be matched between two SAR images X and Y of 

size m × n share a common region at two annually separated time periods T1 and T2 

(Fig. 3), the distribution of Maximum Likelihood (ML) estimators was calculated for 

different candidate shifts between the two images for each block/matching-window. The 

maximum likelihood estimate  v    of velocity vi was obtained by maximizing the 

cumulative distribution function (CDF) function   ) for each block i according to 
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  (xi |yi , vi), (2) 

where xi  and y
i  

are the pixels corresponding to block X and Y respectively. The above 

function can also be represented in terms of block size by the objective function 

 ∑ ln y
i 

k
     ln xi - 2 ln( xi  yi 

) - 
ln xi 

 
, (3) 

where k is the total number of pixels in a block and N is the multi-looking factor. 

Figure 3 comes here. 

Following Debellagilo and Kaab (2010), sub-pixel interpolation has been 

undertaken to achieve sub-pixel precision of ¼ of a pixel by capturing the displacements 

smaller than the spatial resolution of the input satellite images. The horizontal 

displacements were derived from the slant range displacements following Strozzi et al. 

(2002) and Sanchez-Gamez and Navarro (2017) to facilitate the comparison with 

ground-based field measurement of horizontal glacier velocity. From the azimuth and 

slant range displacements, the net horizontal displacement is calculated using the 

relation 

                  √                (4) 

where Rx and Ry are the pixel spacing in azimuth and slant range directions, ∆x and ∆y 

are the displacements in azimuth and slant range directions. The velocities outside the 

3×Inter Quartile Range (IQR) have been removed as outliers from the estimates (Fig. 4). 

The blank patches have been filled using a mean filter where the kernel size is kept the 

same as the window size distribution. This filtering approach has been chosen to 

eliminate the subjectivity of choosing a smoothing filter for individual glaciers.  
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4.3 SWIFT Implementation and Uncertainty Assessment 

The proposed method was implemented in MATLAB on a 4.6 GHz Intel® Core i7- 

8700 CPU of 16GB RAM system. The pre-processing of data was performed on the 

freely available SentiNel Application Platform (SNAP). Terrain correction was 

performed for all of the SAR imagery (section 3.2) except the ALOS PALSAR image, 

which had already been terrain corrected. The geometric co-registration of the SAR 

dataset has been addressed during DEM assisted co-registration (Nitti et al., 2010; 

Sanchez-Gamez and Navarro, 2017) in Terrain Correction with an RMSE threshold of 

0.3 (of pixel size) during the co-registration. Readers are referred to the SNAP user 

guide for a detailed description of this process (https://scihub.copernicus.eu/userguide).  

Uncertainty in the proposed surface velocity tracking method includes: i) 

uncertainty due to the spatial resolution of the SAR image pair, and ii) uncertainty due 

to the co-registration error between these image pairs. The former is dependent upon the 

spatial resolution of the input SAR images, while the latter is reported as the RMSE 

obtained after the DEM assisted co-registration. The total uncertainty was calculated 

using the two above mentioned uncertainties via summation of quadrature method of 

error propagation  

                   √     
          

 
 (5) 

where the two entities       and          represent the uncertainties due to spatial 

resolution and co-registration respectively and were considered uncorrelated (Anderson 

2019). 

5 Results  

The window size obtained for different study glaciers are presented followed by their 

overall and zone-wise surface velocity estimates. The method’s performance was 

evaluated using accuracy assessment against the available field measurements and 

previously reported values of glacier surface velocity. Here, statistical measures such as 
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the root mean square error (RMSE) and bias were used for performance assessment of 

the SWIFT method. 

5.1 Window Size Determination 

A spatially varying window size has been determined for each study glacier according 

to the proposed method. It was found during image segmentation that the segments 

sometime merged with areas outside of the glacier due to very low/no contrast between 

the glacier and its surroundings (Fig. 4). This results in a very large window size, which 

could be as large as the size of the glacier itself. To control this, a constraint on 

maximum window size has been applied to all three study glaciers. Consequently, 

substantial improvement in the estimated velocity was observed for Tasman Glacier. 

However, for the other two glaciers (South Glacier and Chhota Shigri Glacier) no 

visible improvements were observed due to the absence of segments merging with the 

background. The obtained range of window size for each glacier was: 5×5 pixels to 

46×46 pixels (South Glacier); 3×3 pixels to 80×80 pixels (Chhota Shigri Glacier) and 

15×15 pixels to 120×120 pixels (Tasman Glacier). A general trend was observed where 

minimum window sizes were obtained near the snout region and near the glacier 

boundaries, whereas, larger window sizes were observed in the glacier accumulation 

region.  

Figure 4 comes here. 

5.2 Glacier Surface Velocity Estimates 

South Glacier 

Here, the proposed feature tracking approach was implemented for the two time periods 

viz., 2005-06 and 2014-15. The obtained spatial distribution of the estimated surface 

velocities for the two time periods are shown in Figs. 5a and b. 

Figure 5 comes here. 

Following DePaoli and Flowers (2009), the results were evaluated for three 

zones. The zone-wise and overall error statistics for all three study glaciers are given in 

Table 4. The overall RMSE of the surface velocity estimates of South Glacier for the 

b) 
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periods 2005-06 and 2014-15 with respect to the glacier-wide stake measurements given 

by Flowers et al. (2011) were 13.25± 5.28 m/yr and 12.8± 5.28 m/yr, respectively 

(Table 4). The combined uncertainty is presented as a summation in quadrature which is 

± 5.28 m/yr for both study periods being 2005-06 and 2014-15. The overall bias for 

these periods were 9.5 m/yr and 11 m/yr, respectively (Table 4). For both study periods 

(2005-06 and 2014-15) overall RMSE values were observed to be very close (Table 4), 

although the optical data used were of different wavelengths. Specifically, the ASTER 

band 3 (VNIR) was used for 2005-06 while the Landsat 8 PAN band was used for 2014-

15. This shows that the proposed feature tracking approach is robust even when 

different optical datasets were used.  

Table 4 comes here. 

Figures 5a and b show the estimated and observed surface velocities along the 

glacier central flowline. Due to unavailability of field measurements for the same year, 

the estimated glacier surface velocity was compared with the following year’s field 

observations. Here it is assumed that annual velocity does not change substantially from 

year to year on this glacier. For both time periods, higher surface velocities were 

captured in the mid and upper zones of the glacier (Figs. 5a and b), where a surge has 

been reported earlier (Johnson and Kasper, 1992; DePaoli and Flowers, 2009). 

However, the lower zone which is nearly dormant has not been represented well for 

both time periods (2005-06 and 2014-15) as revealed by higher RMSEs in this zone 

(Table 4: South Glacier). From the spatial distribution of surface velocity estimates 

(Figs. 5a and b) and the comparative plot of the estimated and observed surface 

velocities (Figs. 6a and b), it is evident that the surface velocities were substantially 

overestimated in the lower zone. Here, a high value of deviation from the observed 

velocity in the surface velocity estimates can be attributed to the limitation of least 

measurable displacement at present level of sub-pixel precision (¼th 
 
of a pixel) which 

exceeds the actual displacement (~0.5 m). 

Figure 6 comes here. 

The zonal statistics of the surface velocity estimates for each time period are 

shown in Fig. 6c. For all the zones, the min-max range was similar for both study 
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periods. However, from mean surface velocities, it appears that for the year 2014-15 all 

the zones exhibited almost identical surface velocities, which is not consistent with the 

reported behaviour of this glacier (Depaoli and Flowers, 2009). One of the possible 

reasons could be the distribution of window sizes ranging from 5  5 pixels to 20  20 

pixels (Supplementary S1b) which are smaller compared to the window size distribution 

for period 2005-06, which is 5  5 pixels to 46  46 pixels (Supplementary S1a). These 

smaller window sizes (which are dominant in the lower zone) can introduce noise in the 

velocity estimates (Kanade et al., 1994). Similarly, for the year 2005-06, the upper and 

middle zones showed higher mean velocities than for the lower zone, as reported by 

DePaoli and Flowers (2009).  

Figure 7 shows the glacier wide statistical distribution of velocity estimates for 

the period 2005-06 and 2014-15. The 2014-15 estimates show a slight acceleration 

(~13%) in mean velocity from 2005-06 estimates. 

Figure 7 comes here. 

Chhota Shigri Glacier  

The surface velocity estimates for Chhota Shigri Glacier for the period 2009-10 have 

also been calculated using the proposed methodology and compared with the field-

based velocity measurements. Here the window size distribution has been calculated 

from the IRS LISS-III imagery of Oct 13, 2009 (Table 2). Figure 8a shows the spatial 

distribution of estimated surface velocity where higher surface velocities can be seen 

near the glacier snout. Assuming a direct relationship between surface velocity and 

glacier ice thickness (Cuffey and Paterson, 2010), the peak velocity estimates in the 

middle zone shown as circled areas 1 & 2 (Fig. 8a) had maximum glacier ice thickness 

distribution as reported by Huss and Farinotti (2012). However, the circled area 3 (Fig. 

8a) in the lower zone showed a very high surface velocity trend, which is not in 

agreement with the ice thickness estimates reported by Huss and Farinotti (2012). These 

high values appear to be an indication of an external contribution (like 

avalanches/landslide) during the study period, leading to substantial changes over the 

glacier surface which are reflected as erroneous surface velocity estimates. The presence 

Acc
ep

te
d 

M
an

us
cr

ipt



16 

 

of active avalanches/landslide sites (Supplementary S3) in the lower zone has been 

verified by observations made during visits to the Chhota Shigri Glacier. 

Figure 8 comes here. 

Figure 8b shows a comparison of surface velocity estimates with field 

measurements along the central flow line of the glacier. It should be noted that the 

distance is measured from the snout of the glacier. There is a huge difference in the 

estimated and observed surface velocity at a distance of 2500-3000 m from the snout 

(Fig.8b), which also coincides with the circled area 3 in Fig. 8a. The overall RMSE of 

surface velocity estimates of the Chhota Shigri Glacier (excluding the circled area 3) 

was 15.32± 3.9 m/yr, whereas the overall bias was 3.2 m/yr (Table 4: Chhota Shigri 

Glacier). Here, the uncertainty in the surface velocity estimation for this glacier is 

calculated to be ± 3.9 m/yr. 

A number of studies have reported mean surface velocity (annual) of Chhota 

Shigri Glacier for intermittent periods between 1987 and 2010. The surface velocity 

estimates obtained by the proposed method agree with this reported trend as shown in 

Fig. 9. It is also observed that the mean velocity of this glacier has not changed much 

during these 23 years indicating that the glacier is more or less stable. 

Figure 9 comes here. 

Figure 8c shows the zone-wise statistics of the surface velocity estimates. The 

min–max range of the estimated velocities lie within the range of previously reported 

estimates for this glacier by Gantayat et al. (2017). However, the maximum velocity in 

the lower zone was high (~80 m/yr) when compared with field values in this zone (~30 

m/yr), as shown in Fig. 8b. The possible reason has been discussed earlier in this section 

pertaining to the circled area 3 (Fig. 8a). The estimated mean velocity in the upper, 

middle and lower zones are 35 m/yr, 45 m/yr and 32 m/yr respectively (Fig. 8c). The 

mean of lower zone estimates (32 m/yr) and the middle zone (45 m/yr) were found to be 

close to the observed velocities in the respective zones (20-35 m/yr in the lower zone; 

35-45 m/yr in the middle zone). The upper zone estimates could not be evaluated 

because of unavailability of field measurement over this zone.  
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The knowledge of Chhota Shigri Glacier’s conditions and flow behaviour 

gathered from field observations has made it possible to further analyse the directional 

aspects of the velocity estimates. The direction of surface velocity estimates shows an 

agreement with the aspect direction (Fig. 10b) along the main trunk of the glacier, 

which follows Northwest-North-Northeast directions. However, the direction in the 

tributary in regions I & III (Fig. 10a) was not well captured, which can be attributed to 

large displacements in these regions due to steep slopes. The directional behaviour of 

the estimated surface velocities in region II is interesting (Fig. 10a), because it 

highlights the presence of a number of avalanche-prone cliffs to the Northwest, 

contributing to apparent periodic glacier flow. There are four sites in region II which are 

affected by avalanches/landslides (Supplementary S3) as identified from the Google 

Earth image collections available during the study period. Thus, in region II the 

dominant direction of the surface velocity is obtained as the Northwest direction instead 

of the North direction as represented by the aspect map (Fig. 10b). 

Figure 10 comes here. 

Tasman Glacier  

The spatial distribution of the estimated surface velocities for the period 2005–06 and 

2007–08 are shown in Fig. 11. A smooth transition of glacier velocity is observed from 

the glacier head to the terminus. However, a few noisy patches near the confluence zone 

(Figs. 11a–b) can be easily seen, indicating mismatches in the estimated and observed 

values. 

Figure 11 comes here. 

The estimated surface velocity values were compared with both i) point-wise 

field-based surface velocity measurements collected by Purdie et al., (2018) during 

2007-09 (Fig. 11), and ii) spatially distributed decadal average surface velocity map 

(Fig. 12) for the period 2000-2011 (Farinotti et al., 2017), which was derived from field 

measurements and remote sensing-based estimates (Purdie et al., 2018). 

The difference between the derived surface velocity estimates for the periods 

2005-2006 and 2007-2008, and the spatially distributed decadal surface velocity 
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estimates (considered as reference) given by Farinotti et al. (2017), are shown in Fig. 

12a-c. Moreover, Fig. 12a shows the difference map for the period 2005-06 where the 

velocity was estimated without limiting the window size. After limiting the maximum 

window size, the velocity estimates for the same period were compared with the 

reference velocity map and the resulting difference map shown in Fig. 12b.  

Figure 12 comes here. 

Setting a limit on maximum window size showed substantial improvement in the 

velocity estimates as the velocity difference reduced from ~300 m/yr to ~150 m/yr 

(Figs. 12a and b). Therefore, for the period 2007-08 the surface velocities were 

estimated only after limiting the maximum window size. The corresponding difference 

map with reference velocity is shown in Fig. 12c, where estimates for 2007-08 showed 

a smoother transition between the different velocity ranges, as expected from an ideal 

glacier flow. This could be due to higher signal penetration of L-band (used for 2007-08 

estimates), which gives less noisy velocity estimates when compared to C-band (used 

for period 2005-06). It should be noted that the snow wetness can affect L-band 

penetration capabilities, but this aspect could not be explored in this study as proper 

information on the snow conditions are not available. 

A point-wise comparison of the proposed method with field measurements 

(Purdie et al., 2018) was conducted as shown in Fig. 13. For the study period 2005-06, 

large deviation from field data was observed in the lower zone, which also represents 

the debris cover region with erroneous patches 1, 2 & 3 (Fig .11a). The estimates for 

period 2007-08 were consistently closer (for lower as well as middle zones) to the field 

measurements.  

Figure 13 comes here. 

The overall RMSE for Tasman Glacier (Table 4) during 2005-06 and 2007-08 

was 71 m/yr and 67.1 m/yr respectively. Overall, the bias of the velocity estimates for 

period 2005-06 and 2007-08 was 28.81±5.14  m/yr and 13.14±0.14  m/yr respectively 

(Table 4). The uncertainty in velocity estimates for the period 2005-06 was ±5.14 m/yr. 

For the period 2007-08 the uncertainty in the velocity estimates was ±0.14 m/yr. The 

Acc
ep

te
d 

M
an

us
cr

ipt



19 

 

uncertainty for this period was very low because only the uncertainty due to spatial 

resolution of SAR imagery has been reported, while the uncertainty due to co-

registration error could not be determined. It is because the error in co-registration could 

not be calculated for the already processed SAR image pair wherein the DEM based co-

registration was not performed. Also, Ground Control Points (GCPs) were not available 

to perform additional processing. 

Figure 14 comes here. 

The zone-wise statistics of the surface velocity estimates are shown in Fig. 14. In 

each zone, estimates for the period 2005-06 showed a higher range of velocity (min-

max), pertaining to the presence of noise (Fig. 14b). The mean in the lower zone (also 

the debris covered zone) was well represented for the periods 2005-06 and 2007-08. In 

this zone, the mean estimates for both periods were closer to observed velocity (Table 4: 

Tasman Glacier), showing the reduced effect of the erroneouos patches (Fig. 11a and b).  

5.3 Validation over Stable Terrain 

The estimated velocities were validated over stable ice-free ground (outside each 

glacier) where the velocity is expected to be zero, as done by earlier studies (Eg. Altena 

et al., 2019; Sattar et al., 2019). The estimated displacements at selected stable points 

near each study glacier are summarized in Table 5. The median 95% confidence interval 

was found to be 3.7 m/yr (for all three study glaciers combined) in stable areas. This 

value is slightly higher than the reported value (mean velocity over stable terrain < 3m) 

for the western Himalayan glacier regions by Das and Sharma (2021). However, the 

average displacement obtained in the stable area was well within the acceptable limits 

considering the range of velocity for the study glaciers, which varies between ~30 and 

150 m/yr. The displacements obtained in the stable area can be due to errors present in 

1) the feature tracking method or 2) ionospheric errors in the input dataset (Yan et al., 

2013). The datasets used in the study vary in terms of sensors and processing quality 

and thus may exhibit different levels of ionospheric errors associated with them. The 

highest estimates were observed for Tasman Glacier for the period 2007-08 (4.4 m/yr) 

where the L-band SAR data was used, which is expected to contribute to errors due to 

higher sensitivity to ionospheric errors (Meyer and Nicoll, 2008). 
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Table 5 comes here. 

6 Discussion 

The effect of optical data timestamp on the window size estimates is discussed first 

followed by the effect due to different SAR datasets on the estimated velocities. These 

discussions are based purely on the variety of datasets that were available for the study. 

Next, the spatially varying nature of SWIFT is discussed as assessed against the 

spatially fixed window size-based estimates.  Lastly, the performance evaluation of 

SWIFT against Normalized Cross Correlation (NCC) method is presented. 

 

6.1 Effect of Optical Data Timestamp on Window Size Estimates 

The proposed SWIFT method uses optical data to estimate the window size distribution. 

Sometimes due to cloud cover, using an optical image of the desired acquisition period 

may not be possible. Thus, to investigate alternatives, a comparison was made between 

the window size distributions obtained from optical images acquired at two different 

time periods (T1 & T2) a year apart. For illustration purpose, the window size 

distribution obtained for the Chhota Shigri Glacier from the images acquired in the 2009 

and 2010 ablation periods are shown in Figs. 15a-b. The results obtained indicate a 

similar trend of window size distribution for both images. This portrays that the window 

size from the same season’s imagery (a year apart) leads to a similar window size 

distribution. Furthermore, the corresponding velocity from these window sizes was 

found to be similar (Fig. 15c). Based on this analysis it is evident that choosing either T1 

or T2 optical imagery did not have a substantial effect on the velocity estimates. Similar 

observations were seen for South Glacier when two optical images of the ablation 

season separated a year apart was tested. Such analysis could not be performed for 

Tasman Glacier, since only one optical image was available during the study period.  

From Figs. 15a and b, it is also observed that for a medium sized glacier such as 

the Chhota Shigri Glacier, the window size barely crosses 80 × 80 pixels, which gives 

an idea of the range of window sizes that can be used for medium sized glaciers. 

However, this observation needs to be verified by extensive testing of the method. 

Similar results were obtained for South Glacier (Supplementary S2), supporting the 

similarity in window size distribution from two optical images of different time. This 
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analysis could not be performed for Tasman Glacier, since only one optical image was 

available during the study period. 

It was observed that choosing an optical image far from the study period 

introduced errors in the estimates. A substantial decrease in feature tracking 

performance (for South Glacier) was observed when the window size for a given period 

was used to estimate the surface velocities for other time periods, specifically when the 

temporal distance between those time periods was large. For example, using the 

window sizes obtained from images of 2005-06 for estimating velocities for the period 

2014-15 led to substantial degradation in feature tracking performance. This could be 

due to the substantial changes in glacier surface conditions during this ten-year period, 

which is reflected in the different window size distribution for these periods 

(Supplementary S1). This observation suggests that optical images selected for window 

size determination, should not be far from the study period. This is particularly 

important if the glacier surface conditions have changed notably between the study 

period and the selected time stamp of the optical image, as this can degrade the 

performance of the proposed feature tracking approach. In general, this is not the case 

when the temporal separation between the optical images (used for window size 

estimation) and the SAR images (used for feature tracking) is approximately one year, 

provided there is negligible change in surface conditions. This finding implies that the 

choice of the time stamp of the optical image is a function of the change in glacier 

surface conditions.  

Figure 15 comes here. 

6.2 Effect of SAR Dataset 

Use of a common optical image to estimate velocity of the Tasman glacier for both 

study periods (2005-06 and 2007-08) has allowed investigation on the effect of different 

SAR data on the performance of SWIFT. The Tasman Glacier is a relatively smooth 

(less steep) glacier whose surface velocity has been reported to have no measurable 

change during 2002-05 (Herman et al., 2011). Assuming that during 2005-2008 there 

were no substantial changes in glacier flow behaviour, the effect of SAR wavelength on 

the feature tracking was investigated. It is interesting to see that L-band (Fig. 13: 

Acc
ep

te
d 

M
an

us
cr

ipt



22 

 

Estimated 2007-08), which has more penetration through the glacier, captured the 

surface velocity more accurately as compared to the C-band based estimates (Fig. 13: 

Estimated 2005-06). A higher value of RMSE and bias in the C-band estimates can be 

attributed to the sensitivity of C-band to surface roughness. The effect of SAR 

polarization could not be studied due to unavailability of different polarization data in 

L- and C-band products for the study period (Table 3). 

6.3 Comparison with Spatially Fixed Window Size  

To investigate any possible improvement due to a spatially varying window size, the 

performance of the proposed SWIFT method was compared with the same ML-based 

feature tracking method but implemented with a spatially fixed window size (SFWS). 

For this purpose, the same SAR data pairs (Table 3) have been used. For the simulations 

using a spatially fixed window size, standard window sizes of different dimensions such 

as 32 pixels × 32 pixels, 64 pixels × 64 pixels and 128 pixels × 128 pixels) have been 

tested. It was observed that the window size of 128 pixels × 128 pixels gave higher 

errors (in comparison to smaller window sizes) in the estimated velocity, especially for 

South Glacier and Chhota Shigri Glacier. The obtained results indicate that feature 

tracking with spatially varying window size (ie. SWIFT) performed consistently better 

in comparison to SFWS based simulations in all three zones of all three study glaciers 

(Fig. 16).  

Figure 16 comes here. 

6.4 Performance Evaluation Against NCC 

The performance of the SWIFT method has been compared with the cross-correlation-

based method that has a spatially invariable window size. The Normalized Cross 

Correlation (NCC) method was chosen for the comparison since it is most widely used 

for glacier surface velocity estimations (Bhambri et al., 2017; Jawak et al., 2018; Van 

Wyk De Vries and Wickert 2021). Moreover, both the methods perform image-

matching in the spatial domain. The latter is based on the normalized cross-correlation 

(NCC) image analysis that was implemented in Correlation Image Analysis Software 

(Heid and Kaab, 2012). The same SAR data pairs (Table 3) have been used in both 

methods. Since the proposed SWIFT method uses a spatially varying window size for 
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image matching, the NCC-derived estimates have been calculated for different standard 

window sizes (32 × 32, 64 × 64, and 128 × 128 pixels) and subsequently compared with 

the proposed method. The search window size was maintained at 100 × 100 pixels for 

both the NCC and the proposed method. Any gaps in NCC estimates were filled using 

the Inverse Distance Weighted (IDW) interpolation. This analysis was performed for all 

three study glaciers for the available dataset (Table 3). Although, the NCC estimates at 

different window size (32 × 32 pixels, 64 × 64 pixels, and 128 × 128 pixels) have been 

used for calculations (Supplementary S4), to ease the interpretation only the best 

performing window size ( CC) for each glacier and the proposed method’s estimates 

are shown in Figs. 17a-c. A summary of zone-wise and overall RMSE of the NCC 

based approach for the study glaciers is given in Table 6.  

Table 6 comes here.  

Comparison of the RMSEs from Table 4 and Table 6 indicates that the surface 

velocity in middle and upper zones for all three study glaciers were estimated more 

accurately by the proposed approach than the NCC based approach, where the NCC 

approach tends to fail due to low contrast (increased snow cover) on the glacier surface. 

However, the NCC estimates outperformed the proposed approach in the lower zone of 

the South Glacier. Conversely, for Chhota Shigri Glacier the proposed method 

performed better. For the lower zone of the Tasman Glacier, similar conclusions could 

not be derived because the RMSEs were calculated from a single stake measurement. 

Here, the SWIFT method was observed to be sensitive to highly textured areas, 

especially the lower zone which is a highly textured zone due to debris cover and/or 

surface melting. This observation is also conveyed in Figs. 17a-c. Overall, when 

compared with the best results of the NCC method (which requires calibration), the 

SWIFT approach was in close agreement for the South Glacier and performed better in 

case of Chhota Shigri Glacier and Tasman Glacier (Table 4 and Table 6).  

It is noteworthy that the best window size in the NCC method was different for 

each glacier (Figs 17(a-c)), which can be obtained only in the presence of field 

measurements; and it is spatially invariant over the glacier surface. Conversely, the 

window size used in the proposed approach was automatically identified - it does not 
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require field measurements - taking the varying nature of the glacier surface features 

into account. This demonstrates the advantage of the proposed approach over the NCC-

based approach. 

The processing time for the two methods (NCC and SWIFT) took from several 

minutes to a few hours. For SWIFT, the processing time varied depending upon glacier 

size whereas, for NCC, it varied for glacier size as well as the chosen window size. 

Figure 17 comes here. 

7. Summary and Conclusion 

A new method called the spatially-varying-window-based feature tracking (SWIFT) is 

presented for glacier surface velocity estimation. This method provides flexibility in 

terms of spatially varying window size, unlike other existing software, where the 

window size can be varied at different iterations while the window size remains 

spatially constant. It considers both optical (for window size estimation) and SAR data 

(feature tracking) to estimate glacier surface velocities. The proposed feature tracking 

method was tested for three study glaciers located in different parts of the world.  

The proposed SWIFT method was evaluated for possible impacts of input data 

characteristics (such as time stamp of optical imagery and spatial resolution of SAR-

optical data pairs) on the estimated glacier surface velocity. Investigations into the 

effect of time stamp of input optical imagery led to the conclusion that, in the case 

where optical data is not available during the study period, choosing an alternate data is 

possible. Choosing an optical data of the same season which is a year apart is feasible 

provided negligible changes in the glacier surface.  

When compared with spatially fixed window size-based feature tracking, the 

proposed spatially varying method gave better velocity estimates for each of the three 

study glaciers. Furthermore, comparison of zone-wise velocity estimates of the study 

glaciers obtained from the proposed SWIFT method with the normalized cross 

correlation method revealed improvements due to the proposed method. This analysis 

revealed a better performance of the SWIFT approach in the middle and upper zones of 
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the study glaciers. However, in the lower zone, the SWIFT method gave relatively 

higher RMSEs when compared to the best performing NCC (CIAS) estimates. One of 

the key contributions of the present study is the automated estimation (no calibration of 

window size required) and the spatially variable nature of the window size(s). Similar to 

other NCC based methods, large intra annual changes on the glacier surface and co-

registration errors are the factors that limit the accuracy of this feature tracking 

approach.  Nevertheless, the proposed glacier feature tacking method holds potential for 

feature tracking in glaciers with no prior field information available. 

The current version of the proposed SWIFT method focuses on minimizing 

manual involvement while estimating glacier velocity rather than increasing 

computational efficiency. However, computationally, this tracking approach does not 

pose any severe limitations and it is dependent upon the size of the glacier and the 

window size generated. For example, with a 4.6 GHz Intel® Core i7- 8700 CPU of 

16GB RAM, the total Central Processing Unit (CPU) time (applicable to both parallel 

and serial processing) may vary from several minute to a few hours because of the 

spatially varying window size and glacier size. In this study, the proposed method has 

been tested for three study glaciers (valley type glaciers) and should be rigorously tested 

for glaciers with varying level of debris cover and glaciers in the polar region such as 

marine terminating glaciers. Such extensive testing will help us in assessing the 

potential of global scale applicability of the developed glacier surface velocity 

estimation method. 
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Table 1. Details of the study glaciers 

Glacier Location 
Central 

Lat/Long 
Area 

Debris 

Coverage 
Orientation 

Glacier 

Complexity 

South 

Glacier 
Canada 

60.88 N / 

139.12 W 
5.3 km

2
 No West Simple 

Chhota 

Shigri 
India 

32.24 N / 

77.51 E 
15 km

2
 

Yes 

(~10%) 
North Compound 

Tasman 

Glacier 

New 

Zealand 

32.75 N / 

77.33 E 
101 km

2
 

Yes 

(~45%) 
South Compound 
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Table 1. Details of the optical dataset used for the study. 

Satellite & 

(Sensor) 
Date Path/Row 

Band No (Spectral 

Region) 

Spatial 

Resolution 
Glacier 

Terra (ASTER) Mar 02, 2006 204/717 

VNIR 

3* (0.76 - 0.86 µm)  

15 m South Glacier 

Landsat 8 (OLI) Aug 29, 2013 061/017 

PAN 

8 (0.5 - 0.68 µm)  

15 m South Glacier 

Landsat 8 (OLI) Nov 20, 2014 061/017 

PAN 

8 (0.5 - 0.68 µm)  

15 m South Glacier 

IRS P6  

(LISS-III) 

Oct 13, 2009 

095/048 

VNIR 

2 (0.52 - 0.59 µm)  

3 (0.62 - 0.68 µm)  

4 (0.77 - 0.86 µm)  

SWIR 

5 (1.55 - 1.70 µm)  

 

24 m 

Chhota Shigri 

Oct 08, 2010 

Terra (ASTER) Jan 24, 2006 223/604 

VNIR 

1 (0.52 - 0.60 µm)  

2 (0.63 - 0.69 µm)  

3 (0.76 - 0.86 µm)  

15 m 
Tasman 

Glacier 
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Table 2. Details of SAR image pairs used for feature tracking in the study glaciers. 
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South 

Glacier 

S
en

ti
n
el

 1
 

(C
-b

an
d
) 

Oct 14, 

2014 

Oct 09, 

2015 
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South 
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Sep 17, 

2009 

Sep 02, 

2010 
VV Dsc 334 2961 5 x 20 m 
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Apr 23, 

2005 

Mar 04, 

2006 
VV Dsc 324 545 5 x 20 m 

Tasman 
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S
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A
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S
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(L
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Feb 07, 

2007 

Mar 27, 

2008 
HH Dsc 456 2344 12.5 m 

Tasman 
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Table 4. Summary of zone wise RMSE of the proposed feature tracking approach for all 

three study glaciers. The overall RMSE and bias is also presented for each study period. 

The different zones are shown in Figures. 1(a-c). 

Glacier Period 

Lower 

Zone 

Mid 

Zone 

Upper 

Zone 
Overall 

RMSE (m/yr) 
RMSE 

(m/yr) 

Bias 

(m/yr) 

South Glacier 
2005-06 16 8 12.2 13.25 9.5 

2014-15 19 7 11.7 12.8 11 

Chhota Shigri 2009-10 11.4 16.9 - 15.32 3.2 

Tasman 

Glacier 

2005-06 148.8* 41 - 71 28.81 

2007-08 48.1* 70 - 67.1 13.14 

       *RMSE has been calculated from one stake measurement. 
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Table 5. Estimated displacements for each study glacier over stable region. 

Glacier Study Period Estimated velocity in stable areas (at 

95% confidence interval) in m/yr 

South Glacier 2005-06 2.4 

2014-15 3.9 

Chhota Shigri Glacier 2009-10 4.2 

Tasman Glacier 2005-06 3.9 

2007-08 4.4 
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Table 6. Zone wise RMSE of the normalized cross correlation (NCC) based method 

CIAS (at best performing window size) for the study glaciers. 

 

 

 

 

 

 

 

 

*

RMSE has been calculated from one stake measurement. 

 

  

Glacier Period 

RMSE (NCC) 

 in m/yr 

Lower 

Zone 

Mid 

Zone 

Upper 

Zone 

Overall 

South Glacier 
2005-06 5.5 7.3 18.2 9 

2014-15 5.4 14 11 12.8 

Chhota Shigri 2009-10 20.5 21 - 20.8 

Tasman 

Glacier 

2005-06 2.4* 115.8 - 105 

2007-08 2.9* 175.9 - 160 

Acc
ep

te
d 

M
an

us
cr

ipt



38 

 

 

Figure 1. Locations of the three study glaciers (not to scale):  a. South Glacier (Canada), 

b. Chhota Shigri (India), and c. Tasman Glacier (New Zealand). Different zones are 

shown where A represents the average equilibrium line altitude (ELA) and the region 

above A represents the upper zone (accumulation zone), the region between A and B 

represents the middle zone (upper ablation area) and the region between B and C 

represents the lower zone (lower ablation area) of the glacier. 
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Figure 2. Proposed feature tracking algorithm Spatially varying WIndow based 

maximum likelihood Feature Tracking (SWIFT) for glacier surface velocity estimations 

using optical and SAR imagery. 
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Figure 3. Schematic of image blocks (X and Y) from two time periods T1 and T2 used 

in image matching. 
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Figure 4. Segmented image of the Tasman Glacier using ASTER (band 1-3). The 

highlighted segments in yellow are those inside the glacier boundary which merged 

with a large segment outside the glacier area. 
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Figure 5. Spatial distribution of the estimated surface velocity values of South Glacier 

a) for 2005-06 and b) for 2014-15. The arrows show the direction of estimated velocity 

and the length shows the magnitude of velocity. 
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Figure 6. Estimated velocities along the central flowline of South Glacier for period a) 

2005-06 and b) 2014-15. The field measurements close to the study period are also 

shown (Flowers et al., 2011; Farinotti et al., 2017). c) Zonal statistics of South Glacier 

estimates. 
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Figure 7. Boxplot of the surface velocity estimates of South Glacier for period a) 2005-

06 and b) 2014-15.  
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Figure 8. a) Spatial distribution of the estimated surface velocity for period 2009-10 

after smoothing. Circled areas of 1, 2 and 3 show the three zones with high velocity. b) 

Estimated and observed glacier annual surface velocity along the central flow line. c) 

Zonal statistics of Chhota Shigri Glacier velocity estimates for different zones. 
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Figure 9. Glacier wide mean surface velocity trend of Chhota Shigri Glacier (field and 

estimated) for period 1987-2010. The glacier surface velocity estimates (period Oct 

2003-Oct 2009) are taken from Tiwari et al. (2014). *Field measurements are taken 

from Dobhal et al., (1995) (period 1987-89) and Dr Farooq Azam (period 2009-10).  

**Estimated mean glacier surface velocity by the proposed method (Oct 2009 - Oct 

2010). 
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Figure 10. a) Direction of the estimated velocity of Chhota Shigri Glacier during the 

year 2009-10. The directions are shown by arrows. Regions I, II and II indicate the areas 

where the estimated flow direction mismatches the aspect map. b) Aspect map of the 

glacier. 
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Figure 11. Spatial distribution of velocity estimates of Tasman Glacier for a) period 

2005-06 using Envisat C-band VV polarized data and b) period 2007-08 using ALOS 

PALSAR L-band HH polarized data. Circled areas 1, 2 and 3 (in black) represent 

erroneous patches with unrealistic high surface velocity values. 
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Figure 12. Difference between the velocity estimates and reference velocity (source: 

Farinotti et al., 2017), where the velocity estimates have been calculated for a) 2005-06 

using Envisat (C-Band) without limiting the maximum window size, b) 2005-06 using 

Envisat (C-Band) after limiting the maximum window size. c) 2007-08 using ALOS 

PALSAR (L-Band) after limiting the maximum window size. Positive values show the 

overestimation and negative values show underestimation by the proposed approach. 
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Figure 13. Estimated velocities of Tasman Glacier for period 2005-06 and 2007-08 

compared with the field measurements close to the study period (source: Purdie et al., 

2018). 
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Figure 14. Zone-wise mean velocity estimates for the Tasman Glacier. 
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Figure 15. Window size distribution of Chhota Shigri Glacier using optical images of a) 

Oct, 2009 and b) Oct, 2010. c) The statistical distribution of surface velocity estimates 

using spatially varying window size obtained from a) & b). 
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Figure 16. A comparative plot of the velocity estimates from the SWIFT method and the 

same maximum likelihood correlation but with spatially fixed window size (SFWS):  a) 

South Glacier for period 2005-06, b) Chhota Shigri Glacier for period 2009-10, and c) 

Tasman Glacier for period 2007-08. 
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Figure 17. A comparative plot of proposed velocity estimates and cross correlation-

based velocity estimates (at best performing window size) of:  a) South Glacier for 

period 2005-06, b) Chhota Shigri Glacier for period 2009-10, and c) Tasman Glacier for 

period 2007-08. 
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