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4.1. INTRODUCTION

Flooding involves large inundated regions, which are 
often inaccessible or ungauged. Remote sensing (RS) 
data provide an elegant and practicable solution to assess 
spatiotemporal flood evolution. RS‐based flood map­
ping has witnessed significant research breakthroughs 
over the last decade. In addition to providing stakeholders 
with timely and spatially distributed information for 
crisis response [Schumann et al., 2016], RS‐based flood 
maps are now utilized for hydrodynamic model calibra­

tion and evaluation and to improve forecasts through 
assimilation [Schumann and Domeneghetti, 2016].

The cost of  high resolution (>4 and ≤ 10 m) imagery 
and sparse temporal coverage previously acted as a deter­
rent to unlocking the full potential of RS for flood 
management. In 1999, the International Charter “Space 
and Major Disasters” was initiated to provide a unified 
system of rapid satellite data acquisition and delivery in 
the face of major disasters [Martinis et al., 2015b]. Floods 
are so frequently occurring and globally pervasive, that 
more than 50% of all satellite data requests through the 
charter were flood related in the past decade, as illus­
trated in Figure 4.1. The launch of  several high‐resolu­
tion SAR missions has also contributed to improvements 
in the spatial and temporal resolutions and global cov­
erage, making their use in flood mapping more practical. 
A summary of currently operational, historical, and 
planned SAR missions is presented in Figure  4.2, with 
Table 4.1 providing details of the sensor characteristics.

Sensors operating in the visible region of the electro­
magnetic (EM) spectrum offer the most straightforward 
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solution for flood monitoring. Optical RS data are easy 
to interpret and multiple studies have demonstrated the 
utility of optical RS for flood mapping [Ordoyne and 
Friedl, 2008; Li et al., 2015; Blasco et al., 1992; Ogilvie 
et al., 2015; Jain et al., 2005]. The increasing number of 
optical sensors with comparatively shorter revisit times, 
has improved the spatiotemporal coverage substantially. 

However, as flood events are frequently characterized by 
persistent cloud cover, systematic monitoring using 
optical sensors is challenging.

Microwave remote sensing in the longer wavelength 
regions is able to penetrate clouds, which obstruct the 
view of optical sensors. Synthetic Aperture Radar (SAR) 
sensors use active imaging techniques and therefore can 
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Figure  4.1  Distribution of hazard types for Charter activations between 2000 and 2010. From EM‐DAT: The 
OFDA/CRED International Disaster Database (www.emdat.be – Université catholique de Louvain, Brussels, Belgium).
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Figure 4.2  Summary of satellite‐based SAR missions that are applicable for flood studies, with corresponding 
wavelength bands and frequencies illustrated.
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function independent of solar illumination or weather 
conditions. This property is indispensable for small to 
medium sized catchments, where flood waters often 
retreat before the cloud cover dissipates sufficiently 
[Schumann et al., 2007a]. Consequently SAR data are 
currently the only reliable source of information for mon­
itoring riverine floods for small catchments with subkilo­
meter channel widths [Schumann and Moller, 2015].

Similar to the response of a mirror, a smooth surface, 
or what is often referred to as a specular reflector in 
microwave remote sensing, reflects the radar beam back 
at an angle equal and opposite to the angle of incidence. 
This causes smooth or level surfaces to appear black in 
SAR images as the radar return is not recorded by the 
antenna. Conversely, land surfaces with multiple objects 
appear rough to the sensor and return high backscatter. 
It is this high contrast in backscatter values recorded for 
land and water that facilitates surface water detection in 
SAR imagery.

Flood extent information can facilitate not only effec­
tive regional prioritization, but also efficient resource 

allocation, both during and after events. For ungauged 
catchments and inaccessible regions, SAR‐based flood 
maps are frequently used in combination with high reso­
lution topographic data to derive spatially distributed 
water levels [Barreto et al., 2016; Frappart et al., 2006; 
Hostache et al., 2009; Schumann et al., 2007; Matgen 
et  al., 2016]. SAR‐derived water levels (WL) are often 
used as hydrodynamic model calibration and validation 
targets [Pappenberger et al., 2007; Schumann et al., 2008a; 
Di Baldassarre et al., 2009; Gobeyn et al., 2015, 2017; 
Gupta et al., 1998; Horritt, 2000; Horritt and Bates, 2002; 
Hostache et al., 2006; Wood et al., 2016], or assimilated 
into the model trajectory for an improved forecasting 
skill [García‐Pintado et al., 2013; García‐pintado et al., 
2014; Hostache et al., 2010; Lai and Monnier, 2009; 
Mason et al., 2012a; Matgen et al., 2010].

The last few years have seen a massive increase in utili­
zation of spaceborne SAR systems for flood extent map­
ping, as new high‐resolution platforms like TerraSAR‐X/
TanDEM‐X and the COSMO‐Skymed constellation 
became operational, as shown in Figure 4.2 [Martinis and 

Table 4.1  Summary of Spaceborne SAR Missions and Sensor Characteristics

SAR Platform Band Polarization Look angle (°) Swath (km) Resolution (m) Repeat cycle (days) Mission status

ALMAZ‐1 S Single 20–70 350 10–30 Completed
ALOS PALSAR‐1 L Dual 10–51 40–350 6.25–100 46 Completed
ALOS PALSAR‐2 L Quad 8–70 25–350 1–100 14 Active
COSMO‐SkyMED 

(CSK)
X Quad 20–59.5 10–200 1–100 <1 Active

CSK‐2 X Quad – 40–200 0.8–20 – Planned
Envisat ASAR C Quad 14–45 58–405 30–1000 35 Completed
ERS‐1/2 AMI C Single 23 100 30 35 Completed
JERS‐1 C Single 35 75 18 44 Completed
KOMPSAT‐5 X Quad 20–55 5–100 1–20 28 Active
NISAR L, S Quad – – – – Planned
NovaSAR‐S S Dual – 15–150 6–30 – Planned
RADARSAT‐1 C Single 10–60 45–500 8–100 24 Completed
RADARSAT‐2 C Quad 10–60 10–500 3–100 24 Active
RCM C Quad – 20–350 5–50 1–4 Planned
RISAT‐1 C Quad 12–55 10–225 1–50 4 Active
RISAT‐2 X Quad 20–45 10–50 1–8 4 Active
RISAT‐1A C Quad 12–55 10–225 1–50 4 Planned
SEASAT‐1 L Single 20–26 100 25 17 Completed
Sentinel‐1A/B C Quad 20–45 20–400 5–100 6 Active
SIR‐A L Single 47–53 40 40 – Completed
SIR‐B L Single 15–60 10–60 15–45 – Completed
SIR‐C X, C, L Quad 15–60 15–90 15–45 – Completed
TerraSAR/

TanDEM‐X
X Quad 15–60 5–200 0.24–40 11 Active

TanDEM‐L L Quad – ~350 1–20 16 Planned
TSX‐NG X Quad 20–55 5–400 1–30 – Planned
TerraSAR‐X 

(HRWS‐SAR)
X Quad – 10–800 0.25–25 – Planned

Note: The italicized entries indicate satellite constellations with identical configurations.
Source: Modified based on Lillesand et al. [2004].
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Rieke, 2015; Pradhan et al., 2016, 2014; Voormansik et al., 
2014; Pierdicca et al., 2014; Pierdicca et al., 2013; Pulvirenti 
et al., 2011a and b, 2012, 2013, 2014a and b]. Launch of 
the Sentinel‐1A/B twin satellites, which provide global 
SAR coverage at 20 m spatial resolution with a revisit time 
of 3 days (and a repeat cycle of 6), marks a shift toward 
open data sharing in the satellite industry. Moreover, 
accessibility to fine resolution SAR imagery has already 
triggered a plethora of automated flood extraction algo­
rithms [Boni et al., 2016; Sala et al., 2016; Twele et al., 
2016]. It can therefore be envisioned that the next decade 
will witness an inclusive data sharing environment condu­
cive to operational SAR‐based flood mapping.

As operational flood mapping needs to facilitate rapid 
image interpretation, low‐resolution datasets can be used 
to assess flood hazards at global scales [Westerhoff et al., 
2013; Giustarini et al., 2015b]. This diagnostic analysis 
can be utilized to identify areas of high hydraulic com­
plexity, where finer scale imagery needs to be used. Such 
analysis can potentially inform variable resolution global 
flood models, which can be used to optimize the utiliza­
tion of  computational resources [Mason et al., 2015]. As 
high‐resolution image processing as well as modeling 
are associated with significant computational costs, it’s 
vital to utilize data at scales appropriate for the flood 
event under investigation.

This chapter provides a discussion on the issues related 
to operational SAR‐based flood mapping at multiple 
scales and current progress in finding practicable solutions. 
First, the characteristics of  SAR signals and surface 
feature interactions are discussed along with their impli­
cations for flood mapping and proposed solutions in 
literature. This is followed by an overview of the state of 
the art in SAR‐based flood delineation techniques. 
Furthermore, some selected case studies from recent liter­
ature, which demonstrate the potential of SAR‐derived 
extents for flood studies at different spatial scales, are 
given. Finally, future work and open research questions 
in SAR‐based flood mapping have been elucidated.

4.2. PRINCIPLES OF SAR: IMPLICATIONS 
FOR FLOOD MAPPING

Microwave interactions with the Earth’s surface are 
governed by the SAR sensor configuration (wavelength, 
polarization, resolution, and looking angle), surface 
characteristics (roughness and dielectric properties), and 
local slope. The high contrast in the radar image between 
flooded and nonflooded areas is primarily the result of 
specular reflection from standing water. This phenomenon 
makes water surfaces appear dark on SAR images, as 
opposed to the increased scattering from rough land 
surfaces, which makes terrain appear bright. As floods 
are mainly identified using the changes they cause in 

backscattering behavior of land cover classes, flood map­
ping is then detecting the insurgence of water in three 
main land cover classes: bare soil, vegetation, and urban 
areas. In order to understand these changes, one needs to 
be aware of the underlying mechanisms that drive the 
microwave interactions with the Earth’s surface.

4.2.1. Geometric Distortion

The SAR side‐looking sensing implies that two points 
will look closer in the slant‐range image than they actu­
ally are on the ground. This effect gets more pronounced 
as we move closer to the antenna (i.e., in the near range) 
and is most noticeable at nadir (90°). The projection 
lines from the ground‐range to slant‐range are usually in 
the form of concentric circles around the antenna, due to 
the spherical divergence of  radar pulses over such large 
distances. This leads to geometric distortion in the 
images, which needs to be accounted for in flood map­
ping problems.

The imaging of steep vertical objects through SAR 
results in a phenomenon known as relief  displacement. 
The top of the structure shifts from its actual ground 
location, proportional to object height and radar look 
angles. In particular, these errors can be of three types:

1. Foreshortening: As radar imaging records distances 
from the antenna, the top of  tall targets such as moun­
tains would be encountered by the beam before the 
bottom is seen. This makes the object appear to “lean” 
toward the sensors with the foreslope (the slope facing 
the sensor) appearing shorter than in reality.

2. Layover: When slopes are steeper, targets in the 
valley region behind the mountains display a longer 
slant range. This causes objects in the slant range to be 
ordered in reverse of their actual ground positioning. 
Consequently, the front slope appears to overlay on the 
backslope on the SAR image.

3. Shadow: This effect is caused primarily by the side‐
looking imaging technique. As the radar views objects at 
an angle, it cannot “see” a certain region hidden by 
vertical structures, these appear as dark shadows in the 
SAR image.

4.2.2. Surface Roughness and Local Incidence Angle

Radar backscatter is a function of the surface rough­
ness and local incidence angle of the surface from which 
the radar beam is scattered. See Figure 4.3. The nature of 
this scattering determines the strength of the signal 
returned to the sensor and can be of the following types.

4.2.2.1. Surface Scattering
The scale of  the surface roughness can be represented 

by the root‐mean‐square deviation (h) from the mean 
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height ( )h  of  the interface dividing the two homogeneous 
media, the atmosphere, and the hypothetical perfectly 
smooth open water surface. Intuitively, one can imagine 
that when this deviation is comparable to the magnitude 
of  the wavelength, the surface undulations return sepa­
rate radar echoes to the antenna. The interference of 
these returned signals spuriously raises the recorded 
backscatter values, leading to a reduction in specular 
reflection effects.

According to the Rayleigh criterion, the phase change 
caused by h should be less than a quarter of the wavelength 
(λ). As this phase difference increases, scattering becomes 
more diffuse (i.e., energy is reflected equally in all direc­
tions) and “smooth” surfaces are no longer detectable by 
the contrast. The local incidence angle, loci

, determines the 
path difference between the incident and the scattered 
path, and therefore can influence the maximum accept­
able value of h for smooth surfaces. The Rayleigh criterion 
describes smooth surfaces as those satisfying

	
h

loci
8Cos

	 (4.1)

Equation 4.1 implies that h must be 1/8 of the wave­
length to account for two‐way travel of the radar path. In 
case of RS, a stricter criterion for smoothness is needed, 
known as the Frauenhoefer criterion, which restricts h to 
1/32 of  λ, as the distance between the target and the 
sensor is usually several orders of magnitude larger than 
the wavelength of the incident beam. Based on the above, 

surface scattering mechanisms can broadly be classified 
into two categories:

1. Specular scattering (or reflection): Where the majority 
of the incident microwave energy is reflected off  a smooth 
surface; the remaining energy is transmitted through the 
media in accordance with Snell law of refraction. Radar 
returns are negligible for a perfect specular reflector as 
the beam is reflected away from the receiver.

2. Bragg scattering: When the surface roughness of a 

slightly rough 
32 8

h  homogeneous medium exhibits 

periodicity, an identifiable and coherent pattern of back­
scatter is returned. Bragg surfaces are often an ordered 
collection of facets, where particular orientations occur 
at regular intervals. The facets oriented toward the sensor 
can often produce return signals, which resonate with the 
incident beam resulting in bright image regions. This 
effect is more pronounced for steeper incidence angles as 
the sensor may record backscatter returned from both 
specular and Bragg scattering.

3. Diffuse surface scattering: As the surface roughness 
increases beyond 1/8 of the wavelength, the scattering 
gets more random. An extremely rough surface should 
ideally scatter the radar beam in all directions with equal 
intensities, resulting in higher signal returns.

4. Corner reflection: The radar pulse is reflected back 
to the sensor when it encounters a smooth horizontal 
and smooth vertical surface orthogonal to each other, 
resulting in saturated pixels. Corner reflection can be 
caused by partially submerged vegetation or urban 
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Figure 4.3  Different scattering mechanisms displayed by radar interactions with water and land surfaces. Based 
on Martinis et al. [2015].
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features such as roads, pavements, and buildings, resulting 
in very strong returns.

4.2.2.2. Volume Scattering
Radar beams achieve measurable penetration depths 

directly proportional to the incident wavelength. Complex 
natural environments often include multiple media, hav­
ing different dielectric constants, which results in volume 
scattering. When microwaves come in contact with a het­
erogeneous media exhibiting variations in electromagnetic 
properties, each wave is scattered in many different direc­
tions. The intensity of returned backscatter is a function 
of the density and heterogeneity of the traversed media. 
The shape, density, relative permittivity, and orientations 
of the various media encountered by the radar signal 
then determine the strength of the backscatter recorded 
at the antenna.

4.2.3. Dielectric Constant

The dielectric constant is defined as the ratio between 
the electrical permittivity of a homogeneous material 
with respect to that of vacuum, given by a dimensionless 
quantity also known as relative permittivity. Natural 
materials do not respond to external electromagnetic 
fields instantaneously, unlike vacuum. The response gen­
erally depends on the frequency of the applied field, 
which in this case is the radar signal.

Microwave frequencies are highly sensitive to changes 
in the dielectric constant, and can achieve considerable 
penetration depths as most dry natural materials exhibit 
values between 3 and 8, resulting in low reflectivity in this 
region of the EM spectrum. Conversely, liquid water has 
a dielectric constant of approximately 80 in the microwave 
region. Based on this, open water should return most of 
the signal right back to the sensor, exhibiting strong 
reflectivity. This doesn’t happen in reality as the effects of 
specular reflection dominate and the beam is directed 
away from the sensor.

Since the dielectric constant is directly correlated to the 
moisture content per unit volume, higher vegetation/soil 
water content implies larger values of radar returns. Most 
of the sensible variation in backscatter recorded from 
natural surfaces can be explained by the moisture content 
of the underlying geographical features. This property is 
often exploited in the derivation of remote sensing based 
soil moisture. As the dielectric constant depends on the 
frequency of the EM wave, the penetration depth is 
directly related to the wavelength. For instance, when 
detecting flooding under forests, using a SAR image 
operating in the longer wavelength region (lower frequency) 
allows the EM waves to penetrate the canopy to a greater 
extent than shorter wavelengths, which experience sur­
face scattering.

4.2.4. Polarization

The polarization of a SAR image refers to the orienta­
tion of the electric field intensity vector in the transmitted 
and received radar waveform. SAR sensors usually send 
and receive horizontally polarized waves, as the returns 
recorded are higher than in vertical polarization. When 
the transmitted and received radar wave polarizations are 
identical this is known as copolarized; conversely cross‐
polarization refers to opposite send and receive polariza­
tions. Fully polarimetric SAR images (antenna can record 
HH, HV, VH, and VV returns simultaneously) can be 
useful for detecting flooding under vegetation or urban 
areas as illustrated in the following sections because they 
are able to highlight the double‐bounce component of 
the surface scattering.

4.2.5. Speckle

SAR images are affected by conspicuous bright and 
dark spots known as shot noise or speckle. This apparently 
random manifestation of light and dark pixels arises from 
constructive and destructive interference of scattered 
radar waves. A SAR pixel represents a few square meters 
of area on the ground, often presenting the incident 
microwaves with multiple scatterers. These waves, which 
are scattered nonuniformly in all directions, interfere with 
one another before reaching the antenna. If this interfer­
ence is constructive (the crests and troughs of the wave­
form superimpose), a strong signal return is recorded 
leading to a bright spot in the SAR image; conversely 
destructive interference causes the dark spots.

Speckle can be modeled as a random noise effect and 
several filtering techniques have been proposed to deal with 
this particular phenomenon over the years. Research sug­
gests that the choice of the particular filtering technique 
chosen should be governed by the final application. Lee, 
Frost, Enhanced Lee, median, and Gamma‐Maximum‐A‐
Posteriori are some of the speckle filters commonly applied 
as preprocessors to SAR‐based flood detection studies 
[Voormansik et al., 2014; Martinis et al., 2009]. For addi­
tional reading, see Ulaby et al. [2014], Rees [2013], and 
Woodhouse [2005].

4.3. COMMON SAR‐BASED FLOOD 
MAPPING METHODS

A large variety of methods have been introduced in the 
recent past to map water bodies using SAR imagery. 
When favorable conditions prevail, a single SAR image 
acquired during a flood (hereafter referred to as “flood 
image”) can be sufficient to reliably detect terrestrial 
water bodies. The single image technique works best 
when there is no wind roughening the water surface and 
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when the detection is limited to floodwaters on bare soils 
and scarcely vegetated terrains. However, it is widely rec­
ognized that it is preferable to consider at least a pair of 
images consisting of the flood image and an adequate ref­
erence image (i.e., an image acquired in nonflooded con­
ditions) as change detection not only tends to improve 
the classification accuracy, but also helps to distinguish­
ing permanent and transient water bodies [Chini et al., 
2017]. Eventually, only an approach taking advantage of 
a dense time series of backscatter recordings derived 
from tens or hundreds of SAR images acquired over a 
given area provides all the information that is needed to 
fully understand a floodplain’s backscatter response to 
changing water levels and to accurately delineate the 
floodwaters on any given day [Schlaffer et al., 2016].

4.3.1. Single Image

A histogram thresholding approach is the simplest and 
most straightforward single‐image classification method. 
It consists of assigning to the semantic class “flooded” all 
pixels with a backscattering value lower than a given 
threshold. To overcome the subjectivity of this method, 
many automated techniques have been proposed in the 
literature. They are based on either parametric or non­
parametric approaches.

When the former are applied, water and all other classes 
are discriminated by approximating the class distributions 
with predefined statistical models and, as a result, the 
optimal threshold value can be derived from their param­
eters. By contrast, the nonparametric approaches do 
not make any assumption about the classes’ statistical 
distributions. In 2007, Bazi et al. [2007] introduced a rep­
resentative variant of a parametric thresholding approach 
that consists of automatically estimating the statistical 
parameters of the “target” and “background” classes by 
the expectation‐maximization algorithm. The approach 
is based on the assumption that the two classes both 
follow a generalized Gaussian distribution.

One of  the most widely used nonparametric image 
thresholding techniques is known as Otsu’s method. It 
searches for the threshold that minimizes within‐class 
variability while at the same time maximizing between‐
class variability [Otsu, 1979]. The main advantage of this 
approach is that it is computationally inexpensive and 
therefore particularly suitable for rapid mapping applica­
tions. For calm open water surfaces, the results of thresh­
olding approaches are usually reliable and the largest part 
of an inundation area is detected.

However, the effectiveness of  pure thresholding 
methods is reduced when the “target” and “background” 
classes are unbalanced and/or overlap significantly. This 
is often the case as flooded areas typically cover a 
relatively small fraction of a SAR scene and different 

factors contribute to having relatively high backscatter 
from inundated terrain. A procedure adopted to render 
thresholding approaches more robust consists of splitting 
the entire SAR scene into different tiles that were either 
manually or automatically selected for their bimodality 
characteristics [Chini et al., 2017; Martinis et al., 2009; 
Martinis et al., 2015c].

To limit the over‐ and under‐detection of flooded areas, 
backscattering thresholding is sometimes complemented 
with contextual information. A possible approach to do 
it is region growing, which is an image segmentation 
method that starts with the selection of seeds, which are 
usually identified via thresholding. The procedure then 
examines the backscatter values of neighboring pixels in 
order to determine whether they should be added to the 
“flood” class or not. A recent example of such an 
approach is provided in Giustarini et al. [2013].

Active contour modeling is an alternative that allows 
converting incomplete or noisy edge maps into smooth 
continuous vector boundaries [Mason and Davenport, 
1996]. An automated technique for delineating a fluvial 
flood using a statistical active contour model was first 
described in Horritt [1999]. The proposed approach is 
applied to a SAR image to identify areas of  homoge­
neous speckle statistics. The approach was further devel­
oped by Mason et al. [2007] where SAR image information 
was supplemented with topography data and vegetation 
height maps. As a result, the ground height of the edge 
points of the flood map varies smoothly along the river 
reach. A hybrid region growing and active contour 
modeling approach was adopted by Mason et al. [2010].

4.3.2. Multitemporal Image Analysis

A second category of flood mapping algorithms is 
based on the analysis of two or more SAR scenes acquired 
over time. In its simplest form, a change image is produced 
by subtracting the grey values of a flood scene from those 
in a so‐called reference image acquired before the event. 
Changes in backscatter are assumed to be mostly due to 
the appearance of floodwater and the delineation of the 
latter requires the application of a classification algorithm 
to differentiate the “target” (i.e., changed pixels) and 
“background” (i.e., unchanged pixels) classes derived 
from the difference image [Chini et al., 2013, 2008].

A variety of algorithms are available to distinguish 
the  changed and unchanged areas from a pair of SAR 
scenes. The previously described thresholding algorithms 
represent an option. A more advanced split‐based 
approach for unsupervised change detection was proposed 
by Bovolo and Bruzzone [2007], for the identification of 
tsunami‐induced changes obtained from multitemporal 
SAR imagery. A fully automated hierarchical split‐based 
approach was introduced by Chini et al. [2017], which 
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searches for tiles that are characterized by histograms of 
backscatter and change values depicting both an observ­
able bimodality. The process facilitates the parameteriza­
tion of the two distribution functions, thereby rendering 
the mapping of the floodwater more accurate and 
reliable.

The application of change detection requires the avail­
ability of SAR scenes acquired under nonflooded condi­
tions. To select an adequate reference image, several 
requirements should be fulfilled: the reference image 
should have the same viewing geometry and the same 
polarization configuration as the selected flood image. 
Furthermore, it should have been acquired during the 
same season as the flood image, especially for applica­
tions in regions characterized by a pronounced season­
ality in moisture and vegetation growth. The difficulties 
of finding an adequate image in the archive and of cor­
rectly interpreting all detected changes in backscatter rep­
resent the main limitations of flooding‐related change 
detection. The advent of missions such as Sentinel‐1 
providing regular observations at high temporal resolu­
tion together with the development of algorithms ren­
dering the retrieval of reference images automatic and 
objective [Hostache et al., 2012] facilitates the application 
of these techniques.

Methodologies based on interferometric SAR are 
starting to be more widely used for flood mapping. These 
methods also fall in the category of  change detection 
techniques. A well‐known problem of SAR‐based flood 
mapping is that the detection of floodwater in built up 
areas remains problematic. This is because the increase of 
the double‐bounce effect resulting from the presence of 
floodwater between buildings is hardly detectable through 
the observation of changes in SAR intensity. To address 
this important issue Refice et al. [2014] and Pulvirenti 
et  al. [2015] developed algorithms that integrate SAR 
intensity data with other features extracted from SAR 
data, such as the coherence. The interferometric coherence 
is basically a measurement of the degree of correlation 
between two complex (phase and amplitude) SAR images. 
It is particularly related to the change in the spatial 
arrangement of the scatterers within a SAR image pixel 
[Chini et al., 2015], and thus to geometric changes in the 
scene. Flooded areas exhibit low coherence, which helps 
distinguishing them from nonflooded regions where 
coherence tends to be high. A coherence‐based change 
detection approach thus effectively complements one 
that is solely based on intensity change detection.

The launch of several constellations of SAR satellites 
paves the way to improve flood mapping by making use 
of multitemporal as well as multi‐angular information. 
An approach that is based on a time series of backscatter 
derived from tens or hundreds of images acquired over an 
area allows characterizing floodplains in an unprecedented 

way. Notwithstanding this recent progress, multitemporal 
image analysis of SAR data is still the exception rather 
than the rule and these techniques are mostly applied to 
optical data.

In their pioneering study Westerhoff et al. [2013], used 
multitemporal ASAR imagery to estimate for each pixel 
specific probability distributions of water and nonwater 
backscatter. Using these histograms, the probability of a 
“new” measurement belonging to either one or the other 
population is derived. In O’Grady et al. [2014], collections 
of SAR data were used to find a relationship between 
local incidence angle and backscatter coefficient, which is 
used to separate water and nonwater pixels, thereby 
addressing commonly encountered problems with single 
image techniques and simpler forms of change detection 
such as underdetection due to waves on water and over­
detection due to low backscatter from dry surfaces. A 
harmonic model was fit to the backscatter time series on 
a per‐pixel basis and used to generate flood maps from 
newly acquired SAR scenes in Schlaffer et al. [2015].

4.4. IMAGE INTERPRETATION: CHALLENGES 
AND SOLUTIONS

The contrast between water and land backscatter 
values is caused by specular reflection, which decreases 
the backscatter returned to the sensor. This allows for the 
use of thresholding procedures, as the overlap between 
class histograms is not significant [Martinis et al., 2009; 
Martinis et al., 2015a; Boni et al., 2016]. These techniques 
work fairly well for surface water extraction in relatively 
homogeneous regions such as bare soils. However, as 
discussed in the previous section, natural environments 
are rarely so ideal. Flood surfaces are mostly broken by 
emergent vegetation, roughened by wind effects or by 
protruding urban structures, each of which contribute to 
complex scattering responses (Fig. 4.4).

As backscatter is affected by all the factors discussed 
above, inferences based solely on the signal return are 
often ambiguous. Motivated scientific research in this 
direction has resulted in some remarkable improvements, 
however, many open research questions remain. In this 
section, the challenges in SAR‐based flood delineation 
and state of the art solutions proposed in literature are 
discussed.

4.4.1. Open Water Surfaces

4.4.1.1. Smooth Water Detection
From the theoretical concepts presented in section 4.2.2, 

it is clear that the case where the water surface is sub­
stantially smoother than the adjacent land pixels at the 
boundary is ideal for surface water detection. For such 
areas, in which this difference in backscatter values 
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allows a clear distinction between land and water, many 
approaches have been proposed in literature. Some of the 
most common ones include visual interpretation, histo­
gram thresholding [Matgen et al., 2004], automatic classi­
fication algorithms like active contour (snake) [Horritt et al., 
2001], and contextual classification [Martinis et al., 2011], 
which have been reviewed most recently by Grimaldi et al. 
[2016] and Brown and Brownett [2016]. Some hybrid 
automated techniques featuring backscatter modeling, 
radiometric thresholding, region growing, and change 
detection have been proposed to simplify the processing of 
large number of data sets in a near–real‐time manner 
[Matgen et al., 2011; Giustarini et al., 2015a].

Most of the methods listed above work very well for 
smooth water detection in near ideal cases. Roughness 
and smoothness are a function of wavelength and angle 
of the incident radar beam. With present understanding, 
it intuitively follows that lower wavelength or higher fre­
quency systems display a higher land‐water backscatter 
contrast ratio leading to better detection of smooth open 
water. The sensitivity to surface roughness is drastically 
reduced with increasing wavelengths, as many of the 
potential scatterers on land also appear smooth to the 
low frequency sensor, which in turn leads to a reduced 
contrast between flood and nonflood classes.

The contrast between these two land‐cover classes 
increases with the incidence angle, as the scattering from 
a smooth surface decays more rapidly than that of a 
rough surface, as a function of the incidence angle 
[Wdowinski et al., 2008; Weydahl, 1996]. The drawback of 
working with higher incidence angles is an increase in the 
shadow effect or regions where an object point is not 
reached by any portion of the radar beam [Kropatsch and 
Strobl, 1990]. This effect is caused primarily by the side‐
looking imaging technique of SAR system and primarily 
occurs in areas with steep reliefs or in the presence of 
obstacles such as buildings. As the radar views objects at 
an angle, it cannot see a certain region hidden by vertical 
structures, these appear as dark shadows in the SAR 
image. This can give rise to some false alarms since its 
backscattering values are similar to that of water.

Moreover, if  the incidence angle is reduced, the layover 
effects that occur may mask the view of hydraulically 
important features leading to loss of important domain 
knowledge and underestimation. As the spatial resolu­
tion is continuously improved with newer SAR sensors 
joining the fleet of EO satellites every year, the size of 
objects that can cause such distortions is getting smaller. 
For example, in high‐resolution imagery, riparian vegeta­
tion can cast a shadow over the flooded area boundary 
being detected and add uncertainty to various regions.

Change detection approaches that use the difference 
between a preflood and postflood image acquired with 
the same geometric characteristics are often used to deal 
with this problem as shadowed areas show the same 
backscattering values. In some cases, the same consider­
ations can apply for very smooth urban surfaces such as 
tarmac or asphalted areas. However, the shadowed area 
remains a region where no information is available and, 
thus, hydraulic models or other ancillary data must be 
used to fill the gap [Pierdicca et al., 2008].

The shadow effect can also be precalculated if  a high 
resolution DEM is available to calculate the local inci­
dence angle at each pixel (i.e., incidence angle with respect 
to the local normal to the surface). Then, a map of areas 
in shadow, which occurs when the local incidence angle is 
larger than π/2 rad, can be precomputed to avoid false 
alarms. One of the more recent approaches suggest using 
linear regression to derive the slope coefficient between 
the local incidence angle and backscatter. The study 
found that the class separability was much higher when 
using the derived coefficient in place of backscatter 
[O’Grady et al., 2013]. The only limitation of this study 
was the data‐intensive approach, which requires enough 
samples of contemporary SAR images to assess the vari­
ation in backscatter behavior with the local incidence 
angle, which may not be available for most study areas.

In terms of polarization, several studies have assessed 
the best combination of transmitted and received polari­
zations for smooth open water detection. As one might 
expect, the horizontal component of the beam undergoes 
a perfect specular reflection resulting in low signal 

Open water Rough water Emergent vegetation Urban areas

N

Figure  4.4  The image shows example subsets of problem areas in SAR‐based flood mapping taken from a 
TerraSAR‐X (HH, 3‐m Stripmap) scene acquired on 25 July 2007 covering the Severn River flood event. The urban 
area shown here lies to the west of Tewkesbury, UK. © 2007 DLR, adapted from Mason et al. [2012].
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returns. Conversely, vertical polarizations are extremely 
sensitive to surface roughness, especially at higher fre­
quency ranges [Barber et al., 1996]. This means that a 
short wavelength radar beam would experience severe 
scattering over “rough” land surfaces. Although all polar­
izations can be used for flood mapping of bare terrains, 
VV is more sensitive to the small waves generated by the 
wind over a water surface, while the wind effect for flood 
detection is somewhat mitigated in HH polarization. 
Wind‐induced surface roughening is one of the major 
causes of  underdetection due to the reduced contrast 
between backscatter from flooded and nonflooded soils.

The contrast between flood and nonflood regions is 
usually larger for moist soils, because the volumetric soil 
moisture content increases the complex soil permittivity. 
This results in an increase of the contrast between the 
electromagnetic impedances of air and terrain. In fact, 
for a constant roughness, backscatter increases with an 
increase in soil moisture [Pierdicca et al., 2008; Panegrossi 
et al., 2011]. Moreover, because soil permittivity and 
roughness play the same role for both water and land, the 
difference in backscattering between floodwater and bare 
soils is not largely affected by frequency. Although in case 
of a very calm water surface, the contrast may increase 
with frequency, as the soil would appear equivalently 
rougher to the sensor and therefore appear brighter in the 
image. At this point, it would be worthwhile to recall the 
concept of roughness, which needs to be considered 
relative to the radar wavelength. A surface considered 
smooth at lower frequency (e.g., L‐band) may behave as a 
rough surface at higher one (e.g., X‐band).

4.4.1.2. Rough Water Detection
Flooded SAR images are often captured while the 

associated rainfall event is ongoing, which implies that 
open water surfaces are roughened due to wind and rain 
effects. Larger water surfaces like oceans are more sus­
ceptible to the effects of  wind, which generates small 
amplitude waves over a wide range of  wavelengths result­
ing in Bragg scattering. Smaller inland water bodies such 
as lakes, reservoirs, or flood inundation patches, exhibit 
a more irregular pattern of  roughness leading to some 
diffuse surface scattering. These factors, which increase 
the surface roughness, result in higher signal returns, 
which in turn reduce land‐water class separability and 
could potentially lead to an underestimation of  the 
flooded area.

Wind‐induced gravity waves are still an open issue in 
case of mapping inland water from SAR because many 
unknown factors (different depths or obstacles that 
screen the wind flow) contribute to the problem. This 
makes modeling the radar signal rather challenging, even 
in case accurate meteorological information is available. 
The linear regression approach proposed by O’Grady 

et  al. [2013] to enhance separability between water and 
lookalike surfaces, which exhibit specular scattering 
behaviors, was extended to solve this problem. Additional 
parameters like backscatter normalized to 30° (using the 
fitted model) and the ratio between standard deviations 
of  the time series of  backscatter and intercept (SDR) at 
each pixel, was additionally used to derive a threshold­
ing‐based flood map [O’Grady et al., 2014]. Optimally, 
thresholding the SDR image showed the best class 
separability, establishing the merit of  generating such a 
database globally. Currently, operational and planned 
high‐resolution SAR missions facilitate the development 
of  such a database in the future.

In addition to wind roughening, intense precipitation 
events [Pulvirenti et al., 2012] and wet snow [Pulvirenti 
et  al., 2014a] also contribute to flood detection prob­
lems. The signal attenuation caused by heavy rain can 
be observed at higher frequencies, since the amount of 
absorption and scattering of  the signal due to water 
drops is higher. Similar to the case of  rain, wet snow is 
also very absorbent and produces very low backscatter, 
which can be easily misinterpreted as floodwater 
[Pulvirenti et al., 2014a]. Ancillary data such as local 
incidence angle maps, land cover maps, and optical 
imagery, can be utilized to supplement SAR information 
and reduce false alarm errors arising from this 
phenomenon [Pulvirenti et al., 2014a].

4.4.2. Partially Submerged Vegetation

Identifying flooding in pixels having a high vegetative 
fraction is relatively harder due to the complex scattering 
patterns that result. Double‐bounce scattering represents 
the key process that is used to detect flooded vegetation 
on a SAR image. Radar beams achieve measurable pene­
tration depths directly proportional to the incident wave­
length. When the ground is covered by a smooth and very 
reflective water surface, the intensity of the double‐bounce 
effect increases notably depending on canopy penetration. 
The returned signal is a combination of dihedral reflection 
caused by steep emergent stems for the parts of the radar 
beam that surpass the canopy, and volume scattering, 
resulting from the radar beam traveling through air, 
interleaved with a multilayer canopy, all having different 
electrical permittivities [Richards et al., 1987]. However, 
the difference between the signal returned by a flooded 
and a nonflooded forest is strongly dependent on vegeta­
tion and sensor characteristics.

The abovementioned factors result in volume scattering, 
which negates specular reflection effects and reduces 
detectability of  flood patches. SAR sensors operating in 
the longer wavelength regions can partially penetrate 
vegetation canopies, as penetration is directly related to 
the signal wavelength. Additionally, the double bounce 
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can be exploited to detect the flooding, as nonflooded 
forested areas would return a lower backscatter due to 
the underlying rough forest floor, which does not support 
corner reflection mechanisms [Pulvirenti et al., 2013]. 
In this case, an increase in soil moisture content decreases 
the contrast with flooded vegetation because the double‐
bounce effect gets amplified.

Flooded vegetation often results in enhanced backscatter 
due to a combination of dihedral and volume scattering, 
as opposed to dry vegetation where the radar beam only 
undergoes volume scattering. A review of early studies 
investigating flooding under vegetation concluded that 
L‐band radar images exhibited higher sensitivity to detect 
flooding under vegetation [Hess et al., 1990], and that 
steep incidence angles are better for flood detection as the 
possibility for the radar pulse to reach the forest floor is 
increased. Increasing the incidence angle also raises the 
bistatic surface scattering, however, smaller angles favor 
larger penetration depths. It is critical then to determine 
the optimum angle of incidence for the specific domain 
application being considered, such that the double‐bounce 
enhancement effect is most pronounced.

As longer wavelengths favor greater penetration depths, 
they are often preferred for monitoring floods in vege­
tated areas. However, several studies have demonstrated 
that C‐band data could allow flood mapping under 
lighter canopies [De Grandi et al., 2000]. Another factor 
affecting the penetration depth for forested regions 
outside the tropics is seasonality. As the shedding of 
leaves reduces the potential scatterers in each pixel, lower 
wavelength sensors can also achieve penetration during 
leaf‐off  seasons [Townsend, 2001]. This has been exam­
ined by using X‐band data to investigate surface water 
extent under low‐density canopies [Antonova et al., 2016]. 
An increase in backscatter was noted for all the different 
forest types in that area under flooded conditions indi­
cating that such approaches could be useful for boreal 
and temperate environments [Voormansik et al., 2014; 
Cohen et al., 2016]. For cases of increasing complexity 
where flooded water needs to be distinguished from 
marshes or mangroves, using multifreqency fully polari­
metric data and the use of P‐band is suggested for high‐
density canopies [Martinis and Rieke, 2015].

Although radar polarimetry can facilitate a reliable 
detection of the complex scattering mechanisms observ­
able in flooded vegetation, fully polarimetric SAR images 
are often unavailable during a flood event. Polarimetry is 
able to isolate the contribution of the double bounce 
from volume and surface scattering mechanisms, which is 
beneficial for detecting the changes caused specifically by 
flood water. This is done by measuring the magnitude 
and phase difference between copolarized (i.e., HH, VV) 
and cross‐polarized (e.g., HV backscatter) backscatter 
[Plank et al., 2017].

It was also demonstrated that using a combination of 
HH and VV polarized images favored the separation of 
flooded and unflooded forests over the use of HH data 
alone [Zalite et al., 2014]. This can largely be attributed to 
the increased phase difference observable in the former, 
as a result of  interactions with inundated vegetation. 
In case of  dense vegetation, the combined occurrence of 
absorption and scattering can produce an overall attenu­
ation that is relevant also for the HH polarization. In 
such cases, the SAR signal is reduced as the biomass 
increases, penalizing especially higher incidence angles 
and creating false alarms as well, since the backscattering 
is drastically reduced.

More recent studies proposed the use of interferometric 
SAR (InSAR), which measures the level of  similarity 
between two SAR images based on the speckle distribu­
tion patterns. Recall that speckle results from multiple 
scatterers within the same ground resolution cell, 
meaning that this pattern should be consistent for a 
given geographic area imaged using identical sensor 
characteristics. If  the difference in acquisition times of 
the SAR images can be limited such that the only change 
in terrain properties to occur within that duration is 
the flooding, coherence data can supplement intensity 
information for flood detection under canopies [Refice 
et al., 2014].

Vegetation normally decorrelates the microwave signal 
intensities due to volume scattering, which determines 
low Differential SAR Interferometry (DInSAR) coher­
ence (even for short temporal baselines). This is primarily 
a result of changes in plant phenology and movement of 
stalks and/or leaves caused by wind. However, flooded 
vegetation is characterized by even lower values of coher­
ence due to the added presence of floodwaters [Chini et al., 
2012]. Flooded waters contribute further to decorrelation 
due to specular reflection properties, which in the presence 
of emergent vegetation manifests as double‐bounce 
scattering [Zebker and Villasenor, 1992]. When combined 
with intensity information, flooded vegetation can be 
identified as areas displaying an increase in backscatter 
and decrease in coherence [Nico et al., 2000]. These 
approaches primarily detect the change in image texture 
and dielectric properties, which can be explained as a 
function of the underlying water level [Pulvirenti et al., 
2011a]. As the use of these change detection approaches 
are very sensitive to the temporal baseline of the SAR 
acquisitions, the use of newer satellites offering relatively 
lower repeat cycle, like the COSMO‐SkyMed (CSK) 
Constellation, should be explored.

The problem with high‐frequency SAR systems like CSK 
is the heightened sensitivity to any potential scatterers. 
However, for narrow‐leaved plants, these data could still 
provide useful information [Pierdicca et al., 2017]. 
Furthermore, the capability to provide multitemporal 
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observations can support the monitoring of flood evolu­
tion in some areas. If  the land‐cover distribution of the 
vegetated areas in the scene is known a priori, vegetation 
scattering models can be used to predict backscatter 
behavior [Pulvirenti et al., 2011b]. This information assists 
in tuning fuzzy models, which can then be used to inter­
pret flooded vegetation while simultaneously acknowl­
edging the uncertainty [Pulvirenti et al., 2013].

4.4.3. Urban Flooding

Flood detection around urban features is challenging 
due to a variety of  factors. Double‐bounce scattering 
from buildings and pavements, along with metals with 
high dielectric constants having high reflectivity, con­
tribute to the enhanced backscatter observed. The effect 
of  material properties dominates over the soil roughness 
characteristics, since the smooth urban surfaces like 
tarmac and asphalt are already smooth with respect to 
still water [Mason et al., 2010]. Distortion effects caused 
by the side‐looking sensor geometry additionally pose 
problems for high to very high resolution SAR imagery 
as high‐rise buildings tend to cause shadows and layover 
effects [Mason et al., 2012b].

Smooth urban surfaces cause specular reflection and 
return a signal, very similar to inundated areas, frequently 
leading to false alarm situations. However, it must be 
noted that specular reflection effects are increased for 
smooth urban surfaces oriented along the sensor’s line of 
sight. Conversely, corner reflection is more likely to occur 
if  the urban features are oriented orthogonally to the 
incoming radar beam [Pulvirenti et al., 2015].

Change detection (CD) based approaches were found 
to reduce the misclassifications of  other dark image 
regions by identifying areas of  shadow, layover, tarmac, 
and permanent water a priori [Giustarini et al., 2013]. 
Once these areas are diagnosed and masked out, overes­
timation can be substantially lowered. Earlier studies 
investigated the use of  active contours in conjunction 
with region growing. However, each step of  the seed 
selection process required manual intervention. Further 
studies automated this seed selection process for region 
growing using LiDAR‐based topographic information 
[Schumann et al., 2011].

While backscatter based approaches like change detec­
tion can work in some case studies [Aggarwal et al., 2014], 
there are some limitations for urban flood detection 
problems. For instance, the backscatter variation attrib­
utable to a change in the surface dielectric constant, 
which is caused by the flooding, is nearly unobservable as 
the returned signal is too low due to specular reflection. 
If  the smooth tarmac surfaces like roads and pavements 
are masked out of the analysis, flooding on and around 
these features cannot be detected [Pulvirenti et al., 2015]. 

Conversely, in the case of dihedral reflection, this inten­
sity change is usually detectable, as the increased surface 
reflectivity results in a stronger return. However, if  the 
water level is not negligible with respect to the building 
height, the signal return from corner reflectors might be 
reduced due to a decrease in the beam cross‐sectional 
area [Thiele et al., 2007]. Therefore, the reliability of SAR 
intensity‐based approaches appears to be limited for 
operational urban flood mapping.

The interferometric coherence approach discussed in 
section 4.3.2 has recently been applied to deal with many 
of these limitations. Urban areas are generally tempo­
rally coherent as the decorrelation is a function of relative 
motion of scatterers in the pixel over the temporal base­
line (separation between the two image acquisitions), 
which can be considered negligible for high‐density built‐
up areas. On average, double bounce in urban regions 
corresponds to highly coherent targets in the image as a 
function of their high backscatter in combination with 
temporal invariance. As spatial decorrelation is inversely 
proportional to the wavelength of the radar beam, at 
lower wavelength bands, this effect is more pronounced 
[Zebker and Villasenor, 1992].

Standing water is expected to decorrelate the signal 
more than is expected, a property that may be exploited 
for urban flood mapping [Pulvirenti et al., 2015; Matgen 
et al., 2011]. In high‐ resolution SAR imagery, some false 
alarms in the coherence information may be generated 
from dynamic traffic flows and parking lots. However, 
assessing three pairs of  SAR images acquired within 
the critical spatiotemporal baselines, one for the dry or 
pre‐event situation, one with images acquired before and 
after the event, and finally a postevent pair, can help in 
correctly identifying the decorrelation caused by flood­
ing. While this seems to be a data‐intensive approach at 
the outset, when the improved temporal resolutions of 
current and upcoming SAR sensors is considered, it 
appears more likely that such data may soon be available 
for analysis globally.

Gaps still remain in urban areas, such as shadowed 
areas structures where SAR backscattering does not pro­
vide any information about the presence of water, and 
they could be filled up by the assimilation of the flood 
maps into hydraulic models. In that case, the flood maps 
should be provided in terms of probability that a certain 
pixel is flooded in order to characterize the uncertainties 
associated with the flood map [Panegrossi et al., 2011].

4.5. REPRESENTATION OF UNCERTAINTIES

Regardless of the number of images considered, most 
SAR image processing methods output flood extent esti­
mates in the form of binary maps and thus do not provide 
any indication on the uncertainty associated with the 
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pixel classification. A more informative and arguably 
more advanced method is to estimate the probability of 
each pixel belonging to the flood class. However, probabi­
listic flood mapping is still not very common and only a 
few noteworthy exceptions exist [Westerhoff et al., 2013; 
Giustarini et al., 2016; Schlaffer et al., 2017]. Previous 
studies on the characterization of  uncertainties in flood 
extent maps have often been limited to random realiza­
tions of potential sources of uncertainty [Hostache et al., 
2006, 2009; Schumann et al., 2008b; Di Baldassarre et al., 
2009; Refice et al., 2014; Giustarini et al., 2015a].

The uncertainties contributed by ambiguities in back­
scattering properties cannot be completely removed 
[Stephens et al., 2012]. Approaches that account for this 
uncertainty in the flood detection process provide fuzzy 
outputs in which pixel values convey the confidence with 
which the pixel is correctly classified as flooded. As SAR‐
based flood extents serve as calibration and evaluation 
targets for hydrodynamic models, quantifying the uncer­
tainty of flood observations is essential [Schumann et al., 
2008]. Studies have successfully illustrated that factors 
like the acquisition time of the SAR image [Gobeyn et al., 
2017], sensor characteristics [Giustarini et al., 2015a], as well 
as the flood mapping procedure chosen [Di Baldassarre 
et al., 2009] can impact the calibrated model parameters. 
These studies demonstrated the need for a shift toward 
probabilistic mapping, which is the current consensus in 
the flood mapping community [Di Baldassarre et al., 
2011, 2010; Schumann and Di Baldassarre, 2010; Alfonso 
et al., 2016].

The discussion in the previous section of factors that 
may contribute to errors in SAR‐based flood maps is 
important to understand and identify areas in which the 
model outputs will always be more reliable. However, in 
practical applications, when large amounts of data need 
to be processed, especially at the regional or global scale, 
it makes more sense to convey the observational uncer­
tainty to the model for which several techniques have 
been proposed in literature.

For example, Schumann et al. [2008] investigated uncer­
tainty in SAR‐derived water stages, for a single SAR 
image and a single flood mapping procedure, and identi­
fied two main sources of uncertainty: (1) the parameter 
value applied to classify a pixel as flooded (i.e., flooded/
nonflooded classification threshold) and (2) geocoding 
of the image itself. The study conducted by Refice et al. 
[2014] implicitly introduced a semiautomated approach 
that allows integrating ancillary information to derive a 
posteriori probabilistic maps of  flood inundation, 
accounting for different scattering responses to the 
presence of  water.

In order to eliminate the subjectivity in the selection of 
a particular algorithm for flood mapping, several studies 
investigated the use of a possibility of inundation (POI) 

map [Schumann et al., 2009; Schumann and Di Baldassarre, 
2010; Di Baldassarre et al., 2009]. An ensemble of maps 
generated using a variety of flood detection algorithms that 
perform equally well for a given study region are combined 
to arrive at the POI map. Each pixel in the POI map is 
assigned a value between 0 and 1 based on how many of the 
ensemble members classified it as flooded. It can be inter­
preted as an event‐specific flood probability map, which 
can facilitate probabilistic calibration procedures.

Fuzzy approaches that combined SAR‐based infor­
mation with available ancillary data sets have since been 
suggested and exploited for operational flood mapping 
at various levels [Pulvirenti et al., 2011b; Pierdicca et al., 
2008; Pulvirenti et al., 2013; Pappenberger et al., 2007]. 
The fuzzy membership functions are usually defined 
based on EM backscattering models for each land‐use 
class the classifier may encounter in the SAR scene. These 
models can be difficult to parameterize if  domain 
knowledge is limited, thus histogram based methods still 
need to be tested for more generalizability.

Probabilistic mapping approaches that utilize Bayesian 
posterior probabilities of flooding to each pixel were 
tested recently, demonstrating a good agreement with the 
validation data assessed through reliability diagrams 
[Schlaffer et al., 2017; Giustarini et al., 2016]. One of the 
major limitations of current validation strategies is that 
the validation data are assumed to be completely true. 
This is counterintuitive as probabilistic mapping operates 
on the premise that observational uncertainty needs to be 
acknowledged. The current challenge is to develop an 
effective statistical measure to assess fuzzy flood maps 
with fuzzy validation data.

4.6. CASE STUDIES

The following section describes a few of the various 
innovative SAR‐based flood mapping techniques pro­
posed in state of the art literature [Addabbo et al., 2016; 
Arnesen et al., 2013; Avendano et al., 2015; Boni et al., 
2016, 2015; Policelli et al., 2017; Ahamed et al., 2017; 
Chaouch et al., 2012; Cossu et al., 2009; Twele et al., 2016]. 
Operational flood mapping approaches that utilize data 
from more recently launched high‐resolution sensors, as 
well as older coarser resolution satellites, have been 
selected here as the two case studies to reflect the current 
progress and continuing challenges at various spatial 
scales. The first study proposes a framework for planning 
satellite data acquisitions at opportune moments across 
the hydrograph, based on flood forecasts [Boni et al., 
2016]. The sensors tested for preliminary analysis were 
COSMO‐SkyMed and Sentinel‐1, both of which provide 
high‐resolution SAR imagery ideal for assessing floods 
in small to medium‐sized catchments. The second 
study investigates the possibility of  delivering a global 



68  GLOBAL FLOOD HAZARD

high‐resolution flood mapping service based on any kind 
of SAR data, from higher to lower spatial resolution data 
[Martinis et al., 2015c].

4.6.1. A Prototype System Using COSMO‐SkyMed 
and Sentinel‐1 Data

4.6.1.1. Background
The study by Boni et al. [2016] tried to maximize the 

flood insights gained from multiple sensors with high 
spatial and temporal resolutions, by testing a 
combination of  data sets from the CSK and Sentinel‐1 
constellations. Flood Early Warning Systems (FEWS) 
can be used to plan SAR acquisition at optimal temporal 
instances across the hydrograph in advance. Another 
important contribution that FEWS can make is to help 
identify the regions in which large area‐wide swath 
imagery can sufficiently characterize the flooding for 
on‐demand very high‐resolution acquisitions over areas 
of  complexity. Additionally, the Near Real Time (NRT) 
SAR‐based flood mapping algorithm proposed in 
Pulvirenti et al. [2014] for COSMO‐SkyMed imagery 
was adapted for Sentinel‐1 data to ensure transferability 
and robustness.

4.6.1.2. Methodology
The areas of  interest (AOI) for satellite SAR acquisi­

tions were selected based on the forecasts of  water levels 
and discharge generated by the FEWS. Currently, this 
AOI prioritization is done by a joint team of  experts 
with representatives from all stakeholder organizations 
based on flood forecasting, risk management, and 
remote sensing perspectives. As illustrated in Figure 4.5, 
the wide swath, high‐resolution, Sentinel data can char­
acterize the floodplain involvement quite clearly, while 
the very‐high‐resolution CSK data allow a temporal 
assessment of  critical areas.

The NRT mapping algorithm used a split‐based 
approach, which divided the SAR image into nonover­
lapping subsets, with land‐water thresholds automati­
cally selected from the ones that exhibit bimodality in the 
image histogram. The average of all the subimage thresh­
olds was used as the global threshold and finally a region 
growing algorithm was used to generate the flood map.

4.6.1.3. Observations
The NRT flood maps generated were quantitatively 

compared to the flood hazard map generated by the 
hydraulic model embedded in the FEWS set up for River 
Po, through the user’s accuracy, which was found to be 
consistently above 60%. However, the user’s accuracy 
only provides an estimate of  the commission errors, 
which simply assess where the mapping approach over­
estimates. Areas of  underestimation are essentially 
neglected by this performance measure. Therefore, a full 

accuracy assessment was conducted against a small 
cloud‐free subset of Landsat‐8 optical data, the results of 
which are summarized in Figure 4.6. The user’s accuracy 
and producer’s accuracy for this analysis were 69% and 
72%, respectively, which indicates that the algorithm is 
sufficiently reliable for emergency response.

One of  the major challenges in the selected study area 
was the presence of  flooded vegetation. An investiga­
tion of  the different available polarizations revealed 
that the Sentinel‐1, cross‐polarized data were better 
able to capture the flooding under vegetation. It is 
important to note that these approaches can be applied 
only when preflood images are available to facilitate 
change detection, or a multitemporal, multisensor, fully 
polarimetric data set is available for flood assessment. 
As the study attempts to guide an acquisition planning 
that can enable efficient flood monitoring, one can ima­
gine that in the future it may be possible to obtain SAR 
data according to specific requirements of  a particular 
study area.

4.6.2. A Fully Automated and Efficient SAR‐Based 
Flood Mapping Algorithm Combining Hierarchical 
Split‐Based Approach and Change Detection

4.6.2.1. Background
The study by Chini et al. [2017] proposes an unsuper­

vised and fully automatic algorithm for retrieving flooded 
areas from a SAR image and a SAR change image. It can 
be seen as a further improvement of  the algorithm 
initially proposed by Matgen et al. [2011] and further 
developed by Giustarini et al. [2013]. The latter is com­
posed of a sequence of thresholding, region growing and 
change detection steps. In order to choose the best avail­
able reference image for change detection Giustarini et al. 
[2013] proposes to follow the guidelines provided in the 
study by Hostache et al. [2012]. The change detection 
step is necessary for differentiating flood water from 
permanent water and to limit overdetection. The method 
proposed in Giustarini et al. [2013] is unsupervised as the 
initial calibration of the open water backscatter proba­
bility density function (PDF) is only based on the flood 
image histogram. It is moreover automatic as the 
threshold values, for the three abovementioned steps are 
optimized through an automatic iterative optimization 
process. However, the method proposed by Matgen et al. 
[2011] and Giustarini et al. [2013] can fail in calibrating 
the open water backscatter PDF when floodwater only 
covers a small part of the image as the histogram is then 
not clearly bimodal, which is unfortunately quite common 
when dealing with flood images (floodwater is often only 
visible on very limited areas of the complete SAR scene). 
To circumvent this limitation, the study by Chini et al. 
[2017] proposes a hierarchical split‐based approach 
(HSBA‐Flood) that allows for calibrating both open 



Flood Mapping Using Synthetic Aperture Radar Sensors From Local to Global Scales  69

water backscatter and flood‐induced backscatter change 
PDF even in the event the area covered by the floodwater 
is really small compared to the complete SAR scenes.

4.6.2.2. Methodology
To cope with flood extents only covering a small part 

of  the entire SAR scene Chini et al. [2017] proposes a 
hierarchical split‐based approach (HSBA) where the 

scene is iteratively split in to tiles of  variable sizes in 
order to find those exhibiting a bimodal histogram that 
can be used to automatically parameterize open water 
backscatter and flood‐induced backscatter change PDFs. 
It is worth mentioning that this approach does not fix the 
tile size a priori; instead, a hierarchical tiling of the scene 
is automatically performed, starting from Level 0 with 40 
tiles (the complete scene), down to the lower L where the 
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Figure 4.5  Swaths of the CSK (different colors) and S1 (turquoise) images of the area hit by the November 2014 Po 
River basin event. Two predictions of the FEWS‐Po model available through the DEWETRA platform are also 
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number of tiles is 4L. The lowest level L is fixed so that the 
number of pixels included in the level L tiles is sufficient 
for reliably estimating PDFs. Descending from the upper 
level (full image) to the lower one (quarters of image, six­
teenths of image, etc.), only the tiles that exhibit a bimodal 
histogram both in the flood and in the change image are 
selected for parameterizing the PDF of both open water 
backscatter and backscatter changes due to  the flood 
event, the other tiles being split into four subtiles. For being 
selected, the tiles have to fulfill the following criteria:

1. The tile histograms (computed based on both the 
flood and change images) must be bimodal. To evaluate 
this criterion, the flood image and the change image his­
tograms are first computed for each tile and it is assumed 
that both are composed of a mixture of two Gaussian 
distributions. The Gaussian distribution parameters are 
next assessed using the Levenberg-Marquard algorithm, 
as implemented in IDL. Eventually, to determine if  the 
Gaussian distributions are well separated, the Ashman D 
coefficient is computed and values higher than 2 are 
retained for a clean separation between the two 
distributions.

2. The smallest population must cover at least 10% of 
the tile.

3. The population representative of change should 
have a positive mean value in the change image, meaning 

that backscattering in the flooded image pixels is lower 
than in the reference one.

Based on the statistics of the selected tiles derived from 
HSBA, the hybrid methodology proposed by Giustarini 
et al. [2013] combining backscatter thresholding, region 
growing, and change detection is used for the automatic 
extraction of the flood extent in the entire scene (Fig. 4.7).

4.6.2.3. Results
The approach has been applied on two pairs of reference/

flood SAR images acquired by the Envisat and TerraSAR‐X 
satellites during a flood event that occurred in July 2007 over 
River Severn (United Kingdom). Based on almost 
synchronous acquisitions of very high resolution aerial pho­
tographs (validation data set), the flood extent maps derived 
in Chini et al. [2017] have been evaluated and show very high 
overall accuracies. Figure 4.8 shows the comparisons bet­
ween the flood extents derived from Envisat‐WS images and 
Terrasar‐X images against the validation data set.

Moreover, the approach has been recently successfully 
tested on Sentinel‐1 images acquired during flood events. As 
a result, in collaboration with the European Space Agency’s 
Research and Service Support team, this consolidated flood 
mapping software is operationally implemented and will be 
opened as a service in the ESA RSS’s Grid Processing On 
Demand processing (GPOD) environment, where each user 

Zone B
Zone A

(a) (b)

(c) (d)

Figure 4.6  Performance assessment of the NRT classification algorithm for (a) CSK‐derived flood map and (b) the 
location of zones A (dark blue) and B (light blue) in the reference map. (c) The CSK intensity image (dB) is 
displayed. In (d), a false color composite of Landsat 8 for the same area is included. From Boni et al. [2016]. 
(See electronic version for color representation.)
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will be able to process the desired data to detect the flooded 
areas using Sentinel‐1 data in an automatic way.

4.7. SUMMARY AND PERSPECTIVES

This chapter provided an overview of the challenges 
and opportunities associated with operational SAR‐
based flood mapping at multiple spatial scales. The 
principles of SAR imaging were discussed with reference 
to flood detection problems, and the state‐of‐the‐art 
solutions proposed in literature to eliminate these effects 
were critically examined. Finally, selected case studies 
demonstrating the potential of SAR‐derived extents for 
operational flood mapping were presented.

The current generation of high‐resolution SAR satel­
lites like COSMO‐SkyMed, TerraSAR/TanDEM‐X and 
Sentinel‐1, and planned missions like the Radarsat 
Constellation, NiSAR, TerraSAR/TanDEM‐L and 
CSK‐2 have stimulated scientific research on the optimal 
use of this rich database for flood detection. The shift 
toward open data policies across space organizations 
could potentially lead to more innovative solutions to the 

persisting challenges in the field and ensure continued 
investment in satellite SAR technology.

Identifying flooding under vegetated and urban land 
forms is a research topic of high interest with many open 
questions currently being examined. The use of ancillary 
data sets and complementary approaches like interfero­
metric coherence can be helpful. However, diagnostic assess­
ments are required to evaluate the environmental conditions 
under which each of these approaches work and why. 
Furthermore, it’s important to develop techniques that pro­
vide an associated measure of flood detection uncertainties, 
at least in regions exhibiting complex surface properties.

The shift toward fuzzy and probabilistic approaches in 
the field of SAR‐based flood mapping necessitates the 
development of suitable validation techniques. Present 
strategies involve the use of binary validation maps for 
assessment, which seems counterintuitive, as the premise of 
this shift from deterministic approaches is that uncertainty 
cannot be eliminated. Investigative analysis of current map­
ping approaches for multisensor, multiband data should be 
conducted across diverse geographical regions to gain an 
in‐depth understanding of why certain approaches favor a 
particular set of environmental conditions.
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Figure 4.7  HSBA‐Flood block diagram. RG: Region growing. CD: Change detection. After Chini et al. [2017].
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Crowd‐sourced flood information has the potential 
to complement remote sensing based mapping of  floods. 
In addition, the advent of social media and the proliferation 
of smart phones have ushered in an era of citizen sensing 
[Fohringer et al., 2015]. However, research in this direction 
is very new and many scientific challenges remain, espe­
cially in the design of  validation methodologies. The 
availability of  data from diverse sources will continue to 
increase in the coming years and the flood mapping 
community needs to evolve rapidly to unlock the full 
potential of  RS for disaster management.
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