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Abstract: The biophysical properties of a crop are a good indicator of potential crop stress conditions.
However, these visible properties cannot indicate areas exhibiting non-visible stress, e.g., early water
or nutrient stress. In this research, maize crop biophysical properties including canopy height and
Leaf Area Index (LAI), estimated using drone-based RGB images, were used to identify stressed areas
in the farm. First, the APSIM process-based model was used to simulate temporal variation in LAI
and canopy height under optimal management conditions, and thus used as a reference for estimating
healthy crop parameters. The simulated LAI and canopy height were then compared with the ground-
truth information to generate synthetic data for training a linear and a random forest model to identify
stressed and healthy areas in the farm using drone-based data products. A Healthiness Index was
developed using linear as well as random forest models for indicating the health of the crop, with a
maximum correlation coefficient of 0.67 obtained between Healthiness Index during the dough stage of
the crop and crop yield. Although these methods are effective in identifying stressed and non-stressed
areas, they currently do not offer direct insights into the underlying causes of stress. However, this
presents an opportunity for further research and improvement of the approach.

Keywords: crop healthiness; drone sensing; precision agriculture; APSIM

1. Introduction

Agriculture is a critical component of global food production systems and is vital for
sustaining human life. However, increasing pressure on agricultural system performance
has resulted in a need for more sustainable practices that optimize productivity while
minimizing environmental impact [1]. Consequently, precision agriculture techniques have
gained momentum as a means of optimizing crop yield and reducing waste/pollution [2,3].
One critical aspect of precision agriculture is the ability to identify areas of a farm that are
experiencing stress, such as nutrient deficiencies, pest infestations, or water shortages [4].
Identifying these areas allows for targeted interventions that can improve crop health and
ultimately lead to increased yields [5].

Traditionally, the identification of stressed areas on a farm has relied on manual inspec-
tion and ground-based measurements, which are time-consuming and resource-intensive.
However, the recent developments in airborne RGB imaging technology provides an al-
ternative solution for monitoring crop health over large areas. The use of biophysical
properties derived from airborne RGB images has gained popularity in recent years as
an effective means of identifying areas of a farm experiencing stress. Among the exam-
ples of such biophysical properties are vegetation indices, which measure the amount
of green vegetation in an area by analyzing the reflectance of light in specific spectral
bands [6–11]. The most commonly used vegetation index is the Normalized Difference
Vegetation Index (NDVI), which is calculated using the red and near-infrared spectral
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bands [12–14]. Another biophysical property that can be derived from airborne optical
images is canopy temperature, which can be used to identify areas experiencing water
stress [15]. During times of this instantaneous water stress, plants close their stomata
to conserve water, which results in a reduction of transpiration and an increase in leaf
temperature, affecting the gaseous exchanges between plants and their atmosphere. By
analyzing surface temperature data derived from airborne RGB images, it is possible to
identify areas of a farm experiencing water stress [16].

Crop health monitoring and stress detection using biophysical parameters such as
Leaf Area Index (LAI) and canopy height derived from remote sensing technology has been
an area of active research in precision agriculture. The biophysical properties of a crop,
such as canopy height and LAI, have been widely used as indicators of crop health and
stress [17,18]. However, conventional methods of monitoring crop health may not always
be accurate, particularly in cases where the stress is not visible or the cause is unknown.
Therefore, there has been a growing interest in developing more advanced techniques that
can provide more accurate and timely information on crop health.

In recent years, drone-based remote sensing has emerged as a promising tool for
monitoring crop health and detecting crop stress. Drones can capture high-resolution RGB
images of crops, which can be processed to estimate various biophysical parameters of crops,
including canopy height and LAI. Many studies have demonstrated the potential of drone-
based remote sensing to estimate crop biophysical properties which can be further used to
detect stressed areas on farms. For example, researchers have used drone-based RGB images
to estimate the LAI of wheat crops using a convolutional neural network [19]. In another
study, a drone-mounted raspberry pi camera was used to estimate paddy crop health
through leaf color [20]. In another research the RGB image-based triangular greenness
index was used to evaluate the health of a citrus crop [21]. Similarly, another researcher
utilized top-of-canopy RGB images of maize crop and trained an image processing model
for crop stress detection based on the histogram analysis of healthy and stressed plots’
individual bands [22].

Multiple models use multispectral [22–25] or hyperspectral data [26,27] to estimate
crop health, as RGB images have limited scope in addressing crop health issues. Interest-
ingly, the leaf color-based health models use the field experimental data to make the health
model and also highly depend on lighting conditions [28] which generally change from
season to season for the same crop. Consequently, there is a need for model development
that uses experimental data along with an independent reference to investigate crop health.

Accordingly, in this research, the main objective is to estimate maize crop stress using
drone-based RGB images. Below are the tasks which were completed one by one in order
to achieve the objective:

• Airborne RGB images were used to prepare temporal crop-LAI and crop-height maps,
based on previously published techniques;

• A process-based crop model (APSIM) was simulated for both optimal and actual farm
conditions to obtain height and LAI values;

• These simulated values, also referred to as synthetic values, were then used to build
models for generating a crop healthiness index;

• The models were subsequently evaluated with the maps prepared using airborne RGB
images and validated with the field observations.

2. Materials and Methods

APSIM model simulation was undertaken using information on weather, soil, and
management practices to simulate temporal variation in maize LAI and canopy height. The
APSIM-generated canopy height was further fine-tuned with the help of simulated LAI.
Output from the APSIM simulations were then used to develop synthetic data for training
a linear and a random forest (RF) model for crop stress identification. These models have
input as crop LAI and crop height maps, which are subsequently classified into stressed
and healthy areas. Further, the healthiness map was compared with actual crop yield to
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confirm its usefulness. As explained above, Figure 1 shows the methodology framework
used in this research.
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Figure 1. Framework for identifying crop stress areas using drone-based LAI and canopy height maps.

2.1. Data

This research has used the data presented by Raj et al., 2021 [29]. The dataset was
collected in 2018–2019 from a maize (variety: Cargil 900 M gold) research farm developed
in the semi-arid region of Hyderabad district of India (7◦19′27.2′′ N, 78◦23′55.4′′ E). A total
of 27 maize plots, each having an area of 4.2 m × 4.8 m, were treated with a combination of
three different water and nitrogen levels to grow the crop under nine different management
variable conditions. The nine unique treatments were replicated thrice, with the plot setting
as shown in Figure 2. The text written above each plot in Figure 2 indicates the irrigation
and nitrogen treatments applied to the corresponding plots. Here, ‘I’ stands for irrigation
and ‘N’ stands for nitrogen. The numbers written after these letters (e.g., 1, 2, or 3) indicate
the level of irrigation and fertilization, respectively, where ‘1’ denotes a low amount of
supply and ‘3’ is used for a high amount of supply. The detailed management practices
were discussed in Raj et al., 2021 [29]. All the plots had a sandy loam soil type, 8.33 plants
per square meter crop density, same weather conditions (shown in Figure 3), and furrow
irrigation. A summary of the data is shown in Table 1, with the details of the data available
in the papers mentioned above. Weather data, soil property information, and management
practice details used for simulation of the APSIM model are shown in Figure 3, Table 2,
and Figure 4, respectively. The crop height and LAI map were generated according to
Raj et al., 2021, [29] and used as inputs in the crop healthiness map model. The height map
was generated for each plot, while the LAI map was created for each square meter. Figure 5
shows the generated LAI and height map. The pixel size for the height map is equal to the
plot size, and spatial resolution of the LAI map was taken as one meter.

Table 1. Data used in this study and their sources.

Data Details Source

Temporal canopy height map A farm map with plot-wise (4.2 m × 4.8 m)
height values The map has been developed using Raj et al., 2021, [29] protocol

Temporal canopy LAI map A farm map with high spatial resolution
(1 m × 1 m) LAI values The map has been developed using Raj et al., 2021, [29] protocol

Weather data Daily solar irradiance, rainfall, evaporation,
minimum and maximum temperature

Automatic weather station beside farm and managed by the
India Meteorological Department (IMD)

Soil properties Soil type, soil composition, soil depth,
field capacity On-farm physical investigation

Crop yield Plot-wise crop yield weighted at
crop maturity On-farm weighing of the maize cobs
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Table 2. Depth-wise soil properties table of the research farm. Meaning of abbreviations are as
follows—OC: Organic carbon; EC: Electrical conductivity; BD: Bulk density; WP: Wilting Point; FC:
Field Capacity; Sat: Saturation; AW: Available Water; SHC: Saturated Hydraulic Conductivity.

Soil
Depth
(cm)

Soil
Type

Clay
(%)

Sand
(%)

Silt
(%)

OC
(%)

EC
(%)

Gravel
(%)

BD
(g/cc)

WP (%
Vol)

FC (%
Vol)

Sat (%
Vol)

AW
(cm/cm)

SHC
(mm/h)

20

Sandy
loam

18 79 3.2 0.6 0.5 33 1.5 11.1 17.6 42.5 0.05 24.8

30 16 73 11.4 0.1 0.2 37 1.6 9.5 16.3 38.8 0.05 17.5

40 18 69 13.4 0.1 0.4 60 1.6 10.7 18.3 38.7 0.04 8.6

50 18 67 15.2 0.1 0.3 37 1.6 10.8 18.4 36.9 0.06 10.1

60 18 69 13.2 0.1 0.2 36 1.5 10.7 18.7 40.6 0.06 16.8

70 17 69 13.4 0.2 0.3 33 1.5 10.2 18.6 42.6 0.07 23.6

80 18 65 16.9 0.2 0.4 35 1.4 10.9 20.4 45.0 0.07 24.9

90 20 69 11.4 0.1 0.4 27 1.6 12.0 19.7 49.8 0.06 14.4

100 18 69 13.2 0.1 0.4 48 1.5 10.8 19.1 42.9 0.05 17.9
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Figure 5. Temporal height and LAI maps of maize farm created using model adopted from Raj et al.
(2021) [29]. Solid line boxes represent sufficiently irrigated plots, dashed line boxes for moderately
irrigated, and less irrigated plots are shown with dotted line boxes.

2.2. APSIM Model

The APSIM (Agricultural Production Systems sIMulator [30]) model was used to
simulate crop growth under actual farm weather and applied irrigation/fertilization condi-
tions with identified soil properties. Temporal values of crop LAI, canopy height, and soil
moisture of all the plots were simulated and used as a reference to compare with actual
farm data. The maize seed variety used for farming was ‘Cargil 900 m gold’; however,
this maize seed variety was not available in APSIM. Accordingly, the seed variety was
selected from available APSIM options based on a comparative analysis of growing degree
days (GDD) and the onset of growth stages with respect to farm-observed responses. The
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simulation of the model with different seed varieties led to selection of the ‘mh12′ seed
type, as it mimics the same behaviour as the ‘Cargil 900 m gold’. Figure 6 shows the field
observed growth stage occurrence with respect to change in GDD for APSIM simulation
of the ‘mh12′ maize variety. The soil and weather properties were taken as per recorded
farm conditions. The values below the graph of Figure 6 show the average GDD value
for the three replicated plots for each treatment. The GDD difference between simulated
and observed growth stages was less than 100 for the tasseling and silking stages, while
the differences were negligible for the emergence and 6-leaf stage. The similarity between
the simulated and observed growth stage values was considered as the indicator of the
acceptability of the APSIM model results, without requiring intensive calibration of the
model using field data.
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The LAI and canopy height of maize were simulated in APSIM, and simulated output
were compared against the observed LAI and height values of respective treatment plots. It
was found that the APSIM model simulation of LAI and height was insensitive to changes
in water and nutrients during the initial growth stage, but had greater sensitivity as it
progressed towards the maturity stage. Figure 7 shows the simulated and observed canopy
LAI values, with the simulated initial growth stage LAI being always equal to the optimal
condition simulation of LAI. The model seems to be insensitive during the initial growth
stage and remains at optimal values even for low irrigation and low fertilization treatment
plots. The optimal values were simulated by maintaining the simulated soil moisture above
70% of the field capacity. Moreover, the simulated canopy height was underestimated
compared to the observed farm values for all scenarios, as shown in Figure 8a. The problem
of canopy height underestimation was resolved by updating the height values proportional
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to the rate of change of simulated LAI until the canopy closure stage. This was conducted
in consideration of a high correlation between canopy height and LAI [31]. The updated
canopy height graph is shown in Figure 8b.
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Figure 8. (a) Simulated and observed temporal canopy height for different treatment plots, with the
model highly underestimating the canopy height until the tasseling/silking (canopy closure) stage.
(b) Canopy height output after updating the height values proportional to the rate of change of LAI
until the canopy closure stage.

The graphs show that the APSIM-simulated result for early crop growth stages is
not sensitive to management practices without proper calibration. However, the optimal
condition simulated values can be used as a reference. Moreover, the simulated values
for late growth stages were close to the field observed values, making the APSIM model
results useful. These optimal values were therefore used to create synthetic data to build
linear and random forest models. In comparison to the random forest model, the linear
model is less demanding in terms of computational resources and data, making it suitable
for use on low compute-intensive machines with slight compromise on the model accuracy.

2.3. Linear Model for Crop Healthiness

In the linear approach, LAI and height maps were used to predict the crop stress
level using a Healthiness Index, which should be taken as an indicator to identify the crop
healthiness based on its biophysical parameters (LAI and height). The areas having low
Healthiness Index indicate a high chance of the crop being stressed. Two thresholds have
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been created to determine the stress levels in the crop, with the crop considered healthy if
the drone-based LAI and height values are around the APSIM-simulated optimal values.
However, the plots were considered severely stressed if the observed values were equal to
or less than 0.55 and 0.65 times the simulated optimal LAI and height, respectively. The
stress condition thresholds were calculated by averaging simulation values of the I1N1
condition post canopy closure. All observations in between optimal and stressed levels
were linearly scaled, with the thresholds given in Table 3. The formula used to predict the
healthiness/stress level using the Healthiness Index of the plots is given as

Healthiness Index =
LAIpred + Heightpred

2
, (1)

where
LAIpred = 2× LAIobserved

LAIoptimal
− 1, (2)

Heightpred = 2.5× Heightobserved
Heightoptimal

− 1.5, (3)

such that LAIobserved and Heightobserved are the remotely sensed values of LAI and height
of the crop, respectively. LAIoptimal and Heightoptimal are the APSIM-simulated opti-
mal values for LAI and height, respectively, for the corresponding crop age (days after
sowing—DAS).

Table 3. Stressed and healthy plot thresholding criteria for Healthiness Index creation.

Parameter Healthy Condition Severe Stress Condition

LAI APSIM simulation value at optimal
management condition

( APSIMoptimal)

0.55 × APSIMoptimal

Canopy height 0.65 × APSIMoptimal

The Healthiness Index is a value between 0 and 1, where stressed plants are indicated
by 0 and healthy plants by 1. This linear model was implemented on the drone-based LAI
and height. If the RGB image-based LAI or height (observed) values were greater than the
simulated optimal value or less than the severe stress condition value (as shown in Table 3),
then the observed value was made equal to the nearest threshold, i.e., either simulated
optimal value or severe stress condition value.

2.4. Random Forest Model for Crop Healthiness

The Random Forest (RF) model has emerged as a highly influential and effective
ensemble learning method in the field of predictive analysis [32]. By combining the princi-
ples of decision trees and the concept of ensemble learning, RF has garnered significant
attention and acclaim due to its exceptional performance in diverse domains including agri-
culture [33]. Selection of the RF machine learning model was made considering its proven
ability to be less sensitive towards the quality of training samples and overfitting [34].
Accordingly, the RF approach used two inputs—LAI and crop height—to predict the crop
healthiness level. The training data for the RF model were synthetically generated using
reference values from APSIM-simulated values.

The process of creating synthetic data was as follows. If the observed (drone-based)
LAI and height values are close to APSIM-simulated optimal values, it was considered
a healthy crop condition. However, the plots were considered severely stressed if the
observed values were equal to or less than 0.55 and 0.65 times the simulated optimal
LAI and height, respectively (same as in the linear model). Moderate stress condition
was considered when observed values were around 0.75 times the simulated optimal LAI
and canopy height. These scaled values were used as the mean, and with a 5% standard
deviation around each of these values, random gaussian noise was generated. A total of
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1000 sample values were generated for each condition. The generated synthetic data are
shown in Figure 9.
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The RF model was trained on the synthetic data, with the hyperparameter values
tuned to obtain the best-suited values. The created RF model had n_estimators = 1400,
random_state = 42, criterion = entropy, and min_samples_split = 10. The model output
ranged from 0 to 1, indicating 0 for stressed plots and 1 for healthy plots. These values
were named Healthiness Index. This model was then implemented on the drone-based LAI,
and crop height maps and Healthiness Index farm maps obtained.

3. Results and Discussion

Crop healthiness maps for different growth stages were made using the linear and RF
model. Figure 10 shows the results of the linear and RF models on temporal drone data.
The four growth stages considered for analysis were the early vegetative stage, tasseling
stage, silking stage, and dough stage. Figure 10a–d displays the results of the linear model,
while 10e–h present the results of the RF model. In Figure 10a,e, which represent the early
vegetative stage stress maps, the linear model (Figure 10a) classifies most of the moderately
stressed plots as severe stress (red color). However, the RF model assigns these plots closer
to the moderate stress class, although not precisely matching the actual conditions. The
disparity in stress maps can be attributed to the crop’s shorter height and LAI in the early
vegetative stage, resulting in a higher error percentage compared to later growth stages.
Figure 10b–c and Figure 10 f–g show the tasseling- and silking-stage crop stress maps for
the linear and RF models, respectively. The accuracy of the tasseling-stage model exhibits
similar results, but the linear model’s silking-stage results classify some plots closer to the
no stress condition, which is not consistent with actual farm observations. Figure 10d,h
represents the dough-stage farm stress map, showing the highest correlation with crop
yield. However, at the dough stage, the RF model produces stress map results that are
closer to the ground observations.

The Random Forest result was found to be more accurate, being able to differentiate
between I3, I2, and I1 plots more efficiently. The model’s performance improved as the
crop moved towards the maturity stage, with the dough-stage healthiness map making all
I3, I2, and I1 plots distinguishable from other stage crops.
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model (e–h). The maps are in sequence left to right, starting from the early vegetative stage, tasseling
stage, silking stage, and dough stage. Solid line boxes represent I3 irrigated plots, dashed line boxes
represent I2 irrigated plots, and dotted line boxes represent I1 irrigated plots.

Quantitative analysis of the models was undertaken by correlating the plot-wise
average values of the predicted healthiness level (between 0–1) with the yield values.
Figure 11 shows the scatter plot correlation values for the 6-leaf, tasseling, silking, and
dough stages. It was found that the RF model performed relatively better than the linear
model for all growth stages. For the early vegetative stage (6-leaf stage), the obtained
R2 was 0.42 and 0.45 for the linear and RF model, respectively. For the tasseling stage,
R2 for the linear model was 0.56, and for the RF model, it was 0.61. The silking stage results
were similar to the tasseling stage, with R2 of 0.56 and 0.58 for the linear and RF models,
respectively. The dough stage gave the best performance, with R2 of 0.63 and 0.67 for the
linear and RF models, respectively. In general, as the growth stage progress, R2 values
appeared to be increasing for both the models, but the RF model performance was found
to be better than the linear model.

The relationship between crop healthiness and crop yield was expected to strengthen
as the growth stage advanced. This finding aligns with previous research conducted on a
larger scale using MODIS data [35], which utilized vegetation indices to estimate maize
yield. In that study, the highest correlation coefficient achieved was 0.67, observed as the
crop transitioned from the vegetative stage to maturity. Similarly, in a separate investigation,
researchers employed drone-based RGB images to estimate sugarcane yield based on LAI
and the Green-Red vegetation Index [36], obtaining R2 values ranging from 0.69 to 0.79.
These results were obtained around the inflection point of the biomass accumulation curve,
typically occurring a few days prior to crop maturity. The healthiness level during the
initial growth stage may impact the end-of-season crop yield, but the management practices



Agriculture 2023, 13, 1292 11 of 14

during the intermediate stages can influence the yield, which may not be reflected when
using only initial growth stage data. Figure 10 maps demonstrate how plots initially
experiencing severe stress could improve their healthiness over time, eventually being
classified as under moderate stress conditions by the silking or dough stage. When the crop
is closer to maturity, there is an expected higher correlation between healthiness level and
crop yield as the input data to the model represents the cumulative effect of management
practices on the crop.
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The parameters of this model were specifically designed for the maize crop, with the
variety being Cargil 900 M gold, and they are expected to work better with the same variety.
To replicate the model for other crops or varieties, a similar methodology should be adopted
to create crop-specific models. When interpreting the results, it is important to consider
that the research plots, as shown in Figure 2, were treated with varying irrigation and
fertilization techniques while being in close proximity to each other. Although precautions
were taken to physically separate the plots and prevent surface transfer of irrigation water
among them, it is still possible for water to seep underground and potentially affect
neighboring plots, particularly due to its sandy-loam nature. Such occurrences have the
potential to impact the treatment effects on the crop.

Temporal crop healthiness mapping plays a crucial role in determining the overall
productivity of agricultural crops. The connection between crop health and yield stems
from the fact that healthy plants are more likely to exhibit optimal growth, resist pests and
diseases, and efficiently utilize available resources. By monitoring the temporal patterns
of crop health indicators, the agricultural community can assess the vitality and vigor of
their crops over time. Timely identification of any deviations from the expected health
trajectory allows for prompt interventions, including adjusting nutrient levels, water supply,
or implementing appropriate pest management strategies. By maintaining optimal crop
health throughout the growing season, farmers can maximize the potential yield of their
crops and ensure the economic viability and sustainability of their agricultural operations.
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The findings of this research highlight a clear relationship between the severity of
crop stress and reductions in crop biophysical parameters such as LAI and height. These
observations are consistent with the existing literature on crop processes [37,38]. As the
severity of stress increases, the reduction from optimal values becomes more pronounced.
This reduction becomes particularly noticeable as the crop progresses beyond the vegetative
stage. For crops subjected to one-third of the recommended irrigation, the yield was
reduced by approximately threefold, with observed crop LAI and height reaching only 55%
and 70% of their optimal values, respectively. Similar observations have been reported by
other researchers [39,40].

Exploring the published research on similar topics reveals noteworthy findings. In one
study [41], UAV-based multispectral data were utilized to estimate LAI, which was further
assimilated with ground monitoring data to estimate crop yield, resulting in an R2 value
of 0.85. Another study [42] found that the use of surface temperature and vegetation
index derived from MODIS data for estimating crop yield varied based on agroclimatic
zones, yielding R2 values between 0.68 and 0.81 for crops such as wheat and soybean.
For potato crop yield prediction using Sentinel-2 multispectral data, a maximum R2 of
0.65 was obtained in a separate study [43]. Similarly, in a very similar study, researchers
used MODIS-derived vegetation indices to estimate corn crop yield during the harvest-
ing stage, achieving a maximum R2 value of 0.72 [44]. Interestingly, the literature shows
that most researchers have used multispectral data for determining crop stress. How-
ever, the presented research has demonstrated the capability of RGB images to estimate
crop stress.

4. Conclusions

This study concludes that remotely estimated crop biophysical parameters from RGB
images-based observations, such as LAI and height, can be used as a low-cost (compared
to multispectral and hyperspectral sensors) but no less effective solution for identifying
stressed and healthy areas on the maize farm. However, the healthiness maps developed
in this research cannot indicate the reason for the stress, which would require an onsite
inspection. The performance of the developed models was found to improve as the crop
matured, with the dough stage producing the best results. The study’s findings provide
valuable insights into the impact of stress on crop health, which can aid in developing
strategies to mitigate its effects, ultimately improving crop yield and food security by
enabling farmers to make data-driven decisions and implement targeted interventions in
near real-time, resulting in efficient resource management and higher crop yields. The use
of biophysical properties derived from low-cost airborne RGB images has therefore been
shown to have promise in identifying stressed areas on farms. However, the accuracy and
precision of these biophysical properties can be influenced by several factors, and more
research is needed to develop and test methods such as machine learning algorithms that
can automatically identify stressed areas and to integrate different data sources to improve
the accuracy and precision of crop stressed area identification on farms. The development
and use of these technologies will have important implications for the development of
sustainable agriculture practices and the optimization of crop yields.
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